深圳市中考数学试卷(WORD版)

合集下载

2024年广东省深圳市中考数学试题(解析版)

2024年广东省深圳市中考数学试题(解析版)

2024年深圳市初中学业水平测试数学学科试卷说明:1.答题前,请将姓名、准考证号和学校用黑色字迹的钢笔或签字笔填写在答题卡定的位置上,并将条形码粘贴好.2.全卷共6页.考试时间90分钟,满分100分.3.作答选择题1-8,选出每题答案后,用2B铅笔把答题卡上对应题目答案标号的信息点框涂黑.如需改动,用橡皮擦干净后,再选涂其它答案.作答非选择题9—20,用黑色字迹的钢笔或签字笔将答案(含作辅助线)写在答题卡指定区域内.写在本试卷或草稿纸上,其答案一律无效.4.考试结束后,请将答题卡交回.第一部分选择题一、选择题(本大题共8小题,每小题3分,共24分,每小题有四个选项,其中只有一个是正确的)1.下列用七巧板拼成的图案中,为中心对称图形的是()A. B. C. D.【答案】C【解析】【分析】本题主要考查了中心对称图形的识别.在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【详解】解:选项A、B、D均不能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以不是中心对称图形,选项C能找到这样的一个点,使图形绕某一点旋转180度后和原图形完全重合,所以是中心对称图形,故选:C.2.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为()A.aB.bC.cD.d【答案】A【解析】【分析】本题考查了根据数轴比较实数的大小.根据数轴上右边的数总比左边的大即可判断.【详解】解:由数轴知,0a b c d <<<<,则最小的实数为a ,故选:A.3.下列运算正确的是()A.()523m m -=- B.23m n m m n ⋅=C.33mn m n -= D.()2211m m -=-【答案】B 【解析】【分析】本题考查了合并同类项,积的乘方,单项式乘以单项式,完全平方公式.根据单项式乘以单项式,积的乘方,完全平方公式法则进行计算即可求解.【详解】解:A、()2365m m m -=≠-,故该选项不符合题意;B、23m n m m n ⋅=,故该选项符合题意;C、33mn m n -≠,故该选项不符合题意;D、()2221211m m m m -=-+≠-,故该选项不符合题意;故选:B.4.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为()A.12B.112C.16 D.14【答案】D 【解析】【分析】本题考查了概率公式.根据概率公式直接得出答案.【详解】解:二十四个节气中选一个节气,抽到的节气在夏季的有六个,则抽到的节气在夏季的概率为61244=,故选:D.5.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,则反射光线与平面镜夹角4∠的度数为()A.40︒B.50︒C.60︒D.70︒【答案】B 【解析】【分析】本题考查了平行线的性质,根据CD AB ⊥,56∠=∠,则1250∠=∠=︒,再结合平行线的性质,得出同位角相等,即可作答.【详解】解:如图:∵一束平行光线照射平面镜后反射,若入射光线与平面镜夹角150∠=︒,∴CD AB ⊥,56∠=∠,∴152690∠+∠=∠+∠=︒,则1250∠=∠=︒,∵光线是平行的,即DE GF ,∴2450∠=∠=︒,故选:B.6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分BAC ∠的是()A.①②B.①③C.②③D.只有①【答案】B【解析】【分析】本题考查了尺规作图,全等三角形的判定与性质解决问题的关键是掌握角平分线的判定定理.利用基本作图对三个图形的作法进行判断即可.在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,可证明AFM AEN ≌,有AMD AND ∠=∠,可得ME NF =,进一步证明MDE NDF △≌△,得DM DN =,继而可证明ADM ADN △≌△,得MAD NAD ∠=∠,得到AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.【详解】在图①中,利用基本作图可判断AD 平分BAC ∠;在图③中,利用作法得AE AF AM AN ==,,在AFM △和AEN △中,AE AF BAC BAC AM AN =⎧⎪∠=∠⎨⎪=⎩,∴()SAS AFM AEN ≌,∴AMD AND ∠=∠,AM AE AN AF -=- ME NF∴=在MDE 和NDF 中AMD AND MDE NDF ME NF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()AAS MDE NDF ≌,∴DM DN =,∵,AD AD AM AN ==,∴()SSS ADM ADN ≌,∴MAD NAD ∠=∠,∴AD 是BAC ∠的平分线;在图②中,利用基本作图得到D 点为BC 的中点,则AD 为BC 边上的中线.则①③可得出射线AD 平分BAC ∠.故选:B.7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为()A.()7791x y x y +=⎧⎨-=⎩ B.()7791x y x y +=⎧⎨+=⎩C.()7791x y x y-=⎧⎨-=⎩ D.()7791x y x y+=⎧⎨+=⎩【答案】A 【解析】【分析】本题考查了由实际问题抽象出二元一次方程组.设该店有客房x 间,房客y 人;每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间客房得出方程组即可.【详解】解:设该店有客房x 间,房客y 人;根据题意得:()7791x yx y +=⎧⎨-=⎩,故选:A.8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A.22.7mB.22.4mC.21.2mD.23.0m【答案】A 【解析】【分析】本题考查了解直角三角形,与俯角有关的解直角三角形,矩形的判定与性质,先证明四边形EFDG 、EFBM 、CDBN 是矩形,再设m GM x =,表示()5m EM x =+,然后在Rt tan AMAEM AEM EM∠= ,,以及Rt tan AN ACN ACN CN∠= ,运用线段和差关系,即()450.33MN AN AM x x =-=-+=,再求出15.9m x =,即可作答.【详解】解:如图:延长DC 交EM 于一点G ,∵90MEF EFB CDF ∠=∠=∠=︒∴四边形EFDG 是矩形∵90MEF EFB B ∠=∠=∠=︒∴四边形EFBM 是矩形同理得四边形CDBN 是矩形依题意,得 1.8m 1.5m EF MB CD ===,,4553AEM ACN ∠=︒∠=︒,∴()1.8 1.5m 0.3m CG =-=,5m FD EG ==∴0.3mCG MN ==∴设m GM x =,则()5mEM x =+在Rt tan AMAEM AEM EM∠= ,,∴1EM AM⨯=即()5mAM x =+在Rt tan AN ACN ACN CN∠= ,,∴4tan 533CN x AN ︒==即4m 3AN x =∴()450.33MN AN AM x x =-=-+=∴15.9mx =∴()15.9520.9m AM =+=∴()20.9 1.822.7m AB AM EF AM MB =+=+=+=故选:A第二部分非选择题二、填空题(本大题共5小题,每小题3分,共15分)9.已知一元二次方程230x x m -+=的一个根为1,则m =______.【答案】2【解析】【分析】本题考查了一元二次方程解的定义,根据一元二次方程的解的定义,将1x =代入原方程,列出关于m 的方程,然后解方程即可.【详解】解: 关于x 的一元二次方程230x x m -+=的一个根为1,1x ∴=满足一元二次方程230x x m -+=,130m ∴-+=,解得,2m =.故答案为:2.10.如图所示,四边形ABCD ,DEFG ,GHIJ 均为正方形,且10ABCD S =正方形,1GHIJ S =正方形,则正方形DEFG 的边长可以是________.(写出一个答案即可)【答案】2(答案不唯一)【解析】【分析】本题考查了算术平方根的应用,无理数的估算.利用算术平方根的性质求得10AB CD ==,1GH GJ ==,再根据无理数的估算结合GH DE CD <<,即可求解.【详解】解:∵10ABCD S =正方形,∴10AB CD ==,∵1GHIJ S =正方形,∴1GH GJ ==,∵3104<<,即34CD <<,∴正方形DEFG 的边长GH DE CD <<,即13DE <≤,∴正方形DEFG 的边长可以是2,故答案为:2(答案不唯一).11.如图,在矩形ABCD 中,2BC =,O 为BC 中点,4OE AB ==,则扇形EOF 的面积为________.【答案】4π【解析】【分析】本题考查了扇形的面积公式,解直角三角形.利用解直角三角形求得45BOE ∠=︒,45COF ∠=︒,得到90EOF ∠=︒,再利用扇形的面积公式即可求解.【详解】解:∵2BC AB =,4AB =,∴BC =,∵O 为BC 中点,∴12OB OC BC ===,∵4OE =,在Rt OBE 中,cos 42OB BOE OE ∠===,∴45BOE ∠=︒,同理45COF ∠=︒,∴180454590EOF ∠=︒-︒-︒=︒,∴扇形EOF 的面积为29044360ππ⋅=,故答案为:4π.12.如图,在平面直角坐标系中,四边形AOCB 为菱形,4tan 3AOC ∠=,且点A 落在反比例函数3y x =上,点B 落在反比例函数()0ky k x=≠上,则k =________.【答案】8【解析】【分析】本题主要考查反比例函数与几何的综合及三角函数;过点A B 、作x 轴的垂线,垂足分别为D E 、,然后根据特殊三角函数值结合勾股定理求得232A ⎛⎫ ⎪⎝⎭,,52OA =,再求得点()42B ,,利用待定系数法求解即可.【详解】解:过点A B 、作x 轴的垂线,垂足分别为D E 、,如图,∵4tan 3AOC ∠=,∴43AD OD =,∴设4AD a =,则3OD a =,∴点()34A a a ,,∵点A 在反比例函数3y x=上,∴343a a ⋅=,∴12a =(负值已舍),则点232A ⎛⎫⎪⎝⎭,,∴2AD =,32OD =,∴2252OA OD AD =+=,∵四边形AOCB 为菱形,∴52AB OA ==,AB CO ∥,∴点()42B ,,∵点B 落在反比例函数()0ky k x=≠上,∴428k =⨯=,故答案为:8.13.如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=________.【答案】2021【解析】【分析】本题考查了解直角三角形、勾股定理,平行线分线段成比例,先设13AB BC x ==,根据5tan 12B ∠=,AH CB ⊥,得出512AH x BH x ==,,再分别用勾股定理4126AD x AC x ==,,故441cos 41DH ADC AD ∠==,再运用解直角三角形得出204141DM x =,214141AM x =,代入CE MD AC AM=,化简即可作答.【详解】解:如图,过点A 作AH CB ⊥垂足为H,∵85BD DC =,AB BC =,设13AB BC x ==,∴85BD x DC x ==,,∵5tan 12B ∠=,AH CB ⊥,∴512AH BH =,∵13AB BC x ==,∴2222169AH BH AB x +==,解得512AH x BH x ==,,∴1284DH x x x =-=,54HC x x x =-=,∴AD ==,AC ==,∴cos 41DH ADC AD ∠==,过点C 作CM AD ⊥垂足为M,∴cos 41DM CD ADC x =⋅∠=,41AM AD DM x =-=,∵DE AD ⊥,CM AD ⊥,∴MC DE ∥,∴2041204121214141x CE DM AC AM ===,故答案为:2021.三、解答题(本题共7小题,其中第14题5分,第15题7分,第16题8分,第17题8分,第18题9分,第19题12分,第20题12分,共61分)14.计算:()1012cos 45 3.1414π-⎛⎫-⋅︒+-++ ⎪⎝⎭.【答案】4【解析】【分析】本题考查特殊锐角三角函数值,零指数幂,绝对值以及负整数指数幂.先将各项化简,再算乘法,最后从左往右计算即可得【详解】解:()1012cos 45 3.1414π-⎛⎫-⋅︒+-+-+ ⎪⎝⎭221142=-⨯+++114=++4=.15.先化简,再求值:2221111a a a a -+⎛⎫-÷ ⎪++⎝⎭,其中1a =+【答案】11a -,22【解析】【分析】此题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序和运算法则是解题关键.原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a 的值代入计算即可求出值.【详解】解:2221111a a a a -+⎛⎫-÷ ⎪++⎝⎭=()2112111a a a a a -+⎛⎫-÷ ⎪+++⎝⎭=()21111a a a a -+⋅+-=11a -,当1a =+2==.16.据了解,“i 深圳”体育场地一键预约平台是市委、市政府打造“民生幸福标杆”城市过程中,推动的惠民利民重要举措,在满足市民健身需求、激发全民健身热情、促进体育消费等方面具有重大意义.按照符合条件的学校体育场馆和社会体育场馆“应接尽接”原则,“i 深圳”体育场馆一键预约平台实现了“让想运动的人找到场地,已有的体育场地得到有效利用”.小明爸爸决定在周六上午预约一所学校的操场锻炼身体,现有A ,B 两所学校适合,小明收集了这两所学校过去10周周六上午的预约人数:学校A :28,30,40,45,48,48,48,48,48,50,50学校B :(1)学校平均数众数中位数方差A ①________4883.299B 48.4②________③________354.04(2)根据上述材料分析,小明爸爸应该预约哪所学校?请说明你的理由.【答案】(1)①48.3;②25;③47.5(2)小明爸爸应该预约学校A ,理由见解析【解析】【分析】本题考查求平均数,中位数和众数,利用方差判断稳定性:(1)根据平均数,中位数和众数的确定方法,进行求解即可;(2)根据方差判断稳定性,进行判断即可.