十五章_整式的乘除与因式分解综合复习测试2及答案

合集下载

完整版初二第15章整式的乘除与因式分解综合复习测试3及答案

完整版初二第15章整式的乘除与因式分解综合复习测试3及答案

第十五章 整式的乘除与因式分解综合复习测试一、选择题1、以下计算正确的选项是()A 、3x - 2x = 1B 、 3x+2x=5x 2C 、 3x ·2x=6xD 、 3x - 2x=x 2、如图,阴影部分的面积是()A 、 7xyB 、 9xyC 、 4xyD 、 2xy第2题图223、以下计算中正确的选项是()A 、2x+3y=5xyB 、 x ·x 4=x 4C 、 x 8÷x 2=x 4D 、(x 2y ) 3=x 6y 34、在以下的计算中正确的选项是()A 、2x + 3y = 5xy ;B 、( a + 2)(a - 2)= a 2+4;C 、 a 2?ab = a 3b ;D 、( x -3) 2= x 2+ 6x +9 5、以下运算中结果正确的选项是()A 、 x 3 ·x 3 x 6 ;B 、 3x 2 2x 2 5x 4 ;C 、 ( x 2 ) 3 x 5 ;D 、 (x y)2x 2 y 2 .6、以下说法中正确的选项是( )。

A 、 t不是整式; B 、3x 3 y 的次数是 4; C 、 4ab 与 4xy 是同类项; D 、1是单项式2y7、 ab 减去 a 2ab b 2 等于 ( )。

A 、a 22ab b 2 ;B 、 a 2 2ab b 2 ; C 、 a 2 2ab 8、以下各式中与 a -b - c 的值不相等的是( )A 、 a -( b+c )B 、 a -( b -c )C 、( a - b ) +(- c )9、已知 x 2+kxy+64y 2 是一个圆满式,则k 的值是( )A 、 8B 、 ±8C 、16D 、±16 10、以以以下列图( 1),边长为 a 的大正方形中一个边长为 b 的小正方形,小明将图( 1)的阴影部分拼成了一个矩形,如图( 2)。

这一过程能够考证( )A 、 a 2+b 2- 2ab=(a - b)2 ;B 、a 2+b 2 +2ab=(a+b)2 ;C 、 2a 2- 3ab+b 2=(2a - b)(a - b) ;D 、a 2-b 2=( a+b) (a - b) 二、填空题32;(2)计算: ( 3a 3 )211、(1)计算: ( x) ·x12、单项式 3x 2 y n 1z 是对于 x 、 y 、 z 的五次单项式,则 nb 2 ;D 、 a 2 2ab b 2D 、(- c )-( b - a )a abb图1图2(第 10题图)a 2.;13、若 x 24x 4 (x2)( x n) ,则 n_______14、当 2y –x=5 时, 5 x 2 y 23 x 2 y60 =;15、若 a 2+ b 2= 5,ab = 2,则 (a + b)2=。

《整式的乘除与因式分解》培优训练及答案

《整式的乘除与因式分解》培优训练及答案

整式的乘除与因式分解一、选择题:1.下列计算正确的是( )A .105532a a a =+B .632a a a =⋅C .532)(a a =D . 8210a a a =÷2.下列计算结果正确的是( )A .4332222y x xy y x -=⋅-B .2253xy y x -=y x 22-C .xy y x y x 4728324=÷D .49)23)(23(2-=---a a a3.两个三次多项式相加,结果一定是 ( )A .三次多项式B .六次多项式C .零次多项式D .不超过三次的多项式4.把多项式()()()111---+x x x 提取公因式()1-x 后,余下的部分是( )A .()1+xB .()1+-xC .xD .()2+-x5.计算24(1)(1)(1)(1)x x x x -++--的结果是 ( )A 、2B 、0C 、-2D 、-56.已知代数式12x a -1y 3与-3x -b y 2a+b 是同类项,那么a 、b 的值分别是( )A .2,1a b =-⎧⎨=-⎩B .2,1a b =⎧⎨=⎩C .2,1a b =⎧⎨=-⎩D .2,1a b =-⎧⎨=⎩7.已知2239494b b a b a n m =÷,则( )A .3,4==n mB .1,4==n mC .3,1==n mD .3,2==n m8.如图,是一个正方形与一个直角三角形所拼成的图形,则该图形的面积为()A .m 2+12mnB .22mn n -C .22m mn+ D .222m n +9.若2()9a b +=,2()4a b -=,则ab 的值是( )A 、54B 、-54C 、1D 、-1 二、填空题: 1.分解因式2233ax ay -= .2.分解因式ab b a 8)2(2+- =_______.3.分解因式221218x x -+= .4.若22210a b b -+-+=,则a = ,b = .5.代数式4x 2+3mx +9是完全平方式,则m =___________.6. 已知a+b=5,ab=3,求下列各式的值:(1)a 2+b 2= ;(2)-3a 2+ab-3b 2= .7. 已知522=+b a ,()()223232a b a b --+=-48,则a b +=________. 8. 已知正方形的面积是2269y xy x ++ (x >0,y >0),利用分解因式,写出表示该正方形的边长的代数式 .9.观察下列等式: 第一行 3=4-1第二行 5=9-4第三行 7=16-9第四行 9=25-16… …按照上述规律,第n 行的等式为____________ .三、解答题:1.计算题(1)(-3xy 2)3·(61x 3y )2 (2)4a 2x 2·(-52a 4x 3y 3)÷(-21a 5xy 2)(3)222)(4)(2)x y x y x y --+( (4)221(2)(2))x x x x x-+-+-(2.因式分解(1)3123x x - (2)2222)1(2ax x a -+(3)xy y x 2122--+ (4))()3()3)((22a b b a b a b a -+++-3.解方程:41)8)(12()52)(3(=-+--+x x x x4.已知x 2+x -1=0,求x 3+2x 2+3的值5.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.四.综合拓展:1.已知c b a 、、是△ABC 的三边的长,且满足0)(22222=+-++c a b c b a ,试判断此三角形的形状.2.已知2006x+2006y=1,x+3y=2006,试求2x 2+8xy+6y 2的值五.巩固练习:1.若n221623=÷,则n 等于( )A .10B .5C .3D .62.计算:xy xy y x y x 2)232(2223÷+--的结果是( ) A .xy y x 232- B .22322+-xy y x C .1232+--xy y x D .12322+--xy y x3.下列计算正确的是( )A .x y x y x 221222223=⋅÷ B .57222257919n m n m m n n m =÷⋅ C .mn mn n m n m =⋅÷24322)(2 D .22242231043)3012(y x y x y x y x +=÷+4.已知一个多项式与单项式457y x -的积为2234775)2(72821y x y y x y x +-,则这个多项式为___5.若(a+b )2=13(a-b )2=7求a 2+b 2和ab 的值。

