广东省广州市荔湾区2016-2017学年高二下学期期末考试数学文试题+Word版含答案

合集下载

广东省2016-2017学年高二上学期期末考试文科数学试卷Word版含答案

广东省2016-2017学年高二上学期期末考试文科数学试卷Word版含答案

2016学年培正中学高二上期末考试数学(文科) 2017.1.9一、选择题:本大题共12小题,每小题5分,满分50分.1.已知集合,A B 均为全集{}12U =,,3,4的子集,且()C U A B ⋃={}4,{}1B =,2,则C U A B ⋂=2.下列函数为偶函数的是( ).A.2(1)y x =+ B.3y x = C.1y x x=-D.sin y x x = 3.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项和10S =A.85B.135C.95D.234.为了了解参加一次知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是( )A .2B .3C .4D .5 5.以下判断正确的是( )A .命题“负数的平方是正数”不是全称命题B .命题“∀x ∈N ,x 3>x ”的否定是“∃x ∈N ,x 3>x ”C .“a =1”是“函数f (x )=sin 2ax 的最小正周期为π”的必要不充分条件D .“b =0”是“函数f (x )=ax 2+bx +c 是偶函数”的充要条件 6.已知向量()2,1=→a ,()1,0=→b ,()2,-=→k c ,若(2+→a →b )⊥→c ,则k = 7.已知焦点坐标为(0,-4)、(0,4),且过点(0,-6)的椭圆方程为( )A .1203622=+y xB .1362022=+y x C .1163622=+y xD .1361622=+y x8.设a ∈R ,则“1a =”是“直线21y a x =+与 直线1y x =-平行”的( ).A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 9.某程序框图如图1所示,若该程序运行后输 出的值是95,则 10.将函数()sin(2)6f x x π=+的图像向右平移6π个单位,那么所得的图像所对应的函数解 析式是 11.已知双曲线的渐近线方程为x y 43±=,则此双曲线的 A .焦距为10 B .实轴长与虚轴长分别为8与6C .离心率e 只能是45或35 D .离心率e 不可能是45或35 12.若函数()f x 的零点与()43xg x e x =+-的零点之差的绝对值不超过0.25,则()f x 可以是( ).A.()21f x x =+B.()21f x x =-C.()21xf x =- D.()lg(2)f x x =- 二、填空题:本大题共6小题,每题5分,满分30分.13.在区间[-1,2]上随机取一个数x ,则|x |≤1的概率为________.14.某单位为了了解用电量y 度与气温x ℃之间的关系,随机统计了某4天的用电量与当天气温.气温(℃) 14 12 8 6 用电量(度) 2226 34 38由表中数据得回归直线方程y =b x +a 中b =-2,据此预测当气温为5℃时,用电量的度数约为______.15. 如果双曲线2288kx ky -=的一个焦点是(0,3),则k 的值是 .16.已知12,F F 是椭圆的两个焦点,过1F 且与椭圆长轴垂直的直线交椭圆于A,B 两点,若2ABF ∆是正三角形,则该椭圆的离心率是 .17. 已知双曲线22149x y -=,,A B 是其两个焦点,点M 在双曲线上,=120AMB ∠︒则三角形AMB 的面积为 .18.直线l 交椭圆2211612x y +=于A,B 两点,AB 的中点为M (2,1),则直线l 的方程为 .三、解答题:本大题共4小题,满分60分.解答须写出文字说明、证明过程和演算步骤. 19.(满分15分)设命题p :实数x 满足()(3)0x a x a --<,其中0a >,命题q :实数x满足302x x -≤- (1)若1a =,且p q ∧为真,求实数x 的取值范围;(2)若p q ⌝⌝是的充分不必要条件,求实数a 的取值范围。