【小问1详解】解:①()1283040454848484848505048.310++++++++++=;②数据中出现次数最多的是25,故众数为25;③数据排序后,排在中间两位的数据为45,50,故中位数为:()1455047.52+=;填表如下:学校平均数众数中位数方差A48.34883.299B 48.42547.5354.04【小问2详解】小明爸爸应该预约学校A ,理由如下:学校A 的方差小,预约人数相对稳定,大概率会有位置更好的进行锻炼.17.背景【缤纷618,优惠送大家】今年618各大电商平台促销火热,线下购物中心也亮出大招,年中大促进入“白热化”.深圳各大购物中心早在5月就开始推出618活动,进入6月更是持续加码,如图,某商场为迎接即将到来的618优惠节,采购了若干辆购物车.素材如图为某商场叠放的购物车,右图为购物车叠放在一起的示意图,若一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m .问题解决任务1若某商场采购了n 辆购物车,求车身总长L 与购物车辆数n 的表达式;任务2若该商场用直立电梯从一楼运输该批购物车到二楼,已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,求直立电梯一次性最多可以运输多少辆购物车?任务3若该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次,求:共有多少种运输方案?【答案】任务1:()0.80.2L n m =+;任务2:一次性最多可以运输18台购物车;任务3:共有3种方案【解析】【分析】本题考查了列代数式表达式,一元一次不等式的应用,正确掌握相关性质内容是解题的关键.任务1:根据一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m ,且采购了n 辆购物车,L 是车身总长,即可作答.任务2:结合“已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车”,得出2.60.80.2n ≥+,再解不等式,即可作答.任务3:根据“该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次”,列式()24185100x x +-≥,再解不等式,即可作答.【详解】解:任务1:∵一辆购物车车身长1m ,每增加一辆购物车,车身增加0.2m∴()0.80.2L n m=+任务2:依题意,∵已知该商场的直立电梯长为2.6m ,且一次可以运输两列购物车,令2.60.80.2n ≥+,解得:9n ≤∴一次性最多可以运输18台购物车任务3:设x 次扶手电梯,则()5x -次直梯由题意∵该商场扶手电梯一次性可以运输24辆购物车,若要运输100辆购物车,且最多只能使用电梯5次可列方程为:()24185100x x +-≥,解得:53x ≥方案一:直梯3次,扶梯2次;方案二:直梯2次,扶梯3次:方案三:直梯1次,扶梯4次答:共有三种方案18.如图,在ABD △中,AB BD =,O 为ABD △的外接圆,BE 为O 的切线,AC 为O 的直径,连接DC 并延长交BE 于点E .(1)求证:DE BE ⊥;(2)若6AB =5BE =,求O 的半径.【答案】(1)见解析(2)35【解析】【分析】本题考查切线的性质,圆周角定理,中垂线的判定和性质,矩形的判定和性质:(1)连接BO 并延长,交AD 于点H ,连接OD ,易证BO 垂直平分AD ,圆周角定理,切线的性质,推出四边形BHDE 为矩形,即可得证;(2)由(1)可知5DH BE ==,勾股定理求出BH 的长,设O 的半径为r ,在Rt AOH △中,利用勾股定理进行求解即可.【小问1详解】证明:连接BO 并延长,交AD 于点H ,连接OD ,∵AB BD =,OA OD =,∴BO 垂直平分AD ,∴BH AD ⊥,AH DH =,∵BE 为O 的切线,∴HB BE ⊥,∵AC 为O 的直径,∴90ADC ∠=︒,∴四边形BHDE 为矩形,∴DE BE ⊥;【小问2详解】由(1)知四边形BHDE 为矩形,BH AD ⊥,AH DH =,∴5AH DH BE ===,∴BH ==设O 的半径为r ,则:,OA OB r OH BH OB r ===-=,在Rt AOH △中,由勾股定理,得:()()2225r r=+,解得:r =;即:O 的半径为.19.为了测量抛物线的开口大小,某数学兴趣小组将两把含有刻度的直尺垂直放置,并分别以水平放置的直尺和竖直放置的直尺为x ,y 轴建立如图所示平面直角坐标系,该数学小组选择不同位置测量数据如下表所示,设BD 的读数为x ,CD 读数为y ,抛物线的顶点为C .(1)(Ⅰ)列表:①②③④⑤⑥x023456y 01 2.254 6.259(Ⅱ)描点:请将表格中的(),x y 描在图2中;(Ⅲ)连线:请用平滑的曲线在图2将上述点连接,并求出y 与x 的关系式;(2)如图3所示,在平面直角坐标系中,抛物线()2y a x h k =-+的顶点为C ,该数学兴趣小组用水平和竖直直尺测量其水平跨度为AB ,竖直跨度为CD ,且AB m =,CD n =,为了求出该抛物线的开口大小,该数学兴趣小组有如下两种方案,请选择其中一种方案,并完善过程:方案一:将二次函数()2y a x h k =-+平移,使得顶点C 与原点O 重合,此时抛物线解析式为2y ax =.①此时点B '的坐标为________;②将点B '坐标代入2y ax =中,解得=a ________;(用含m ,n 的式子表示)方案二:设C 点坐标为(),h k ①此时点B 的坐标为________;②将点B 坐标代入()2y a x h k =-+中解得=a ________;(用含m ,n 的式子表示)(3)【应用】如图4,已知平面直角坐标系xOy 中有A ,B 两点,4AB =,且AB x ∥轴,二次函数()211:2C y x h k =++和()222:C y a x h b =++都经过A ,B 两点,且1C 和2C 的顶点P ,Q 距线段AB 的距离之和为10,若AB x ∥轴且4AB =,求a 的值.【答案】(1)图见解析,214y x =;(2)方案一:①1,2m n ⎛⎫⎪⎝⎭;②24n m ;方案二:①1,2h m k n ⎛⎫++ ⎪⎝⎭;②24n m ;(3)a 的值为12或12-.【解析】【分析】(1)描点,连线,再利用待定系数法求解即可;(2)根据图形写出点B '或点B 的坐标,再代入求解即可;(3)先求得()28A h k --+,,()28B h n -++,,1C 的顶点坐标为()P h k -,,再求得1C 顶点距线段AB 的距离为()88k k +-=,得到2C 的顶点距线段AB 的距离为1082-=,得到2C 的顶点坐标为()10Q h k -+,或()6Q h k -+,,再分类求解即可.【小问1详解】解:描点,连线,函数图象如图所示,观察图象知,函数为二次函数,设抛物线的解析式为2y ax bx c =++,由题意得04211644c a b c a b c =⎧⎪++=⎨⎪++=⎩,解得1400a b c ⎧=⎪⎪=⎨⎪=⎪⎩,∴y 与x 的关系式为214y x =;【小问2详解】解:方案一:①∵AB m =,CD n =,∴12D B m ''=,此时点B '的坐标为1,2m n ⎛⎫⎪⎝⎭;故答案为:1,2m n ⎛⎫ ⎪⎝⎭;②由题意得212m a n ⎛⎫= ⎪⎝⎭,解得24n a m =,故答案为:24n m ;方案二:①∵C 点坐标为(),h k ,AB m =,CD n =,∴12DB m =,此时点B 的坐标为1,2h m k n ⎛⎫++ ⎪⎝⎭;故答案为:1,2h m k n ⎛⎫++ ⎪⎝⎭;②由题意得212k n a h m h k ⎛⎫+=+-+ ⎪⎝⎭,解得24n a m =,故答案为:24n m ;【小问3详解】解:根据题意1C 和2C 的对称轴为x h =-,则()28A h k --+,,()28B h n -++,,1C 的顶点坐标为()P h k -,,∴1C 顶点距线段AB 的距离为()88k k +-=,∴2C 的顶点距线段AB 的距离为1082-=,∴2C 的顶点坐标为()10Q h k -+,或()6Q h k -+,,当2C 的顶点坐标为()10Q h k -+,时,()2210y a x h k =+++,将()28A h k --+,代入得4108a k k ++=+,解得12a =-;当2C 的顶点坐标为()6Q h k -+,时,()226y a x h k =+++,将()28A h k --+,代入得468a k k ++=+,解得12a =;综上,a 的值为12或12-.【点睛】本题主要考查二次函数的综合应用,抛物线的平移等,理解题意,综合运用这些知识点是解题关键.20.垂中平行四边形的定义如下:在平行四边形中,过一个顶点作关于不相邻的两个顶点的对角线的垂线交平行四边形的一条边,若交点是这条边的中点,则该平行四边形是“垂中平行四边形”.(1)如图1所示,四边形ABCD 为“垂中平行四边形”,5AF =,2CE =,则AE =________;AB =________;(2)如图2,若四边形ABCD 为“垂中平行四边形”,且AB BD =,猜想AF 与CD 的关系,并说明理由;(3)①如图3所示,在ABC 中,5BE =,212CE AE ==,BE AC ⊥交AC 于点E ,请画出以BC 为边的垂中平行四边形,要求:点A 在垂中平行四边形的一条边上(温馨提示:不限作图工具);②若ABC 关于直线AC 对称得到AB C 'V ,连接CB ',作射线CB '交①中所画平行四边形的边于点P ,连接PE ,请直接写出PE 的值.【答案】(1)117(2)2AF CD =,理由见解析(3)①见解析;②3414PE =或3412.【解析】【分析】(1)根据题意可推出AEF CEB △∽△,得到AF AE BC CE =,从而推出AE ,再根据勾股定理可求得BE ,再求得AB ;(2)根据题意可推出AED FEB ∽ ,得到2AE AD DE EF BF EB===,设BE a =,则2DE a =,3AB CD a ==,再利用勾股定理得到AE ,从而推出EF 、AF ,即可求得答案;(3)①分情况讨论,第一种情况,作BC 的平行线AD ,使AD BC =,连接CD ,延长BE 交AD 于点F ;第二种情况,作ABC ∠的平分线,取CH CB =交ABC ∠的平分线于点H ,延长CH 交BE 的延长线于点D ,在射线BA 上取AFAB =,连接DF ;第三种情况,作AD BC ∥,交BE 的延长线于点D ,连接CD ,作BC 的垂直平分线;在DA 延长线上取点F ,使AF AD =,连接BF ;②根据①中的三种情况讨论:第一种情况,根据题意可证得PAC △是等腰三角形,作PH AC ⊥,则AH HC =,可推出CPH CB E '∽△△,从而推出PH CH B E CE=',计算可得PH ,最后利用勾股定理即可求得PE ;第二种情况,延长CA 、DF 交于点G ,同理可得PGC 是等腰三角形,连接PA ,可由GAF CAB ∽,结合三线合一推出PA AC ⊥,从而推出CPA CB E ' ∽,同第一种情况即可求得PE ;第三种情况无交点,不符合题意.【小问1详解】解:AD BC ,F 为AD 的中点,AD BC =,AF =,2CE =,AEF CEB ∴ ∽,2BC AD AF ===AF AEBC CE ∴=2AE =,解得1AE =,22222216BE BC CE ∴=-=-=,AB ∴=;【小问2详解】解:AF =,理由如下:根据题意,在垂中四边形ABCD 中,AF BD ⊥,且F 为BC 的中点,∴2AD BC BF ==,90AEB ∠=︒;又 AD BC ∥,AED FEB ∴ ∽,∴2AE AD DE EF BF EB===;设BE a =,则2DE a =,AB BD =,∴23AB BD BE ED a a a ==+=+=,∴AE ===,EF =,∴AF AE EF =+=+=,AB CD = ,∴323AF AF CD AB a ===AF ∴=;【小问3详解】解:①第一种情况:作BC 的平行线AD ,使AD BC =,连接CD ,则四边形ABCD 为平行四边形;延长BE 交AD 于点F ,BC AD ,AEF CEB ∴ ∽,AF AE BC CE∴=,AD BC = ,2CE AE =,12AF AE BC CE ∴==,即1122AF BC AD ==,∴F 为AD 的中点;故如图1所示,四边形ABCD 即为所求的垂中平行四边形:第二种情况:作ABC ∠的平分线,取CH CB =交ABC ∠的平分线于点H ,延长CH 交BE 的延长线于点D ,在射线BA 上取AF AB =,连接DF ,故A 为BF 的中点;同理可证明:12AB CD =,则2BF AB AF AB CD =+==,则四边形BCDF 是平行四边形;故如图2所示,四边形BCDF 即为所求的垂中平行四边形:第三种情况:作AD BC ∥,交BE 的延长线于点D ,连接CD ,作BC 的垂直平分线;在DA 延长线上取点F ,使AF AD =,连接BF ,则A 为DF 的中点,同理可证明12AD BC =,从而DF BC =,故四边形BCDF 是平行四边形;故如图3所示,四边形BCDF 即为所求的垂中平行四边形:②若按照图1作图,由题意可知,ACB ACP ∠=∠,四边形ABCD 是平行四边形,ACB PAC ∴∠=∠,PAC PCA ∴∠=∠,PAC ∴△是等腰三角形;过P 作PH AC ⊥于H ,则AH HC =,5BE =,212CE AE ==,5B E BE '∴==,6AE =,111()(612)9222AH HC AC AE CE ∴===+=+=,963EH AH AE ∴=-=-=;PH AC ⊥ ,BE AC ⊥,CPH CB E '∴∽△△,PH CH B E CE ∴=',即9515124CH B E PH CE '⋅⨯===∴4PE ===若按照图2作图,延长CA 、DF 交于点G ,同理可得:PGC 是等腰三角形,连接PA ,GF BC ∥ ,GAF CAB ∴ ∽,1AF AG AB AC∴==,AG AC ∴=,PA AC ∴⊥;同理,CPA CB E '∽△△,6AE = ,12EC =,5B E BE '==,B E CE PA AC '∴=,即51815122B E AC PA CE '⋅⨯===,3412PE ∴==,若按照图3作图,则:没有交点,不存在PE (不符合题意)故答案为:3414PE 或3412.【点睛】本题考查了垂中平行四边形的定义,平行四边形的性质与判定,相似三角形的判定与性质,勾股定理,尺规作图,等腰三角形的判定与性质等,熟练掌握以上知识点,读懂题意并作出合适的辅助线是解题的关键.。

