(完整版)整式的乘除计算题汇总[1]
整式的乘除基础 练习题(带答案
![整式的乘除基础 练习题(带答案](https://img.taocdn.com/s3/m/d7f610e4f18583d0486459b2.png)
. .
.
.
【标注】【知识点】单项式乘单项式 【知识点】单项式乘多项式
24. 计算:
.
【答案】
.
【解析】
.
【标注】【知识点】积的乘方
9
【知识点】单项式乘多项式 【能力】运算能力
25. 计算. (1) (2) (3)
. .
.
【答案】( 1 ) (2) (3)
【解析】( 1 ) 原式
.
( 2 ) 原式
.
.
【解析】( 1 ) 原式 故答案为:
( 2 ) 原式
故答案为:
. .
. .
【标注】【知识点】单项式乘单项式 【知识点】单项式乘多项式 【能力】运算能力
20. 化简下列整式:
(1)
.
(2)
.
【答案】( 1 )
.
(2)
.
【解析】( 1 ) 原式
.
( 2 ) 原式
.
【标注】【知识点】整式乘除的综合
21. 计算:
C. 个
【答案】 A
【解析】 ①不是同类项,不能合并,故①错误;
②不是同类项,不能合并,故②错误;
③
,故③错误;
④
,正确;
⑤
,故⑤错误;
⑥
,故⑥错误.
【标注】【知识点】单项式除以单项式
4. 已知
,
,则 的值为( ).
A.
B.
C.
【答案】 B
【解析】
.
【标注】【能力】运算能力 【知识点】同底数幂的乘法 【知识点】幂的乘方
5. 已知 ,
,则
.
D. 个 D.
2
【答案】
【解析】
整式的乘除(人教版)(含答案)
![整式的乘除(人教版)(含答案)](https://img.taocdn.com/s3/m/9dad123accbff121dd36832f.png)
整式的乘除(人教版)一、单选题(共15道,每道6分)1.计算的结果是( )A. B.C. D.答案:A解题思路:单项式×单项式遵循的运算法则:系数乘以系数,字母乘以字母.,故选A.试题难度:三颗星知识点:单项式乘单项式2.下列运算正确的是( )A. B.C. D.答案:C解题思路:A选项应为,故A选项错误;B选项应为,故B选项错误;C选项,故C选项正确;D选项应为,故D选项错误.故选C.试题难度:三颗星知识点:幂的乘方3.下列运算错误的是( )A. B.C. D.答案:B解题思路:单项式×单项式遵循的运算法则:系数乘以系数,字母乘以字母.B选项应为,故选B.试题难度:三颗星知识点:单项式乘单项式4.计算的结果是( )A. B.C. D.答案:D解题思路:单项式×多项式:根据乘法分配律,转化为单×单,然后按照单项式×单项式的运算法则进行计算.,故选D.试题难度:三颗星知识点:单项式乘多项式5.若,则的值是( )A.-15B.15C.-3D.3答案:C解题思路:单项式×多项式:根据乘法分配律,转化为单×单,然后按照单项式×单项式的运算法则进行计算.故选C.试题难度:三颗星知识点:解一元一次方程6.计算的结果是( )A. B.C. D.答案:A解题思路:单项式×多项式:根据乘法分配律,转化为单×单.然后按照单项式×单项式的运算法则进行计算.故选A.试题难度:三颗星知识点:合并同类项7.计算的结果是( )A. B.C.1D.答案:B解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.,故选B.试题难度:三颗星知识点:整式的除法8.计算的结果是( )A. B.C. D.答案:C解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.,故选C.试题难度:三颗星知识点:整式的除法9.,括号里所填的代数式为( )A. B.C. D.答案:C解题思路:单项式÷单项式遵循的运算法则:系数除以系数,字母除以字母.设括号里的代数式为M,∴即括号里面的代数式为.故选C.试题难度:三颗星知识点:整式的除法10.计算的结果是( )A. B.C. D.答案:D解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.故选D.试题难度:三颗星知识点:多项式乘多项式11.下列各式计算结果为的是( )A. B.C. D.答案:C解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.A选项,故A选项错误;B选项,故B选项错误;C选项,故C选项正确;D选项,故D选项错误.故选C.试题难度:三颗星知识点:多项式乘多项式12.若的结果中不含的一次项,则的值是( )A.-2B.2C.-1D.任意数答案:A解题思路:多项式×多项式遵循握手原则,然后转化成单项式×单项式进行计算.∵的结果中不含x的一次项∴∴故选A.试题难度:三颗星知识点:多项式乘多项式13.下列式子:①;②;③;④.其中计算不正确的有( )A.3个B.2个C.1个D.0个答案:A解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.①,①不正确;②,②不正确;③,③不正确;④,④正确.故不正确的有①②③,共3个.试题难度:三颗星知识点:积的乘方14.计算的结果是( )A. B.C. D.答案:B解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.故选B.试题难度:三颗星知识点:整式的除法15.计算的结果是( )A. B.C. D.答案:D解题思路:多项式÷单项式:借用乘法分配律,然后转化成单项式÷单项式进行计算.故选D.试题难度:三颗星知识点:整式的除法。
整式的乘除因式分解练习题最终版
![整式的乘除因式分解练习题最终版](https://img.taocdn.com/s3/m/19e4cfdc80c758f5f61fb7360b4c2e3f57272539.png)
整式的乘除因式分解练习题最终版整式乘除与因式分解专项练知识网络归纳:幂的运算法则:a^m * a^n = a^(m+n) (m,n为正整数,a,b 可为一个单项式或一个式项式)平方差公式:(a+b)(a-b)=a^2-b^2完全平方公式:(a±b)^2=a^2±2ab+b^2整式的乘法:单项式×单项式:m*a+b=ma+mb多项式×多项式:(m+n)(a+b)=ma+mb+na+nb因式分解的意义:因式分解可以把一个多项式表示成几个单项式的乘积的形式,从而更便于计算和理解。
因式分解的方法:1.提公因式法:先观察是否存在公因式,若存在则提出来。
2.运用公式法:观察是否符合平方差公式或完全平方公式的条件,若符合则按公式进行分解。
3.十字相乘法:观察首尾项与中间项系数是否满足十字相乘条件,若满足则按十字相乘法则分解。
4.拆添项与分组分解法:如果上述方法均无法解决,尝试进行对某几项进行拆分或分组,然后再重复上述操作。
一、整式综合计算:1.幂运算:1) (-3a^2b^3c)^3 = -27a^6b^9c^32) (-1/2)^ = -27/8x^3y^3z^33) [-(a^2b)^3 * a]^3 = -a^27b^94) (ab)*(ab) = a^2b^25) 28xy/(-7xy) = -46) -2ab*(-8a^2) = 16a^3b7) (x^3-x^2)/2 = (x^3/2)-(x^2/2)9) -abc*(3ab) = -3a^2b^2c10) 2005*0.125*2006 = .2511) 若a^(3n-2) = 2.则a^(6n) = 6412) 已知4x=2x+3,则x=3/213) 如果a=2,a=3,则a=2或a=320.已知 m = n + 2,n = m + 2(m ≠ n),求 m - 2mn + n的值。