中学2016-2017学年高二下期末考试数学试卷含解析

中学2016-2017学年高二下期末考试数学试卷含解析

2016学年第二学期高二数学期末考试一、填空题(本大题满分54分)本大题共有12题,其中第1题至第6题每小题4分,第7题至第12题每小题5分,考生应在答题纸上相应编号的空格内直接填写结果,否则一律得零分.1. 的展开式中项的系数为______.【答案】【解析】的展开式的通项公式为,令,求得,可得展开式中项的系数为,故答案为10.2. 已知直线经过点且方向向量为,则原点到直线的距离为______.【答案】1【解析】直线的方向向量为,所以直线的斜率为,直线方程为,由点到直线的距离可知,故答案为1.3. 已知全集,集合,,若,则实数的值为___________.【答案】2【解析】试题分析:由题意,则,由得,解得.考点:集合的运算.4. 若变量满足约束条件则的最小值为_________.【答案】【解析】由约束条件作出可行域如图,联立,解得,化目标函数,得,由图可知,当直线过点时,直线在y轴上的截距最小,有最小值为,故答案为. 点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.5. 直线上与点的距离等于的点的坐标是_____________.【答案】或.【解析】解:因为直线上与点的距离等于的点的坐标是和6. 某学生在上学的路上要经过2个路口,假设在各路口是否遇到红灯是相互独立的,遇到红灯的概率都是,则这名学生在上学路上到第二个路口时第一次遇到红灯的概率是_______.【答案】【解析】设“这名学生在上学路上到第二个路口首次遇到红灯”为事件,则所求概率为,故答案为.7. 某学校随机抽取名学生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中,上学所需时间的范围是,样本数据分组为,,,,.则该校学生上学所需时间的均值估计为______________.(精确到分钟).【答案】34................点睛:本题考查频率分布直方图,解题的关键是理解直方图中各个小矩形的面积的意义及各个小矩形的面积和为1,本题考查了识图的能力;根据直方图求平均值的公式,各个小矩形的面积乘以相应组距的中点的值,将它们相加即可得到平均值.8. 一个口袋内有4个不同的红球,6个不同的白球,若取一个红球记2分,取一个白球记1分,从中任取5个球,使总分不少于7分的取法有多少种________.【答案】186【解析】试题分析:设取红球个,白球个,则考点:古典概型.9. 如图,三棱锥满足:,,,,则该三棱锥的体积V的取值范围是______.【答案】【解析】由于平面,,在中,,要使面积最大,只需,的最大值为,的最大值为,该三棱锥的体积V的取值范围是.10. 是双曲线的右支上一点,分别是圆和上的点,则的最大值等于_________.【答案】9【解析】试题分析:两个圆心正好是双曲线的焦点,,,再根据双曲线的定义得的最大值为.考点:双曲线的定义,距离的最值问题.11. 棱长为1的正方体及其内部一动点,集合,则集合构成的几何体表面积为___________.【答案】【解析】试题分析:.考点:几何体的表面积.12. 在直角坐标平面中,已知两定点与位于动直线的同侧,设集合点与点到直线的距离之差等于,,记,.则由中的所有点所组成的图形的面积是_______________.【答案】【解析】过与分别作直线的垂线,垂足分别为,,则由题意值,即,∴三角形为正三角形,边长为,正三角形的高为,且,∴集合对应的轨迹为线段的上方部分,对应的区域为半径为1的单位圆内部,根据的定义可知,中的所有点所组成的图形为图形阴影部分.∴阴影部分的面积为,故答案为.二、选择题(本大题满分20分)本大题共有4题,每题只有一个正确答案.考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13. 已知为实数,若复数是纯虚数,则的虚部为()A. 2B. 0C. -2D. -2【答案】C【解析】∵复数是纯虚数,∴,化为,解得,∴,∴,∴的虚部为,故选C.14. 已知条件:“直线在两条坐标轴上的截距相等”,条件:“直线的斜率等于”,则是的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件【答案】B【解析】当直线过原点时,直线在两条坐标轴上的截距相等,斜率可以为任意数,故不成立;当直线的斜率等于,可设直线方程为,故其在两坐标轴上的截距均为,故可得成立,则是的必要非充分条件,故选B.15. 如图,在空间直角坐标系中,已知直三棱柱的顶点在轴上,平行于轴,侧棱平行于轴.当顶点在轴正半轴上运动时,以下关于此直三棱柱三视图的表述正确的是()A. 该三棱柱主视图的投影不发生变化;B. 该三棱柱左视图的投影不发生变化;C. 该三棱柱俯视图的投影不发生变化;D. 该三棱柱三个视图的投影都不发生变化.【答案】B【解析】A、该三棱柱主视图的长度是或者在轴上的投影,随点得运动发生变化,故错误;B、设是z轴上一点,且,则该三棱柱左视图就是矩形,图形不变.故正确;C、该三棱柱俯视图就是,随点得运动发生变化,故错误.D、与矛盾.