广东省深圳市2021年中考数学真题试卷真题(word版,含答案解析)

广东省深圳市2021年中考数学真题试卷真题(word版,含答案解析)

广东省深圳市2021年中考数学真题试卷一、选择题(每题3分,共30分)(共10题;共30分)1.如图是一个正方体的展开图,把展开图折叠成小正方体后,和“建”字所在面相对的面上的字是()A. 跟B. 百C. 走D. 年【答案】B【考点】几何体的展开图【解析】【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“建”与“百”是相对面,“党”与“年”是相对面,“跟”与“走”是相对面,故答案为:B.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点进行解答,即可得出答案.2.−12021的相反数()A. 2021B. 12021 C. -2021 D. −12021【答案】B【考点】相反数及有理数的相反数【解析】【解答】解:-12021的相反数是12021.故答案为:B.【分析】根据相反数的定义:只有符号不同的两个数是互为相反数,即可得出答案.3.不等式x−1>2的解集在数轴上表示为()A. B.C. D.【答案】 D【考点】解一元一次不等式,在数轴上表示不等式的解集【解析】【解答】解:x-1>2,∴x>3,在数轴上表示为:故答案为:D.【分析】先求出不等式的解集,再在数轴上表示出来,即可得出答案.4.《你好,李焕英》的票房数据是:109,133,120,118,124,那么这组数据的中位数是()A. 124B. 120C. 118D. 109【答案】B【考点】中位数【解析】【解答】解:从小到大排列:109,118,120,124,133,∴这组数据的中位数是120.故答案为:B.【分析】中位数是将数据按照从小到大或从大到小的顺序排列,如果数据个数是奇数,则处于最中间位置的数就是这组数据的中位数,如果数据的个数是偶数,则中间两个数据的平均数是这组数据的中位数,据此即可得出答案.5.下列运算中,正确的是()A. 2a2⋅a=2a3B. (a2)3=a5C. a2+a3=a5D. a6÷a2=a3【答案】A【考点】同底数幂的除法,单项式乘单项式,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、2a2·a=2a3,故A正确;B、(a2)3=a6,故B错误;C、a2和a3不是同类项,不能合并,故C错误;D、a6÷a2=a4,故D错误.故答案为:A.【分析】根据单项式乘以单项式的法则、幂的乘方法则、合并同类项法则、同底数幂的除法法则,逐项进行判断,即可得出答案.6.计算|1−tan60°|的值为()A. 1−√3B. 0C. √3−1D. 1−√33【答案】C【考点】特殊角的三角函数值,实数的绝对值【解析】【解答】解:|1−tan60°|=|1−√3|=√3−1.故答案为:C.【分析】把tan60°=√3代入,再根据绝对值的意义进行计算,即可得出答案.7.《九章算术》中有问题:1亩好田是300元,7亩坏田是500元,一人买了好田坏田一共是100亩,花费了10000元,问他买了多少亩好田和坏田?设一亩好田为x元,一亩坏田为y元,根据题意列方程组得()A. {x+y=100300x+7500y=10000 B. {x+y=100300x+5007y=10000C. {x+y=100 7500x+300y=10000 D. {x+y=1005007x+300y=10000【答案】B【考点】二元一次方程组的其他应用【解析】【解答】解:设一亩好田为x元,一亩坏田为y元,根据题意得:{x+y=100300x+5007y=10000).故答案为:B.【分析】设一亩好田为x元,一亩坏田为y元,根据题意找出等量关系,列出方程组即可.8.如图,在点F处,看建筑物顶端D的仰角为32°,向前走了15米到达点E即EF=15米,在点E处看点D的仰角为64°,则CD的长用三角函数表示为()A. 15sin32°B. 15tan64°C. 15sin64°D. 15tan32°【答案】C【考点】三角形的外角性质,等腰三角形的判定,锐角三角函数的定义【解析】【解答】解:∵∠F=32°,∠DEC=64°,∴∠EDF=∠DEC-∠F=64°-32°=32°=∠F,∴DE=EF=15,在Rt△DCE中,sin64°=CDDE,∴CD=15sin64°.故答案为:C.【分析】根据三角形的外角性质求出∠EDF=32°=∠F,得出DE=EF=15,再根据锐角三角函数的定义得出sin64°=CDDE,即可得出答案.9.二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A. B.C. D.【答案】A【考点】二次函数与一次函数的综合应用【解析】【解答】解:∵二次函数y=ax2+bx+1的对称轴为直线x=-b2a,一次函数y=2ax+b与x轴的交点坐标为(-b2a,0),∴抛物线的对称轴与直线的交点为(-b2a,0),故A符合题意.故答案为:A.【分析】求出抛物线的对称轴为直线x=-b2a ,直线与x轴的交点坐标为(-b2a,0),得出抛物线的对称轴与直线的交点为(-b2a,0),逐项进行判断,即可得出答案.10.在矩形ABCD中,AB=2,点E是BC边的中点,连接DE,延长EC至点F,使得EF= DE,过点F作FG⊥DE,分别交CD、AB于N、G两点,连接CM、EG、EN,下列正确的是()① tan∠GFB=12;② MN=NC;③ CMEG=12;④ S四边形GBEM=√5+12.A. 4B. 3C. 2D. 1 【答案】B【考点】三角形全等的判定,等腰三角形的判定与性质,相似三角形的判定与性质,锐角三角函数的定义【解析】【解答】故答案为:① tan∠GFB=tan∠EDC=ECCD =12,①正确;②∵∠DMN=∠NCF=90°,∠MND=∠CNF,∴∠MDN=∠CFN,∵∠ECD=∠EMF,EF=ED,∠MDN=∠CFN,∴△DEC≌△FEM(SAS),∴EM=EC,∴DM=FC,∵∠MDN=∠CFN,∠MND=∠CNF,DM=FC,∴△DMN≌△FCN(AAS),∴MN=NC,故②正确;③∵BE=EC,ME=EC,∴BE=ME,∵在Rt△GBE和Rt△GME中:BE=ME,GE=GE,∴Rt△GBE≌Rt△GME(HL),∴∠BEG=∠MEG,∵ME=EC,∴∠EMC=∠ECM,又∵∠EMC+∠ECM=∠BEG+∠MEG,∴∠GEB=∠MCE,∴MC//GE,∴CMEG =CFEF,∵EF=DE=√EC2+CD2=√5,CF=EF−EC=√5−1,∴CMEG =CFEF=√5−1√5=5−√55,故③错误;④由上述可知:BE=EC=1,CF=√5−1,∴BF=√5+1,∵tan∠F=tan∠EDC=GBBF =12,∴GB=12BF=√5+12,∴S四边形GBEM =2S△GBE=2⋅12⋅BE⋅BG=√5+12,故④正确.故选B.【分析】①先证出∠GFB=∠EDC,得出tan∠GFB=tan∠EDC=ECCD =12,即可判断①正确;②先证出△DEC≌△FEM,得出EM=EC,从而得出DM=FC,进而证出△DMN≌△FCN,得出MN=NC,即可判断②正确;③先证出MC∥GE,得出CMEG =CFEF,再求出EF,CF的长,得出CMEG=CFEF=√5−1√5=5−√55,即可判断③错误;④先求出BF的长,根据tan∠F=tan∠EDC=GBBF =12,求出GB的长,利用S四边形GBEM=2S△GBE=2⋅12⋅BE⋅BG=√5+12,即可判断④正确.二、填空题(每题3分,共15分)(共5题;共15分)11.因式分解:7a2−28= ________.【答案】7(a+2)(a-2)【考点】提公因式法与公式法的综合运用【解析】【解答】解:7a2-28=7(a2-4)=7(a+2)(a-2).【分析】先提公因式7,再根据平方差公式分解因式,即可得出答案.12.已知方程x2+mx−3=0的一个根是1,则m的值为________.【答案】2【考点】二元一次方程的解【解析】【解答】将x=1代入得:1+m−3=0,解得m=2【分析】根据一元二次方程根的定义把x=1代入方程,得出关于m的一元一次方程,解方程求出m的值,即可得出答案.13.如图,已知∠BAC=60°,AD是角平分线且AD=10,作AD的垂直平分线交AC于点F,作DE⊥AC,则△DEF周长为________.【答案】5+5√3【考点】线段垂直平分线的性质,含30°角的直角三角形,角平分线的定义【解析】【解答】DF=AF(垂直平分线上的点到线段两端点距离相等)∴C△DEF=DE+EF+AF=AE+DE∵∠BAC=60°,AD是角平分线∴∠DAE=30°∵AD=10∴DE=5,AE=5√3∴C=5+5√3△DEF【分析】根据线段垂直平分线的性质得出DF=AF,根据角平分线的定义得出∠DAE=30°,从而求出DE和AE的长,再利用△DEF的周长=DE+DF+EF=AE+DE,即可得出答案.14.如图,已知反比例函数过A,B两点,A点坐标(2,3),直线AB经过原点,将线段AB绕点B顺时针旋转90°得到线段BC,则C点坐标为________.【答案】(4,-7)【考点】坐标与图形性质,待定系数法求一次函数解析式,待定系数法求反比例函数解析式,三角形全等的判定(AAS)【解析】【解答】设AB:y=k′x,反比例:y=kx将点A代入可得:y=32x;y=6x联立可得:B(−2,−3)过点B作y轴的平行线l过点A,点C作l的垂线,分别交于D,E两点则D(−2,3)利用“一线三垂直”易证△ABD≌△BECBE=AD=4,CE=BD=6∴C(4,−7).【分析】利用待定系数法求出反比例函数和正比例函数的解析式,求出点B的坐标,过点B作y轴的平行线l,过点A、点C作l的垂线,垂足分别为D,E两点,求出点D的坐标,再证出△ABD≌△BEC,得出BE和CE的长,即可求出点C的坐标.15.如图,在△ABC中,D,E分别为BC,AC上的点,将△COE沿DE折叠,得到△FDE,连接BF,CF,∠BFC=90°,若EF//AB,AB=4√3,EF=10,则AE的长为________.【答案】10−4√3【考点】等腰三角形的判定与性质,平行四边形的判定与性质,轴对称的性质【解析】【解答】解法1:如图,延长ED,交CF于点G,由折叠,可知DG⊥CF,∵BF⊥CF,∴ED//BF,延长DE,BA,交于点M,∵ED//BF,且BA//EF,∴四边形BFEM为平行四边形,∴BM=EF=EC=10,又易证∠M=∠AEM,∴AE=AM,∵AM=BM−AB=10−4√3,∴AE=10−4√3.解法2:如图,延长ED,交CF于点G,由折叠,可知DG⊥CF,∵BF⊥CF,∴ED//BF,∴∠FED=∠BFE=α,延长EA,FB,交于点M,∵AB//EF,∴∠BAC=∠FEC=2α,∠ABM=∠BFE=α,∴∠M=∠BAC−∠ABM=α,∵∠M=∠BFE=α,∠M=∠ABM=α,∴EM=EF=10,AM=AB=4√3,∴AE=EM−AM=10−4√3.解法3:由题意易证点D为BC的中点,如图,取AC的中点M,连接DM,∴DM//AB,DM=1AB=2√3,2∵AB//EF,DM//AB,∴DM//EF,∴∠FED=∠MDE=α,∵∠FED=∠MED=α,∴∠MED=∠MDE,∴EM=MD=2√3,∵EC=10,∴MC=10−2√3,∵AM=MC=10−2√3,且EM=2√3,∴AE=AM−EM=10−2√3−2√3=10−4√3.解法4:由折叠,易证ED⊥CF,∴BF//ED,∴∠BFE=FED=α,过点F作FM//AE,交AB延长线于点M,∴四边形AMFE为平行四边形,∴∠MFE=∠FEC=2α,∴∠MFB=∠MFE−∠BFE=α,又∵AB//EF,∴∠MBF=∠BFE=α,∴∠MFB=∠MBF,∴MB=MF,∵四边形AMFE为平行四边形,∴AM=EF=EC=10,AE=MF=MB,∴MB=AM−AB=10−4√3,∴AE=10−4√3.解法5:如图过点B作BM//AC,交EF于点M,∴四边形ABME为平行四边形,且∠BME=∠FEC=2α,由折叠,可知ED⊥FC,∵BF⊥FC,∴BF//ED,∴∠BFM=∠FED=α,∴∠FBM=∠BME−∠MBF=α,∴∠FBM=∠BFM,∴MB=MF,∵四边形ABME为平行四边形,∴AE=MB=MF,EM=AB=4√3,∵MF=EF−EM=EC−EM=10−4√3,∴AE=10−4√3.