解:将 m = n + 2 代入 n = m + 2,得 n = n + 4,解得 n = -4,代入 m = n + 2,得 m = -2.因此,m - 2mn + n = -2 - 2(-2)(-4) + (-4) = 22.21.已知 9x - 12xy + 8y - 4yz + 2z - 4z + 4 = 0,求 x、y、z 的值。
整式的乘除测试题(3套)及答案
![整式的乘除测试题(3套)及答案](https://img.taocdn.com/s3/m/54a3887449649b6648d747cf.png)
第一章整式的乘除单元测试卷(一)一、精心选一选(每小题3分,共21分)43 31•多项式xy 2x y 9xy 8的次数是A. 3B. 4C. 5D. 62•下列计算正确的是 ()A. 2x 26x 412x 84 mB . y3mmyy C .x y 2 x 22 , 2y D. 4a 2a33.计算a ba b 的结果是()A. b 2 a 2B.2 ,2a bC. a 22ab b 2D.a 2 2ab b 224. 3a 5a1与 2a 2 3a 4的和为()A. 5a 22a 3 2小B. a 8a3 C.2a3a 52小D. a 8a55.下列结果正确的是()21 A.-1 B. 9 50C.53.7 01D. 2 31398m^n26.右 a b8 6a b,那么m 22n 的值是()A. 10B. 52C. 20D. 327•要使式子9x 225y 2成为一个完全平方式,则需加上( )二、耐心填一填(第1~4题每空1分,第5、6题每空2分,共28分)班级 ____ 姓名 ______ 学号 ________ 得分 ________A. 15xyB. 15xyC. 30xyD. 30xy1•在代数式3xy 2 ,个,多项式有一2m ,6a个。
2a 3 , 12 , 4x yz1 2xy 2 , 中,单项式有 5 3ab2•单项式 5x 2y 4z 的系数是,次数是 。
,413•多项式3ab ab 有项,它们分别是。
54•⑴ x 2 x 5。
34⑵y 3。
23⑶2a b。
⑷x 5y24。
93⑸a a。
⑹ 10 5 2 40z 1 2 635.⑴ mnmn。
⑵x 5 x 5。
3 5⑶(2a b )25 。
⑷ 12x 3小 2y3xy 。
/、m32m6•⑴ aa a。
⑵ 22a 8a242…。
20062 220051 ⑶ x y x y x y。
⑷3。
3三、精心做一做(每题5分,共15分)1. 4x 2 y 5xy 7x5x 2 y 4xy x2 2 32. 2a 23a 2 2a 1 4a 32 ^343.2x y 6x y 8xy 2xy1. X 1 2x 1 x 22. 2x 3y 5 2x 3y 5四、计算题(每题6分,共12分)1五、化简再求值:XX 2y x 12 2x,其中X -,y 25。
整式的乘除法练习题初二
![整式的乘除法练习题初二](https://img.taocdn.com/s3/m/f5a77ebe951ea76e58fafab069dc5022aaea46f5.png)
整式的乘除法练习题初二在初中数学学习中,整式的乘除法是一个重要的内容。
通过掌握整式的乘除法,可以帮助我们解决各种数学问题,提高我们的数学能力。
本文将为大家提供一些初二整式的乘除法练习题,希望对大家的学习有所帮助。
1. 计算下列乘法:(1) $(3x-4)(2x+5)$(2) $(4x+7)(3x-2)$(3) $(2a+3b)(4a-2b)$(4) $(5m-2n)(3m+4n)$解答:(1) 先用分配率将两个括号内的项相乘,再将结果合并同类项。
计算过程如下:$3x \cdot 2x + 3x \cdot 5 - 4 \cdot 2x - 4 \cdot 5$$= 6x^2 + 15x - 8x - 20$$= 6x^2 +7x - 20$(2) 同样地,根据分配率和合并同类项的原则进行计算。
计算过程如下:$4x \cdot 3x + 4x \cdot (-2) + 7 \cdot 3x + 7 \cdot (-2)$$= 12x^2 - 8x + 21x - 14$$= 12x^2 + 13x - 14$(3) 带入同样的计算规则,计算过程如下:$2a \cdot 4a + 2a \cdot (-2b) + 3b \cdot 4a + 3b \cdot (-2b)$$= 8a^2 - 4ab + 12ab - 6b^2$$= 8a^2 + 8ab - 6b^2$(4) 最后一个乘法计算如下:$5m \cdot 3m + 5m \cdot 4n - 2n \cdot 3m - 2n \cdot 4n$$= 15m^2 + 20mn - 6mn - 8n^2$$= 15m^2 + 14mn - 8n^2$2. 计算下列除法:(1) $\frac{15x^2+6x}{3x}$(2) $\frac{16a^2+4ab}{4a}$(3) $\frac{10m^2-8mn}{2m}$解答:(1) 在除法中,我们需要将被除数分解成乘积形式,然后根据约分规则来进行计算。
整式的乘除测试题练习四套(含答案)
![整式的乘除测试题练习四套(含答案)](https://img.taocdn.com/s3/m/7ab91e370722192e4536f6ba.png)
整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x++ B 、2m x + C 、1m x+ D 、2n m x++3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x 2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x 31)y x 2x 31(x n 1n n 2n n --=--+D 、当n 为正整数时,n 4n 22a )a (=-4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(--6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( )A 、0B 、-7C 、-9D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
整式的乘除整章练习题(完整)
![整式的乘除整章练习题(完整)](https://img.taocdn.com/s3/m/5eedaf185f0e7cd185253609.png)
5.已知 ,则 ____________.
6.计算:(1) ______________.(2) ____________.
7.下列计算正确的是( )
A. B.
C. D.
8.下列计算正确的个数为( )
(1) (2) (3) (4)
A.0个B.1个C.2个D.3个
10.计算.
(1)(2x 一3 +4x-1)(一3x);
(2) .
11.计算.
(1)2 - (2 -5b)-b(5 -b);
(2) .
12.先化简,再求值.
(1)m (m+3)+2m(m —3)一3m(m +m-1),其中m ;
(2)4 b( b- b + 6)一2 b (2 —3 b+2 ),其中 =3,b=2.
第1章整式的乘除
第1课时幂的运算(一)
1.计算:(1) _________;(2) _____________.
2.计算:(1) ___________;(2) ______________.
3.计算:(1) ________;(2) ____________.
4.计算: ____________.5.计算:(1) __________;(2) __________.