故错误;故选B.点睛:本题考查几何体的三视图,借助于空间直角坐标系.本题是一个比较好的题目,考查的知识点比较全,但是又是最基础的知识点;从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图,根据图中C点对三棱柱的结构影响进一步判断.16. 如图,两个椭圆,内部重叠区域的边界记为曲线,是曲线上任意一点,给出下列三个判断:①到、、、四点的距离之和为定值;②曲线关于直线、均对称;③曲线所围区域面积必小于.上述判断中正确命题的个数为()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】对于①,若点在椭圆上,到、两点的距离之和为定值、到、两点的距离之和不为定值,故错;对于②,两个椭圆,关于直线、均对称,曲线关于直线、均对称,故正确;对于③,曲线所围区域在边长为6的正方形内部,所以面积必小于36,故正确;故选C.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17. 已知复数满足,(其中是虚数单位),若,求的取值范围.【答案】或【解析】试题分析:化简复数为分式的形式,利用复数同乘分母的共轭复数,化简为的形式即可得到,根据模长之间的关系,得到关于的不等式,解出的范围.试题解析:,,即,解得或18. 如图,直四棱柱底面直角梯形,,,是棱上一点,,,,,.(1)求异面直线与所成的角;(2)求证:平面.【答案】(1)(2)见解析【解析】试题分析:(1)本题中由于有两两垂直,因此在求异面直线所成角时,可以通过建立空间直角坐标系,利用向量的夹角求出所求角;(2)同(1)我们可以用向量法证明线线垂直,以证明线面垂直,,,,易得当然我们也可直线用几何法证明线面垂直,首先,这由已知可直接得到,而证明可在直角梯形通过计算利用勾股定理证明,,,因此,得证.(1)以原点,、、分别为轴、轴、轴建立空间直角坐标系.则,,,. 3分于是,,,异面直线与所成的角的大小等于. 6分(2)过作交于,在中,,,则,,,,10分,.又,平面. 12分考点:(1)异面直线所成的角;(2)线面垂直.19. 如图,圆锥的顶点为,底面圆心为,线段和线段都是底面圆的直径,且直线与直线的夹角为,已知,.(1)求该圆锥的体积;(2)求证:直线平行于平面,并求直线到平面的距离.【答案】(1)(2)【解析】试题分析:(1)利用圆锥的体积公式求该圆锥的体积;(2)由对称性得,即可证明直线平行于平面,到平面的距离即直线到平面的距离,由,求出直线到平面的距离.试题解析:(1)设圆锥的高为,底面半径为,则,,∴圆锥的体积;(2)证明:由对称性得,∵不在平面,平面,∴平面,∴C到平面的距离即直线到平面的距离,设到平面的距离为,则由,得,可得,∴,∴直线到平面的距离为.20. 阅读:已知,,求的最小值.解法如下:,当且仅当,即时取到等号,则的最小值为.应用上述解法,求解下列问题:(1)已知,,求的最小值;(2)已知,求函数的最小值;(3)已知正数,,求证:.【答案】(1)9(2)18(3)见解析【解析】试题分析:本题关键是阅读给定的材料,弄懂弄清给定材料提供的方法(“1”的代换),并加以运用.主要就是,展开后就可应用基本不等式求得最值.(1);(2)虽然没有已知的“1”,但观察求值式子的分母,可以凑配出“1”:,因此有,展开后即可应用基本不等式;(3)观察求证式的分母,结合已知有,因此有此式中关键是凑配出基本不等式所需要的两项,如与合并相加利用基本不等式有,从而最终得出.(1),2分而,当且仅当时取到等号,则,即的最小值为. 5分(2),7分而,,当且仅当,即时取到等号,则,所以函数的最小值为. 10分(3)当且仅当时取到等号,则. 16分考点:阅读材料问题,“1”的代换,基本不等式.21. 设椭圆的长半轴长为、短半轴长为,椭圆的长半轴长为、短半轴长为,若,则我们称椭圆与椭圆是相似椭圆.已知椭圆,其左顶点为、右顶点为.(1)设椭圆与椭圆是“相似椭圆”,求常数的值;(2)设椭圆,过作斜率为的直线与椭圆仅有一个公共点,过椭圆的上顶点为作斜率为的直线与椭圆仅有一个公共点,当为何值时取得最小值,并求其最小值;(3)已知椭圆与椭圆是相似椭圆.椭圆上异于的任意一点,求证:的垂心在椭圆上.【答案】(1)或;(2)当时,取得最小值.(3)见解析【解析】试题分析:(1)运用“相似椭圆”的定义,列出等式,解方程可得s;(2)求得的坐标,可得直线与直线的方程,代入椭圆的方程,运用判别式为,求得,再由基本不等式即可得到所求最小值;(3)求得椭圆的方程,设出椭圆上的任意一点,代入椭圆的方程;设的垂心的坐标为,运用垂心的定义,结合两直线垂直的条件:斜率之积为,化简整理,可得的坐标,代入椭圆的方程即可得证.试题解析:(1)由题意得或,分别解得或.(2)由题意知:,,直线,直线,联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ①联立方程,整理得:.因为直线与椭圆仅有一个公共点,所以. ②由①②得:.所以,此时,即.(3)由题意知:,所以,且.设垂心,则,即. 又点在上,有,. 则,所以的垂心在椭圆上.。