解法6:延长ED至点M,使得DM=ED,连接BM,易证△BDM≌△CDE,BM//EC,∴BM=EC=10,∠M=DEC=α,∵AB//EF,∴∠N=∠FED=α,∴∠N=∠M,∴BN=BM=10,∵∠AEN=∠DEC=α,∴∠AEN=∠N,∴AE=AN=BN−AB=10−4√3【分析】解法1:延长ED,交CF于点G,先证出四边形BFEM为平行四边形,得出BM=10,再证出AE=AM,利用AM=BM-AB,即可求出AE的长;解法2:根据平行线的性质和等腰三角形的判定得出EM=EF=10,AM=AB=4√3,再利用AE=EM-AM,即可求出AE的长;解法3 :取AC的中点M,连接DM,根据三角形中位线定理和平行线的性质得出∠MED=∠MDE,得出EM=MD=2√3,从而求出AM的长,利用AE=AM-EM,即可求出AE的长;解法4:先证出四边形AMFE为平行四边形,得出AM=EF=EC=10,AE=MF=MB,利用MB=AM-AB ,即可求出AE的长;解法5:过点B作BM∥AC,交EF于点M,先证出四边形ABME为平行四边形,得出AE=MB=MF,EM=AB=4√3,利用MF=EF-EM=EC-EM,即可求出AE的长;解法6:延长ED至点M,使得DM=ED ,连接BM,根据等角对等边证出BN=BM=10,AE=AN ,利用AN=BN-AB,即可求出AE的长.三、解答题(共55分)(共7题;共53分)16.先化简再求值:(1x+2+1)÷x2+6x+9x+3,其中x=−1.【答案】解:原式=(1x+2+x+2x+2)⋅x+3(x+3)2=x+3x+2⋅1 x+3=1x+2当x=−1时,原式=1−1+2=1【考点】分式的混合运算,利用分式运算化简求值【解析】【分析】先根据分式的混合运算顺序和运算法则化简原式,再把x的值代入进行计算,即可得出答案.17.如图所示,在正方形网格中,每个小正方形的边长为1个单位.(1)过直线m作四边形ABCD的对称图形;(2)求四边形ABCD的面积.【答案】(1)解:如图所示:(2)解:S=8【考点】三角形的面积,作图﹣轴对称【解析】【解答】(2)S四边形ABCD=S△ACB+S△ACD=12·AC·BD=12×4×4=8.【分析】(1)分别作出点A、B、C、D关于直线m的对称点A′、B′、C′、D′,顺次连接各点即可;(2)利用S四边形ABCD=S△ACB+S△ACD=12·AC·BD,即可得出答案.18.随机调查某城市30天空气质量指数(AQI),绘制成如下扇形统计图.(1)m=________,n= ________;(2)求良的占比;(3)求差的圆心角;(4)折线图是一个月内的空气污染指数统计,然后根据这个一个月内的统计进行估测一年的空气污染指数为中的天数,从折线图可以得到空气污染指数为中的有9天.根据折线统计图,一个月(30天)中有________天AQI为中,估测该城市一年(以365天计)中大约有________天AQI为中.【答案】(1)4;2×100%=50%,(2)1530∴良的占比为50%;×360°=24°,(3)230∴差的圆心角为24°;(4)9;100【考点】用样本估计总体,频数(率)分布表,扇形统计图【解析】【解答】解:(1)∵m+15+9+n=30,∴m+n=6,∵m,n为整数,m>n,∴m=5,n=1或m=4,n=2,∵m:n=2:1,∴m=4,n=2,故答案为:4;2;(4)∵空气污染指数为中的有9天,×365≈109(天),∴930∴估测该城市一年(以365天计)中大约有109天.【分析】(1)根据题意得出m+n=6,结合扇形统计图中优与差的占比得出m=4,n=2;×100%,即可得出答案;(2)利用良的占比=良的频数总天数(3)利用差的圆心角=差的占比×360°,即可得出答案;(4)根据频数分布表得出空气污染指数为中的有9天,求出中的占比,再乘以365,即可得出答案.⌢的三等分点,AC//BE.19.如图,AB为⊙O的弦,D,C为ACB(1)求证: ∠A =∠E ;(2)若 BC =3 , BE =5 ,求 CE 的长.【答案】 (1)证明:连接 AD ,∵A 、D 、C 、B 四点共圆 ∴ ∠BAD +∠BCD =180° 又 ∠BCD +∠BCE =180° ∴ ∠BAD =∠BCE 又 ∠BAD =∠ABC ∴ ∠ABC =∠BCE ∴ AB //CE ,又 AC //BE ∴四边形 ACEB 为平行四边形 ∴ ∠A =∠E(2)解:∵ BD⌢=CD ⌢ ,∴ CD =BD =3 又∵ CD //AB ,∴ BC =AD =BE =5 又∵ ∠CDBC =BCCE ,即 35=5CE ∴ CE =253 ,∴ DE =163【考点】平行四边形的判定与性质,圆心角、弧、弦的关系,圆周角定理,圆内接四边形的性质,相似三角形的判定与性质【解析】【分析】(1)根据圆内接四边形的性质得出∠BAD=∠BCE ,根据圆周角定理得出∠BAD=∠ABC ,从而得出∠ABC=∠BCE ,证出AB ∥CD ,从而证出四边形ACEB 是平行四边形,即可得出∠BAC=∠E ; (2)根据等弧所对的弦相等得出CD=BD=3,20.某科技公司销售高新科技产品,该产品成本为8万元,销售单价x (万元)与销售量y (件)的关系如下表所示:(1)求y 与x 的函数关系式;(2)当销售单价为多少时,有最大利润,最大利润为多少? 【答案】 (1)解: y =−5x +90(2)解: y =−5x 2+130x +720=−5(x −13)2+125 【考点】一次函数的实际应用,二次函数的实际应用-销售问题 【解析】【解答】解:(1) 设y 与x 的函数关系式为y=kx+b , 当x=10时,y=40,当x=12时,y=30, ∴{10x +b =4012x +b =30) ,解得{x =−5y =90) ,∴y 与x 的函数关系式为y=-5x+90; (2)设利润为w 万元,∴w=(x-8)(-5x+90)=-5x 2+130x-720=-5(x-13)2+125, ∴当x=13时,w 有最大值,最大值为125,∴当销售单价为13元时,有最大利润,最大利润为125万元.【分析】(1)设y 与x 的函数关系式为y=kx+b ,利用待定系数法求出函数的表达式即可;(2)设利润为w 万元,根据利润=一件的利润×销售量,得出二次函数,再根据二次函数的性质求解即可.21.探究:是否存在一个新矩形,使其周长和面积为原矩形的2倍、 12 倍、k 倍.(1)若该矩形为正方形,是否存在一个正方形,使其周长和面积都为边长为2的正方形的2倍?________(填“存在”或“不存在”).(2)继续探究,是否存在一个矩形,使其周长和面积都为长为3,宽为2的矩形的2倍? 同学们有以下思路:①设新矩形长和宽为x 、y , 则依题意 x +y =10 , xy =12 , 联立 {x +y =10xy =12得 x 2−10x +12=0 ,再探究根的情况: 根据此方法,请你探究是否存在一个矩形,使其周长和面积都为原矩形的 12 倍; ②如图也可用反比例函数与一次函数证明 l 1 : y =−x +10 , l 2 : y =12x ,那么,a . 是否存在一个新矩形为原矩形周长和面积的2倍?b . 请探究是否有一新矩形周长和面积为原矩形的 12 ,若存在,用图像表达; c . 请直接写出当结论成立时k 的取值范围:. 【答案】 (1)不存在 (2)解:a 存在;∵ x 2−10x +12=0 的判别式 Δ>0 ,方程有两组正数解,故存在; 从图像来看, l 1 : y =−x +10 , l 2 : y =12x在第一象限有两个交点,故存在;b 设新矩形长和宽为x 、y ,则依题意 x +y =52 , xy =3 ,联立 {x +y =52xy =3得 x 2−52x +3=0 ,因为 Δ<0 ,此方程无解,故这样的新矩形不存在; 从图像来看, l 1 : y =−x +10 , l 2 : y =12x在第一象限无交点,故不存在;c. k ⩾2425 ;设新矩形长和宽为x 和y ,则由题意 x +y =5k , xy =6k ,联立 {x +y =5k xy =6k得 x 2−5kx +6k =0 , Δ=25k 2−24k ⩾0 ,故 k ⩾2425 .【考点】一元二次方程根的判别式及应用,反比例函数与一次函数的交点问题,相似多边形的性质 【解析】【解答】解:(1)不存在,因为两个正方形是相似图形,当它们的周长比为2时,则面积比必定是4,所以不存在;【分析】(1)根据相似图形的性质,面积比是相似比即周长比的平方,即可得出这样的正方形不存在; (2)a 、方法①:根据一元二次方程根的判别式△>0,得出方程有两组正数解,即可得出这样的新矩形存在;方法②:观察图象可知,一次函数y=-x+10与反比例函数y=12x 在第一象限有两个交点,即可得出这样的新矩形存在;b 、方法①: 设新矩形长和宽为x 、y , 列出方程组,得出一元二次方程,再根据一元二次方程根的判别式△<0,得出方程无解,即可得出这样的新矩形不存在;方法②:观察图象可知,一次函数y=-x+52与反比例函数y=3x 在第一象限没有交点,即可得出这样的新矩形不存在;c 、方法①: 设新矩形长和宽为x 、y , 列出方程组,得出一元二次方程,再根据一元二次方程根的判别式△≥0,求出k 的取值范围,即可得出答案.22.在正方形 ABCD 中,等腰直角 △AEF , ∠AFE =90° ,连接 CE ,H 为 CE 中点,连接 BH 、 BF 、 HF ,发现 BFBH 和 ∠HBF 为定值.(1)① BFBH=▲;② ∠HBF=▲ .③小明为了证明①②,连接AC交BD于O,连接OH,证明了OHAF 和BABO的关系,请你按他的思路证明①②.(2)小明又用三个相似三角形(两个大三角形全等)摆出如图2,BDAD =EAFA=k,∠BDA=∠EAF=θ(0°<θ<90°)求① FDHD=________(用k的代数式表示)② FHHD=________(用k、θ的代数式表示)【答案】(1)解:① √2;②45°;③证明:如图所示:由正方形性质得:ABBO=√2,O为AC的中点又∵H为CE的中点,则OH//AE,OH=12AE∴△AEF是等腰直角三角形∴AE=√2AF∴AFOH =√2=ABBO∵OH//AE∴∠COH=∠CAE,又∵∠CAE=∠DAF ∴∠COH=∠DAF又∠BOC=∠BAD=90°∴∠BOH=∠BAF,又∵AFOH =ABBO=√2∴△BOH∽△BAF∴BFBH=√2,∠HBO=∠FBA∴∠HBF=∠HBO+∠DBF=∠FBA+∠DBF=∠DBA=45°(2)2k ;√k2−4kcosθ+4k【考点】勾股定理,平行四边形的判定与性质,相似三角形的判定与性质,锐角三角函数的定义【解析】【解答】解:(2)①如图,连接AC,交BD于点O,连接OH,∵△BCD≌△DAB,∴BC=AD,CD=AB,∴四边形ABCD是平行四边形,∴OD=12BD,OA=OC,∵H为CE的中点,∴OH∥AE,OH=12AE,∴∠HOC=∠EAC,∵∠COD=∠BDA+∠DAC,∠BAD=∠EAF,∴∠HOD=∠HOC+∠COD=∠∠EAC+∠EAF+∠DAC=∠DAF,∵BDAD =AEAF=k,∴AFOH=AF12AE=2k,ADOD=AD12BD=2k,∴△DAF∽△DOH,∴FDHD =ADOD=2k,故答案为:2k;②如图,过点H作HM⊥DF于点M,∴∠HMD=∠HMF=90°,∵△DAF∽△DOH,∴∠HDO=∠ADF,∴∠HDF=∠HOD+∠ODF=∠ADF+∠ODF=∠BDA=θ,∴HM=OH·sinθ,DM=OH·cosθ,∵FDHD =2k,∴FD=2OHk,∵HF2=HM2+MF2=HM2+(DF-DM)2,=(OH·sinθ)2+(2OHk-OH·cosθ)2,=(k2−4kcosθ+4)k2·DH2,∴HFDH =√k2−4kcosθ+4k,故答案为:√k2−4kcosθ+4k【分析】(1)①先证出ABOB =AFOH=√2,∠BOH=∠BAF,从而得出△DAF∽△DOH,即可得出BFBH=√2;②根据△DAF∽△DOH,得出∠HBO=∠FBA,利用∠HBF=∠HBO+∠DBF=∠DBA=45°,即可得出答案;(2)①连接AC,交BD于点O,连接OH,先证出∠HOD=∠DAF,AFOH =ADDO=2k,从而得出△DAF∽△DOH,即可得出FDHD =ADOD=2k;②过点H作HM⊥DF于点M,先证出∠HDF=θ,再根据锐角三角函数定义得出HM=OH·sinθ,DM=OH·cosθ,由FDHD =2k,得出FD=2OHk,利用勾股定理得出HF2=HM2+(DF-DM)2,代入进行化简,求出HF2=(k2−4kcosθ+4)k2·DH2,即可求出HFDH=√k2−4kcosθ+4k.。