整式的乘除与因式分解(基础篇)含答案

整式的乘除与因式分解(基础篇)含答案

整式的乘除与因式分解一、复习目标:1.掌握与整式有关的概念;2.掌握同底数幂、幂的乘法法则,同底数幂的除法法则,积的乘方法则;3.掌握单项式、多项式的相关计算;4.掌握乘法公式:平方差公式,完全平方公式。

5..掌握因式分解的常用方法。

二、知识点分析:1. 同底数幂、幂的运算:a m ·a n =a m+n (m ,n 都是正整数).(a m )n =a mn (m ,n 都是正整数).1、 若6422=-a ,则a= 8 ;若8)3(327-=⨯n ,则n= 5 .()[]()[]m n x y y x 2322--= (x-2y)3n+2m .32=n a ,则n a 6= 27 .点评:考察公式的逆用,一般底不同时,化底相同,或化指数相同。

如:2a -2 = 64,因为64 = 26,所以a -2 = 6,a = 8如:a 2n = 3,那么a 6n = (a 2n )3 = 33 = 272.积的乘方(a b)n =a n b n (n 为正整数).积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘. 计算:=()[]()()[]43p p m n n m m n -⋅-⋅- = (n-m)3p+4+4p = (n-m)7p+4点评:积的乘方,同底数幂公式的应用,可以先确定符号,“奇出偶不出”3.乘法公式平方差公式:()()22b a b a b a -=-+ 完全平方和公式:()2222b ab a b a ++=+ 完全平方差公式:()2222b ab a b a +-=- 1.利用平方差公式计算:2009×2007-20082=___-1___2. (a -2b +3c -d )(a +2b -3c -d )=___a 2-2ad+d 2-4b 2+12bc-9c 2___点评:套用公式时,需不拘于样式。

将符号不变的看作一个整体,符号变化的看作另一个整体。

如:(a -2b +3c -d )( a +2b -3c -d )= [(a-d ) - (2b-3c )]·[(a-d ) +(2b-3c )] ,于是就可以应用平方差公式。

《整式乘除与因式分解》综合测试题(B)

《整式乘除与因式分解》综合测试题(B)

因式分 解 : ( —y ) 一( Y— ) =

_ 一

若 n—b=1 , 则 ( a 2 +b ) 一a b=




若 0+b=2 , b+c =3 , 0 +c=1 4 , 则a 2 一C 是值 是
— —
解 答题 ( 共3 2分 )
计算 ( 每题 4分 , 共1 6分 )
B . 2 8 C . 1 2
c ・ 古
。 ・ 一 ☆
Wh e r e t h e r e i s n o h o p e , t h e r e c a n b e n o e n d e a v o r .
哪 里没有希望 , 哪里就不可能有努力 。—— 塞缪 尔・ 约翰逊
不要垂头丧气, 即使 失 去 一 切 , 明 天仍 在 你 的 手 里 。—— 奥 斯 卡 ・ 王 尔 德

为 某 个 信念 而 死 并 不难 。 难 的是 实 践 该信 念 。— — 威廉 ・ 萨 克雷
四、 解 答题 ( 每题 5分 , 共2 0分 )
1 9 . 已知 , 一5 x=1 4 . 求( 一1 ) ( 2 x 一1 ) 一( +1 ) +1 的值.
2 0 . 当 口=3时 , 求( 一l 6 ) ÷( + 4 ) 的值.
因式 分解 ( 每小题 4分 , 共1 6 分)
( 1 ) 。 一4 x ; ( 2 ) 1 6 a 2 一( 3 a+ 4 6 ) ;
( 3 ) 一8 + 1 6 ;
( g ) ( + ) 一 4 2 ) , 2 .
I t ’ s n o t d y i n gf o r af a i t ht h a t ’ s S Oh a r d. i t ’ sl i v i n gu pt oi t .

人教版八年级上册数学《整式的乘除与因式分解》单元测试卷(含答案)

人教版八年级上册数学《整式的乘除与因式分解》单元测试卷(含答案)