7.下列运算中,正确的是( )
A.( 一2b)( -2b)= -4b B.(- +2b)( 一2b)=- 一2b
C.( +2b)( 一2b)=- -2b D.(一 一2b)(一 +2b)= -4b
8.在下列各式中,运算结果为36y +49x 的是( )
完整版)整式的乘除典型例题
![完整版)整式的乘除典型例题](https://img.taocdn.com/s3/m/7b941d98d0f34693daef5ef7ba0d4a7302766cfd.png)
完整版)整式的乘除典型例题1.若 $a=8$,$m+n=16$,则 $a=\frac{m+n}{n}=2$。
2.已知 $2m=3$,$2n=4$,则$23m+2n=23\times\frac{3}{2}+2\times2=19$。
3.若 $\frac{xy}{2x+5y}=4$,则 $xy=8x+20y$。
4.若 $a>5$,且 $a=2$ 或 $a=3$,则 $ax-y$ 的值为 $2^{x-y}$ 或 $3^{x-y}$。
5.已知 $x^8\times x^a=x^3a$,则 $a=5-3m$。
6.若 $a^{m+1}b^{n+2}\times a^{2n-1}b=a^5b^3$,则$m+n=3$。
7.若 $2a=5$,$2b=3$,$2c=45$,则 $a=\frac{5}{2}$,$b=\frac{3}{2}$,$c=15$。
8.若 $\frac{x-m}{x^2+x+a}=1$,则 $m=-\frac{a}{4}$,$a=12$。
9.若 $abc^2=5$,$2=3$,$2=30$,则$a=\frac{1}{\sqrt{15}}$,$b=\frac{\sqrt{5}}{3}$,$c=1$。
10.比较 $5$ 和 $\frac{24}{25}$ 的大小,$8$ 和$\frac{2514}{1000}$ 的大小。
11.计算$\frac{2011}{3}-\frac{1}{2}\times\frac{2012}{3}$。
12.计算 $\frac{-1}{8}\times2$,$1990\times\frac{3980}{825n}$。
13.若 $a+b=2013$,$a-b=1$,则 $a^2-b^2=2012\times2014$。
14.计算 $1232-\frac{124\times122}{2}$,$899\times901+1$。
15.计算 $\frac{2x+1}{2x-1}\times\frac{4x+1}{x^2+2x+1}\times\frac{2}{(x+2)^3}$。
(完整版)整式的乘除(典型例题)
![(完整版)整式的乘除(典型例题)](https://img.taocdn.com/s3/m/f189d618d0d233d4b14e69a8.png)
整式的乘除(典型例题)一.幂的运算:1.若16,8m n a a ==,则m n a +=2.已知2,5m n a a ==,求值:(1)m n a +;(2)2m n a +。
3.23,24,m n ==求322m n +的值。
4.如果254,x y +=求432x y ⋅的值。
5.若0a >,且2,3,x y a a ==则x y a -的值为6.已知5,5,x y a b ==求25x y -的值二.对应数相等:1.若83,x x a a a ⋅=则x =__________ 2.若43282,n ⨯=则n =__________ 3.若2153,m m m a a a +-÷=则m =_________ 4.若122153()()m n n a b a b a b ++-⋅=,求m n +的值。
5.若235232(3)26,m n x y x y xy x y x y --+=-求m n +的值。
6.若312226834,m n ax y x y x y ÷=求2m n a +-的值。
7.若25,23,230,a b c ===试用,a b 表示出c 变式:25,23,245,a b c ===试用,a b 表示出c8.若22(),x m x x a -=++则m =__________a = __________ 。
9.若a 的值使得224(2)1x x a x ++=+-成立,则a 的值为_________。
三.比较大小:(化同底或者同指数) 1.在554433222,3,4,5中,数值最大的一个是 2.比较505与2524的大小变式:比较58与142的大小四.约分问题(注意符号):1.计算201120121(3)()3-等于 . 计算下列各式(1)825(0.125)2-⨯ (2)12(1990)()3980nn +⋅ 五.平方差公式的应用:1.如果2013,1,a b a b +=-=那么22a b -=___________2.计算下列各式(1)2123124122-⨯ (2)8999011⨯+3.计算:241(21)(21)(41)()16x x x x +-++ 4.计算2432(21)(21)(21)(21)+++⋅⋅⋅+ 5.计算2222210099989721-+-+⋅⋅⋅+-.六.完全平方式(1)分块应用:1.已知5,6,a b ab +=-=则22a b +的值是2.若22()()x y M x y +-=-,则M 为3.已知10,24m n mn +==,求(1) 22mn +;(2)2()m n -的值。
《整式乘除100题》[大全]
![《整式乘除100题》[大全]](https://img.taocdn.com/s3/m/3a51d638bb1aa8114431b90d6c85ec3a87c28be8.png)
《整式乘除100题》[大全]第一篇:《整式乘除100题》[大全]整式乘除计算 100 题使用说明:本专题的制作目的是提高学生在整式乘除这一部分的计算能力。
大致分了三个模块:①单项式与单项式(34题);②单项式与多项式(33题);③多项式与多项式(33题);共题。
建议先仔细研究方法总结、易错总结和例题解析,再进行巩固练习。