2020年广东省深圳市中考数学试题及参考答案(word解析版)

2020年广东省深圳市中考数学试题及参考答案(word解析版)

深圳市2020年初中毕业生学业考试数学试卷(满分100分,考试时间90分钟)一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×1084.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,2476.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a67.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.59.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.18.(6分)先化简,再求值:÷(2+),其中a=2.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.答案与解析一、选择题(每小题3分,共12小题,满分36分)1.2020的相反数是()A.2020 B.C.﹣2020 D.﹣【知识考点】相反数.【思路分析】直接利用相反数的定义得出答案.【解答过程】解:2020的相反数是:﹣2020.故选:C.【总结归纳】此题主要考查了相反数,正确把握相反数的定义是解题关键.2.下列图形既是轴对称图形又是中心对称图形的是()A.B.C.D.【知识考点】轴对称图形;中心对称图形.【思路分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答过程】解:A、不是中心对称图形,不是轴对称图形,故此选项不合题意;B、既是中心对称图形,又是轴对称图形,故此选项符合题意;C、不是中心对称图形,是轴对称图形,故此选项不合题意;D、是中心对称图形,不是轴对称图形,故此选项不合题意;故选:B.【总结归纳】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.2020年6月30日,深圳市总工会启动“百万职工消费扶贫采购节”活动,预计撬动扶贫消费额约150000000元.将150000000用科学记数法表示为()A.0.15×108B.1.5×107C.15×107D.1.5×108【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.【解答过程】解:将150000000用科学记数法表示为1.5×108.故选:D.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.分别观察下列几何体,其中主视图、左视图和俯视图完全相同的是()A.圆锥B.圆柱C.三棱柱D.正方体【知识考点】简单几何体的三视图.【思路分析】分别得出圆锥体、圆柱体、三棱柱、正方体的三视图的形状,再判断即可.【解答过程】解:圆锥的主视图、左视图都是等腰三角形,而俯视图是圆,因此选项A不符合题意;圆柱体的主视图、左视图都是矩形,而俯视图是圆形,因此选项B不符合题意;三棱柱主视图、左视图都是矩形,而俯视图是三角形,因此选项C不符合题意;正方体的三视图都是形状、大小相同的正方形,因此选项D符合题意;故选:D.【总结归纳】本题考查简单几何体的三视图,明确圆锥、圆柱、三棱柱、正方体的三视图的形状和大小是正确判断的前提.5.某同学在今年的中考体育测试中选考跳绳.考前一周,他记录了自己五次跳绳的成绩(次数/分钟):247,253,247,255,263.这五次成绩的平均数和中位数分别是()A.253,253 B.255,253 C.253,247 D.255,247【知识考点】算术平均数;中位数.【思路分析】根据中位数、众数的计算方法,分别求出结果即可.【解答过程】解:=(247+253+247+255+263)÷5=253,这5个数从小到大,处在中间位置的一个数是253,因此中位数是253;故选:A.【总结归纳】本题考查中位数、众数的意义和计算方法,掌握中位数、众数的计算方法是正确计算的前提.6.下列运算正确的是()A.a+2a=3a2B.a2•a3=a5C.(ab)3=ab3D.(﹣a3)2=﹣a6【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【思路分析】利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.【解答过程】解:a+2a=3a,因此选项A不符合题意;a2•a3=a2+3=a5,因此选项B符合题意;(ab)3=a3b3,因此选项C不符合题意;(﹣a3)2=a6,因此选项D不符合题意;故选:B.【总结归纳】本题考查合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则,掌握计算法则是正确计算的前提.7.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【知识考点】平行线的性质.【思路分析】根据平角的定义和平行线的性质即可得到结论.【解答过程】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.【总结归纳】本题考查了平行线的性质,平角的定义,熟练掌握平行线的性质是解题的关键.8.如图,在△ABC中,AB=AC.在AB、AC上分别截取AP,AQ,使AP=AQ.再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在∠BAC内交于点R,作射线AR,交BC于点D.若BC=6,则BD的长为()A.2 B.3 C.4 D.5【知识考点】等腰三角形的性质;作图—基本作图.【思路分析】依据等腰三角形的性质,即可得到BD=BC,进而得出结论.【解答过程】解:由题可得,AR平分∠BAC,又∵AB=AC,∴AD是三角形ABC的中线,∴BD=BC=×6=3,故选:B.【总结归纳】本题主要考查了基本作图以及等腰三角形的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.9.以下说法正确的是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程=﹣2的解为x=2 D.三角形的一个外角等于两个内角的和【知识考点】分式方程的解;平行四边形的性质;圆心角、弧、弦的关系;圆周角定理.【思路分析】根据平行四边形的性质对A进行判断;根据圆周角定理对B进行判断;利用分式方程有检验可对C进行判断;根据三角形外角性质对D进行判断.【解答过程】解:A、平行四边形的对边相等,所以A选项正确;B、一条弧所对的圆周角等于它所对的圆心角的一半,所以B选项错误;C、去分母得1=x﹣1﹣2(x﹣2),解得x=2,经检验原方程无解,所以C选项错误;D、三角形的一个外角等于与它不相邻的两个内角的和,所以D选项错误.故选:A.【总结归纳】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P、Q两点分别测定对岸一棵树T的位置,T在P的正北方向,且T在Q的北偏西70°方向,则河宽(PT的长)可以表示为()A.200tan70°米B.米C.200sin 70°米D.米【知识考点】解直角三角形的应用﹣方向角问题.【思路分析】在直角三角形PQT中,利用PQ的长,以及∠PQT的度数,进而得到∠PTQ的度数,根据三角函数即可求得PT的长.【解答过程】解:在Rt△PQT中,∵∠QPT=90°,∠PQT=90°﹣70°=20°,∴∠PTQ=70°,∴tan70°=,∴PT==,即河宽米,故选:B.【总结归纳】此题考查了解直角三角形的应用﹣方向角问题,掌握方向角与正切函数的定义是解题的关键.11.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0 B.4ac﹣b2<0 C.3a+c>0 D.关于x的方程ax2+bx+c=n+1无实数根【知识考点】根的判别式;二次函数图象与系数的关系;抛物线与x轴的交点.【思路分析】根据抛物线开口方向,对称轴的位置以及与y轴的交点可以对A进行判断;根据抛物线与x轴的交点情况可对B进行判断;x=1时,y<0,可对C进行判断;根据抛物线y=ax2+bx+c 与直线y=n+1无交点,可对D进行判断.【解答过程】解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.【总结归纳】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.12.如图,矩形纸片ABCD中,AB=6,BC=12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E、F分别在边AD和边BC上.连接BG,交CD于点K,FG交CD于点H.给出以下结论:①EF⊥BG;②GE=GF;③△GDK和△GKH的面积相等;④当点F与点C重合时,∠DEF=75°,其中正确的结论共有()A.1个B.2个C.3个D.4个【知识考点】三角形的面积;矩形的性质;翻折变换(折叠问题).【思路分析】连接BE,设EF与BG交于点O,由折叠的性质可得EF垂直平分BG,可判断①;由“ASA”可证△BOF≌△GOE,可得BF=EG=GF,可判断②;通过证明四边形BEGF是菱形,可得∠BEF=∠GEF,由锐角三角函数可求∠AEB=30°,可得∠DEF=75°,可判断④,由题意无法证明△GDK和△GKH的面积相等,即可求解.【解答过程】解:如图,连接BE,设EF与BG交于点O,∵将纸片折叠,使点B落在边AD的延长线上的点G处,∴EF垂直平分BG,∴EF⊥BG,BO=GO,BE=EG,BF=FG,故①正确,∵AD∥BC,∴∠EGO=∠FBO,又∵∠EOG=∠BOF,∴△BOF≌△GOE(ASA),∴BF=EG,∴BF=EG=GF,故②正确,∵BE=EG=BF=FG,∴四边形BEGF是菱形,∴∠BEF=∠GEF,当点F与点C重合时,则BF=BC=BE=12,∵sin∠AEB===,∴∠AEB=30°,∴∠DEF=75°,故④正确,由题意无法证明△GDK和△GKH的面积相等,故③错误;故选:C.【总结归纳】本题考查了翻折变换,全等三角形的判定和性质,菱形的判定和性质,锐角三角函数等知识,灵活运用这些性质进行推理是本题的关键.二、填空题(本题共4小题,每小题3分,共12分)13.分解因式:m3﹣m=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式m,再对余下的多项式利用平方差公式继续分解.【解答过程】解:m3﹣m=m(m2﹣1),=m(m+1)(m﹣1).【总结归纳】本题考查提公因式法分解因式和利用平方差公式分解因式,关键在于需要进行二次分解因式.14.一口袋内装有编号分别为1,2,3,4,5,6,7的七个球(除编号外都相同),从中随机摸出一个球,则摸出编号为偶数的球的概率是.【知识考点】概率公式.【思路分析】用袋子中编号为偶数的小球的数量除以球的总个数即可得.【解答过程】解:∵从袋子中随机摸出一个球共有7种等可能结果,其中摸出编号为偶数的球的结果数为3,∴摸出编号为偶数的球的概率为,故答案为:.【总结归纳】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.15.如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=(k≠0)的图象经过▱OABC的顶点C,则k=.【知识考点】反比例函数图象上点的坐标特征;平行四边形的性质.【思路分析】连接OB,AC,根据O,B的坐标易求P的坐标,再根据平行四边形的性质:对角线互相平分即可求出则C点坐标,根据待定系数法即可求得k的值.【解答过程】解:连接OB,AC,交点为P,∵四边形OABC是平行四边形,∴AP=CP,OP=BP,∵O(0,0),B(1,2),∴P的坐标(,1),∵A(3,1),∴C的坐标为(﹣2,1),∵反比例函数y=(k≠0)的图象经过点C,∴k=﹣2×1=﹣2,故答案为﹣2.【总结归纳】本题考查的是反比例函数图象上点的坐标特点,平行四边形的性质,求得C点的坐标是解答此题的关键.16.如图,在四边形ABCD中,AC与BD相交于点O,∠ABC=∠DAC=90°,tan∠ACB=,=,则=.【知识考点】角平分线的性质;解直角三角形.【思路分析】通过作辅助线,得到△ABC∽△ANM,△OBC∽△ODM,△ABC∽△DAN,进而得出对应边成比例,再根据tan∠ACB=,=,得出对应边之间关系,设AB=a,DN=b,表示BC,NA,MN,进而表示三角形的面积,求出三角形的面积比即可.【解答过程】解:如图,过点D作DM∥BC,交CA的延长线于点M,延长BA交DM于点N,∵DM∥BC,∴△ABC∽△ANM,△OBC∽△ODM,∴==tan∠ACB=,==,又∵∠ABC=∠DAC=90°,∴∠BAC+∠NAD=90°,∵∠BAC+∠BCA=90°,∴∠NAD=∠BCA,∴△ABC∽△DAN,∴==,设AB=a,DN=b,则BC=2a,NA=2b,MN=4b,由==得,DM=a,∴4b+b=a,即,b=a,∴====.故答案为:.【总结归纳】本题考查相似三角形的性质和判定,根据对应边成比例,设常数表示三角形的面积是得出正确答案的关键.三、解答题(本题共7小题,共52分)17.(5分)计算:()﹣1﹣2cos30°+|﹣|﹣(4﹣π)0.【知识考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【思路分析】根据零指数幂、负整数指数幂、特殊角的三角函数值进行计算即可求解.【解答过程】解:原式=3﹣2×+3﹣13﹣+﹣1=2.【总结归纳】本题考查了实数的运算、零指数幂、负整数指数幂、特殊角的三角函数值,解决本题的关键是掌握特殊角的三角函数值.18.(6分)先化简,再求值:÷(2+),其中a=2.【知识考点】分式的化简求值.【思路分析】先将分式进行化简,然后代入值即可求解.【解答过程】解:原式=÷=÷=×=当a=2时,原式==1.【总结归纳】本题考查了分式的化简求值,解决本题的关键是进行分式的化简.19.(7分)以人工智能、大数据、物联网为基础的技术创新促进了新业态蓬勃发展,新业态发展对人才的需求更加旺盛.某大型科技公司上半年新招聘软件、硬件、总线、测试四类专业的毕业生,现随机调查了m名新聘毕业生的专业情况,并将调查结果绘制成如图两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)m=,n=.(2)请补全条形统计图;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是度;(4)若该公司新招聘600名毕业生,请你估计“总线”专业的毕业生有名.【知识考点】用样本估计总体;扇形统计图;条形统计图.【思路分析】(1)根据总线的人数和所占的百分比,可以求得m的值,然后即可计算出n的值;(2)根据(1)中的结果和硬件所占的百分比,可以求得硬件专业的毕业生,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以计算出在扇形统计图中,“软件”所对应的扇形的圆心角的度数;(4)根据统计图中的数据,可以计算出“总线”专业的毕业生的人数.【解答过程】解:(1)m=15÷30%=50,n%=5÷50×100%=10%,故答案为:50,10;(2)硬件专业的毕业生有:50×40%=20(人),补全的条形统计图如右图所示;(3)在扇形统计图中,“软件”所对应的扇形的圆心角是360°×=72°,故答案为:72;(4)600×30%=180(名),即“总线”专业的毕业生有180名,故答案为:180.【总结归纳】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.20.(8分)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=10,BC=6,求CD的长.【知识考点】三角形中位线定理;切线的性质.【思路分析】(1)证明:连接AC、OC,如图,根据切线的性质得到OC⊥CD,则可判断OC∥AD,所以∠OCB=∠E,然后证明∠B=∠E,从而得到结论;(2)利用圆周角定理得到∠ACB=90°,则利用勾股定理可计算出AC=8,再根据等腰三角形的性质得到CE=BC=6,然后利用面积法求出CD的长.【解答过程】(1)证明:连接AC、OC,如图,∵CD为切线,∴OC⊥CD,∴CD⊥AD,∴OC∥AD,∴∠OCB=∠E,∵OB=OC,∴∠OCB=∠B,∴∠B=∠E,∴AE=AB;(2)解:∵AB为直径,∴∠ACB=90°,∴AC==8,∵AB=AE=10,AC⊥BE,∴CE=BC=6,∵CD•AE=AC•CE,∴CD==.【总结归纳】本题考查了切线的性质:圆的切线垂直于经过切点的半径;若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理.21.(8分)端午节前夕,某商铺用620元购进50个肉粽和30个蜜枣粽,肉粽的进货单价比蜜枣粽的进货单价多6元.(1)肉粽和蜜枣粽的进货单价分别是多少元?(2)由于粽子畅销,商铺决定再购进这两种粽子共300个,其中肉粽数量不多于蜜枣粽数量的2倍,且每种粽子的进货单价保持不变,若肉粽的销售单价为14元,蜜枣粽的销售单价为6元,试问第二批购进肉粽多少个时,全部售完后,第二批粽子获得利润最大?第二批粽子的最大利润是多少元?【知识考点】一元一次方程的应用;一元一次不等式的应用;一次函数的应用.【思路分析】(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,根据用620元购进50个肉粽和30个蜜枣粽,可得出方程,解出即可;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,根据w=蜜枣粽的利润+肉粽的利润,得一次函数,根据一次函数的增减性,可解答.【解答过程】解:(1)设蜜枣粽的进货单价是x元,则肉粽的进货单价是(x+6)元,由题意得:50(x+6)+30x=620,解得:x=4,∴6+4=10,答:蜜枣粽的进货单价是4元,则肉粽的进货单价是10元;(2)设第二批购进肉粽y个,则蜜枣粽购进(300﹣y)个,获得利润为w元,由题意得:w=(14﹣10)y+(6﹣4)(300﹣y)=2y+600,∵2>0,∴w随y的增大而增大,∵y≤2(300﹣y),∴0<y≤200,∴当y=200时,w有最大值,w最大值=400+600=1000,答:第二批购进肉粽200个时,总利润最大,最大利润是1000元.【总结归纳】本题考查了一次函数,一元一次方程及一元一次不等式的知识,解答本题的关键是仔细审题,找到不等关系及等量关系,难度一般.22.(9分)背景:一次小组合作探究课上,小明将两个正方形按如图所示的位置摆放(点E、A、D 在同一条直线上),发现BE=DG且BE⊥DG.小组讨论后,提出了下列三个问题,请你帮助解答:(1)将正方形AEFG绕点A按逆时针方向旋转(如图1),还能得到BE=DG吗?若能,请给出证明;若不能,请说明理由;(2)把背景中的正方形分别改成菱形AEFG和菱形ABCD,将菱形AEFG绕点A按顺时针方向旋转(如图2),试问当∠EAG与∠BAD的大小满足怎样的关系时,背景中的结论BE=DG仍成立?请说明理由;(3)把背景中的正方形分别改写成矩形AEFG和矩形ABCD,且,AE=4,AB=8,将矩形AEFG绕点A按顺时针方向旋转(如图3),连接DE,BG.小组发现:在旋转过程中,DE2+BG2的值是定值,请求出这个定值.【知识考点】相似形综合题.【思路分析】(1)由正方形的性质得出AE=AF,∠EAG=90°,AB=AD,∠BAD=90°,得出∠EAB=∠GAD,证明△AEB≌△AGD(SAS),则可得出结论;(2)由菱形的性质得出AE=AG,AB=AD,证明△AEB≌△AGD(SAS),由全等三角形的性质可得出结论;(3)方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,求出AG=6,AD=12,证明△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,可得出答案;方法二:证明△EAB∽△GAD,得出∠BEA=∠AGD,则A,E,G,Q四点共圆,得出∠GQP =∠PAE=90°,连接EG,BD,由勾股定理可求出答案.【解答过程】(1)证明:∵四边形AEFG为正方形,∴AE=AF,∠EAG=90°,又∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∴∠EAB=∠GAD,∴△AEB≌△AGD(SAS),∴BE=DG;(2)当∠EAG=∠BAD时,BE=DG,理由如下:∵∠EAG=∠BAD,∴∠EAB=∠GAD,又∵四边形AEFG和四边形ABCD为菱形,∴AE=AG,AB=AD,∴△AEB≌△AGD(SAS),∴BE=DG;(3)解:方法一:过点E作EM⊥DA,交DA的延长线于点M,过点G作GN⊥AB交AB于点N,由题意知,AE=4,AB=8,∵=,∴AG=6,AD=12,∵∠EMA=∠ANG,∠MAE=∠GAN,∴△AME∽△ANG,设EM=2a,AM=2b,则GN=3a,AN=3b,则BN=8﹣3b,∴ED2=(2a)2+(12+2b)2=4a2+144+48b+4b2,GB2=(3a)2+(8﹣3b)2=9a2+64﹣48b+9b2,∴ED2+GB2=13(a2+b2)+208=13×4+208=260.方法二:如图2,设BE与DG交于Q,∵,AE=4,AB=8∴AG=6,AD=12.∵四边形AEFG和四边形ABCD为矩形,∴∠EAG=∠BAD,∴∠EAB=∠GAD,∵,∴△EAB∽△GAD,∴∠BEA=∠AGD,∴A,E,G,Q四点共圆,∴∠GQP=∠PAE=90°,∴GD⊥EB,连接EG,BD,∴ED2+GB2=EQ2+QD2+GQ2+QB2=EG2+BD2,∴EG2+BD2=42+62+82+122=260.【总结归纳】本题是相似形综合题,考查了正方形的性质,菱形的性质,矩形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理等知识,熟练掌握特殊平行四边形的性质是解题的关键.23.(9分)如图1,抛物线y=ax2+bx+3(a≠0)与x轴的交点A(﹣3,0)和B(1,0),与y轴交于点C,顶点为D.(1)求该抛物线的解析式;(2)连接AD,DC,CB,将△OBC沿x轴以每秒1个单位长度的速度向左平移,得到△O'B'C',点O、B、C的对应点分别为点O'、B'、C',设平移时间为t秒,当点O'与点A重合时停止移动.记△O'B'C'与四边形AOCD重合部分的面积为S,请直接写出S与t之间的函数关系式;(3)如图2,过该抛物线上任意一点M(m,n)向直线l:y=作垂线,垂足为E,试问在该抛物线的对称轴上是否存在一点F,使得ME﹣MF=?若存在,请求出F的坐标;若不存在,请说明理由.【知识考点】二次函数综合题.【思路分析】(1)将点A(﹣3,0)、B(1,0)代入抛物线的解析式得到关于a、b的方程组即可;(2)分三种情况:①0<t<1时,②1≤t<时,③≤t≤3时,可由面积公式得出答案;(3)令F(﹣1,t),则MF=,ME=﹣n,得出,可求出n=.则得出答案.【解答过程】解:(1)∵抛物线y=ax2+bx+3过点A(﹣3,0),B(1,0),∴,解得,∴抛物线的解析式为y=﹣x2﹣2x+3;(2)①0<t<1时,如图1,若B'C'与y轴交于点F,∵OO'=t,OB'=1﹣t,∴OF=3OB'=3﹣3t,∴S=×(C'O'+OF)×OO'=×(3+3﹣3t)×t=﹣+3t,②1≤t<时,S=;③≤t≤3时,如图2,C′O′与AD交于点Q,B′C′与AD交于点P,过点P作PH⊥C′O′于H,∵AO=3,O'O=t,∴AO'=3﹣t,O'Q=6﹣2t,∴C'Q=2t﹣3,∵QH=2PH,C'H=3PH,∴PH=C'Q=(2t﹣3),∴S=(2t﹣3),∴S=﹣,综合以上可得:S=.(3)令F(﹣1,t),则MF=,ME=﹣n,∵ME﹣MF=,∴MF=ME﹣,∴,∴m2+2m+1+t2﹣2nt=﹣.∵n=﹣m2﹣2m+3,∴+(2+4n﹣17)m+1+t2﹣6t+﹣=0.当t=时,上式对于任意m恒成立,∴存在F(﹣1,).【总结归纳】本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,两点间的距离公式,平移的性质,三角形的面积等知识.熟练运用方程的思想方法,正确进行分类是解题的关键.。

