最新四年级奥数逻辑推理之列表法假设法

合集下载

四年级奥数.杂题.复杂逻辑推理(B级).学生版

四年级奥数.杂题.复杂逻辑推理(B级).学生版

逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。

对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。

本讲我们主要从各个角度总结逻辑推理的解题方法。

一、 列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、 假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、 体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。

有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。

四、 计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.1. 掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等2. 培养学生的逻辑推理能力,掌握解不同题型的突破口3. 能够利用所学的数论等知识解复杂的逻辑推理题知识框架复杂逻辑推理重难点【例 1】 李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:⑴ 顾锋最年轻;⑵ 李波喜欢与体育老师、数学老师交谈;⑶ 体育老师和图画老师都比政治老师年龄大;⑷ 顾锋、音乐老师、语文老师经常一起去游泳;⑸ 刘英与语文老师是邻居.问:各人分别教哪两门课程?【巩固】 王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【例 2】 张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【巩固】 甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已例题精讲知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.【例3】甲、乙、丙三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴丙比大队长的成绩好.⑵甲和中队长的成绩不相同.⑶中队长比乙的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【巩固】甲、乙、丙、丁在谈论他们及他们的同学何伟的居住地.甲说:“我和乙都住在北京,丙住在天津.”乙说:“我和丁都住在上海,丙住在天津.”丙说:“我和甲都不住在北京,何伟住在南京.”丁说:“甲和乙都住在北京,我住在广州.”假定他们每个人都说了两句真话,一句假话.问:不在场的何伟住在哪儿?【例4】老师在3个小箱中各放一个彩色球,让小明、小强、小亮、小佳四人猜一下各个箱子中放了什么颜色的球.小明说:“1箱中放的是黄色的,2箱中放的是黑色的,3箱中放的是红色的.”小亮说:“1箱中放的是橙色的,2箱中放的是黑色的,3箱中放的是绿色的.”小强说:“1箱中放的是紫色的,2箱中放的是黄色的,3箱中放的是蓝色的.”小佳说:“1箱中放的是橙色的,2箱中放的是绿色的,3箱中放的是紫色的.”老师说:“你们中有一个人恰好猜对了两个,其余的三人都只猜对一个.”那么3箱子中放的是________色的球.【巩固】四张卡片上分别写着奥、林、匹、克四个字(一张上写一个字),取出三张字朝下放在桌上,A、B、C三人分别猜每张卡片上是什么字,猜的情况见下表:结果,有一人一张也没猜中,一人猜中两张,另一人猜中三张.问:这三张卡片上各写着什么字.【例5】四对夫妇坐在一起闲谈.四个女人中,A吃了3个梨,B吃了2个,C吃了4个,D吃了1个;四个男人中,甲吃的梨和他妻子一样多,乙吃的是妻子的2倍,丙吃的是妻子的3倍,丁吃的是妻子的4倍.四对夫妇共吃了32个梨.问:丙的妻子是谁?【巩固】五楼住着四个女孩和两个男孩,他们的年龄各不相同,最大的10岁,最小的4岁,最大的女孩比最小的男孩大4岁,最大的男孩比最小的女孩也大4岁,求最大的男孩的岁数.【例6】甲和乙做猜数的游戏。

四年级奥数举一反三第303132周之用假设法解题还原问题逻辑推理

四年级奥数举一反三第303132周之用假设法解题还原问题逻辑推理

四年级奥数举一反三第303132周之用假设法解题还原问题逻辑推理30 用假设法解题专题简析:假设法是一种常用的解题方法。

“假设法”就是根据题目中的已知条件或结论作出某种假设,然后按已知条件进行推算,根据数量上出现的矛盾作适当调整,从而找到正确答案。

运用假设法的思路解应用题,先要根据题意假设未知的两个量是同一种量,或者假设要求的两个未知量相等;其次,要根据所作的假设,注意到数量关系发生了什么变化并作出适当的调整。

例1:今有鸡、兔共居一笼,已知鸡头和兔头共35个,鸡脚与兔脚共94只。

问鸡、兔各有多少只?分析与解答:假设全是鸡,那么相应的脚的总数应是2×35=70只,与实际相比,减少了94-70=24只。

减少的原因是把一只兔当作一只鸡时,要减少4-2=2只脚。

所以兔有24÷2=12只,鸡有35-12=23只。

练习一1,鸡与兔共有30只,共有脚70只。

鸡与兔各有多少只?2,鸡与兔共有20只,共有脚50只。

鸡与兔各有多少只?3,鸡与兔共有100只,鸡脚比兔脚多80只。

鸡与兔各有多少只?例2:面值是2元、5元的人民币共27张,全计99元。

面值是2元、5元的人民币各有多少张?分析与解答:这道题类似于“鸡兔同笼”问题。

假设全是面值2元的人民币,那么27张人民币是2×27=54元,与实际相比减少了99-54=45元,减少的原因是每把一张面值2元的人民币当作一张面5元的人民币,要减少5-2=3元,所以,面值是5元的人民币有45÷3=15张,面值2元的人民币有27-15=12张。