人教版八年级上册数学《整式的乘除与因式分解》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.下列运算正确的是A .321ab ab -=B .246a a a ⋅=C .()325x x = D .232x x x ÷=2.如果22()()4a b a b +--=,则一定成立的是( )A .a 是b 的相反数B .a 是b -的相反数C .a 是b 的倒数D .a 是b -的倒数3.若23x =,45y =,则22x y +的值为( )A .15B .2-C .654.下列分解因式正确的是( )A 、2x 2﹣xy ﹣x=2x (x ﹣y ﹣1)B 、﹣xy 2+2xy ﹣3y=﹣y (xy ﹣2x ﹣3)C 、x (x ﹣y )﹣y (x ﹣y )=(x ﹣y )2D 、x 2﹣x ﹣3=x (x ﹣1)﹣35.在多项式①x 2+2xy ﹣y 2;②﹣x 2﹣y 2+2xy ;③x 2+xy+y 2;④4x 2+1+4x 中,能用完全平方公式分解因式的有( )A 、①②B 、②③C 、①④D 、②④6.若a*b=a 2+2ab ,则x 2*y 所表示的代数式分解因式的结果是( )A 、x 2(x 2+2y )B 、x (x+2)C 、y 2(y 2+2x )D 、x 2(x 2﹣2y )7.已知2011200920102010201020092011X =⨯⨯﹣,那么X 的值是( )A 、2008B 、2009C 、2010D 、20118.若m >﹣1,则多项式m 3﹣m 2﹣m+1的值为( )A 、正数B 、负数C 、非负数D 、非正数9.若(p ﹣q )2﹣(q ﹣p )3=(q ﹣p )2E ,则E 是( )A 、1﹣q ﹣pB 、q ﹣pC 、1+p ﹣qD 、1+q ﹣p10.把x 2﹣y 2﹣2y ﹣1分解因式结果正确的是( )A 、(x+y+1)(x ﹣y ﹣1)B 、(x+y ﹣1)(x ﹣y ﹣1)C 、(x+y ﹣1)(x+y+1)D 、(x ﹣y+1)(x+y+1)二 、填空题(本大题共5小题,每小题3分,共15分)11.若87a =,78b =,用含a 、b 的代数式表达5656为12.计算:⑴232223(2)8()()()______x y x x y -+⋅-⋅-=⑵2(2)(2)()______a b a b a b +--+=⑶22()()()_______x y x y y x -+--+=13.已知32131a a x x x x +⋅⋅=,则a 的值为14.⑴如果多项式219x kx ++是一个完全平方式,那么k 的值为⑵如果多项式24x kx -+是一个完全平方式,那么k 的值为15.填空:(1)222()______a b a b +=+-;(2)222()______a b a b +=-+;(3)22()()_______a b a b -=+-;三 、解答题(本大题共7小题,共55分)16.如果12m x =,3n x =,求23m n x +的值17.分解因式:2x x5129+---2383x x18.分解因式:22--=x xy y12111519.计算(1)2-+(2)(2)(2)x y(23)--a b b a(3)2222++-+(4)(22)(22) ()()a ab b a ab b-+-+x y y x20.已知实数a、b满足2a b()25-=,求22+=,2()1a b++的值.a b ab21.计算:222222224--÷+.(3)()(4)89xy x y x y y x y22.分解因式:5544+-+()x y x y xy人教版八年级上册数学《整式的乘除与因式分解》单元测试卷答案解析一 、选择题1.B2.C3.A4.C5.D6.A7.B ;已知20102011﹣20102009=2010x ×2009×2011,则有20102009×2009×2011=2010x×2009×2011,则有x=2009.8.C ;多项式m 3﹣m 2﹣m+1=(m 3﹣m 2)﹣(m ﹣1)=m 2(m ﹣1)﹣(m ﹣1)=(m ﹣1)2(m+1),∵m >﹣1,∴(m ﹣1)2≥0,m+1>0,∴m 3﹣m 2﹣m+1=(m ﹣1)2(m+1)≥0,故选C .9.C ;(p ﹣q )2﹣(q ﹣p )3=(q ﹣p )2(1﹣q+p ).故选C .10.A ;原式=x 2﹣(y 2+2y+1)=x 2﹣(y+1)2=(x+y+1)(x ﹣y ﹣1).故选A .二 、填空题11.()()()78565687567878=⨯=⨯,当87a =,78b =时,原式78a b =12.⑴原式=6316x y -;⑵原式=22232a ab b ++;⑶原式=44x y -13.914.完全平方:2222()a ab b a b ±+=±, ⑴参看公式我们可以发现23k =±,学生在此极易少答案;⑵4k =±. 15.⑴2ab ;⑵2ab ;⑶4ab ;三 、解答题16.()()2323m n m n x x x +=⋅,12m x =,3n x =,∴原式274=17.2383(31)(3)x x x x --=+-;25129(3)(53)x x x x +-=+-18.22121115(35)(43)x xy y x y x y --=-+19.(1)原式222(23)4129x y x xy y =-=-+(2)原式22222(2)(44)44a b a ab b a ab b =--=--+=-+-(3)原始22224224()()a b ab a b ab a a b b ⎡⎤⎡⎤=+++-=++⎣⎦⎣⎦(4)原式222[2(2)][2(2)]4(2)444x y x y x y x xy y =+---=--=-+-20.2222()()132a b a b a b ++-+==,22()()64a b a b ab +--==-,227a b ab ++=. 21.原式2222442249()1689x y x y x y y x y =--÷+422442244299297x y x y x y x y x y =--+=22.原式44()()x x y y x y =---44()()x y x y =--22()()()()x y x y x y x y =--++222()()()x y x y x y =-++。

整式的乘除与因式分解测试题(有答案)

整式的乘除与因式分解测试题(有答案)

整式的乘除与因式分解测试题(有答案)小编为大家整理了整式的乘除与因式分解测试题(有答案),希望能对大家的学习带来帮助!要想掌握每一个阶段的内容,重要的是回归课本,将基础知识和定义记牢,再进行解题,不要急于跳入题海,如果一下子就碰到了自己不会的题目就会失去信心。

乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题。

因式分解是解析式的一种恒等变形,因式分解不但在解方程等问题中极其重要,在数学科学其他问题和一般科学研究中也具有广泛应用,是重要的数学基础知识。

因式分解的方法一般包括提公因式法、公式法、分组分解法、十字相乘法、待定系数法等第十五章整式的乘除与因式分解阶段测试(有答案)整式的乘法测试题(总分:100 分时间:60 分钟)班级姓名学号得分一、填空题(每小题2 分,共28 分)1.计算(直接写出结果)①a•a3=.③(b3)4=.④(2ab)3=.⑤3x2y• =.2.计算:=.3.计算:=.4.( ) =__________.5. ,求=.6.若,求=.7.若x2n=4,则x6n=___.8.若,,则=.9.-12 =-6ab•().10.计算:(2 乘以)乘以(-4 乘以)=.11.计算:=.12.①2a2(3a2-5b)=.②(5x+2y)(3x-2y)=.13.计算:=.14.若小编为大家整理了初二数学一次函数练习题(附答案),希望能对大家的学习带来帮助!一次函数的图象和性质选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3 千米以内的收费6 元;3 千米到10 千米部分每千米加收1.3 元;10 千米以上的部分每千米加收1.9 元。