【精品】2016-2017学年广东省广州市荔湾区高一(下)期末数学试卷

【精品】2016-2017学年广东省广州市荔湾区高一(下)期末数学试卷

21.( 12 分)某电力部门需在 A、 B 两地之间架设高压电线,因地理条件限制, 不能直接测量 A、 B 两地距离.现测量人员在相距 km 的 C、D 两地(假设 A、 B、 C、 D 在同一平面上)测得∠ ACB=75°,∠ BCD=45°,∠ ADC=30°,∠ ADB=45° (如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度为 A、B 距离的 倍,问施工单位应该准备多长的电线?
Sn 的最小值为(

A.36 B.﹣ 36 C. 6 D.﹣ 6
12.( 5 分)若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的
比值为 m,则 m 的范围是( )
A.(1,2) B.(2,+∞) C.[ 3,+∞) D.(3,+∞)
二、填空题:本大题共 4 小题,每小题 5 分,满分 20 分 .把答案填在答题卡上 .
第 2 页(共 16 页)
( 1)求 A; ( 2)若 a=2,b=c,求△ ABC的面积. 20.(12 分)已知数列 { an} 的前 n 项和为 Sn,且 a1=2,an+1=
Sn( n=1,2,3,…).
( 1)证明:数列 { } 是等比数列;
( 2)设 bn=
,求数列 { bn} 的前 n 项和 Tn.
第 4 页(共 16 页)
【点评】 本题考查二元一次不等式表示的平面区域, 通常以直线定界, 特殊点定 区域.
3.(5 分)已知角 α的终边经过点 P(﹣ 3,﹣ 4),则 cos α的值是( ) A.﹣ B. C.﹣ D. 【分析】 由题意利用任意角的三角函数的定义,求得 cosα的值. 【解答】 解:∵角 α的终边经过点 P(﹣ 3,﹣4),∴x=﹣ 3,y=﹣4,r=| OP| =5, 则 cosα==﹣ ,

2016-2017学年广东省广州市荔湾区高二(下)期末数学试卷(文科)(解析版)

2016-2017学年广东省广州市荔湾区高二(下)期末数学试卷(文科)(解析版)