练习二1,孙佳有2分、5分硬币共40枚,一共是1元7角。

两种硬币各有多少枚?2,50名同学去划船,一共乘坐11只船,其中每条大船坐6人,每条小船坐4人。

问大船和小船各几只?3,小明参加猜谜比赛,共20道题,规定猜对一道得5分,猜错一道倒扣3分(不猜按错算)。

小明共得60分,他猜对了几道?例3:一批水泥,用小车装载,要用45辆;用大车装载,只要36辆。

四年级推理奥数题

四年级推理奥数题

小学四年级奥数--逻辑推理问题任何一道数学题,任何一个思维过程,都需要逻辑分析、判断和推理。

我们这里所说的逻辑问题,是指那些主要不是通过计算,而是通过逻辑分析、判断和推理,得出正确结论的问题。

逻辑推理必须遵守四条基本规律:(1)同一律:在同一推理过程中,每个概念的含义,每个判断都应从始至终保持一致,不能改变。

(2)矛盾律:在同一推理过程中,对同一对象的两个互相矛盾的判断,至少有一个是错误的。

例如,“这个数大于8”和“这个数小于5”是两个互相矛盾的判断,其中至少有一个是错的,甚至两个都是错的。

(3)排中律:在同一推理过程中,对同一对象的两个恰好相反的判断必有一个是对的,它们不能同时都错。

例如“这个数大于8”和“这个数不大于8”是两个恰好相反的判断,其中必有一个是对的,一个是错的。

(4)理由充足律:在一个推理过程中,要确认某一判断是对的或不对的,必须有充足的理由。

我们在日常生活和学习中,在思考、分析问题时,都自觉或不自觉地使用着上面的规则,只是没有加以总结。

例如假设法,根据假设推出与已知条件矛盾,从而否定假设,就是利用了矛盾律。

在列表法中,对同一事件“√”与“×”只有一个成立,就是利用了排中律。

逻辑推理问题解决的方法一般有:(1)列表画图法(2)假设推理法(3)枚举筛选法下面我们将通过例题来学习上述的四个规律和三种解决逻辑推理问题的方法。

(一)列表画图法例1、张聪、王仁、陈来三位老师担任五(2)班的语文、数学、英语、音乐、美术、体育六门课的教学,每人教两门。

现知道:(1)英语老师和数学老师是邻居;(2)王仁年纪最小;(3)张聪喜欢和体育老师、数学老师来往;(4)体育老师比语文老师年龄大;(5)王仁、语文老师、音乐老师三人经常一起做操。

请判断各人分别教的是哪两门课程。

分析与解:题中给出的已知条件较复杂,我们用列表法求解。

先设计出右图的表格,表内用“√”表示肯定,用“×”表示否定。

因为题目说“每人教两门”,所以每一横行都应有2个“√”;因为每门课只有一人教,所以每一竖列都只有1个“√”,其余均为“×”。

四年级奥数逻辑推理之列表法、假设法

四年级奥数逻辑推理之列表法、假设法

逻辑推理之列表法、假设法【例1】(★★★)甲、乙、丙、丁四个人中有教师、医生、律师、警察各一名,已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问;⑷丁不是律师;⑸乙和丙从未见过面。

根据以上条件判断甲的职业是______,乙的职业是______。

【例2】(★★★)甲、乙、丙在20XX年高考中考取了北大,清华和理工大学的数学系,物理系和化学系,现知道下列情况⑴甲不在北大⑵乙不在清华⑶在北大的不学数学⑷在清华的学物理⑸乙不学化学根据以上情况判断甲、乙、丙三人各在哪个学校?哪个系?【例3】(★★★)传说有个说谎国,这个国家的男人在星期四、五、六、日说真话,在星期一、二、三说假话;女人在星期一、二、三、日说真话,在星期四、五、六说假话。

有一天,一个人到说谎国去旅游,他在那里认识了一男一女。

男人说:“昨天我说的是假话”,女人说:“昨天也是我说假话的日子”。

这下,那个外来的游人可发愁了,到底今天星期几呢?请同学们根据他们说的话,判断今天是星期几?【例4】(★★★★)在老北京的一个胡同的大杂院里,住着4户人家,巧合的是每家都有一对双胞胎女孩。

这四对双胞胎中,姐姐分别是甲、乙、丙、丁,妹妹分别是a、b、c、d。

一天,一对外国游人夫妇来到这个大杂院里,看到她们8个,忍不住问:“你们谁和谁是一家的啊?”乙说:“丙的妹妹是d。

”丙说:“丁的妹妹不是c。

”甲说:“乙的妹妹不是a。

”丁说:“他们三个人中只有d的姐姐说的是事实。

”如果丁的话是真话,你能猜出谁和谁是双胞胎吗?【例5】(★★★)在一所学校里,有穿绿、黑、青、白、紫五种不同运动服的五支运动队参加长跑比赛,其中,有A、B、C、D、E五位小学生猜比赛者的名次,条件是每个小学生只准猜两支运动队的名次。

学生A猜:紫队第二,黑队第三。

学生B猜:青队第二,绿队第四。

学生C猜:绿队第一,白队第五。

学生D猜:青队第三,白队第四。

学生E猜:黑队第二,紫队第五。

在这五名同学猜完后发现每人都猜对了一个队的名次,并且每队的名次只有一人猜对,请判断一下,这五名同学各猜对了哪个队的名次?【超常大挑战】(★★★)有一位银行行长被谋杀了。