章复习 第15章 整式的乘除与因式分解

章复习  第15章  整式的乘除与因式分解

章复习 第十五章 整式的乘除与因式分解一、整式的乘法1、幂的运算法则⑴同底数幂的乘法.同底数幂相乘,底数______,指数______.即____________(m ,n 都是正整数). 注:三个或三个以上同底数幂相乘时也具有这一性质,如p n m a a a ⋅⋅=______(m ,n ,p 都是正整数).⑵幂的乘方.幂的乘方,底数______,指数______.即____________(m ,n 都是正整数).⑶积的乘方.积的乘方,等于把积的每一个因式____________,再把所得的幂______.即()n ab =______(n 为正整数).幂的运算法则的异同:2⑴单项式与单项式的乘法法则单项式与单项式相乘,把它们的______、____________分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注:①此法则可利用乘法交换律、结合律及同底数幂的运算性质推导;②几个单项式的积仍是一个______,其次数等于原来各个单项式的次数之______.⑵单项式与多项式的乘法法则单项式与多项式相乘,就是用单项式去乘多项式的______,再把所得的积______.注:①此法则是由乘法分配律推导的,即m (a +b +c )= ma + mb + mc .②单项式乘多项式,如果单项式不为0,那么结果仍是多项式,积的项数与原多项式的项数相同.⑶多项式与多项式的乘法法则多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.注:①此法则实质上是将多项式乘多项式转化为单项式与多项式相乘.即:++=++)())((n m a n m b a bn bm an am n m b +++=+)(②使用法则时,应按一定的顺序相乘,避免重项、漏项,要注意“三数及整理”,“三数”即项数、次数、系数;“整理”即合并同类项.3、乘法公式⑴平方差公式两个数的______与这两个数的______的______,等于这两个数的平方差.即:________________________注:平方差公式的特征:①必须是两个二项式相乘;②两因式中的一对数相同,另一对数互为相反数.⑵完全平方公式两数和(或差)的______,等于它们的______,加上(或减去)它们的____________.即: ________________________或________________________注:a 与b 可以是数,也可以是整式.运用乘法公式计算,有时要在式子中添加括号,去括号法则即:()a b c ++=____________,()-+a b c =____________,()--a b c =____________.反过来可得添括号法则:添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都要变号.即:(后两项添括号)a b c ++=____________,a b c --=____________,a b c -+=____________.二、整式的除法1、同底数幂的除法同底数幂相除,底数不变,指数相减.即:____________,n m a ,,0=/都是正整数,并且n m >.注:应用法则时,不要忽略幂的指数为“1”的情况.如a a a =÷2,而不是a a ÷2=)0(202=/=-a a a . 2、零指数幂任何不等于0的数的0次幂都等于______.即:____________.注:①零次幂的底数不能为0,0的零次幂无意义;②a 0不能理解成0个a 相乘,)0(0=/a a 是一种规定,这种规定的合理性可由同底数幂的除法说明:∵m m a a ÷0a a m m ==-,又m m a a ÷=1,∴)0(10=/=a a .3、整式的除法⑴单项式除以单项式.单项式相除,把______与____________分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的______作为商的一个因式.注:单项式相除的步骤:①将单项式除法“转化”为有理数的除法或同底数幂的除法;②进行有理数或同底数幂的除法运算.⑵多项式除以单项式,多项式除以单项式,先把这个多项式的______除以____________,再把所得的商______.注:此法则是将多项式除以单项式问题转化为单项式除以单项式问题,即:÷+=+am+÷+++÷=÷bmcmba(c).mmammbmcmm三、因式分解1、因式分解⑴概念:把一个多项式化成几个______的______的形式,这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注:①因式分解专指多项式的恒等变形;②因式分解的结果必须是几个整式的积的形式.⑵因式分解与整式乘法的关系.因式分解与整式乘法是______方向的变形,它们互为______.2、提公因式法⑴公因式.多项式各项都含有的公共的因式叫做这个多项式各项的公因式.⑵提公因式法.一般地,如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.注:①提公因式法关键是确定公因式,确定公因式的步骤是:(a)取各项系数的______作为公因式的系数,(b)取相同字母____________的积;②公因式可以是单项式,也可以是多项式.3、公式法⑴公式法的概念把乘法公式反过来运用,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做公式法.⑵平方差公式两个数的平方差,等于这两个数的______与这两个数的______的______.即:__________________注:公式中所说的“两个数”是a,b,而不是a2、b2,其中a,b既可以是单项式,也可以是多项式.⑶完全平方公式.两个数的______加上(或减去)这两个数的______的2倍,等于这两个数的______(或______)的______.即__________________注:符合以下特点的多项式才能运用完全平方公式分解因式:是三项式,其中首末两项分别是两个式子(可以是单项式,也可以是多项式)的平方,且这两项的符号相同,中间一项是这两个式子的积的2倍,符号正负均可.*四、公式2()()()++=+++x p x q x p q x pq 、十字相乘法五、典型例题例1 下列数中能整除20062005(8)(8)-+-的是( )A.3B.5C.7D.9例2 若2312a b c ++=,且222a b c ab bc ca ++=++,求23a b c ++的值.例3 分解因式: ⑴214x x -+ ⑵2221a ab b -+-例4 在实数范围内分解因式:44x -.例5 计算:++-+-+- 22222295969798991002212-.注:逆用平方差公式,常常可以简化运算.*例6 如图,D 、E 分别是△ABC 的边BC 和AB 上的点,△ABD 与△ACD 的周长相等,△CAE 与△CBE 的周长相等,设BC=a ,AC=b ,AB=c .(1)求AE 和BD 的长;(2)若∠BAC=90°,△ABC 的面积为S .求证:S=AE·BD.第十五章 整式的乘除与因式分解 测试题一、选择题(每小题3分,共24分)1.下列计算中正确的是( )A .5322a b a =+B .44a a a =÷C .842a a a =⋅D .()632a a -=- 2. ()()22a ax x a x ++-的计算结果是( )A .3232a ax x -+B .33a x -C .3232a x a x -+D .322322a a ax x -++3.下面是某同学在一次测验中的计算摘录,其中正确的个数有( )①()523623x x x -=-⋅; ②()a b a b a 22423-=-÷;③()523a a =; ④()()23a a a -=-÷- A .1个 B .2个 C .3个 D .4个4.已知被除式是x 3+2x 2-1,商式是x ,余式是-1,则除式是( )A .x 2+3x -1B .x 2+2xC .x 2-1D .x 2-3x+15.是完全平方式的是( )A .412+-x x B .21x + C .1++xy x D .122-+x x 6.把多项式)2()2(2a m a m -+-分解因式等于( )A .))(2(2m m a +-B .))(2(2m m a --C .m (a -2)(m -1)D .m (a -2)(m +1)7.如()m x +与()3+x 的乘积中不含x 的一次项,则m 的值为( )A. –3B. 3C. 0D. 18.若153=x ,53=y ,则y x -3等于( )A .5B .3C .15D .10二、填空题(每空3分,共21分)9.=--+-)32)(32(n n n m ___________. 10.=--2)2332(y x ______________. 11.当x ___________时,()04-x 等于__________.12.若=,,则b a b b a ==+-+-01222. 13.已知31=+a a ,则221aa +的值是 . 三、解答题(共55分)14.计算题(每小题5分,共15分)(1) 22)1)2)(2(xx x x x +-+--((2) ()()[]xy y x y x 222÷--+(3)用简便方法计算:1198992++15.因式分解:(每小题5分,共20分)(1)3123x x - (2)a a a 1812223-+-(3)()()x y b y x a -+-2249; (4)()()122++++y x y x16.先化简,再求值. (10分)2)3)(3()2)(3(2-=-+-+-a a a x x 其中,x =117.(本题10分)对于任意的正整数n ,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除,请说明理由.。