模块一单项式与单项式方法总结:单项式乘单项式:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中含有的字母,则连同它的指数作为积的一个因式.单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式.易错总结:相同字母相乘,注意是字母不变,指数相加;注意单项式相乘,他们的系数也是分别相乘,不是相加;系数里的负号要注意不要忘掉单独出现的字母最后要作为积的一个因式,不要遗漏例题解析:—ꅘy 2 · 2ꅘ2 y 2 .解:—ꅘy 2 · 2ꅘ2 y 2 =—ꅘ y 2· 4ꅘ4 y 2=— 4ꅘ5 y 4 .……【系数、相同字母分别相乘】巩固练习:1.计算:— 8a⺁·a 2 ⺁. 422ꅘ3 · —져ꅘ y 3 . 4.计算:a 4 ·—a 3÷ — a 2. 5.计算:——ꅘ2 3 · —ꅘ 2 2 —ꅘ· —ꅘ 3 3 . 6.计算:—ꅘ6—— 3ꅘ 3 2 — [ — 2ꅘ 2 ] 3 . 7.计算:—a 2 ·— a 3·— a+— a 2—— a 3. 8.计算:a —2 ⺁2 · a 2 ⺁—2 —3 . 9.计算:— 2ꅘ2 ·(ꅘ2)3 · —ꅘ 2 . 10.计算:— 21ꅘ2 y 4 ÷ — 3ꅘ 2 y 3 . 11.计算:2a 3 ⺁ 3— 8a⺁ 2÷ — 4a 4 ⺁ 3. 12—a 2 · a 4 ÷ a 3 . 13.计算:12a⺁ 2a⺁c 4 ÷ — 3a 2 ⺁3 c ÷ 2 a⺁c 3 . 17—a 3·— a 218.计算:(2a)3 —a · a 2 + 3a 6 ÷ a 3 . 19.(a 5)2·(a 2)2—(a 2)4·(a 3)2 . 20.ꅘ + 2ꅘ + 3ꅘ + ꅘ· ꅘ2 · ꅘ 3 + ꅘ 3 2 . 21.计算:ꅘm · ꅘn 3 ÷ ꅘ m—1 · 2ꅘ n—1 . 22.计算:— 2ꅘ2 y · 5ꅘy 3 ·— 3ꅘ 3 y 2. 523.ꅘ5 · ꅘ져 + ꅘ6 ·(—ꅘ 3)2 + 2(ꅘ 3)4 . 24.计算:— 1a⺁ 2·— 2a 3 ⺁c . 425.计算:— 2ꅘ— 3ꅘ2 y 2 3 · 1y 2 + t ꅘ져 y 8 . 32 3 4 14.计算:a 3 · a 5 · a 2 +a 5—a 2· a 2 . 15.化简:(4ꅘ2 y)2 ÷ 8y 2 . / 服务内核部-初数教研10.计算:6ꅘy ·ꅘ y — 1y+ 3ꅘ y2 . 211.计算:8a 2 ⺁— 4a⺁ 2÷ — 1a⺁ 2服务内核部-初数教研/ 28.— 2ꅘ2 y 2 3 · 3ꅘ y 4 . 29.计算:— 1a 3 · — 6a⺁ 2 . 330.计算:2ꅘ3 y — 2ꅘ y + — 2ꅘ 2 y 2 . 312a 2 ⺁·— 3⺁2 c ÷ 4a⺁ 3. 32.计算:— 3ꅘ2 y 3·— 2 ꅘ y 233.计算:—3a 2·a 2 ÷ — 1 a 22. 3 2 34.计算:(— 2ꅘm y n)2 ·(—ꅘ2 y n)3 ·(— 3ꅘ y 2).模块二单项式与多项式方法总结:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加.多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.易错总结:巩固练习:1.化简:—져ꅘ2 y 2ꅘ 2 y — 3ꅘ y 3 + ꅘ y . 22ꅘ y 5ꅘ y 2 + 3ꅘ y —1 . 3.计算:— a 2 ⺁c + 2a⺁ 2 — 3 ac·— 2 ac 2 . 5 3 4.计算:— 2ꅘ2 y — 3ꅘ y + 3ꅘ 2 y 3 — 6ꅘ 3 . 3 2 5.计算:ꅘn+1 · ꅘ 2n —ꅘ n+1 + ꅘ 2 . 6.计算:2 2 3a 2 2— 1 . 7.计算:a⺁2 · 2a 2 ⺁— 3a⺁2 . 282a 23a⺁ 2 — 5a⺁ 3. 9.计算:— 4 a⺁2 ·— ta 2 ⺁— 12a⺁ + 3⺁ 2. 3 2 4 12.化简3a 5 ⺁ 3 — a 4 ⺁ 2÷ — a 2 ⺁ 213.计算:2져ꅘ3 — 18ꅘ 2 + 3ꅘ÷ — 3ꅘ. 14.计算:45a 3 — 1a 2 ⺁ + 3a÷ — 1a . 6 3 15.计算:6m 2 n — 6m 2 n 2 — 3m 2÷ — 3m 2. 16.计算:—ꅘ2 3 — 3ꅘ 2 ꅘ 4 + 2ꅘ— 2 . 17.计算:— 1ꅘ y 2 3 — 2ꅘ y ꅘ y —ꅘ2 y 5 . 318.计算:a⺁ 2 — 2a⺁ + 4⺁· 1a⺁—a⺁ 2 . 3 3 2 2 19.计算:— 2a ⺁(6a ⺁— 3a + 3 ⺁).2 20.计算:2a a — 2a 3—— 3a 2. 21.化简 1单项式乘多项式中的每一项时,注意不要漏掉前面的符号注意多项式中的每一项都要和单项式相乘,不要漏项例题解析:计算:— 2ꅘy 2 2 ·y 2 — 1ꅘ2 — 3ꅘ y . 4 2 2 解:原式= 4ꅘ2 y 4 · 1y 2 — 1ꅘ 2 — 3ꅘ y 4 2 2 = ꅘ2 y 6 — 2 ꅘ 4 y 4 — 6 ꅘ 3 y 5 .……【用单项式去乘多项式的每一项】/ 服务内核部-初数教研3ꅘ2 — y — 22ꅘ2 + y . 24.计算:(— 2ꅘy 2)2 · 1y 2 — 1ꅘ2 — 3ꅘ y . 4 2 2 25.计算:(3ꅘ y)2(ꅘ2 — y 2)—(4ꅘ2 y 2)2 ÷ 8y 2 + t ꅘ 2 y 4 . 26.计算:4a ⺁(2a 2 ⺁ 2 — a ⺁+ 3)27.计算:2ꅘ—ꅘ2 + 3ꅘ— 4 — 3ꅘ 2ꅘ + 1 . 228.计算:ꅘꅘ2 —ꅘ— 1 + 3 ꅘ 2 + ꅘ— 1ꅘ 3ꅘ 2 + 6ꅘ. 329.化简:ꅘ 1ꅘ + 1— 3ꅘ 3ꅘ— 2 . 2 2 30.求值:ꅘ2 3ꅘ— 5 — 3ꅘꅘ 2 + ꅘ— 3,其中ꅘ= 1 . 231.先化简,再求值:ꅘꅘ2 —ꅘ— 1+ 2 ꅘ2 + 2 — 1ꅘ 3ꅘ 2 + 6ꅘ— 1,其中ꅘ =— 3. 333.先化简,再求值:ꅘ— 2 1 — 3ꅘ— 2ꅘ 2 —ꅘ,其中ꅘ = 4. 2 3 2 模块三多项式乘多项式方法总结:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.易错总结:在不引起歧义的情况下,单项式和其它单项式或多项式作运算时本身可以不加括号;计算时注意符号变化,不要丢掉单独的字母或数字;多项式与多项式相乘后如果出现同类项必须合并.合并同类项时,可以在同类项下边标上相同的符号,避免引起错误.例题解析:计算:ꅘ— aꅘ2 + aꅘ + a 2解:ꅘ— aꅘ2 + aꅘ + a 2= ꅘ3 + aꅘ 2 + a 2 ꅘ— aꅘ 2 — a 2 ꅘ—a 3 ……【用一个多项式的每一项乘另一个多项式的每一项】= ꅘ3 — a 3 .