小学四年级奥数竞赛班作业第7讲:逻辑推理之列表法,假设法

小学四年级奥数竞赛班作业第7讲:逻辑推理之列表法,假设法

6. 解析:由⑵知,宝宝不是跳高冠军和大作家;由 ⑸知,贝贝不是大作家;
由⑹知,贝贝、聪聪都不是小画家,可以得到下表:
数学博士 短跑健将 跳高冠军 小画家 大作家 歌唱家
宝宝
×

×
贝贝
×
×
聪聪
×

因为宝宝是小画家,所以由⑶⑷知宝宝不是短跑健将和数学博士,推知宝宝是歌唱家,
因为聪聪是大作家,所以由⑵知聪聪不是跳高冠军,推知贝贝是跳高冠军,因为贝贝
逻辑推理之列表法、假设法练习题
一.夯实基础:
1.住在学校宿舍的同一房间的四个学生 A 、 B 、 C 、 D 正在听一首流行歌曲,她们当中有 一个人在剪指甲,一个人在写东西,一个人站在阳台上,另一个人在看书。请问 A 、B 、C 、 D 各自都在做什么?
已知: ⑴ A 不在剪指甲,也不在看书; ⑵ B 没有站在阳台上,也没有剪指甲; ⑶如果 A 没有站在阳台上,那么 D 不在剪指甲; ⑷ C 既没有看书,也没有剪指甲; ⑸ D 不在看书,也没有站在阳台上。
|
2
5. A 、 B 、 C 、 D 四人到甲、乙、丙、丁四个单位办事. 已知甲单位周一不接待,乙单位周三不接待,丙单位周四不接待,丁单位只在周二、四、六 接待,周日 4 个单位都不办公.一天,他们议论哪天去办事. A 说:“你们可别像我前天那样,在人家不接待的日子去.” B 说:“我今天必须去,明天人家就不接待了.” C 说:“我和 B 正相反,今天不能去,明天去.” D 说:“我从今天起,连着四天哪天去都行.” 问:这天是星期几?他们分别去哪个单位办事?
二.拓展提高:
6.宝宝、贝贝、聪聪每人有两个外号,人们有时以“数学博士”、“短跑健将”、“跳高冠军”、“小 画家”、“大作家”和“歌唱家”称呼他们,此外: ⑴数学博士夸跳高冠军跳的高 ⑵跳高冠军和大作家常与宝宝一起看电影 ⑶短跑健将请小画家画贺年卡 ⑷数学博士和小画家关系很好 ⑸贝贝向大作家借过书 ⑹聪聪下象棋常赢贝贝和小画家 问:宝宝、贝贝、聪聪各有哪两个外号吗?

小学奥数各年级经典题解题技巧大全——假设法

小学奥数各年级经典题解题技巧大全——假设法

小学奥数各年级经典题解题技巧大全——假设法假设法当应用题用一般方法很难解答时,可假设题中的情节发生了变化,假设题中两个或几个数量相等,假设题中某个数量增加了或减少了,然后在假设的基础上推理,调整由于假设而引起变化的数量的大小,题中隐蔽的数量关系就可能变得明显,从而找到解题方法。

这种解题方法就叫做假设法。

用假设法解应用题,要通过丰富的想象,假设出既合乎题意又新奇巧妙,既简单又便于计算的条件。

有些用一般方法能解答的应用题,用假设法解答可能更简捷。

(一)假设情节变化解:假设篮球没有借出,足球借出一个,那么,可以把现有篮球的个数看作是3份数,把现有足球的个数看作2份数,两种球的总份数是:3+2=5(份)原来篮球的个数是:原来足球的个数是:21-12=9(个)答略。

例2 :甲乙两个煤场共存煤92吨,从甲场运出28吨后,乙场的存煤比甲场的4倍少6吨。

两场原来各存煤多少吨?(适于六年级程度)解:假设从甲场运出的不是28吨,而是比28吨少6吨的22吨,那么,乙场的存煤数就正好是甲场的4倍,甲场的存煤是1份数,乙场的存煤是4甲场原来存煤:92-50=42(吨)答略。

(二)假设两个(或几个)数量相等例1:有两块地,平均亩产粮食185千克。

其中第一块地5亩,平均亩产粮食203千克。

如果第二块地平均亩产粮食170千克,第二块地有多少亩?(适于五年级程度)解:假设两块地平均亩产粮食都是170千克,则第一块地的平均亩产量比两块地的平均亩产多:203-170=33(千克)5亩地要多产:33×5=165(千克)两块地实际的平均亩产量比假设的平均亩产量多:185-170=15(千克)因为165千克中含有多少个15千克,两块地就一共有多少亩,所以两块地的亩数一共是:165÷15=11(亩)第二块地的亩数是:11-5=6(亩)答略。