八年级数学第十五章整式的乘除与因式分解

八年级数学第十五章整式的乘除与因式分解
A、2ab+2bc+2acB、2ab-2bc
C、2abD、-2bc
3.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别是( ).
A、a=-2,b=-2 B、a=2,b=2
C、a=2,b=-2 D、a=-2,b=2
4.如果x2与-2y2的和为m,1+y2与-2x2的差为n,那么2m-4n化简后为( )
⑤[(x-y)2·(x-y)n-1]2.12.[(a-b)3]2-[(b-a)2]3.
⑥9(a3)2·(-a)2·(-b2)2+(-2)4·(a2)4·b4.
⑦化简(-x-y)2m(-x-y)3=_______.
(m为正整数)
4.解答题
①已知a3n=5,那么a6n=______.
②若(a3)x·a=a19,则x=_______.
bm+2·b2·b=______;
-(-c)3·(-c)=______;
23·2(______)=256;
(-a)2·(______)=-a5.
2.若a3·am=a8,则m=______;
若33x+1=81,则x=______.
若2m=6,2n=5,则2m+n=______.
3.(-c)3·(-c)5的值是( ).
A、-c8B、(-c)15C、c15D、c8
4.计算题
①xn·xn+1·xn-1.
②(-m)·(-m)2·(-m)3.
③(a-b)·(a-b)3·(a-b)2.
④a2·a3+a·a4+a5.
⑤a·a4-3a2·a·a2.
⑥1000×10a+2×10a-1.
⑦x4·(-x)3+(-x)6·(-x).
⑧25×54-125×53.
⑦(-5x3)·(-2x2)· x4-2x4·(- x5).

整式的乘除综合复习(二)(北师版)(含答案)

整式的乘除综合复习(二)(北师版)(含答案)

学生做题前请先回答以下问题问题1:整式混合运算处理方法:①观察结构划部分;②有序操作依法则;③每步推进一点点.其中,在合并同类项时,要________,同类项画相同的线.请利用上述方法计算:.问题2:计算.你是怎么思考的?用到的公式是什么?问题3:计算.你是怎么思考的?问题4:计算.你是怎么思考的?问题5:计算.你是怎么思考的?整式的乘除综合复习(二)(北师版)一、单选题(共10道,每道10分)1.计算的结果是( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:完全平方公式2.计算的结果是( )A.2B.C.-2D.6答案:D解题思路:故选D.试题难度:三颗星知识点:幂的乘方3.计算的结果是( )A. B.C. D.答案:B解题思路:故选B.试题难度:三颗星知识点:整式的乘除4.计算的结果是( )A. B.C. D.答案:B解题思路:故选B.试题难度:三颗星知识点:整式的乘除5.计算的结果是( )A. B.C. D.答案:C解题思路:故选C.试题难度:三颗星知识点:平方差公式6.计算的结果是( )A. B.C. D.答案:C解题思路:故选C.试题难度:三颗星知识点:整式的乘除混合运算7.计算的结果是( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:整式的乘除混合运算8.计算的结果是( )A. B.C. D.答案:A解题思路:故选A.试题难度:三颗星知识点:整式的乘除混合运算9.当,时,代数式的值为( )A. B.C. D.答案:B解题思路:试题难度:三颗星知识点:化简求值10.计算结果的个位数字是( )A.1B.3C.7D.9答案:A解题思路:试题难度:三颗星知识点:整式的乘法。

整式的乘除与因式分解计算题精选2(含答案)

整式的乘除与因式分解计算题精选2(含答案)