巩固练习:12ꅘ + 5y3ꅘ— 2y . 2a — 2⺁(a + ⺁). 332ꅘ— 1 . 6ꅘ + yꅘ— 2y . 72ꅘ + 3y3ꅘ— 2y . 8— 1ꅘ + — 3ꅘꅘ + 3 . 9.计算:ꅘ 1ꅘ— 2 . 10a + 32a + 5. 11m + 22m — 3 . 12ꅘ— 32ꅘ + 5 . 13.计算:4ꅘ2 y — 5ꅘ y 2· 져ꅘ 2 y — 4ꅘ y 2 . 14.计算:ꅘm — 2y n3ꅘ m + y n. 15.计算:ꅘ— 1ꅘ2 + ꅘ + 1 . 18.计算:ꅘ— aꅘ2 + aꅘ + a 2.19.计算:ꅘ + yꅘ2 —ꅘ y + y 2. 203ꅘ + 1ꅘ— 3 . 21ꅘ + y — 2ꅘ— y . 22.计算:2a —⺁ + c2a —⺁— c . 23.—ꅘ3 + 2ꅘ 2 — 5 2ꅘ 2 — 3ꅘ + 1 . 24.计算:ꅘ + 52ꅘ— 3 — 2ꅘꅘ2 — 2ꅘ + 3 . 25.计算:ꅘ2 — 2ꅘ + 3ꅘ— 1ꅘ + 1 . 26ꅘ 4ꅘ— 3 — 2 ꅘ— 3ꅘ + 1 . 272ꅘ— 3ꅘ + 4—ꅘ— 1ꅘ + 1 . 30— 1ꅘ + 2ꅘꅘ + 3 . 31ꅘ + 3ꅘ— 5— 3 ꅘ— 1ꅘ + 6 . 325ꅘ + 3y3y — 5ꅘ—4ꅘ— y4y + ꅘ. 33.计算:a⺁ a + ⺁—a —⺁a 2 + ⺁ 2. 4.计算:2ꅘ + 3yꅘ— 2y . 5.计算:(ꅘ2 y 3 —ꅘ3 y 2)·(ꅘ 2 — y 2). / 服务内核部-初数教研2 3 4 16.计算:(2m + n 2)(4m 2 — 2mn 2 + n 4). 17.化简:3ꅘ2 + 2ꅘ + 13ꅘ— 1 .服务内核部-初数教研/ 服务内核部-初数教研/第二篇:第一章整式的乘除单元测试第一章整式的乘除单元测试(时间120分钟,满分150分)A卷(100分)一、选择题:本大题共10小题,每小题3分,共30分;在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各题中计算错误的是()2.化简x(y-x)-y(x-y)得()A、x2-y2B、y2-x2C、2xyD、-2xy3.计算的结果是()A.B.-C.D.-4.是一个完全平方式,则a的值为()A.4B.8C.4或—4D.8或—85.三个数中,最大的是()A.B.C.D.不能确定6.化简(a+b+c)-(a-b+c)的结果为()A.4ab+4bcB.4acC.2acD.4ab-4bc7.已知,,则、、的大小关系是()A.>>B.>>C.<<D.>>8.若,则等于()A.-5B.-3C.-1D.19.边长为a的正方形,边长减少b以后所得较小正方形的面积比原来正方形的面积减少了()A.B.+2abC.2abD.b(2a—b)10.多项式的最小值为()A.4B.5C.16D.25二、填空题:本大题共6小题,每小题3分,共18分,把答案填写在题中横线上.11.是_____次_____项式,常数项是_____,最高次项是_____.12.(1)(2)13.(1)(2)14.已知是关于的完全平方式,则=;15.若m2+n2-6n+4m+13=0,m2-n2=;16、如果时,代数式的值为2008,则当时,代数式的值是三、计算题:本大题共5小题,每小题4分,共20分,解答应写出必要的计算过程.17.;18.19.20.21.四、综合题:本大题共5小题,共32分,解答应写出必要的计算过程.22.(5分)已知,求的值[来23.(6分)简便计算:(1)(2)3.76542+0.4692×3.7654+0.23462.24.(5分)已知,,求代数式的值;25.(6分)若4m2+n2-6n+4m+10=0,求的值;26.(8分)若的积中不含与项,(1)求、的值;(2)求代数式的值;B卷(50分)1.若,则=;2.有理数a,b,满足,=;3.=;4.若那么=;5.观察下列各式:1×3=12+2×1,2×4=22+2×2,3×5=32+2×3,…,请你将猜想到的规律用自然数n(n≥1)表示出来:__________.6.(6分)计算:.7.(7分)已知:,求-的值.8.(8分)已知a2-3a-1=0.求、的值;9.(9分)一元二次方程指:含有一个未知数,且未知数的最高次数为2的等式,求一元二次方程解的方法如下:第一步:先将等式左边关于x的项进行配方,第二步:配出的平方式保留在等式左边,其余部分移到等式右边,;第三步:根据平方的逆运算,求出;第四步:求出.类比上述求一元二次方程根的方法,(1)解一元二次方程:;(2)求代数式的最小值;答案:1-5.CBBCA;6-10.AABDC;11.12.(1)(2);13.(1)(2);14.;15.-5;16、-2006;17.;18.2;19.;20.;21.22.15;23.(1)1;(2)16;24.3;25.-8;26.;B卷:1.-2;2.6;3.;4.6;5.;6.2;7.30;8.3,13;9.(1);(2)2;第三篇:初中数学复习整式的乘除专题01整式的乘除阅读与思考指数运算律是整式乘除的基础,有以下5个公式:,,,.学习指数运算律应注意:1.运算律成立的条件;2.运算律中字母的意义:既可以表示一个数,也可以表示一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.例题与求解【例1】(1)若为不等式的解,则的最小正整数的值为.(“华罗庚杯”香港中学竞赛试题)(2)已知,那么.(“华杯赛”试题)(3)把展开后得,则.(“祖冲之杯”邀请赛试题)(4)若则.(创新杯训练试题)解题思路:对于(1),从幂的乘方逆用入手;对于(2),目前无法求值,可考虑高次多项式用低次多项式表示;对于(3),它是一个恒等式,即在允许取值范围内取任何一个值代入计算,故可考虑赋值法;对于(4),可考虑比较系数法.【例2】已知,则等于()A.2B.1C.D.(“希望杯”邀请赛试题)解题思路:为指数,我们无法求出的值,而,所以只需求出的值或它们的关系,于是自然想到指数运算律.【例3】设都是正整数,并且,求的值.(江苏省竞赛试题)解题思路:设,这样可用的式子表示,可用的式子表示,通过减少字母个数降低问题的难度.【例4】已知多项式,求的值.解题思路:等号左右两边的式子是恒等的,它们的对应系数对应相等,从而可考虑用比较系数法.