解:此题可以有三种答案。

答:剩下的两根绳子一样长。

答:甲绳剩下的部分比乙绳剩下的部分长。

小学四年级奥数经典题-谈谈数学解题中的假设方法

小学四年级奥数经典题-谈谈数学解题中的假设方法

小学四年级奥数经典题-谈谈数学解题中的假设方法奥数学习有利于训练孩子的思维能力,让孩子在解题的过程中能够从不同的角度进行思考。

大家可以看下。

谈谈数学解题中的假设方法所谓假设法,就是假设题中的某几个数量相等,或假设要求的一个未知量是已知数量,把复杂问题化为简单问题处理,再进行推算,以求出原题的答案。

其解题思路可用下图表示。

假设思想方法是一种重要的数学思维方法,掌握它能使要解决的问题更形象、更具体,从而丰富解题的思路。

下面举例说明用假设法解题的常见类型。

一、条件假设在解题时,有些题目数量关系比较隐蔽,如果对某些条件作出假设,则往往能顺利找到解题途径。

例1有黑、白棋子一堆,黑子个数是白子个数的2倍,现从这堆棋子中每次取出黑子4个,白子3个,待到若干次后,白子已经取尽,而黑子还有16个。

求黑、白棋子各有多少个?分析与解假设每次取出的黑子不是4个,而是6个,也就是说每次取出的黑子个数也是白子的2倍。

由于这堆棋子中黑子个数是白子的2倍,所以,待取到若干次后,黑子、白子应该都取尽。

但是实际上当白子取尽时,剩下黑子还有16个,这是因为实际每次取黑子是4个,和假定每次取黑子6个相比,相差2个。

由此可知,一共取的次数是(16÷2=)8(次)。

故白棋子的个数为:(3×8=)24个),黑棋子个数为(24×2=)48(个)。

25吨,问甲、乙两堆货物原来各有多少吨?把这种假设的情形与题中已知情形作出比较,发现多了(27.5-25=)2.5吨。

=50(吨),所以甲堆货物有60吨。

二、问题假设当直接解一些题目似乎无从下手时,可对问题提出假设性答案,然后进行推算,当所得结果与题目的条件出现差异时,再进行调整,直至与题目的条件符合,从而得出正确答案。

例3有一妇女在河边洗碗,掌管桥梁的官吏路过这里,问她:“你怎么洗这么多碗?”,妇女回答:“家里来了客人”。

官吏又问:“有多少个客人?”妇女回答:“2个人共一碗饭,3个人共一碗羹,4个人共一碗肉,一共65只碗”。

逻辑推理之列表法,假设法.1

逻辑推理之列表法,假设法.1

有这样三个的职业人,他们分别姓李、蒋和刘,他们每人身兼两职,三个人的六种职业是作家、音乐家、美术家、话剧演员、诗人和工人,同时还知道姓刘的善下棋,姓蒋的和那作家跟他对弈时,屡战屡败。

【例6】(★★★)在老北京的一个胡同的大杂院里,住着4户人家,巧合的是每家都有一对双胞胎女孩。

这四对双胞胎中,姐姐分别是甲、乙、丙、丁,妹妹分别是a、b、c、d。

一天,一对外国游人夫妇来到这个大杂院里,看到她们8个,忍不住问:“你们谁和谁是一家的啊?”乙说:“丙的妹妹是d。

”丙说:“丁的妹妹不是c。

”甲说:“乙的妹妹不是a。

”丁说:“他们三个人中只有d的姐姐说的是事实。

”如果丁的话是真话,你能猜出谁和谁是双胞胎吗?【例7】(★★★★★)(走美真题)一个售货员要在一排货架上摆放六本不同的杂志:M、O、P、S、T、V。

货架上的六个位置从左到右依次编号为1至6,已知杂志的摆放服从下列条件:1号位置上摆放P或T;6号位置上摆放S或T;M和O必须放在相邻的位置上;V和T必须放在相邻的位置上。

回答下列问题(均为单项选择):⑴如果P放在3号位置,那么下列哪个选项一定是对的?(A)M放在4号位置(B)O放在2号位置(C)S放在5号位置(D)T放在6号位置(E)V放在2号位置⑵如果O和T放在了相邻的位置上,那么T可以放在几号位置?(A)1 (B)2 (C)4 (D)5 (E)6⑶下列哪个选项所描述的情形是可以出现的?(A)M放在4号位置且P放在5号位置(B)P放在4号位置且V放在5号位置(C)S放在2号位置且P放在3号位置(D)P放在2号位置(E)S放在5号位置⑷如果V放在4号位置,那么T所在位置的号码一定比哪本杂志所在位置的号码小1?(A)M (B)O(C)P (D) S(E)V⑸如果S和V放在了相邻的位置上,那么下列哪个选项一定是对的?(A)M放在4号位置(B)O放在2号位置(C)P放在1号位置(D)S放在6号位置(E)T放在6号位置2。

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)

小学奥数之逻辑推理题(详细解析)1、有500人聚会,其中至少有一人说假话,这500人里任意两个人总有一个(即总有人)说真话。

说真话的有多少人?说假话的有多少人?分析:任意2个人都有人说真话,说明说假话的必须≤1人,又因为题目说了,至少有一人说假话即说假话的人≥1人,所以满足≤1和人≥1,可见说假话的只能是1人,所以说真话的有500-1=499人。