整式的乘除与因式分解习题精选一.解答题(共30小题)1.计算:﹣4m(m2﹣m﹣2).2.化简:(1)(﹣2ab)(3a2﹣2ab﹣4b2)(2)5ax(a2+2a+1)﹣(2a+3)(a﹣5)3.(﹣7x2﹣8y2)(﹣x2+3y2)4.计算:(x﹣)(x+).5.计算:(﹣)2014×(﹣2)2015.6.计算:(﹣)2014×.7.化简:(a+b)(a﹣b)+2b2.8.化简:(x+1)2﹣(x+2)(x﹣2).9.计算:(1)(a﹣2b+1)(a+2b﹣1)(2)(x﹣y﹣z)2.10.运用乘法公式计算:(1)(a+2b﹣1)2;(2)(2x+y+z)(2x﹣y﹣z).11.因式分解:a(2a+b)﹣b(2a+b).12.因式分解:(m﹣n)3+2n(n﹣m)2.13.分解因式:(3a﹣4b)(7a﹣8b)﹣(11a﹣12b)(8b﹣7a).14.分解因式:﹣36ab2x6﹣39a3b2x5.15.分解因式:4m3n2﹣4m2n+m.16.因式分解:(y﹣x)2+2x﹣2y.17.因式分解:①﹣6(2a﹣b)2﹣4(b﹣2a)2②6(x+y)2﹣2(x﹣y)(x+y)③﹣3(x﹣y)2﹣(y﹣x)3④3a(m﹣n)﹣2b(n﹣m)⑤9(a﹣b)(a+b)﹣3(a﹣b)2⑥3a(a+b)(a﹣b)﹣2b(b﹣a)18.9(a+b)2﹣(a﹣b)2.19.因式分解:(1)(m+n)2﹣n2(2)(x2+y2)2﹣x2y2.20.﹣4(x+2y)2+9(2x﹣y)2.21.因式分解:(a)2﹣b2.22.因式分解:36(a+b)2﹣25.23.因式分解:9(x﹣y)2﹣12(x﹣y)+4.24.因式分解:(a+2b)2﹣2(a+2b)+1.25.因式分解:16(m+n)2﹣25(m﹣n)2.26.因式分解:4(x﹣y)2﹣4(x﹣y)+1.27.因式分解:(1)9(m+n)2﹣16(m﹣n)2;(2)(x+y)2+10(x+y)+25;(3)4a2b2﹣(a2+b2)2.28.(a2+4a)2+8(a2+4a)+16.29.(a2+b2)2﹣4a2b2 30.分解因式:(1)﹣4a2x+12ax﹣9x (2)(2x+y)2﹣(x+2y)2.7.给出三个多项式:x2+2x﹣1,x2+4x+1,x2﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:(2a+b)(2a﹣b)+b(2a+b)﹣4a2b÷b,其中a=﹣,b=2.9.当x=﹣1,y=﹣2时,求代数式[2x2﹣(x+y)(x﹣y)][(﹣x﹣y)(﹣x+y)+2y2]的值.10.解下列方程或不等式组:①(x+2)(x﹣3)﹣(x﹣6)(x﹣1)=0;②2(x﹣3)(x+5)﹣(2x﹣1)(x+7)≤4.整式的乘除与因式分解习题精选参考答案与试题解析一.解答题(共30小题)1.计算:﹣4m(m2﹣m﹣2).考点:单项式乘多项式.专题:计算题.分析:原式利用单项式乘以多项式法则计算即可得到结果.解答:解:原式=﹣2m3+4m2+8m.点评:此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.2.化简:(1)(﹣2ab)(3a2﹣2ab﹣4b2)(2)5ax(a2+2a+1)﹣(2a+3)(a﹣5)考点:单项式乘多项式;多项式乘多项式.专题:计算题.分析:(1)根据单项式与多项式相乘,先用单项式乘多项式的每一项,再把所得的积相加计算即可;(2)先算乘法,再去括号、合并同类项即可.解答:解:(1)(﹣2ab)(3a2﹣2ab﹣4b2)=﹣6a3b+4a2b2+8ab3;(2)5ax(a2+2a+1)﹣(2a+3)(a﹣5)=5a3x+10a2x+5ax﹣(2a2﹣10a+3a﹣15)=5a3x+10a2x+5ax﹣2a2+7a+15.点评:本题主要考查了整式的乘法,熟练掌握单项式与多项式相乘、多项式与多项式相乘的法则是解题的关键.3.(﹣7x2﹣8y2)(﹣x2+3y2)考点:多项式乘多项式.分析:根据多项式乘以多项式法则展开,再合并同类项即可.解答:解:原式=﹣7x2•(﹣x2)+(﹣7x2)•3y2﹣8y2•(﹣x2)﹣8y2•3y2=7x4﹣21x2y2+8x2y2﹣24y44.计算:(x﹣)(x+).考点:多项式乘多项式.分析:根据多项式乘以多项式法则进行计算即可.解答:解:(x﹣)(x+)=x2+x﹣x﹣=x2﹣x﹣.点评:本题考查了多项式乘以多项式法则,合并同类项的应用,主要考查学生的计算能力.5.计算:(﹣)2014×(﹣2)2015.考点:幂的乘方与积的乘方.分析:根据同底数幂的乘法,可化成指数相同的幂的乘法,根据积的乘方,可得答案.解答:解:原式=(﹣)2014×(﹣2)2014×(﹣2)=[﹣×(﹣2)]2014×(﹣2)=﹣2.点评:本题考查了积的乘方,先化成指数相同的幂的乘法,再进行积的乘方运算.6.计算:(﹣)2014×.考点:幂的乘方与积的乘方.分析:根据同底数幂的乘法,可化成指数相同的幂的乘法,根据积的乘方,可得答案.解答:解:原式=(﹣)×(﹣)2013×()2013=(﹣)×(﹣×)2013=(﹣)×(﹣1)=.点评:本题考查了积的乘方,先化成指数相同的幂的乘法,再进行积的乘方运算.考点:平方差公式;合并同类项.专题:计算题.分析:先根据平方差公式算乘法,再合并同类项即可.解答:解:原式=a2﹣b2+2b2=a2+b2.点评:本题考查了平方差公式和整式的混合运算的应用,主要考查学生的化简能力.8.(2014•槐荫区一模)化简:(x+1)2﹣(x+2)(x﹣2).考点:完全平方公式;平方差公式.分析:先根据完全平方公式和平方差公式算乘法,再合并同类项即可.解答:解:原式=x2+2x+1﹣x2+4=2x+5.点评:本题考查了对完全平方公式和平方差公式的应用,注意:完全平方公式有:(a±b)2=a2±2ab+b2,平方差公式有(a+b)(a﹣b)=a2﹣b2.9.计算:(1)(a﹣2b+1)(a+2b﹣1)(2)(x﹣y﹣z)2.考点:完全平方公式;平方差公式.分析:(1)先变形得出[a﹣(2b﹣1)][a+(2b﹣1)],再根据平方差公式进行计算,最后根据完全平方公式求出即可;(2)首先把x﹣y﹣z看作(x﹣y)﹣z,利用完全平方公式展开,再进一步利用整式的乘法和完全平方公式继续计算即可.解答:解:(1)(a﹣2b+1)(a+2b﹣1)=[a﹣(2b﹣1)][a+(2b﹣1)]=a2﹣(2b﹣1)2=a2﹣4b2+4b﹣1;(2)(x﹣y﹣z)2=[(x﹣y)﹣z]2=(x﹣y)2﹣2(x﹣y)z+z2=x2﹣2xy+y2﹣2xz+2yz+z2.点评:本题考查了平方差公式和完全平方公式的应用,主要考查学生运用公式进行推理和计算的能力.10.运用乘法公式计算:(1)(a+2b﹣1)2;考点:完全平方公式;平方差公式.分析:(1)先把(a+2b)看作整体,再两次利用完全平方式展开即可.(2)把(y+z)看作整体,利用平方差公式展开,然后利用完全平方公式再展开.解答:解:(1)原式=[(a+2b)﹣1]2=(a+2b)2﹣2(a+2b)+1=a2+4ab+4b2﹣2a﹣4b+1;(2)原式=(2x)2﹣(y+z)2=4x2﹣y2﹣2yz﹣z2.点评:本题考查了平方差公式和完全平方公式.熟记公式的几个变形公式对解题大有帮助.11.因式分解:a(2a+b)﹣b(2a+b).考点:因式分解-提公因式法.分析:直接提取公因式(2a+b),即可得出答案.解答:解:a(2a+b)﹣b(2a+b)=(2a+b)(a﹣b).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.12.计算:(m﹣n)3+2n(n﹣m)2.考点:因式分解-提公因式法.分析:利用偶次幂的性质将原式变形,进而提取公因式(m﹣n)2,进而求出即可.解答:解:(m﹣n)3+2n(n﹣m)2=(m﹣n)3+2n(m﹣n)2=(m﹣n)2[(m﹣n)+2n]=(m﹣n)2(m+n).点评:此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.13.分解因式:(3a﹣4b)(7a﹣8b)﹣(11a﹣12b)(8b﹣7a).考点:因式分解-提公因式法.