2019广东省深圳中考数学试题(word版,含解析)

2019广东省深圳中考数学试题(word版,含解析)

2019年深圳市初中毕业升学考试数学一、选择题(每小题3分,共12小题,满分36分) 1.51-的绝对值是( ) A. -5 B.51 C. 5 D.51-【答案】B【解析】考点绝对值.2.下列图形是轴对称图形的是( )【答案】A【考点】轴对称图形与中心对称图形3.预计到2025年,中国5G 用户将超过460 000 000,将460 000 000用科学计数法表示为( ) A.4.6×109 B.46×107 C.4.6×108 D.0.46×109 【答案】C【考点】科学计数法4.下列哪个图形是正方体的展开图( )【答案】B【考点】立体图形的展开.5.这组数据20,21,22,23,23的中位数和众数分别是( ) A.20,23 B.21,23 C.21,22 D.22,23 【答案】D【解析】中位数:先把数据按从小到大排列顺序20,21,22,23,23,则中间的那一个就是中位数.众数是出现次数最多的那个数就是众数,即是23.故选D 6.下列运算正确的是( )A.422a a a =+B.1243a a a =⋅ C.1243)(a a = D.22)(ab ab =【答案】C【解析】整式运算,A.2222a a a =+; B 743a a a =⋅ ;D 222)(b a ab =.故选C7.如图,已知AB l =1,AC 为角平分线,下列说法错误的是( ) A.∠1=∠4 B.∠1=∠5 C.∠2=∠3 D.∠1=∠3【答案】B【解析】两直线平行,同位角相等,即∠2=∠3.故选B. 8.如图,已知AB=AC ,AB=5,BC=3,以AB 两点为圆心,大于21AB 的长为半径画圆,两弧相交于点M,N ,连接MN 与AC 相较于点D ,则△BDC 的周长为( ) A.8 B.10 C.11 D.13【答案】A【解析】尺规作图,因为MN 是线段AB 的垂直平分线,则AD=BD ,又因为AB=AC=5,BC=3,所以△BDC 的周长为8.9.已知)0(2≠++=a c bx ax y 的图象如图,则b ax y +=和xcy =的图象为( )【答案】C【解析】根据)0(2≠++=a c bx ax y 的图象可知抛物线开口向下,则0<a ,抛物线与y 轴交点在负半轴,故c <0,对称轴在y 轴的右边,则b >0. 10.下列命题正确的是( ) A.矩形对角线互相垂直 B.方程x x 142=的解为14=x C.六边形内角和为540°D.一条斜边和一条直角边分别相等的两个直角三角形全等 【答案】D【解析】矩形的对角线互相平分且相等,故A 错;方程x x 142=的解为14=x 或0=x ,故B 错;六边形内角和为720°,故C 错.故选D 11.定义一种新运算:⎰-=⋅-abn n n b a dx x n 1,例如:⎰-=⋅k hh k xdx 222,若⎰-=--m522mdx x ,则m=( )A. -2B. 52-C. 2D.52 【答案】B 【解析】⎰-=-=-=----m51122511)5(mm m m m dx x ,则m=52-,故选B. 12.已知菱形ABCD ,E,F 是动点,边长为4,BE=AF ,∠BAD=120°,则下列结论正确的有几个( ) ①△BEC ≌△AFC ; ②△ECF 为等边三角形 ③∠AGE=∠AFC ④若AF=1,则31=GE GF A. 1 B. 2 C. 3 D. 4【解析】在四边形ABCD 是菱形,因为∠BAD=120°,则∠B=∠DAC=60°,则AC=BC ,且BE=AF ,故可得△BEC ≌△AFC ;因为△BEC ≌△AFC ,所以FC=EC ,∠FCA=∠ECB ,所以△ECF 为等边三角形;因为∠AGE=180°-∠BAC-∠AEG ;∠AFC=180°-∠FAC-∠ACF ,则根据等式性质可得∠AGE=∠AFC ;因为AF=1,则AE=3,所以根据相似可得31=GE GF . 二、填空题(每小题3分,共4小题,满分12分) 13.分解因式:=-a ab 2. 【答案】)1)(1(-+b b a【解析】)1)(1()1(22-+=-=-b b a b a a ab14.现有8张同样的卡片,分别标有数字:1,1,2,2,2,3,4,5,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字2的卡片的概率是 . 【答案】83 【解析】全部共有8张卡片,标有数字2的卡片有3张,随机抽取一张,故抽到2概率为83. 15.如图在正方形ABCD 中,BE=1,将BC 沿CE 翻折,使点B 对应点刚好落在对角线AC 上,将AD 沿AF 翻折,使点D 对应点落在对角线AC 上,求EF= .【答案】6 【解析】16.如图,在Rt △ABC 中,∠ABC=90°,C (0,-3),CD=3AD,点A 在xky =上,且y 轴平分∠ACB ,求【答案】774 【解析】三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22、23题9分,满分52分)17.计算:01)14.3()81(60cos 2-9-++︒-π 【答案】解:原式=3-1+8+1 =11 【考点】实数运算 18.先化简441)231(2++-÷+-x x x x ,再将1-=x 代入求值. 【答案】解:原式=1)2(212-+⋅+-x x x x =2+x将1-=x 代入得:2+x =-1+2=1 【考点】分式的化简求值19.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取 学生进行调查,扇形统计图中的x = . (2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是 度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有 名. 【考点】数据统计、概率,条形统计图和扇形统计图. 【答案】(1)200,15%; (2)统计图如图所示:(3)36 (4)90020.如图所示,某施工队要测量隧道长度BC ,AD=600米,AD ⊥BC ,施工队站在点D 处看向B ,测得仰角45°,再由D 走到E 处测量,DE ∥AC ,DE=500米,测得仰角为53°,求隧道BC 长.(sin53°≈54,cos53°≈53,tan53°≈34).【考点】直角三角形的边角关系的应用.【答案】21.有A、B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发40度点,A焚烧20吨垃圾比B焚烧30吨垃圾少1800度电.(1)求焚烧1吨垃圾,A和B各发多少度电?(2)A、B两个发电厂共焚烧90吨垃圾,A焚烧的垃圾不多于B焚烧的垃圾的两倍,求A厂和B厂总发电量的最大值.【考点】二元一次方程的应用【答案】22.如图所示抛物线c bx ax y ++=2过点A (-1,0),点C (0,3),且OB=OC (1)求抛物线的解析式及其对称轴;(2)点D ,E 在直线x=1上的两个动点,且DE=1,点D 在点E 的上方,求四边形ACDE 的周长的最小值, (3)点P 为抛物线上一点,连接CP ,直线CP 把四边形CBPA 的面积分为3∶5两部分,求点P 的坐标.【考点】一次函数、二次函数综合、线段和最值,面积比例等. 【答案】23.已知在平面直角坐标系中,点A (3,0),B (-3,0),C (-3,8),以线段BC 为直径作圆,圆心为E ,直线AC 交⊙E 于点D ,连接OD. (1)求证:直线OD 是⊙E 的切线;(2)点F 为x 轴上任意一动点,连接CF 交⊙E 于点G ,连接BG : ①当tan ∠ACF=71时,求所有F 点的坐标 (直接写出); ②求CFBG的最大值. 【考点】圆、切线证明、三角形相似,三角函数,二次函数最值问题等 【答案】。

2020年深圳市中考数学试题及详解(WORD版)

2020年深圳市中考数学试题及详解(WORD版)

2020年深圳市中考数学试题及详解(WORD版)1.2020的相反数是(-2020)。

2.图形C既是轴对称图形,也是中心对称图形。

3.150 000 000用科学记数法表示为1.5×10^8.4.正方体的主视图、左视图和俯视图相同。

5.平均数为253,中位数为253.6.运算(2/3)×(-9/10)的结果为(-3/5)。

7.三角形的一个外角等于两个内角的和。

8.BD的长度为4.9.平行四边形的对边相等,圆周角等于圆心角的一半,分式方程的解为x=2.10.河宽(PT的长)可以表示为200sin70°米。

11.3a+c>0是错误的结论。

12.点H、K分别是线段CD上的中点。

二、填空题13.m^3-m=(m-1)m(m+1)14.B.2个15.k=2x-516.∠XXX∠XXX,∠XXX∠DCA,∠ABC+∠ADC=180°三、解答题17.5/818.3/419.(1) m=100.n=30 (2) 人数/名:软件 30,硬件 40,总线15,测试 15 (3) 108° (4) 90人20.(1) 连接OB,∠XXX°,∠XXX∠OAD=90°,∴四边形OBCD是矩形,BC=OD=6,∵∠OAB=90°,∴AB=OA=OB=10,∵∠OAE=∠OAB+∠BAE=90°+∠BAE,∠OEA=∠OED+∠DEA=90°+∠BAE,∴∠OAE=∠OEA,AE=AB (2) ∵BC=6,CD=BD-BC=AB-BC=4,∴AD=√(AB^2-BD^2)=√(100-36)=8,∴CE=CD+DE=CD+AD=12,∵BE=2AB=20,∴AE=BE-AB=10,∵∠AEC=∠ABC=90°,∴三角形AEC与三角形ABC全等,∴AC=BC=6,∴CD/AC=4/6=2/321.(1) 设肉粽的进货单价为x元,蜜枣粽的进货单价为y 元,则50x+30y=620,且x=y+6,解得x=14,y=8 (2) 设肉粽的单价为p元,则p+6为蜜枣粽的单价,50p+30(p+6)=620,解得p=8,∴肉粽的单价为8元,蜜枣粽的单价为14元,进货总价为400元,∴肉粽的数量为50个,蜜枣粽的数量为20个,剩下的200元可以买16个肉粽或10个蜜枣粽,所以最终可以买到66个肉粽和30个蜜枣粽。