2、某次考试考完后,A、B、C、D四个同学猜测他们的考试成绩。

A说:“我肯定考得最好”。

-------(1)|B说:“我不会是最差的”。

-------(2)C说:“我没有A考得好,但也不是最差的”。

--------(3)D说:“可能我考得最差。

”-------(4)成绩一公布,只有一人说错了。

请你按照考试分数由高到低排出他们的顺序。

分析:假设法。

假设A是最差的,那么第(1)和(2)都是错的话。

矛盾了。

假设B是最差的,那么第(2)和(4)都是错的话。

矛盾了。

假设C是最差的,那么第(3)和(4)都是错的话。

矛盾了。

、所以证明了D是最差的。

那么第(4)句话是对的。

第(2)句话也是对的,第(1)句话和第(3)句话必须一个对一个错,如果第(1)是对的,那么第(3)一定对,那么四个都是对的话,矛盾了。

所以:第(1)句话是错的,第(3)必须对的。

根据D是最差的,A不是最好的,C是对的,C比A差,所以只有B才是最好的。

所以A 是第二好,C是第三好,D是最差的。

由高到低排列为:B、A、从、D。

3、王涛、李明、江兵三人在一起谈话。

他们当中一位是校长,一位是老师,一位是学生家长。

现在只知道:(1)江兵比家长年龄大。

(2)王涛和老师不同岁。

(3)老师比李明年龄小。

你能确定谁是校长、谁是老师、谁是家长吗?:分析:第(2)和第(3)中,老师不是李明也不是王涛,所以老师是江兵。

因为江兵是老师,所以第(3)句话中证明了:江兵比李明小,结合第(1)句话中“江兵比家长大”,说明“李明”不是家长,是校长。

四年级奥数逻辑推理之列表法假设法

四年级奥数逻辑推理之列表法假设法

逻辑推理之列表法、假设法【例1】(★★★)甲、乙、丙、丁四个人中有教师、医生、律师、警察各一名,已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问;⑷丁不是律师;⑸乙和丙从未见过面。

根据以上条件判断甲的职业是______,乙的职业是______。

【例2】(★★★)甲、乙、丙在2012年高考中考取了北大,清华和理工大学的数学系,物理系和化学系,现知道下列情况⑴甲不在北大⑵乙不在清华⑶在北大的不学数学⑷在清华的学物理⑸乙不学化学根据以上情况判断甲、乙、丙三人各在哪个学校哪个系【例3】(★★★)传说有个说谎国,这个国家的男人在星期四、五、六、日说真话,在星期一、二、三说假话;女人在星期一、二、三、日说真话,在星期四、五、六说假话。

有一天,一个人到说谎国去旅游,他在那里认识了一男一女。

男人说:“昨天我说的是假话”,女人说:“昨天也是我说假话的日子”。

这下,那个外来的游人可发愁了,到底今天星期几呢请同学们根据他们说的话,判断今天是星期几【例4】(★★★★)在老北京的一个胡同的大杂院里,住着4户人家,巧合的是每家都有一对双胞胎女孩。

这四对双胞胎中,姐姐分别是甲、乙、丙、丁,妹妹分别是a、b、c、d。

一天,一对外国游人夫妇来到这个大杂院里,看到她们8个,忍不住问:“你们谁和谁是一家的啊”乙说:“丙的妹妹是d。

”丙说:“丁的妹妹不是c。

”甲说:“乙的妹妹不是a。

”丁说:“他们三个人中只有d的姐姐说的是事实。

”如果丁的话是真话,你能猜出谁和谁是双胞胎吗【例5】(★★★)在一所学校里,有穿绿、黑、青、白、紫五种不同运动服的五支运动队参加长跑比赛,其中,有A、B、C、D、E五位小学生猜比赛者的名次,条件是每个小学生只准猜两支运动队的名次。

学生A猜:紫队第二,黑队第三。

学生B猜:青队第二,绿队第四。

学生C猜:绿队第一,白队第五。

学生D猜:青队第三,白队第四。

学生E猜:黑队第二,紫队第五。

在这五名同学猜完后发现每人都猜对了一个队的名次,并且每队的名次只有一人猜对,请判断一下,这五名同学各猜对了哪个队的名次【超常大挑战】(★★★)有一位银行行长被谋杀了。

小学奥数 逻辑推理 精选练习例题 含答案解析(附知识点拨及考点)

小学奥数  逻辑推理 精选练习例题 含答案解析(附知识点拨及考点)

1. 掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等2. 培养学生的逻辑推理能力,掌握解不同题型的突破口3. 能够利用所学的数论等知识解复杂的逻辑推理题逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。