分析:首先把代数式变形为(3a﹣4b)(7a﹣8b)+(11a﹣12b)(7a﹣8b),再提取公因式(7a﹣8b),然后把括号里面合并同类项可得(7a﹣8b)(14a﹣16b),再把后面括号李提取公因式2,进一步分解.解答:解:(3a﹣4b)(7a﹣8b)﹣(11a﹣12b)(8b﹣7a),=(3a﹣4b)(7a﹣8b)+(11a﹣12b)(7a﹣8b),=(7a﹣8b)(3a﹣4b+11a﹣12b),=(7a﹣8b)(14a﹣16b),=2(7a﹣8b)2.14.分解因式:﹣36ab2x6﹣39a3b2x5.考点:因式分解-提公因式法.分析:根据题意直接提取公因式﹣3ab2x5进而得出答案.解答:解:﹣36ab2x6﹣39a3b2x5=﹣3ab2x5(12x+13a2).点评:此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键.15.分解因式:4m3n2﹣4m2n+m.考点:因式分解-提公因式法.分析:根据提公因式法和公式法进行判断求解.解答:解:原式=m(4m2n2﹣4mn+1)=m(2mn﹣1)2.点评:本题考查了多项式的因式分解,分解因式要一提公因式,二套公式,三检查,注意分解要彻底.16.因式分解:(y﹣x)2+2x﹣2y.考点:因式分解-提公因式法.专题:计算题.分析:原式变形后,提取公因式即可得到结果.解答:解:原式=(x﹣y)2+2(x﹣y)=(x﹣y)(x﹣y+2).点评:此题考查了因式分解﹣提公因式法,熟练掌握提公因式的方法是解本题的关键.17.因式分解:①﹣6(2a﹣b)2﹣4(b﹣2a)2②6(x+y)2﹣2(x﹣y)(x+y)③﹣3(x﹣y)2﹣(y﹣x)3④3a(m﹣n)﹣2b(n﹣m)⑤9(a﹣b)(a+b)﹣3(a﹣b)2⑥3a(a+b)(a﹣b)﹣2b(b﹣a)考点:因式分解-提公因式法.分析:利用提取公因式法分解因式得出即可.解答:解:①﹣6(2a﹣b)2﹣4(b﹣2a)2=﹣10(2a﹣b)2②6(x+y)2﹣2(x﹣y)(x+y)=2(x+y)[3(x+y)﹣(x﹣y)]=2(x+y)(2x+4y)=﹣3(x﹣y)2+(x﹣y)3=(x﹣y)2(﹣3+x﹣y);④3a(m﹣n)﹣2b(n﹣m)=3a(m﹣n)+2b(m﹣n)=(m﹣n)(3a+2b);⑤9(a﹣b)(a+b)﹣3(a﹣b)2=3(a﹣b)[3(a+b)﹣(a﹣b)]=3(a﹣b)(2a+4b)=6(a﹣b)(a+2b);⑥3a(a+b)(a﹣b)﹣2b(b﹣a)=3a(a+b)(a﹣b)+2b(a﹣b)=(a﹣b)(3a2+3ab+2b).点评:此题主要考查了提取公因式法分解因式,正确得出公因式是解题关键.18.(2003•茂名)9(a+b)2﹣(a﹣b)2.考点:因式分解-运用公式法.专题:计算题.分析:先利用平方差公式分解因式,再整理计算即可.解答:解:9(a+b)2﹣(a﹣b)2,=[3(a+b)]2﹣(a﹣b)2,=[3(a+b)+(a﹣b)][3(a+b)﹣(a﹣b)],=(4a+2b)(2a+4b),=4(2a+b)(a+2b).点评:本题主要考查利用平方差公式分解因式,熟练掌握公式结构,找准公式中的a、b是解题的关键.19.因式分解:(1)(m+n)2﹣n2(2)(x2+y2)2﹣x2y2.考点:因式分解-运用公式法.分析:(1)根据平方差公式进行解答,将(m+n)看做整体;(2)根据平方差公式进行解答,将(x2+y2)和x2y2看做整体.解答:解:(1)原式=(m+n﹣n)(m+n+n)=m(m+2n);(2)原式=(x2+y2﹣xy)(x2+y2+xy).点评:本题考查了因式分解﹣﹣运用公式法,熟悉平方差公式的结构是解题的关键.20.﹣4(x+2y)2+9(2x﹣y)2.分析:直接利用平方差分解因式,进而合并同类项即可.解答:解:﹣4(x+2y)2+9(2x﹣y)2=9(2x﹣y)2﹣4(x+2y)2=[3(2x﹣y)+2(x+2y)][3(2x﹣y)﹣2(x+2y)]=(8x+y)(4x﹣7y).点评:此题主要考查了利用平方差分解因式,注意正确记忆平方差公式是解题关键.21.因式分解:(a)2﹣b2.考点:因式分解-运用公式法.分析:直接利用平方差公式分解因式得出即可.解答:解:(a)2﹣b2=(a+b)(a﹣b).点评:此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.22.因式分解:36(a+b)2﹣25.考点:因式分解-运用公式法.专题:计算题.分析:原式利用平方差公式分解即可得到结果.解答:解:原式=[6(a+b)+5][6(a+b)﹣5]=(6a+6b+5)(6a+6b﹣5).点评:此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.23.因式分解:9(x﹣y)2﹣12(x﹣y)+4.考点:因式分解-运用公式法.分析:直接利用完全平方公式分解因式进而求出即可.解答:解:9(x﹣y)2﹣12(x﹣y)+4=[3(x﹣y)﹣2]2=(3x﹣3y﹣2)2.点评:此题主要考查了公式法分解因式,熟练应用完全平方公式是解题关键.24.因式分解:(a+2b)2﹣2(a+2b)+1.考点:因式分解-运用公式法.分析:直接利用完全平方公式分解因式得出即可.解答:解:(a+2b)2﹣2(a+2b)+1=(a+2b﹣1)2.点评:此题主要考查了公式法分解因式,熟练应用完全平方公式是解题关键.25.因式分解:16(m+n)2﹣25(m﹣n)2.考点:因式分解-运用公式法.分析:根据平方差公式,可得答案.解答:解:原式=[4(m+n)+5(m﹣n)][4(m+n)﹣5(m﹣n)]=(9m﹣n)(﹣m+9n).点评:本题考查了因式分解,利用了平方差公式.26.因式分解:4(x﹣y)2﹣4(x﹣y)+1.考点:因式分解-运用公式法.分析:直接利用完全平方公式分解因式得出即可.解答:解:4(x﹣y)2﹣4(x﹣y)+1=[2(x﹣y)﹣1]2.点评:此题主要考查了公式法分解因式,熟练掌握乘法公式是解题关键.27.因式分解:(1)9(m+n)2﹣16(m﹣n)2;(2)(x+y)2+10(x+y)+25;(3)4a2b2﹣(a2+b2)2.考点:因式分解-运用公式法.专题:计算题;因式分解.分析:(1)原式利用平方差公式分解即可得到结果;(2)原式利用完全平方公式分解即可得到结果;(3)原式先利用平方差公式分解,再利用完全平方公式分解即可.解答:解:(1)原式=[3(m+n)+4(m﹣n)][3(m+n)﹣4(m﹣n)]=(7m﹣n)(﹣m+7n);(2)原式=(x+y+5)2;(3)原式=(2ab+a2+b2)(2ab﹣a2﹣b2)=﹣(a﹣b)2(a+b)2.点评:此题考查了因式分解﹣运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.28.分解因式:(a2+4a)2+8(a2+4a)+16.考点:因式分解-运用公式法.分析:根据平方和加积的二倍等于和的平方,可得答案.解答:解:原式=[(a2+4a)+4]2=[(a+2)2]2=(a+2)4.点评:本题考查了因式分解,两次利用了完全平方公式.29.分解因式:(a2+b2)2﹣4a2b2考点:因式分解-运用公式法.专题:计算题.分析:先利用平方差公式分解因式,再利用完全平方公式分解因式即可.解答:解:原式=(a2+b2)2﹣(2ab)2,=(a2+b2+2ab)(a2+b2﹣2ab),=(a+b)2(a﹣b)2.点评:本题考查用公式法进行因式分解的能力,熟练掌握完全平方公式和平方差公式是解题的关键.完全平方公式:(a±b)2=a2±2ab+b2,平方差公式:(a+b)(a﹣b)=a2﹣b2.30.分解因式:(1)﹣4a2x+12ax﹣9x (2)(2x+y)2﹣(x+2y)2.考点:因式分解-运用公式法.专题:计算题.分析:(1)先提公因式,再用公式即可;(2)将2x+y与x+2y看作整体,运用平方差公式即可进行分解因式.解答:解:(1)原式=﹣x(4a2﹣12a+9)=﹣x(2a﹣3)2;(2)原式=(2x+y+x+2y)(2x+y﹣x﹣2y)=(3x+3y)(x﹣y)=3(x+y)(x﹣y).点评:本题考查了运用公式法进行因式分解,熟练掌握平方差公式的结构特点是解题的关键.。