2016-2017学年广东省广州市荔湾区高二(下)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)若z•i=1﹣2i(i为虚数单位),则z的共轭复数是()A.﹣2﹣i B.2﹣i C.2+i D.﹣2+i2.(5分)抛物线x2=﹣4y的焦点到准线的距离为()A.1B.2C.3D.43.(5分)“p且q是真命题”是“非p为假命题”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也木必要条件4.(5分)用三段论演绎推理:“复数都可以表示成实部与虚部之和的形式,因为复数z=2+3i 的实部是2,所以复数z的虚部是3i”.对于这段推理,下列说法正确的是()A.大前提错误导致结论错误B.小前提错误导致结论错误C.推理形式错误导致结论错误D.推理没有问题,结论正确5.(5分)函数f(x)=e x lnx在点(1,f(1))处的切线方程是()A.y=2e(x﹣1)B.y=ex﹣1C.y=e(x﹣1)D.y=x﹣e6.(5分)若,则sinα﹣cosα的值与1的大小关系是()A.sinα﹣cosα>1B.sinα﹣cosα=1C.sinα﹣cosα<1D.不能确定7.(5分)函数f(x)=3x﹣4x3,(x∈[0,1])的最大值是()A.B.﹣1C.0D.18.(5分)甲、乙、丙三人中只有一人去过陈家祠,当他们被问到谁去过时,甲说:“丙没有去”;乙说:“我去过”;丙说:“甲说的是真话”.若三人中只有一人说的是假话,那么去过陈家祠的人是()A.甲B.乙C.丙D.不能确定9.(5分)某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m千米,远地点距地面n千米,地球半径为r千米,则该飞船运行轨道的短轴长为()A.2千米B.千米C.2mn千米D.mn千米10.(5分)函数f(x)=x3﹣ax在R上是增函数,则实数a的取值范围是()A.a≥0B.a≤0C.a>0D.a<011.(5分)若椭圆+=1(a>b>0)和圆x2+y2=(+c)2,(c为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()A.(,)B.(,)C.(,)D.(0,)12.(5分)已知定义在R上的函数f(x)是奇函数,且f(2)=0,当x>0时有,则不等式x2•f(x)>0的解集是()A.(﹣2,0)∪(2,+∞)B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2)D.(﹣2,2)∪(2,+∞)二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)函数f(x)=x3+ax2+x+b在x=1时取得极值,则实数a=.14.(5分)下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为=0.7x+0.35,那么表中m的值为.15.(5分)代数式中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式=t,则1+=t,则t2﹣t﹣1=0,取正值得t=,用类似方法可得=.16.(5分)如图,F1、F2是双曲线﹣=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左右两支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为.三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知直线l的参数方程为(t为参数),圆C的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.18.(12分)国家实施二孩放开政策后,为了了解人们对此政策持支持态度是否与年龄有关,计生部门将已婚且育有一孩的居民分成中老年组(45岁以上,含45岁)和中青年组(45岁以下,不含45岁)两个组别,每组各随机调查了50人,对各组中持支持态度和不支持态度的人所占的频率绘制成等高条形图,如图所示:(1)根据以上信息完成2×2列联表;(2)是否有99%以上的把握认为人们对此政策持支持态度与年龄有关?附:.19.(12分)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.20.(12分)如图①在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(如图②)(Ⅰ)求证AP∥平面EFG;(Ⅱ)求三棱锥P﹣EFG的体积.21.(12分)已知椭圆C:+=1(a>b>0)的离心率为,且经过点M(﹣3,﹣1).(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l:x﹣y﹣2=0与椭圆C交于A,B两点,点P为椭圆C上一动点,当△P AB的面积最大时,求点P的坐标及△P AB的最大面积.22.(12分)已知函数f(x)=lnx+ax2+bx(其中a,b)为常数且a≠0)在x=1处取得极值.(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若f(x)在(0,e]上的最大值为1,求a的值.2016-2017学年广东省广州市荔湾区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【解答】解:由z•i=1﹣2i,的,∴,故选:D.2.【解答】解:根据题意,抛物线的方程为x2=﹣4y,其焦点坐标为(0,﹣1),准线方程为y=1,焦点到准线的距离为2;故选:B.3.【解答】解:由p且q是真命题知,p和q均为真命题,所以非p为假命题,所以“p且q是真命题”是“非p为假命题”的充分条件;由非p为假命题知,p为真命题,但q真假不知,故无法判断p且q真假,所以“p且q是真命题”是“非p为假命题”的不必要条件.故选:A.4.【解答】解:复数都可以表示成实部与虚部之和的形式,这个说法是错误的,大前提是错误的,∴得到的结论是错误的,∴在以上三段论推理中,大前提错误.故选:A.5.【解答】解:函数f(x)=e x lnx的导数为f′(x)=e x lnx+e x,∴切线的斜率k=f′(1)=e,令f(x)=e x lnx中x=1,得f(1)=0,∴切点坐标为(1,0),∴切线方程为y﹣0=e(x﹣1),即y=e(x﹣1).故选:C.6.【解答】解:若,则sinα﹣cosα>0,sinαcosα<0,∵(sinα﹣cosα)2=1﹣2sinαcosα>1,∴sinα﹣cosα>1,故选:A.7.【解答】解:函数f(x)=3x﹣4x3的导数为f′(x)=3﹣12x2=3(1﹣4x2),由f′(x)=0,可得x=(﹣舍去)f(x)在[0,)递增,(,1)递减,可得f(x)在x=处取得极大值,且为最大值1.故选:D.8.【解答】解:假设甲说的是假话,即丙去过,则乙也是假话,不成立;假设乙说的是假话,即乙去过,又丙没有去过,故甲去过;故选:A.9.