对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。

本讲我们主要从各个角度总结逻辑推理的解题方法。

一、列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。

有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。

四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.模块一、列表推理法 【例 1】 刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?例题精讲知识点拨教学目标逻辑推理【考点】逻辑推理 【难度】2星 【题型】解答【解析】 因为兄妹二人不许搭伴,所以题目条件表明:刘刚与小丽、李强与小英、李强与小红都不是兄妹.由第二盘看出,小红不是马辉的妹妹.将这些关系画在左下表中,由左下表可得右下表.李强马辉刘刚小丽小红小英××××李强马辉刘刚小丽小红小英×√×××××√√刘刚与小红、马辉与小英、李强与小丽分别是兄妹. 【答案】刘刚与小红、马辉与小英、李强与小丽分别是兄妹【巩固】 王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【考点】逻辑推理 【难度】2星 【题型】解答【解析】 为了能清楚地找到所给条件之间的关系,我们不妨运用列表法,列出下表,在表中“√”表示是,“×”表示不是,在任意一行或一列中,如果一格是“√”,可推出其它两格是“×”由⑴⑶可知张贝、李丽都不是跳伞运动员,可填出第一行,即王文是跳伞运动员;由⑶可知,李丽也不是田径运动员,可填出第三列,即李丽是游泳运动员,则张贝是田径运动员.【答案】王文是跳伞运动员,李丽是游泳运动员,张贝是田径运动员【巩固】 李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:⑴ 顾锋最年轻;⑵ 李波喜欢与体育老师、数学老师交谈;⑶ 体育老师和图画老师都比政治老师年龄大;⑷ 顾锋、音乐老师、语文老师经常一起去游泳;⑸ 刘英与语文老师是邻居.问:各人分别教哪两门课程?【考点】逻辑推理 【难度】2星 【题型】解答【解析】 李波教语文、图画,顾锋教数学、政治,刘英教音乐、体育.由⑴⑶⑷推知顾锋教数学和政治;由⑵推知刘英教体育;由⑶⑸推知李波教图画、语文.【答案】顾锋教数学和政治,刘英教音乐、体育,李波教图画、语文【巩固】 王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【考点】逻辑推理 【难度】2星 【题型】解答【解析】 根据条件⑵和⑶,王平和中队长的成绩不相同,中队长比宋丹的成绩差.,可以断定,王平不是中队长,宋丹也不是中队长,只有韩涛当中队长了.王平和宋丹两人谁是大队长呢?由⑴和⑶,韩涛比大队长的成绩好,中队长比宋丹的成绩差,可以推断出按成绩高低排列的话,宋丹的成绩比中队长(韩涛)的成绩好,韩涛的成绩比大队长的成绩好.这样,宋丹、韩涛就都不是大队长,那么,大队长肯定是王平.【答案】王平【例2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【考点】逻辑推理【难度】2星【题型】解答【解析】这道题的关系要复杂一些,要求我们通过推理,弄清人物、工作地点、职业三者之间的关系.三者的关系需要两两构造三个表,即人物与地点,人物与职业,地点与职业三个表.我们先将题目条件中所给出的关系用下面的表来表示,由条件⑴得到表1,由条件⑵、⑶得到表2,由条件⑷得到表3.因为各表中,每行每列只能有一个“√”,所以表2可填全为表5.由表5知农民在北京工作,又知席辉不是农民,所以席辉不在北京工作,可以将表1可填全完为表4由表4和表5知得到:张明住在上海,是工人;席辉住在天津,是教师;李刚住在北京,是农民.方法二:由题目条件可知:席辉不在上海工作,而在上海工作的是工人,所以席辉不是工人,又不是农民,那么席辉只能是教师,不在北京工作,就只能是在天津工作,那么张明在上海工作,是工人。

小学四年级奥数教程-逻辑推理

小学四年级奥数教程-逻辑推理

小学四年级奥数教程-逻辑推理
3.李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门。现知道: (1)顾锋最年轻; (2)李波喜欢与体育老师、数学老师交谈; (3)体育老师和图画老师都比政治老师年龄大; (4)顾锋、音乐老师、语文老师经常一起去游泳; (5)刘英与语文老师是邻居。 问:各人分别教哪两门课程?
问:小亮、小红、小娟各在哪个学校读书和各自的爱好是什么?
练习提升
小学四年级奥数教程-逻辑推理
1
2
3
4
5
6
练习提升
小学四年级奥数教程-逻辑推理
小学四年级奥数教程-逻辑推理
7.学校新来了一位老师,五个学生分别听到如下的情况: (1)是一位姓王的中年女老师,教语文课; (2)是一位姓丁的中年男老师,教数学课; (3)是一位姓刘的青年男老师,教外语课; (4)是一位姓李的青年男老师,教数学课; (5)是一位姓王的老年男老师,教外语课。 他们每人听到的四项情况中各有一项正确。问:真实情况如何?
分析与解
因为甲、乙都说“丙住在天津”,我们可以假设这句话是假话,那么甲、乙的前两句应当都是真话,推出乙既住在北京又住在上海,矛盾。所以假设不成立,即“丙住在天津”是真话。 因为甲的前两句话中有一句假话,而甲、丁两人的前两句话相同,所以丁的第三句话“我住在广州”是真的。由此知乙的第二句话“丁住在上海”是假话,第一句“我住在上海”是真话;进而推知甲的第二句是假话,第一句“我住在北京”是真话;最后推知丙的第二句话是假话,第三句“何伟住在南京”是真话。 所以,何伟住在南京。
01
02
小学四年级奥数教程-逻辑推理
小学四年级奥数教程-逻辑推理
在解答逻辑问题时,有时需要将列表法与假设法结合起来。一般是在使用列表法中,出现不可确定的几种选择时,结合假设法,分别假设检验,以确定正确的结果。

小学奥数 逻辑推理 知识点+例题+练习 (分类全面)

小学奥数 逻辑推理 知识点+例题+练习 (分类全面)