第15章 整式的乘除与因式分解综合复习测试(二)及答案

第15章 整式的乘除与因式分解综合复习测试(二)及答案

第十五章 整式的乘除与因式分解综合复习测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

一、选择题(每题3分,共30分)1、44221625)(______)45(b a b a -=+-括号内应填( )A 、2245b a +B 、2245b a +C 、2245b a +-D 、2245b a -- 2、下列计算正确的是( )A 、22))((y x x y y x -=-+ B 、22244)2(y xy x y x +-=+- C 、222414)212(y xy x y x +-=-D 、2224129)23(y xy x y x +-=-- 3、在2222222)())(3(,)()2(),5)(5()5()1(b a b a y x y x x x x +=--+=+-+=-+ (4)ab ab ab a b b a =-=--23)2)(3(中错误的有( ) A 、1个 B 、2个 C 、3个 D 、4个4、下列各式中,能用平方差公式计算的是( )A 、))((b a b a +--B 、))((b a b a ---C 、))((c b a c b a +---+-D 、))((b a b a -+- 5、如果:=-==+-222)32,5,0168y x x y xy x 则(且( )A 、425 B 、16625 C 、163025 D 、16225 6、计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.9601 7、如果k x x ++82可运用完全平方公式进行因式分解,则k 的值是( )A 、8B 、16C 、32D 、64 8、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ()A 、p=0,q=0B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=1 9、对于任何整数m ,多项式9)54(2-+m 都能( )A 、被8整除B 、被m 整除C 、被m -1整除D 、被(2m -1)整除10.已知多项式2222z y x A -+=,222234z y x B ++-=且A+B+C=0,则C 为( )A 、2225z y x -- B 、22253z y x -- C 、22233z y x -- D 、22253z y x +-二、填空题(每题3分,共30分) 11、++xy x 1292=(3x + )212、2012= , 48×52= 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五章 整式的乘除与因式分解综合复习测试
一、选择题(每题3分,共30分)
1、44221625)(______)45(b a b a -=+-括号内应填( )
A 、2245b a +
B 、2245b a +
C 、2245b a +-
D 、2245b a --
2、下列计算正确的是( )
A 、22))((y x x y y x -=-+
B 、22244)2(y xy x y x +-=+-
C 、222414)212(y xy x y x +-=-
D 、22
24129)23(y xy x y x +-=--
3、在2222222)())(3(,)()2(),5)(5()5()1(b a b a y x y x x x x +=--+=+-+=-+
(4)ab ab ab a b b a =-=--23)2)(3(中错误的有( )
A 、1个
B 、2个
C 、3个
D 、4个
4、下列各式中,能用平方差公式计算的是( )
A 、))((b a b a +--
B 、))((b a b a ---
C 、))((c b a c b a +---+-
D 、))((b a b a -+-
5、如果:=-==+-222)32,5,0168y x x y xy x 则(且( )
A 、425
B 、16625
C 、163025
D 、16225
6、计算:1.992-1.98×1.99+0.992得( )
A 、0
B 、1
C 、8.8804
D 、3.9601
7、如果k x x ++82可运用完全平方公式进行因式分解,则k 的值是( )
A 、8
B 、16
C 、32
D 、64
8、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ( )
A 、p=0,q=0
B 、p=3,q=1
C 、p=–3,–9
D 、p=–3,q=1
9、对于任何整数m ,多项式9)54(2-+m 都能( )
A 、被8整除
B 、被m 整除
C 、被m -1整除
D 、被(2m -1)整除
10.已知多项式2222z y x A -+=,222234z y x B ++-=且A+B+C=0,则C 为(
) A 、2225z y x -- B 、22253z y x -- C 、22233z y x -- D 、2
2253z y x +-
二、填空题(每题3分,共30分)
11、++xy x 1292 =(3x + )2
12、2012= , 48×52= 。

13、_____)32(__________)32(942222+-=++=+y x y x y x 。

14、________
_________,,6,4822===+=-y x y x y x 则。

15、(________)749147ab aby abx ab -=+--,
(________))()()(232n m n m n n n m mn -=---。

16.已知
31323m x y -与52114
n x y +-是同类项,则5m+3n 的值是 . 17、如果=-+=-k a a k a 则),21)(21(312 。

18、把边长为12.75cm 的正方形中,挖去一个边长为7.25cm 的小正方形,则剩下的面积
为 。

19、写一个代数式 ,使其至少含有三项,且合并同类项后的结果为23ab
20、有一串单项式:234,2,3,4,x x x x --……,192019,20x x -
(1)你能说出它们的规律是 吗?(2)第2006个单项式是 ;
(3)第(n+1)个单项式是 .
参考答案
一、DBCBC BBBAB
二、11.24,2y y ;12.40401,2496;1312,12xy xy -;14.7,1-;15.127,2x y m n +--;16.13;17.34
;18.255cm ; 19.所写的代数式很多,如:2434a ab a -++或 22264ab ab ab +-等.
20.(1)每个单项式的系数的绝对值与x 的指数相等;奇数项系数为负;偶数项系数为正;
(2)20062006x ;(3)当n 为为奇数时,第n 个单项式为n
nx -,第(n+1)个单项式为 1(1)n n x ++;
当n 为为偶数时,第n 个单项式为n nx ,第(n+1)个单项式为1(1)n n x +-+.。

相关文档
最新文档