【解答】解:∵某宇宙飞船的运行轨道是以地球的中心F2为一个焦点的椭圆,设长半轴长为a,短半轴长为b,半焦距为c,则近地点A距地心为a﹣c,远地点B距地心为a+c.∴a﹣c=m+r,a+c=n+r,∴a=+r,c=.又∵b2=a2﹣c2=(+r)2﹣()2=mn+(m+n)r+r2=(m+r)(n+r)∴b=,∴短轴长为2b=2千米,故选:A.10.【解答】解:f′(x)=x2﹣a,若f(x)在R递增,则x2﹣a≥0在R恒成立,即a≤x2在R恒成立,故a≤0,故选:B.11.【解答】解:法一:联立,消去y2,得=()2﹣b2,∵椭圆+=1(a>b>0)和圆x2+y2=(+c)2,(c为椭圆的半焦距),有四个不同的交点,∴0<x2<a2,∴0<<c2,∴0<()2﹣b2<c2,∴b<<a,∴,∴,∴,∴,且0<e<1,解得.故选:C.法二:∵椭圆+=1(a>b>0)和圆x2+y2=(+c)2,(c为椭圆的半焦距),有四个不同的交点,椭圆与圆的中心都是原点,∴圆的半径满足,由,得2c>b,再平方得4c2>b2,在椭圆中,a2=b2+c2<5c2,∴e=,由,得b+2c<2a,再平方,得:b2+4c2+4bc<4a2,∴3c2+4bc<3c2,∴4bc<3b2,∴4c<3b,∴16c2<9b2,∴16c2<9a2﹣9c2,∴9a2>25c2,∴,∴e<.综上,椭圆的离心率e的取值范围是(,).故选:C.12.【解答】解:因为当x>0时,有恒成立,即[]′<0恒成立,所以在(0,+∞)内单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(﹣∞,﹣2)内恒有f(x)>0;在(﹣2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(﹣∞,﹣2)∪(0,2).故选:B.二、填空题:本大题共4小题,每小题5分,共20分.13.【解答】解:∵f(x)=x3+ax2+x+b,f′(x)=3x2+2ax+1,又∵f(x)在x=1时取得极值,∴f′(1)=3+2a+1=0,∴a=﹣2.故答案为:﹣2.14.【解答】解:∵根据所给的表格可以求出,∵这组数据的样本中心点在线性回归直线上,∴=0.7×4.5+0.35,∴m=3,故答案为:315.【解答】解:由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的式子.令=m(m>0),则两边平方得,6+═m2,即6+m=m2,解得,m=3(﹣2舍去).故答案为:3.16.【解答】解:设△ABF2的边长为m,则由双曲线的定义,可得|BF1|=m﹣2a ∴|AF1|=2m﹣2a∵|AF1|﹣|AF2|=2a∴2m﹣2a﹣m=2a∴m=4a在△AF1F2中,|AF1|=6a,|AF2|=4a,|F1F2|=2c,∠F1AF2=60°∴由余弦定理可得4c2=(6a)2+(4a)2﹣2•6a•4a•∴c=a∴=故答案为:.三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.【解答】解:(1)直线l的参数方程为,消去t可得2x﹣y﹣2a=0;圆C的参数方程为,两式平方相加可得x2+y2=16;(2)圆心C(0,0),半径r=4.由点到直线的距离公式可得圆心C(0,0)到直线L的距离d=.∵直线L与圆C有公共点,∴d≤4,即≤4,解得﹣2≤a≤2.18.【解答】解:(1)由等高条形图可知:中老年组中,持支持态度的有50×0.2=10人,持不支持态度的有50﹣10=40人;中青年组中,持支持态度的有50×0.5=25人,持不支持态度的有50﹣25=25人.故2×2列联表为:…(4分)(2);∴有99%以上的把握认为人们对此政策持支持态度支持与年龄有关…(10分)19.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cos B﹣cos∠ADC•sin B=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BC cos B=82+52﹣2×8×=49,即AC=7.20.【解答】解:(Ⅰ)∵EF∥CD∥AB,EG∥PB,根据面面平行的判定定理∴平面EFG∥平面P AB,又P A⊂面P AB,∴AP∥平面EFG…(6分)(Ⅱ)由题设可知BC⊥平面PDC,G是BC的中点,BC=2,所以GC=1,又,所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)21.【解答】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的离心率为,且经过点M(﹣3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.…(4分)(Ⅱ)将直线x﹣y﹣2=0代入中,消去y得,x2﹣3x=0.解得x=0或x=3.…(5分)∴点A(0,﹣2),B(3,1),∴|AB|==3.…(6分)在椭圆C上求一点P,使△P AB的面积最大,则点P到直线l的距离最大.设过点P且与直线l平行的直线方程为y=x+b.…(7分)将y=x+b代入,整理得4x2+6bx+3(b2﹣4)=0.…(8分)令△=(6b)2﹣4×4×3(b2﹣4)=0,解得b=±4.…(9分)将b=±4代入方程4x2+6bx+3(b2﹣4)=0,解得x=±3.由题意知当点P的坐标为(﹣3,1)时,△P AB的面积最大.…(10分)且点P(﹣3,1)到直线l的距离为d==3.…(11分)△P AB的最大面积为S==9.…(12分)22.【解答】解:(I)因为f(x)=lnx+ax2+bx所以f′(x)=+2ax+b,…(2分)因为函数f(x)=lnx+ax2+bx在x=1处取得极值f′(1)=1+2a+b=0…(3分)当a=1时,b=﹣3,f′(x)=,f′(x),f(x)随x的变化情况如下表:)…(5分)所以f(x)的单调递增区间为(0,),(1,+∞)单调递减区间为(,1)…(6分)(II)因为f′(x)=令f′(x)=0,x1=1,x2=…(7分)因为f(x)在x=1处取得极值,所以x2=≠x1=1,当<0时,f(x)在(0,1)上单调递增,在(1,e]上单调递减所以f(x)在区间(0,e]上的最大值为f(1),令f(1)=1,解得a=﹣2…(9分)当a>0,x2=>0当<1时,f(x)在(0,)上单调递增,(,1)上单调递减,(1,e)上单调递增所以最大值1可能在x=或x=e处取得而f()=ln+a()2﹣(2a+1)=ln﹣<0所以f(e)=lne+ae2﹣(2a+1)e=1,解得a=…(11分)当1≤<e时,f(x)在区间(0,1)上单调递增,(1,)上单调递减,(,e)上单调递增所以最大值1可能在x=1或x=e处取得而f(1)=ln1+a﹣(2a+1)<0所以f(e)=lne+ae2﹣(2a+1)e=1,解得a=,与1<x2=<e矛盾…(12分)当x2=≥e时,f(X)在区间(0,1)上单调递增,在(1,e)单调递减,所以最大值1可能在x=1处取得,而f(1)=ln1+a﹣(2a+1)<0,矛盾综上所述,a=或a=﹣2.…(13分)。