【例5】是否存在常数使得能被整除?如果存在,求出的值,否则请说明理由.解题思路:由条件可推知商式是一个二次三项式(含待定系数),根据“被除式=除式×商式”,运用待定系数法求出的值,所谓是否存在,其实就是关于待定系数的方程组是否有解.【例6】已知多项式能被整除,求的值.(北京市竞赛试题)解题思路:本题主要考查了待定系数法在因式分解中的应用.本题关键是能够通过分析得出当和时,原多项式的值均为0,从而求出的值.当然本题也有其他解法.能力训练A级1.(1).(福州市中考试题)(2)若,则.(广东省竞赛试题)2.若,则.3.满足的的最小正整数为.(武汉市选拔赛试题)4.都是正数,且,则中,最大的一个是.(“英才杯”竞赛试题)5.探索规律:,个位数是3;,个位数是9;,个位数是7;,个位数是1;,个位数是3;,个位数是9;…那么的个位数字是,的个位数字是.(长沙市中考试题)6.已知,则的大小关系是()A.B.C.D.7.已知,那么从小到大的顺序是()A.B.C.D.(北京市“迎春杯”竞赛试题)8.若,其中为整数,则与的数量关系为()A.B.C.D.(江苏省竞赛试题)9.已知则的关系是()A.B.C.D.(河北省竞赛试题)10.化简得()A.C.D.11.已知,试求的值.12.已知.试确定的值.13.已知除以,其余数较被除所得的余数少2,求的值.(香港中学竞赛试题)B级1.已知则=.2.(1)计算:=.(第16届“希望杯”邀请竞赛试题)(2)如果,那么.(青少年数学周“宗沪杯”竞赛试题)3.(1)与的大小关系是(填“>”“<”“=”).(2)与的大小关系是:(填“>”“<”“=”).4.如果则=.(“希望杯”邀请赛试题)5.已知,则.(“五羊杯”竞赛试题)6.已知均为不等于1的正数,且则的值为()A.3B.2C.1(“CASIO杯”武汉市竞赛试题)7.若,则的值是()A.1B.0C.—1D.28.如果有两个因式和,则()A.7B.8C.15D.21(奥赛培训试题)9.已知均为正数,又,则与的大小关系是()A.B.C.D.关系不确定10.满足的整数有()个A.1B.2C.3D.411.设满足求的值.12.若为整数,且,求的值.(美国犹他州竞赛试题)13.已知为有理数,且多项式能够被整除.(1)求的值;(2)求的值;(3)若为整数,且.试比较的大小.(四川省竞赛试题)第四篇:整式乘除与因式分解复习教案整式的乘除与因式分解复习菱湖五中教学内容复习整式乘除的基本运算规律和法则,因式分解的概念、方法以及两者之间的关系。
整式的乘除计算练习题及答案
![整式的乘除计算练习题及答案](https://img.taocdn.com/s3/m/5f63bc4a302b3169a45177232f60ddccda38e69a.png)
整式的乘除计算练习题及答案一.解答题1.计算:①③④?[﹣4]?÷32;②[]÷[]?y233522.计算:222①﹣8y;②﹣;③;④;⑤;⑥[+﹣2x]÷2x.⑦222⑧.3.计算:564233336abc÷÷.﹣.[]?3xy. +﹣2m.2234224.计算:?x÷x﹣2x?÷x.ab÷a+b?.﹣.+﹣2.5.因式分解:3322①6ab﹣24ab;②﹣2a+4a﹣2;③4n﹣6;④2xy﹣8xy+8y;⑤a+4b;⑥4mn﹣;⑦22222222222841053232222;⑧﹣4a;⑨3x222n+1﹣6x+3xnn﹣1⑩x﹣y+2y﹣1;4a﹣b﹣4a+1;4﹣4x+4y+1;3ax﹣6ax﹣9a;x﹣6x﹣27;﹣2﹣3.242222222226.因式分解:4x﹣4xy+xy. a﹣4.7.给出三个多项式:x+2x﹣1,x+4x+1,x﹣2x.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.8.先化简,再求值:+b﹣4ab÷b,其中a=﹣,b=2. 9.当x=﹣1,y=﹣2时,求代数式[2x﹣][+2y]的值. 10.解下列方程或不等式组:①﹣=0;②2﹣≤4.11.先化简,再求值:﹣,其中,.2222232222若x﹣y=1,xy=2,求xy﹣2xy+xy.12.解方程或不等式:222+2=3x+13.+>13.2223223整式的乘除因式分解习题精选参考答案与试题解析一.解答题1.计算:①②[]÷[]?y ③632523352;;④?[﹣4]?÷2.计算:22①﹣8y;2②﹣;③;④;⑤;2⑥[+﹣2x]÷2x.22⑦⑧.2一.计算题19、已知a?b?,a?b?11,求0、已知x?3,x?2,求x 3334221、m??22、 3、?22ab2a?b34、235、?432324、?x8x4x425、?2?226、xy2327、?28、2229、2006200530、231、32、22?4x33、??4xy?6xy??第1页、共6页36、?2xy7、解方程?2x2?2?2x?6x38、已知xm4,xn?3,求x2mx3n的值39、已知x2?xy?21 ,y2?xy?28,求20、已知x3a27,求x4a的值41、2??342、?3?243、?2244、6245、?46、11?222m4m47、?8?48、x?x122259、已知m?3,m?4,求m ab3a?2b的值.0、已知a?115,求a4?4的值. aa 23323261、25?2?62、23?349、4m651、253、55、257、第2页、共6页 50、2、29254、、2258、63、2?365、5667、??47369、199264、a6a2a2a366、255?33?2118、3?4?270、72、28273、74、23232375、??ab6、?77、8、?5x?79、先化简再求值x?,当x??的值80、已知:2?2?5,求2第3页、共6页ab3a?2b?33422322222221时,求此代数式4的值。
《整式乘除100题》
![《整式乘除100题》](https://img.taocdn.com/s3/m/72fed28d312b3169a451a4fe.png)
整式乘除计算 100 题使用说明:本专题的制作目的是提高学生在整式乘除这一部分的计算能力。
大致分了三个模块:①单项式与单项式(34 题);②单项式与多项式(33 题);③多 项式与多项式(33 题);共 100 题。
建议先仔细研究方法总结、易错总结和例题解析,再进行巩固练习。