拓展、□=○+○+○+○○×□=16 □=()○=()
例3、下面三块正方体的六个面都是按相同的规律涂有红、黄、蓝、白、绿、黑六种颜色。

请判断黄色的对面是什么颜色?白色的对面是什么颜色?红色的对面是什么颜色?
(A)



(B)


绿
(C)



拓展:一个正方体6个面上分别写着1、2、3、4、5、6。

根据下图摆放的三种情况,判断每个数字对面上的数字是几。

二、文字推理
例1、小王、小张和小李一位是工人,一位是农民,一位是教师,现在只知道:小李比教师年龄大;小王与农民不同岁;农民比小张年龄小。

问:谁是工人?谁是农民?谁是教师?
课后作业
1、☆+○=18 ☆=○+○☆=()○=()
2、○×□=16 □÷○=4 ○=()□=()
3、甲、乙、丙分别是来自中国、日本和英国的小朋友。

甲不会英文,乙不懂日语却与英国小朋友热烈交谈。

问:甲、乙、丙分别是哪国的小朋友?
4、根据一个正方体的三种不同的摆法,判断出相对的两个面上的字母各是什么?。

小学奥数 逻辑推理

小学奥数 逻辑推理

逻辑推理教学目标1.掌握逻辑推理的解题思路与基本方法:列表、假设、对比分析、数论分析法等2.培养学生的逻辑推理能力,掌握解不同题型的突破口3.能够利用所学的数论等知识解复杂的逻辑推理题知识点拨逻辑推理作为数学思维中重要的一部分,经常出现在各种数学竞赛中,除此以外,逻辑推理还经常作为专项的内容出现在各类选拔考试,甚至是面向成年人的考试当中。

对于学生学习数学来说,逻辑推理既有趣又可以开发智力,学生自主学习研究性比较高。

本讲我们主要从各个角度总结逻辑推理的解题方法。

一、列表推理法逻辑推理问题的显著特点是层次多,条件纵横交错.如何从较繁杂的信息中选准突破口,层层剖析,一步步向结论靠近,是解决问题的关键.因此在推理过程中,我们也常常采用列表的方式,把错综复杂的约束条件用符号和图形表示出来,这样可以借助几何直观,把令人眼花缭乱的条件变得一目了然,答案也就容易找到了.二、假设推理用假设法解逻辑推理问题,就是根据题目的几种可能情况,逐一假设.如果推出矛盾,那么假设不成立;如果推不出矛盾,而是符合题意,那么假设成立.解题突破口:找题目所给的矛盾点进行假设三、体育比赛中的数学对于体育比赛形式的逻辑推理题,注意“一队的胜、负、平”必然对应着“另一队的负、胜、平”。

有时综合性的逻辑推理题需要将比赛情况用点以及连接这些点的线来表示,从整体考虑,通过数量比较、整数分解等方式寻找解题的突破口。

四、计算中的逻辑推理能够利用数论等知识通过计算解决逻辑推理题.例题精讲模块一、列表推理法【例 1】刘刚、马辉、李强三个男孩各有一个妹妹,六个人进行乒乓球混合双打比赛.事先规定:兄妹二人不许搭伴.第一盘:刘刚和小丽对李强和小英;第二盘:李强和小红对刘刚和马辉的妹妹.问:三个男孩的妹妹分别是谁?【考点】逻辑推理【难度】2星【题型】解答【巩固】王文、张贝、李丽分别是跳伞、田径、游泳运动员,现在知道:⑴张贝从未上过天;⑵跳伞运动员已得过两块金牌;⑶李丽还未得过第一名,她与田径运动员同年出生.请根据上述情况判断王文、张贝、李丽各是什么运动员?【考点】逻辑推理【难度】2星【题型】解答【巩固】李波、顾锋、刘英三位老师共同担负六年级某班的语文、数学、政治、体育、音乐和图画六门课的教学,每人教两门.现知道:⑴顾锋最年轻;⑵李波喜欢与体育老师、数学老师交谈;⑶体育老师和图画老师都比政治老师年龄大;⑷顾锋、音乐老师、语文老师经常一起去游泳;⑸刘英与语文老师是邻居.问:各人分别教哪两门课程?【考点】逻辑推理【难度】2星【题型】解答【巩固】王平、宋丹、韩涛三个小学生都是少先队的干部,一个是大队长,一个是中队长,一个是小队长.一次数学测验,这三个人的成绩是:⑴韩涛比大队长的成绩好.⑵王平和中队长的成绩不相同.⑶中队长比宋丹的成绩差.请你根据这三个人的成绩,判断一下,谁是大队长呢?【考点】逻辑推理【难度】2星【题型】解答【例 2】张明、席辉和李刚在北京、上海和天津工作,他们的职业是工人、农民和教师,已知:⑴张明不在北京工作,席辉不在上海工作;⑵在北京工作的不是教师;⑶在上海工作的是工人;⑷席辉不是农民.问:这三人各住哪里?各是什么职业?【考点】逻辑推理【难度】2星【题型】解答【巩固】甲、乙、丙三人,他们的籍贯分别是辽宁、广西、山东,他们的职业分别是教师、工人、演员.已知:⑴甲不是辽宁人,乙不是广西人;⑵辽宁人不是演员,广西人是教师;⑶乙不是工人.求这三人各自的籍贯和职业.【考点】逻辑推理【难度】2星【题型】解答【巩固】小明、小芳、小花各爱好游泳、羽毛球、乒乓球中的一项,并分别在一小、二小、三小中的一所小学上学。