广东省广州市荔湾区2016-2017学年高二下学期期末考试数学理试题Word版含解析

广东省广州市荔湾区2016-2017学年高二下学期期末考试数学理试题Word版含解析

荔湾区2016-2017学年第二学期教学质量监测试卷高二数学(理科)本试卷共4页,22小题,满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数212⎛⎫ ⎪ ⎪⎝⎭所对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限2.下列命题中的假命题是 A .,lg 0x x R ∈∃>B .,sin 1x x ∃∈=RC .2,0x x ∈∀>R D .,20xx ∈∀>R 3.设()ln f x x x =,若0'()2f x =,则0x = A.2e B.e C.ln 22D.ln 24.已知A 是B 的充分不必要条件,C 是B 是必要不充分条件,A ⌝是D 的充分不必要条件,则C 是D ⌝的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知2~(,)Z N μσ,则()P Z μσμσ-<<+=0.6826,(22)P Z μσμσ-<<+=0.9544.若 (),~51X N ,则(67)P X <<等于A .0.3413B .0.4772C .0.1359D .0.81856.在四面体OABC 中,OA a =uu r r ,OB b =uu u r r ,OC c =uuu r r,点M 在OA 上,且2OM MA =,点N 是BC 的中点,则MN =uuu rA .211322a b c -++r r rB .121232a b c -+r r rC .111222a b c +-r r rD .221332a b c +-r r r7.直线3,,022x x y ππ===及曲线cos y x =所围成图形的面积是 A .2 B .3 C .π D .π28.从5名男生和4名女生中选出4人去参加辩论比赛,4人中既有男生又有女生的不同选法共有 A .80种 B .100种 C .120种 D .126种9.抛物线22y px =的焦点为F ,M 为抛物线上一点,若OFM ∆的外接圆与抛物线的准线相切(O 为坐标原点),且外接圆的面积为π9,则p = A .2 B .4 C .6 D .8 10.以下命题正确的个数为(1)存在无数个∈βα,R ,使得等式βαβαβαsin cos cos sin )sin(+=-成立; (2)在ABC ∆中,“6A π>”是“1sin 2A >”的充要条件; (3)命题“在ABC ∆中,若sin sin A B =,则A B =”的逆否命题是真命题; (4)命题“若6πα=,则21s i n =α”的否命题是“若6πα≠,则21s i n ≠α”. A .1 B .2 C .3 D .411.如图,已知椭圆221:110x C y +=,双曲线22222:1(0,0)x y C a b a b-=>>,若以1C 的长轴为直径的圆与2C 的一条渐近线交于,A B 两点,且1C 与该渐近线的两交点将线段AB 三等分,则2C 的离心率为 A .9 B .5 C .5 D .312.已知函数)(x f 的导函数为()f x ',且()()f x f x '>对任意的x ∈R 恒成立,则下列不等式均成立的是A .(1)(0)f ef <,2(2)(0)f e f <B .(1)(0)f ef >,2(2)(0)f e f < C .(1)(0)f ef <,2(2)(0)f e f > D .(1)(0)f ef >,2(2)(0)f e f >二、填空题:本大题共4小题,每小题5分,满分20分.13.若双曲线2221(0)3x y a a -=>的一个焦点恰好与抛物线28y x =的焦点重合,则双曲线的渐近线方程为 . 14.代数式⋅⋅⋅+++11111中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式t =,则11t t+=,则210t t --=,取正值得t =,用类似方法可得=⋅⋅⋅+++666 .15.用总长为24m 的钢条制作一个长方体容器的框架,若所制作容器底面为正方形,则这个容器体积的最大值为 .16.在()()642x x y ++的展开式中,记m nx y 项的系数为(),f m n ,则()()3,45,3f f += .(用数字作答)三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)已知数列{}n a 中,1112,2(1,2,3...)n na a n a +==-=. (Ⅰ)求234,,a a a 的值,猜想出数列的通项公式n a ; (Ⅱ)用数学归纳法证明你的猜想.18.(本小题满分12分)已知函数()(,)bf x ax a b x=+∈R 的图象过点))1(,1(f P ,且在点P 处的切线方程为38y x =-.(Ⅰ)求b a ,的值; (Ⅱ)求函数)(x f 的极值.19.(本小题满分12分)如图四边形ABCD 为边长为2的菱形,G 为AC 与BD 交点,平面BED ⊥平面A B C D,2,BE AE == (Ⅰ)证明:BE ⊥平面ABCD ; (Ⅱ)若120ABC ∠=,求直线EG 与平面EDC 所成角的正弦值.20.(本小题满分12分)某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50条作为样本进行统计,按海鱼重量(克)得到如下的频率分布直方图:第19题图DAGCE(Ⅰ)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(Ⅱ)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X ,求X 的分布列和数学期望. 21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为3()1,3--M .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线02:=--y x l 与椭圆C 交于,A B 两点,点P 为椭圆C 上一动点,当△PAB 的面积最大时,求点P 的坐标及△PAB 的最大面积. 22.