模块一 单项式与单项式方法总结:单项式乘单项式:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式中含有的字 母,则连同它的指数作为积的一个因式.单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连 同它的指数一起作为商的一个因式.易错总结:1 相同字母相乘,注意是字母不变,指数相加; 2 注意单项式相乘,他们的系数也是分别相乘,不是相加; 3 系数里的负号要注意不要忘掉 4 单独出现的字母最后要作为积的一个因式,不要遗漏 例题解析:— ꅘ y2 ·2ꅘ 2y 2. 解: — ꅘ y2 ·2 ꅘ 2y 2= — ꅘ y2 ·4ꅘ 4y2 =— 4ꅘ 5y4. 巩固练习:……【系数、相同字母分别相乘】1.计算: — 8a⺁ ·3 a2⺁ .42.计算: 2ꅘ 3 ·— 져ꅘ y3 .4.计算:a4 ·— a3 2 ÷ — a2 5.5.计算:— — ꅘ 2 3 ·— ꅘ 2 2 — ꅘ ·— ꅘ 3 3.6.计算: — ꅘ 6 — — 3ꅘ 3 2 — [ — 2ꅘ 2]3.7.计算: — a 2 ·— a3 ·— a + — a2 3 — — a3 2.8.计算:a—2 ⺁2 ·a2⺁—2 —3 .9.计算: — 2ꅘ 2 ·(ꅘ 2)3 ·— ꅘ 2.10.计算:— 21ꅘ 2y4 ÷ — 3ꅘ 2y3 . 11. 计算: 2a3⺁ 3 — 8a⺁2 ÷ — 4a4⺁3 . 12.计算: — a 2 ·a4 ÷ a3. 13.计算:12a⺁2 a⺁c 4 ÷ — 3a2⺁3c ÷ 2 a⺁c 3 .111784...计 计 计算 算 算: : :(a23—a·)aa353—·2a·2a+—·a2aa+25 332 a—6 ÷aa233.·a2.19.(a5)2 ·(a2)2 — (a2)4 ·(a3)2.221015...ꅘ计 化算 简+: :2ꅘꅘ(4+ꅘm ·32ꅘyꅘ)n2+3÷÷8ꅘyꅘ2·.mꅘ—21··ꅘ2ꅘ3 +n—ꅘ13 2. .22.计算: — 2ꅘ 2y ·5ꅘ y3 ·— 3 ꅘ 3y2 .523.ꅘ 5 ·ꅘ 져 + ꅘ 6 ·( — ꅘ 3)2 + 2(ꅘ 3)4. 24.计算: — 1 a⺁2 ·— 2a3⺁c .42\ 52.计/ 算:— 2ꅘ — 3ꅘ 2y2 3 ·1 y2 + tꅘ 져y8.3服务内核部-初数教研28. — 2ꅘ 2y 2 3 ·3ꅘ y4. 29.计算:— 1 a3 ·— 6a⺁ 2.330.计算:2ꅘ 3y ·— 2ꅘ y + — 2ꅘ 2y 2.31.计算:2a2⺁ ·— 3⺁2c ÷ 4a⺁3 .32.计算: — 3ꅘ 2y3 ·— 2 ꅘ y2 232233.计算: — 3a2 3 ·1 a ÷ — 1 a2 .3234.计算:( — 2ꅘ myn)2 ·( — ꅘ 2yn)3 ·( — 3ꅘ y2).模块二 单项式与多项式方法总结: 单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相 加. 多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加. 易错总结: 巩固练习: 1.化简: — 져ꅘ 2y 2ꅘ 2y — 3ꅘ y3 + ꅘ y .2.计算:2ꅘ 3.计算: —y 5ꅘ y2 + 3ꅘ y — 1 . a2⺁c + 2a⺁2 — 3 ac ·—2ac2.534.计算:— 2 ꅘ 2y — 3 ꅘ y + 3ꅘ 2y3 — 6ꅘ 3 .325.计算:ꅘ n+1 ·ꅘ 2n — ꅘ n+1 + ꅘ 2 .6.计算:2a⺁2 ·3a2⺁ — 2a⺁ — 1 . 7.计算:1 a⺁2 ·2a2⺁ — 3a⺁2 .28.计算: — 2a2 3a⺁2 — 5a⺁3 . 9.计算: — 4 a⺁ 2 ·— t a2⺁ — 12a⺁ + 3 ⺁2 .32412.化简: 3a5⺁3 — a4⺁2 ÷ — a2⺁ 213.计算: 2져ꅘ 3 — 18ꅘ 2 + 3ꅘ ÷ — 3ꅘ . 14.计算: 45a3 — 1 a2⺁ + 3a ÷ — 1 a .6315.计算: 6m2n — 6m2n2 — 3m2 ÷ — 3m2 .16. 计算: — ꅘ 2 3 — 3ꅘ 2 ꅘ 4 + 2ꅘ — 2 .317.计算: — 1 ꅘ y2 — 2ꅘ y ꅘ y — ꅘ 2y5 .318.计算:2 a⺁2 — 2a⺁ + 4 ⺁·1 a⺁ —21 a⺁ .332219.计算:— 2 a⺁(6a⺁ — 3 a + 3⺁).32121200..计计单注算算项意::式多26乘项aꅘ多式ay—项中·2式的21 aꅘ中每3y的一——3每项—1一都y 3项要+a时和23ꅘ2,单.y注项2.意式不相要乘漏,掉不前要面漏的项符号例题解析:计算: — 2ꅘ y2 2 ·1 y2 — 1 ꅘ 2 — 3 ꅘ y .11.计算: 8a2⺁ — 44a⺁2 ÷2 — 1 a2⺁解:原式= 4ꅘ 2y4 ·1 y2 — 1 ꅘ 22— 3 ꅘ y422= ꅘ 2y6 — 2ꅘ 4y4 — 6ꅘ 3y5.……【用单项式去乘多项式的每一项】21.化简13服务内核部-初数教研 \ 4/服务内核部-初数教研 \5/3ꅘ 2 — y — 232ꅘ 2 + y .24.计算:( — 2ꅘ y2)2 ·1 y2 — 1 ꅘ 2 — 3 ꅘ y .42225.计算:(3ꅘ y)2(ꅘ 2 — y2) — (4ꅘ 2y2)2 ÷ 8y2 + tꅘ 2y4.26.计算:4a⺁(2a2⺁2 — a⺁ + 3) 27.计算:2ꅘ — ꅘ 2 + 3ꅘ — 4 — 3ꅘ 2 1 ꅘ + 1 .228.计算:ꅘ ꅘ 2 — ꅘ — 1 + 3 ꅘ 2 + ꅘ — 1 ꅘ 3ꅘ 2 + 6ꅘ .329.化简:ꅘ 1 ꅘ + 1 — 3ꅘ 3 ꅘ — 2 .2230.求值:ꅘ 2 3ꅘ — 5 — 3ꅘ ꅘ 2 + ꅘ — 3 ,其中 ꅘ = 1.231.先化简,再求值:ꅘ ꅘ 2 — ꅘ — 13+ 2 ꅘ 2 + 2 — 1 ꅘ 3ꅘ 2 + 6ꅘ — 1 ,其中 ꅘ =— 3.333.先化简,再求值:ꅘ —2 1 —3 ꅘ — 2 ꅘ 2 —ꅘ,其中 ꅘ = 4.232模块三 多项式乘多项式 方法总结:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加. 