[原创]2020年深圳市中考数学试卷及答案doc初中数学

[原创]2020年深圳市中考数学试卷及答案doc初中数学

ACD图1[原创]2020年深圳市中考数学试卷及答案doc 初中数学数 学 试 卷第一部分 选择题〔本部分共12小题,每题3分,共36分。

每题给出的4个选项中,其中只有一个是正确的〕 1.-2的绝对值等于A .2B .-2C .12D .42.为爱护水资源,某社区新建了雨水再生工程,再生水利用量达58600立方米/年。

那个数据用科学记数法表示为〔保留两个有效数字〕A .58×103B .5.8×104C .5.9×104D .6.0×104 3.以下运算正确的选项是A .(x -y )2=x 2-y 2B .x 2·y 2 =(xy )4C .x 2y +xy 2 =x 3y 3D .x 6÷y 2 =x 4 4.升旗时,旗子的高度h (米)与时刻t (分)的函数图像大致为5.以下讲法正确的选项是A .〝打开电视机,正在播世界杯足球赛〞是必定事件B .〝掷一枚硬币正面朝上的概率是12〞表示每抛掷硬币2次就有1次正面朝上C .一组数据2,3,4,5,5,6的众数和中位数差不多上5D 甲2=0.24,乙组数据的方差S 03,那么乙组数据比甲组数据稳固6中心对称图形但不是..轴对称图形的是7.点P 〔a -1,a 〕在平面直角坐标系的第二象限内,那么a 的取值范畴在数轴上可表示为〔阴影部分〕8.观看以下算式,用你所发觉的规律得出22018的末位数字是21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…, A .2 B .4 C .6 D .89.如图1,△ABC 中,AC =AD =BD ,∠DAC =80º,那么∠B 的度数是 A .40º B .35º C .25º D .20º-2 -3 -1 02 A .-2 -3 -1 02B .C .-2 -3 -1 02D .-2 -3 -1 02ABC DtOthOthOt hOABCD图2 10.有四张质地相同的卡片,它们的背面相同,其中两张的正面印有〝粽子〞的图案,另外两张的正面印有〝龙舟〞的图案,现将它们背面朝上,洗平均后排列在桌面,任意翻开两张,那么两张图案一样的概率是A .13B .12C .23D .3411.某单位向一所期望小学赠送1080件文具,现用A 、B 两种不同的包装箱进行包装,每个B 型包装箱比A型包装箱多装15件文具,单独使用B 型包装箱比单独使用A 型包装箱可少用12个。

初中毕业升学考试(广东深圳卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广东深圳卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(广东深圳卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】下列四个数中,最小的正数是()A.—1 B .0 C.1 D.2【答案】C【解析】试题分析:正数大于0,0大于负数,A、B都不是正数,所以选C考点:实数大小比较【题文】把下列图形折成一个正方体的盒子,折好后与“中”相对的字是()A.祝 B.你 C.顺 D.利【答案】C【解析】试题分析:若以“考”为底,则“中”是左侧面,“顺”是右侧面,所以,选C考点:正方体的展开【题文】下列运算正确的是()A.8a-a=8B.(-a)4=a4C.D.=a2-b2【答案】B【解析】试题分析:对于A,不是同类项,不能相加减;对于C,,故错。

对于D,=,错误,只有D是正确的评卷人得分考点:整式的运算【题文】下列图形中,是轴对称图形的是()【答案】B【解析】试题分析:轴对称图形是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,只有B符合考点:轴对称图形的辨别【题文】据统计,从2005年到2015年中国累积节能1570000000吨标准煤,1570000000这个数用科学计数法表示为()A.0.157×1010 B.1.57×108 C.1.57×109 D .15.7×108【答案】C【解析】试题分析:科学记数的表示形式为形式,其中,n为整数,1570000000=1.57×109。

考点:科学记数法【题文】如图,已知a∥b,直角三角板的直角顶点在直线b上,若∠1=60°,则下列结论错误的是()A.∠2=60° B.∠3=60° C.∠4=120° D.∠5=40°【答案】D【解析】试题分析:根据平行线的性质和对顶角的性质得出∠3=∠2=∠1=60°,根据互补的性质可得:∠4=180°-60°=120°,根据互补的性质可得:∠5=90°-60°=30°.考点:(1)平行线的性质;(2)对顶角的性质;(3)互余与互补的性质【题文】数学老师将全班分成7个小组开展小组合作学习,采用随机抽签法确定一个小组进行展示活动。

深圳市中考数学试卷(WORD版)

深圳市中考数学试卷(WORD版)

2020年深圳中考数学试卷一、选择题1.9的相反数()1A.-9B.9C. ±9D.92.下列图形中是轴对称图形但不是中心对称图形的是( )D.A.B.C.3.支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计,2020年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学计数法表示为()A B C D4.4.由几个大小相同的正方形组成的几何图形如图所示,则它的俯视图()A BC D5.在-2,1,2,1,4,6中正确的是()A.平均数3 B.众数是-2 C.中位数是1 D.极差为86.已知函数y=ax+b经过(1,3)(0,-2)求a-b()A.-1B.-3C.3D.77.下列方程没有实数根的是( )A 、x²+4x=10 B、3x²+8x -3=0C 、x²-2x+3=0D 、(x-2)(x-3)=128.如图、△ABC 和△DEF 中,AB=DE 、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC ≌△DEF ( )A 、AC ∥DFB 、∠A=∠DC 、AC=DFD 、∠ACB=∠F9.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,文抽取的两个球数字之和大于6的概率是( ) A.12 B.712 C.58 D.3410.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12,的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )A .6002505- B. 6003250- C. 3503503+ D .500311.二次函数2y ax bx c =++图像如图所示,下列正确的个数为( )① 0bc >② 230a c -<③ 20a b +>④ 20ax bx c ++=有两个解12,x x ,120,0x x ><⑤ 0a b c ++>⑥ 当1x >时,y 随x 增大而减小A. 2B. 3C. 4D. 512.如图,已知四边形ABCD 为等腰梯形,AD//BC ,AB=CD ,E 为CD 中点,连接AE ,且AE=23,2AD =,∠DAE=30°,作AE ⊥AF 交BC 于F ,则BF=( )A .1 B. 33- C. 51- D. 422-二、 填空题13.因式分解:228x -=14.,90,,6,8,Rt ABC C AD CAB AC BC CD ∆∠=︒∠===在中平分15.如图所示,双曲线k y x=经过Rt △BOC 斜边上的点A,且满足23AO AB =,与BC 交于点D, 21BOD S ∆=,求k= 16.如图,下列图形是将正三角形按一定规律排列,则第5个图形中所有正三角形的个数有……三、 解答题17.计算:12-2tan60°+(2014-1)0-(31)-118.先化简,再求值:4)223(2-÷+--x x x x x x ,在-2,0,1,2四个数中选一个合适的代入求值.20.已知BD 垂直平分AC ,∠BCD=∠ADF ,AF ⊥AC ,(1)证明ABDF 是平行四边形F C(2)若AF=DF=5,AD=6,求AC的长21.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同。

2024年广东省深圳市中考数学试卷正式版含答案解析

2024年广东省深圳市中考数学试卷正式版含答案解析

绝密★启用前2024年广东省深圳市中考数学试卷学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I卷(选择题)一、选择题:本题共8小题,每小题3分,共24分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列用七巧板拼成的图案中,为中心对称图形的是( )A. B. C. D.2.如图,实数a,b,c,d在数轴上表示如下,则最小的实数为( )A. aB. bC. cD. d3.下列运算正确的是( )A. (−m3)2=−m5B. m2n⋅m=m3nC. 3mn−m=3nD. (m−1)2=m2−14.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )A. 124B. 112C. 16D. 145.如图,一束平行光线照射平面镜后反射,若入射光线与平面镜夹角∠1=50°,则反射光线与平面镜夹角∠4的度数为( )A. 40°B. 50°C. 60°D. 70°6.在如图的三个图形中,根据尺规作图的痕迹,能判断射线AD 平分∠BAC 的是( )A. ①②B. ①③C. ②③D. 只有①7.在明朝程大位《算法统宗》中有首住店诗:我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.诗的大意是:一些客人到李三公的店中住宿,如果每一间客房住7人,那么有7人无房可住;如果每一间客房住9人,那么就空出一间房.设该店有客房x 间,房客y 人,则可列方程组为( ) A. {7x +7=y 9(x −1)=yB. {7x +7=y 9(x +1)=yC. {7x −7=y 9(x −1)=yD. {7x −7=y 9(x +1)=y8.如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得顶端A 的仰角为45°,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得顶端A 的仰角为53°,则电子厂AB 的高度为( ) (参考数据:sin53°≈45,cos53°≈35,tan53°≈43)A. 22.7mB. 22.4mC. 21.2mD. 23.0m第II 卷(非选择题)二、填空题:本题共5小题,每小题3分,共15分。

深圳中考数学试题及答案

深圳中考数学试题及答案

深圳中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333...(循环)B. √2C. 3.14D. 0.5答案:B2. 如果一个二次函数的图像开口向上,且顶点坐标为(2, -1),则该函数的一般形式为:A. y = a(x-2)^2 - 1B. y = a(x+2)^2 - 1C. y = a(x-2)^2 + 1D. y = a(x+2)^2 + 1答案:A3. 已知一个等差数列的首项为3,公差为2,那么该数列的第10项为:A. 23B. 21C. 19D. 17答案:A4. 以下哪个图形是中心对称图形?A. 等边三角形B. 矩形C. 等腰梯形D. 圆答案:D5. 一个圆的半径为5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:C6. 函数y=2x+3的图像与x轴的交点坐标为:A. (-3/2, 0)B. (3/2, 0)C. (-1.5, 0)D. (1.5, 0)答案:A7. 计算(3x^2 - 2x + 1) - (x^2 - 4x + 3)的结果为:A. 2x^2 + 2x - 2B. 2x^2 + 2x + 2C. x^2 + 2x - 2D. x^2 + 2x + 2答案:C8. 已知一个三角形的两边长分别为3和4,且这两边的夹角为60度,那么这个三角形的面积为:A. 3√3/2B. 2√3C. 3√3D. 4√3/2答案:A9. 以下哪个选项是不等式2x - 3 > 5的解集?A. x > 4B. x > 4/3C. x > 4/2D. x > 8/3答案:D10. 一个正方体的体积为64立方厘米,那么它的棱长为:A. 2厘米B. 4厘米C. 8厘米D. 16厘米答案:B二、填空题(每题3分,共15分)11. 计算√(9 + 16)的值为______。

答案:512. 如果一个数的相反数是-5,那么这个数是______。

深圳中考数学试题卷及答案

深圳中考数学试题卷及答案

深圳中考数学试题卷及答案第一卷(选择题,共60分)一、选择题(本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数y=3x-2,当x=2时,y等于多少?A. 2B. 4C. 6D. 82. 下列四组数中,只有一组表示等意关系绝对值相等的是:A. |-8|=-8B. |-8|=8C. |-8|=-16D. |-8|=163. 三角形ABC的三个内角的度数分别为90°、60°、30°,则BC的长度是AC的多少倍?A. √2B. 1C. 2D. 34. 若甲班全体学生的数学平均分为92分,乙班全体学生的数学平均分为88分,如果甲乙两班合并在一起,再计算数学平均分,结果是多少?A. 88B. 90C. 92D. 945. 若m=3,n=-2,则m²-n²的值为多少?A. 1B. 5C. 13D. 256. 计算:(5×10⁵)-(3×10³)=A. 2×10²B. 2×10³C. 2×10⁴D. 2×10⁵7. 甲在第一天将一笔钱分成五份,乙在第二天将这五份钱分成25份。

如果甲乙两人的每一份都相等,且甲第一天所分的每一份为乙第二天所分的多少?A. 10份B. 15份C. 25份D. 50份8. 若a∈(5,7),则a的整数部分是多少?A. 5B. 6C. 7D. 89. 若一个五位数是99的倍数,且它的个位数是一个“7”,则这个五位数的前四位由多少个“9”组成?A. 2个B. 3个C. 6个D. 7个10. 若一个数大于3,但小于7,且等于它的两倍,求此数。

A. 2B. 3C. 4D. 6第二卷(非选择题,共40分)二、填空题(本大题共10小题,每小题2分,共20分。

请将你的答案填写在题目的横线上。

)11. 三分之一减五分之一的结果是:_________12. 3⁴的值是:_________13. 在平面直角坐标系中,一个点的坐标为(-3,-4),则该点在第_________象限。

(完整word版)2019年深圳中考数学试卷(详细答案版本)

(完整word版)2019年深圳中考数学试卷(详细答案版本)