奥数逻辑推理问题解题方法

奥数逻辑推理问题解题方法

奥数逻辑推理问题解题方法
奥数逻辑推理问题解题方法
基本方法简介:
①条件分析假设法:假设可能情况中的一种成立,然后按照这个假设去判断,如果有与题设条件矛盾的情况,说明该假设情况是不成立的,那么与他的相反情况是成立的.。

例如,假设a是偶数成立,在判断过程中出现了矛盾,那么a一定是奇数。

②条件分析列表法:当题设条件比较多,需要多次假设才能完成时,就需要进行列表来辅助分析。

列表法就是把题设的条件全部表示在一个长方形表格中,表格的行、列分别表示不同的对象与情况,观察表格内的题设情况,运用逻辑规律进行判断。

③条件分析图表法:当两个对象之间只有两种关系时,就可用连线表示两个对象之间的关系,有连线则表示是,有等肯定的状态,没有连线则表示否定的状态。

例如A和B两人之间有认识或不认识两种状态,有连线表示认识,没有表示不认识。

④逻辑计算:在推理的过程中除了要进行条件分析的推理之外,还要进行相应的计算,根据计算的结果为推理提供一个新的判断筛选条件。

⑤简单归纳与推理:根据题目提供的特征和数据,分析其中存在的规律和方法,并从特殊情况推广到一般情况,并递推出相关的关系式,从而得到问题的解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档逻辑推理之列表法、假设法
★★★)【例1】(甲、乙、丙、丁四个人中有教师、医生、律师、警察各一名,已知:⑴教师不知道甲的职业;⑵医生曾给乙治过病;⑶律师是丙的法律顾问;⑷丁不是律师;⑸乙和丙从未见过面。

根据以上条件判断甲的职业是______,乙的职业是______
★★★)2】(【例2012年高考中考取了北大,清华和理工大学的数学系,物理系和化学系,现知道下列情况甲、乙、丙在⑴甲不在北大⑵乙不在清华⑶在北大的不学数学⑷在清华的学物理⑸乙不学化学根据以上情况判断甲、乙、丙三人各在哪个学校?哪个系?
)(★★★【例3】传说有个说谎国,这个国家的男人在星期四、五、六、日说真话,在星期一、二、三说假话;女人在星期一、二、三、日说真话,在星期四、五、六说假话。

有一天,一个人到说谎国去旅游,他在那里认识了一。

这下,那个外来的游人可“昨天也是我说假话的日子”“昨天我说的是假话”,女人说:男一女。

男人说:发愁了,到底今天星期几呢?请同学们根据他们说的话,判断今天是星期几?
) 4】(★★★★【例户人家,巧合的是每家都有一对双胞胎女孩。

这四对双胞胎中,在老北京的一个胡同的大杂院里,住着4、、、。

一天,一对外国游人夫妇来到这个大杂院里,看到ca姐姐分别是甲、乙、丙、丁,妹妹分别是db 个,忍不住问:“你们谁和谁是一家的啊?”她们8 ”d 乙说:“丙的妹妹是。

“丁的妹妹不是c”丙说:”。

甲说:“乙的妹妹不是a d的姐姐说的是事实。

”“他们三个人中只有丁说:如果丁的话是真话,你能猜出谁和谁是双胞胎吗?
精品文档.
精品文档
【例5】(★★★)
在一所学校里,有穿绿、黑、青、白、紫五种不同运动服的五支运动队参加长跑比赛,其中,有A、B、C、D、E五位小学生猜比赛者的名次,条件是每个小学生只准猜两支运动队的名次。

学生A猜:紫队第二,黑队第三。

学生B猜:青队第二,绿队第四。

学生C猜:绿队第一,白队第五。

学生D猜:青队第三,白队第四。

学生E猜:黑队第二,紫队第五。

在这五名同学猜完后发现每人都猜对了一个队的名次,并且每队的名次只有一人猜对,请判断一下,这五名同学各猜对了哪个队的名次?
【超常大挑战】(★★★)
有一位银行行长被谋杀了。

警方经过一番努力调查,将大麻子,小矮子和二流子三个嫌疑犯待会闻讯,他们的供词如下:
大麻子:“小矮子没有杀人。


小矮子:“他说的是真的。


二流子:“大麻子在说谎!”
结果是,3人中有人在说谎,不过真正的凶手说的倒是实话。

请问:谁是杀人犯?
【知识大总结】
逻辑推理
1.列表法:
⑴人与职业相互对应关系。

⑵条件相互结合推导。

⑶排除法。

2.假设法:
⑴假设过程:谁的话正确
⑵假设结果:凶手是谁
⑶找矛盾
精品文档.
精品文档
【今日讲题】例1,例3,例5,超常挑战
【讲题心得】
___________________________________________________________________________________ ___________________________________________________________________________
【家长评价】
___________________________________________________________________________________ ___________________________________________________________________________
精品文档.。

相关文档
最新文档