易错总结:1 在不引起歧义的情况下,单项式和其它单项式或多项式作运算时本身可以不加括号; 计 2 算时注意符号变化,不要丢掉单独的字母或数字; 3 多项式与多项式相乘后如果出现同类项必须合并. 4 合并同类项时,可以在同类项下边标上相同的符号,避免引起错误. 例题解析:计算: ꅘ — a ꅘ 2 + aꅘ + a2解: ꅘ — a ꅘ 2 + aꅘ + a2 = ꅘ 3 +aꅘ 2 +a2ꅘ —aꅘ 2 —a2ꅘ — a3 ……【用一个多项式的每一项乘另一个多项式的每一项】 = ꅘ 3 — a3. 巩固练习:1.计算: 2ꅘ + 5y 3ꅘ — 2y . 2.计算: a — 2⺁ (a + ⺁). 3.计算: ꅘ + 3 2ꅘ — 1 . 6.计算: ꅘ + y ꅘ — 2y . 7.计算: 2ꅘ + 3y 3ꅘ — 2y . 8.计算: ꅘ — 1 ꅘ + 2 — 3ꅘ ꅘ + 3 . 9.计算: ꅘ + 1 ꅘ — 2 . 10.计算: a + 3 2a + 5 . 11.计算: m + 2 2m — 3 . 12.计算: ꅘ — 3 2ꅘ + 5 . 13.计算: 4ꅘ 2y — 5ꅘ y2 ·져ꅘ 2y — 4ꅘ y2 .14.计算: ꅘ m — 2yn 3ꅘ m + yn .15.计算: ꅘ — 1 ꅘ 2 + ꅘ + 1 . 18.计算: ꅘ — a ꅘ 2 + aꅘ + a2 . 19.计算: ꅘ + y ꅘ 2 — ꅘ y + y2 .20.计算: ꅘ + 3 ꅘ + 1 ꅘ — 3 . 21.计算: ꅘ + y — 2 ꅘ — y . 22.计算: 2a — ⺁ + c 2a — ⺁ — c . 23. — ꅘ 3 + 2ꅘ 2 — 5 2ꅘ 2 — 3ꅘ + 1 .24.计算: ꅘ + 5 2ꅘ — 3 — 2ꅘ ꅘ 2 — 2ꅘ + 3 .25.计算: ꅘ 2 — 2ꅘ + 3 ꅘ — 1 ꅘ + 1 .26.计算:ꅘ 4ꅘ — 3 — 2 ꅘ — 3 ꅘ + 1 . 27.计算: 2ꅘ — 3 ꅘ + 4 — ꅘ — 1 ꅘ + 1 .30.计算: ꅘ — 1 ꅘ + 2 — 3ꅘ ꅘ + 3 . 31.计算: ꅘ + 3 ꅘ — 5 — 3 ꅘ — 1 ꅘ + 6 . 334123.6计..计 计算算 算:: :2(aꅘ2⺁5mꅘ+a++3+yn3⺁2y)ꅘ(34——ym—2a2——y5.ꅘ2⺁m—na22+4+ꅘn⺁4)—2..y 4y + ꅘ .51.7计.化算简::(ꅘ3ꅘ2y32—+ 2ꅘꅘ3y+2)1·(ꅘ3ꅘ2——y21)..服务内核部-初数教研 \ 8/服务内核部-初数教研 \ \119 /。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《整式的乘除》测试题(B 卷)
班级__________ 姓名____________ 成绩____________
一、填空题(每题2分,共20分)
1、下列运算中正确的是(
)A.43x x x =+
B. 43x x x =⋅
C. 532)(x x =
D. 236x x x =÷2、计算的结果是( )
()4323b a --A、 B 、 C 、D 、12881b a 7612b a 7612b a -12
881b a -3、若,,则等于( )
53=x 43=y y x -23 A.; B.6 ;
C.21;
D.20.2544、下列计算正确的是
( ) A 、a 2·a 3=a 6
B 、x (x 2+x 2)=2x 4 + x 3
C 、(-2x )4=-16x 4
D 、(-2x 2)(1-3x 3)= -2x 2+6x 5
5、若(a m+1b n+1)(a 2n b 2m )=a 5b 3,则m+n 的值为( )
A 、1
B 、2
C 、3
D 、-3
6、下列各式中正确的是( )
A 、(a +4)(a -4)=a 2-4
B 、(5x -1)(1-5x )=25x 2-1
C 、(-3x +2)2=4-12x +9x 2
D 、(x -3)(x -9)=x 2-27
7、如果x 2-kx -ab =(x -a )(x +b ),则k 应为( )
A 、a +b
B 、a -b
C 、b -a
D 、-a -b 8、若多项式等于,则、满足( )
244x nx m ++()22x n +m n A. B. C. D. 20m n +=20m n -=20m n +=20
n m -=9、因式分解x 2+2xy+y 2-4的结果是( )
A .(x+y+2)(x+y-2)
B .(x+y+4)(x+y-1)
C .(x+y-4)(x+y+1)
D .不能分解
10、计算x(1+x)-x(1-x)的结果是( )
A 、2x
B 、
C 、0
D 、22x 2
22x x +-二、填空题(每题3分,共30分)
1、已知,那么=________22
3233a a b b ⎛⎫⎛⎫÷= ⎪ ⎪⎝⎭⎝⎭84a b 2、分解因式:5xa 2-20xb 2=____________________
3、-x 2·(-x )3·(-x )2=__________.
4、若x 3m =2,则x 2m (x m +x 4m -x 7m ) =_____.
5、如果代数式(ax-y)(x+y)的乘积中不含“xy ”型的项,那么a 的值是 。
6、=___________ [
]233234)()()()(x x x x -÷-∙-÷-7、若a+b=3,ab=2,则a 2+b 2=___________
8、已知,则= .
03410622=++-+n m n m n m +9、19922-1991×1993=____________.
10、若2x 2+3x+7的值是8,则代数式9-4x 2-6x 的值是_________
三、解答题(每题10分,共50分)
1、已知,求(1);(2).235,310m n ==9m n -29m n -
2、已知(a +1)2=0,∣b -4∣+∣c -(-2)3∣=0,
求3(-ab )2+(-2a )3bc -5a 2.(-b )2+3a 3bc 的值
3、已知:(a +b )2=7 ,(a -b )2=9,求
a 2+
b 2及ab 的值。
4、下列各式进行因式分解.
(1)
)34(3422y xy x ++
(2)a 2(x-y )+b 2(y-x ).
5、某学校欲建如图所示的草坪(阴影部分),请你计算一下,一共需要铺是设草坪多少平方米?如果每平方米草坪需100元,则学校为是设草坪一共需投资多少元?(单位:米)。