2019年深圳中考数学试卷一、选择题(共12小题;共60分)1. 的绝对值是A. B。

C. D。

2。

下列图形中,是轴对称图形的是A。

B。

C. D.3. 预计到年,中国用户将超过,将用科学计数法表示为A。

B. C. D。

4。

下列哪个图形是正方体的展开图A. B.C。

D。

5. 这组数据,,, , 的中位数和众位数分别是A。

,B。

, C. ,D。

,6. 下列运算正确的是A。

B。

C。

D.7. 如图,已知 , 为角平分线,下列说法错误的是A. B. C. D.8。

如图,已知与相交于点,则的周长为A. B. C。

D.9. 已知的图象如图,则和的图象为A. B.C。

D。

10. 下列命题正确的是A. 矩形对角线互相垂直B. 方程的解为C. 六边形内角和为D。

一条斜边和一条直角边分别相等的两个直角三角形全等11. 定义一种新运算 ,例如,若,则A。

B. C. D。

12. 已知菱形, , 是动点,边长为,,,则下列结论正确的有几个① ;② 为等边三角形;③ ;④若,则.A。

B. C. D。

二、填空题(共4小题;共20分)13. 分解因式:.14。

现有张同样的卡片,分别标有数字: ,, , ,,,,,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字的卡片的概率是15. 如图,在正方形ABCD中,,将沿翻折,使点对应点刚好落在对角线上,将沿翻折,使点对应点刚好落在对角线上,求.16. 如图,在中,, , ,点在上,且轴平分,求.三、解答题(共7小题;共91分)17。

计算:.18。

先化简,再将代入求值.19. 某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取名学生进行调查,扇形统计图中的;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有名学生,请你估计该校喜爱“二胡”的学生约有名.20。

(完整word版)2019年深圳中考数学试卷(详细答案版本)

(完整word版)2019年深圳中考数学试卷(详细答案版本)

2019年深圳中考数学试卷一、选择题(共12小题;共60分)1. 的绝对值是A. B. C. D.2. 下列图形中,是轴对称图形的是A. B.C. D.3. 预计到年,中国用户将超过,将用科学计数法表示为A. B. C. D.4. 下列哪个图形是正方体的展开图A. B.C. D.5. 这组数据,,,,的中位数和众位数分别是A. ,B. ,C. ,D. ,6. 下列运算正确的是A. B. C. D.7. 如图,已知,为角平分线,下列说法错误的是A. B. C. D.8. 如图,已知与相交于点,则的周长为A. B. C. D.9. 已知的图象如图,则和的图象为A. B.C. D.10. 下列命题正确的是A. 矩形对角线互相垂直B. 方程的解为C. 六边形内角和为D. 一条斜边和一条直角边分别相等的两个直角三角形全等11. 定义一种新运算,例如,若,则A. B. C. D.12. 已知菱形,,是动点,边长为,,,则下列结论正确的有几个① ;② 为等边三角形;③ ;④若,则.A. B. C. D.二、填空题(共4小题;共20分)13. 分解因式:.14. 现有张同样的卡片,分别标有数字:,,,,,,,,将这些卡片放在一个不透明的盒子里,搅匀后从中随机地抽取一张,抽到标有数字的卡片的概率是15. 如图,在正方形ABCD中,,将沿翻折,使点对应点刚好落在对角线上,将沿翻折,使点对应点刚好落在对角线上,求.16. 如图,在中,,,,点在上,且轴平分,求.三、解答题(共7小题;共91分)17. 计算:.18. 先化简,再将代入求值.19. 某校为了了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱的乐器),现将收集到的数据绘制成如下两幅不完整的统计图.(1)这次共抽取名学生进行调查,扇形统计图中的;(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有名学生,请你估计该校喜爱“二胡”的学生约有名.20. 如图所示,施工队要测量隧道长度,米,,施工队站在点处看向,测得仰角为,再由走到处测量,,米,测得仰角为,求隧道长.(,,).21. 有A,B两个发电厂,每焚烧一吨垃圾,A发电厂比B发电厂多发度电,A焚烧吨垃圾比B焚烧吨垃圾少度电.(1)求焚烧吨垃圾,A和B各发电多少度?(2)A,B两个发电厂共焚烧吨的垃圾,A焚烧的垃圾不多于B焚烧的垃圾两倍,求A厂和B 厂总发电量最大时A厂,B厂的发电量.22. 如图抛物线经过点,点,且.(1)求抛物线的解析式及其对称轴;(2)点,在直线上的两个动点,且,点在点的上方,求四边形的周长的最小值;(3)点为抛物线上一点,连接,直线把四边形的面积分为两部分,求点的坐标.23. 已知在平面直角坐标系中,点,,,以线段为直径作圆,圆心为,直线交于点,连接.(1)求证:直线是的切线;(2)点为轴上任意一动点,连接交于点,连接;①当时,求所有点的坐标(直接写出);②求的最大值.答案第一部分1. B2. A3. C 【解析】用科学计数法:,其中,是整数.4. B5. D6. C7. A8. A9. C10. D11. B12. D 【解析】① ,正确;② ,,,,,是等边三角形,正确;③ ;,,正确;④选项:方法():在中,由角平分线定理得:,故④正确;方法():作交于点,则,易证:是等边三角形,则,,①②③④都正确.第二部分13.14.15.【解析】作于点,由折叠可知:,,,正方形边长,,.16.【解析】如图所示,作轴,由题意:可证,又,,,,令,则,轴平分,,轴,可证:,则:,即解得.,故.第三部分17. 原式.18.将代入得:19. (1);(2)统计图如图所示:(3)(4)20. 如图,是等腰直角三角形,,作于点,则,,在中,,即,,(米),隧道的长度为米.答:隧道的长度为米.21. (1)设焚烧吨垃圾,A发电厂发电度,B发电厂发电度,则解得:答:焚烧吨垃圾,A发电厂发电度,B发电厂发电度.(2)设A发电厂焚烧吨垃圾,则B发电厂焚烧吨,总发电量为度,则,,随的增大而增大,A厂发电:度,B厂发电:度,当时,取最大值为,此时A厂发电度,B厂发电度.答:A,B发电厂发电总量最大时A厂发电度,B厂发电度.22. (1)抛物线的解析式:,对称轴为:直线.(2)如图:作关于对称轴的对称点,则.取,又,则可证,,要求四边形的周长最小值,只要求的最小值即可.,当,,三点共线时,有最小值为,四边形的周长最小值为.(3)方法①:令与轴交于点,直线把四边形的面积分为两部分,又,,,,直线的解析式:或,由解析式和抛物线解析式联立解得:,.方法②:由题意得:或,令,,直线的解析式:,作轴交直线于点,则,,当时,则:,解得:(舍),,.当时,则:,解得(舍),..23. (1)连接,则:为直径,,,,,,,,,即:,,,轴,,,点在上,直线为的切线.(2)① ;.②方法:,,,,,,,,令,,,,,当时,,此时,.【解析】①如图,当位于上时:,设,则,,,,解得:,,,即.如图,当位于的延长线上时:,设,则,,,,解得:,,,即.②方法:如图,作于点,是直径,,,,(相似三角形对应边上的高的比等于相似比).,,的最大值为.方法:是直径.,(记为,其中),则:,的最大值为.方法:算数平均数几何平均数,即,取中点,连接,则,点和点重合,即为等腰时,取等号,则,的最大值为.方法:,如图,在中有摄影定理得:,则,等腰时,取等号,的最大值为.。

2020年广东省深圳市中考数学试卷【初中数学,中考数学试卷,含答案word可编辑】

2020年广东省深圳市中考数学试卷【初中数学,中考数学试卷,含答案word可编辑】

202X 年广东省深圳市中考数学试卷一、选择题(每题3分,共12小题,总分值36分)) 1. 202X 的相反数是()A. 0.15 x 108B.1.5 x 107C.15 x 107D.1.5 x 1084, 分别观察以下几何体,其中主视图,左视图和俯视图完全相同的是()A.202XB-202XC-202X202X2.以下图形既是轴对称图形又是中心对称图形的是()3. 202X 年6月30日,深圳市总工会启动“百万职工消费扶贫采购节〃活动,预计撬动扶 贫消费额约150000000元.将150000000用科学记数法表示为()A.40°B.60°C.70°D.80°8.如图,在中,AB = AC,在AB, AC上分另ij截取刀P, AQ9 ]^AP = AQ.再分别以点P, Q为圆心,以大于!PQ的长为半径作弧,两弧在匕BAC内交于点R,作射线AR,交于点D.假设BC = 6,那么的长为(D.29,以下说法正确的选项是()A.平行四边形的对边相等B.圆周角等于圆心角的一半C.分式方程土 =弓一 2的解为x = 2x-2 X-2D.三角形的一个外角等于两个内角的和10.如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P, Q两点分别测定对岸一棵树7的位置,丁在P的正北方向,旦丁在Q的北偏西70。

方向,那么河宽(PT 的长)可以表示为()A,200tan70°米 B.郭-米 C.200sin 70°米 D.^-米tan70°sin70°11.二次函数y = ax2+ bx + c(a丰0)的顶点坐标为(一1, n),其局部图象如图所示.以下结论错误的选项是()-2 -1:OA.abc > 0B.4QC —Z J2 < 0C.3Q + c > 0D.关于%的方程Q/ + b% + C = 71 + 1无实数根12.如图,矩形纸片刀BCD中,AB = 6, BC = 12.将纸片折叠,使点B落在边AD的延长线上的点G处,折痕为EF,点E, F分别在边AD和边BC上.连接BG,交CD于点K, FG交CD于点H.给出以下结论:①EF 1 BG;@GE = GF;③△ GDK和△ GKH的面积相等;④当点F与点C重合时,匕DEF = 75°,其中正确的结论共有()D.4个二、填空题(此题共4小题,每题3分,共12分))13.分解因式:m3 -m = _________ •14.一口袋内装有编号分别为1, 2, 3, 4, 5, 6, 7的七个球(除编号外都相同),从中随机摸出一个球,那么摸出编号为偶数的球的概率是__ .15.如图,在平面直角坐标系中,0(0, 0), 4(3 1), 8(1,2).反比例函数y = '(k。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年深圳中考数学试卷
一、选择题
1.9的相反数()
1
A.-9
B.9
C. ±9
D.
9
2.下列图形中是轴对称图形但不是中心对称图形的是( )
D.
A.B.C.
3.支付宝与“快的打车”联合推出优惠,“快的打车”一夜之间红遍大江南北,据统计,2020年“快的打车”账户流水总金额达到47.3亿元,47.3亿用科学计数法表示为()
A B C D
4.4.由几个大小相同的正方形组成的几何图形如图所示,则它的俯视图()
A B
C D
5.在-2,1,2,1,4,6中正确的是()
A.平均数3 B.众数是-2 C.中位数是1 D.极差为8
6.已知函数y=ax+b经过(1,3)(0,-2)求a-b()
A.-1
B.-3
C.3
D.7
7.下列方程没有实数根的是( )
A 、x²+4x=10 B、3x²+8x -3=0
C 、x²-2x+3=0
D 、(x-2)(x-3)=12
8.如图、△ABC 和△DEF 中,AB=DE 、角∠B=∠DEF,添加下列哪一个条件无法证明△ABC ≌△DEF ( )
A 、AC ∥DF
B 、∠A=∠D
C 、AC=DF
D 、∠ACB=∠F
9.袋子里有4个球,标有2,3,4,5,先抽取一个并记住,放回,然后再抽取一个,文抽取的两个球数字之和大于6的概率是( ) A.12 B.712 C.58 D.34
10.小明去爬山,在山脚看山顶角度为30°,小明在坡比为5:12,的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )
A .6002505- B. 6003250- C. 3503503+ D .5003
11.二次函数2y ax bx c =++图像如图所示,下列正确的个数为( )
① 0bc >
② 230a c -<
③ 20a b +>
④ 20ax bx c ++=有两个解12,x x ,120,0x x ><
⑤ 0a b c ++>
⑥ 当1x >时,y 随x 增大而减小
A. 2
B. 3
C. 4
D. 5
12.如图,已知四边形ABCD 为等腰梯形,AD//BC ,AB=CD ,E 为CD 中点,连接AE ,且AE=23,2AD =,∠DAE=30°,作AE ⊥AF 交BC 于F ,则BF=( )
A .1 B. 33- C. 51- D. 422-
二、 填空题
13.因式分解:228x -=
14.,90,,6,8,Rt ABC C AD CAB AC BC CD ∆∠=︒∠===在中平分
15.如图所示,双曲线k y x
=经过Rt △BOC 斜边上的点A,且满足23
AO AB =,与BC 交于点D, 21BOD S ∆=,求k= 16.如图,下列图形是将正三角形按一定规律排列,则第5个图
形中所有正三角形的个数有
……
三、 解答题
17.计算:12-2tan60°+(2014-1)0-(3
1)-1
18.先化简,再求值:4
)223(
2-÷+--x x x x x x ,在-2,0,1,2四个数中选一个合适的代入求值.
20.已知BD 垂直平分AC ,∠BCD=∠ADF ,AF ⊥AC ,
(1)证明ABDF 是平行四边形
F C
(2)若AF=DF=5,AD=6,求AC的长
21.某“爱心义卖”活动中,购进甲、乙两种文具,甲每个进货价高于乙进货价10元,90元买乙的数量与150元买甲的数量相同。

(1)求甲、乙进货价;
(2)甲、乙共100件,将进价提高20%进行销售,进货价少于2080元,销售额要大于2460元,求有几种方案?
22.如图,在平面直角坐标系中,⊙M过原点O,与x轴交于)0,4(A,与y轴交于(0,3)
B,点C为劣弧AO的中点,连接AC并延长到D,使CA
,连接BD.
DA4
(1)求⊙M的半径;
(2)证明:BD为⊙M的切线;
(3)在直线MC上找一点P,使AP
DP 最大.
23.如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,-4),
(1)求抛物线解析式;
(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,求当△BEF与△BAO相似时,E点坐标;
(3)记平移后抛物线与AB另一个交点为G,
则与是否存在8倍的关系,若有,
写出F点坐标。

相关文档
最新文档