(本小题满分12分)已知函数21()ln(1)2f x a x x x =++-,其中a 为实数. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若函数()f x 有两个极值点12,x x ,且12x x <,求证:212()0f x x ->.2016-2017学年广州市荔湾区高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数(+i)2所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】A5:复数代数形式的乘除运算;A4:复数的代数表示法及其几何意义.【专题】38 :对应思想;4R:转化法;5N :数系的扩充和复数.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数(+i)2=+i=+i对应的点(,)位于第二象限.故选:B.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2.下列命题中的假命题是()A.∃x∈R,lgx>0 B.∃x∈R,sinx=1 C.∀x∈R,x2>0 D.∀x∈R,2x>0【考点】2I:特称命题;2H:全称命题.【专题】35 :转化思想;4R:转化法;5L :简易逻辑.【分析】根据对数函数,正弦函数及指数函数的性质,分别判断,A,B,D为真命题,由当x=0时,x2=0,故C为假命题.【解答】解:对于A:当x>1时,lgx>0,故∃x∈R,lgx>0为真命题;对于B:当x=2kπ+,k∈Z时,sinx=1,则∃x∈R,sinx=1,为真命题;对于C:当x=0时,x2=0,故∀x∈R,x2>0,为假命题,对于D,由指数函数的性质可知:∀x∈R,2x>0,故为真命题,故选:C.【点评】本题考查逻辑语言与指数数、二次函数、对数函数、正弦函数的性质,属容易题.3.(5分)(2008•海南)设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.e C.D.ln2【考点】65:导数的乘法与除法法则.【分析】利用乘积的运算法则求出函数的导数,求出f'(x0)=2解方程即可.【解答】解:∵f(x)=xlnx∴∵f′(x0)=2∴lnx0+1=2∴x0=e,故选B.【点评】本题考查两个函数积的导数及简单应用.导数及应用是高考中的常考内容,要认真掌握,并确保得分.4.已知A是B的充分不必要条件,C是B是必要不充分条件,¬A是D的充分不必要条件,则C是¬D的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【专题】38 :对应思想;4O:定义法;5L :简易逻辑.【分析】根据充分条件和必要条件的递推关系进行递推即可.【解答】解:∵¬A是D的充分不必要条件,∴¬D是A的充分不必要条件,则¬D⇒A∵C是B是必要不充分条件,∴B是C是充分不必要条件,B⇒C∵A是B的充分不必要条件,∴A⇒B,则¬D⇒A⇒B⇒C,反之不成立,即C是¬D的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义进行递推是解决本题的关键.5.已知Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.若X~N(5,1),则P(6<X<7)等于()A.0.3413 B.0.4772 C.0.1359 D.0.8185【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】38 :对应思想;49 :综合法;5I :概率与统计.【分析】计算P(4<X<6),P(3<X<7),于是P(6<X<7)=(P(3<X<7)﹣P(4<X<6)).【解答】解:P(4<X<6)=0.6826,P(3<X<7)=0.9544,∴P(6<X<7)=(0.9544﹣0.6826)=0.1359.故选C.【点评】本题考查了正态分布的对称性特点,属于基础题.6.如图,空间四边形OABC中,=,=,=,点M在线段OA上,且OM=2MA,点N为BC的中点,则=()A.﹣++B.﹣+C.+﹣D.+﹣【考点】M3:空间向量的加减法.【专题】5H :空间向量及应用.【分析】由题意,把,,三个向量看作是基向量,由图形根据向量的线性运算,将用三个基向量表示出来,即可得到答案,选出正确选项.【解答】解:=,=+﹣+,=++﹣,=﹣++,∵=,=,=,∴=﹣++,故选:A.【点评】本题考点是空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题.7.直线x=,x=,y=0及曲线y=cosx所围成图形的面积是()A.2 B.3 C.πD.2π【考点】6G:定积分在求面积中的应用.【专题】11 :计算题;35 :转化思想;4O:定义法;52 :导数的概念及应用.【分析】直接利用定积分公式求解即可.【解答】解:直线x=,x=,y=0及曲线y=cosx所围成图形的面积S=(﹣cosx)dx=﹣sinx|=2,故选:A.【点评】本题考查定积分的应用,考查计算能力.8.从5名男生和4名女生中选出4人去参加辩论比赛,4人中既有男生又有女生的不同选法共有()A.80种B.100种C.120种D.126种【考点】D8:排列、组合的实际应用.【专题】11 :计算题;35 :转化思想;5O :排列组合.【分析】根据题意,先计算从9人中选出4人的选法数目,再排除其中“只有男生没有女生的选法”和“只有女生没有男生的选法”,即可得答案.【解答】解:根据题意,从5名男生和4名女生共9人中选出4人去参加辩论比赛,有C94=126种选法,其中只有男生没有女生的选法有C54=5种,只有女生没有男生的选法有C44=1种,则4人中既有男生又有女生的不同选法共有126﹣5﹣1=120种;故选:C.【点评】本题考查排列、组合的实际应用,可以使用间接法分析,避免分类讨论.9.抛物线y2=2px的焦点为F,M为抛物线上一点,若△OFM的外接圆与抛物线的准线相切(O 为坐标原点),且外接圆的面积为9π,则p=()A.2 B.4 C.6 D.8【考点】K8:抛物线的简单性质.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】根据△OFM的外接圆与抛物线C的准线相切,可得△OFM的外接圆的圆心到准线的距离等于圆的半径,由此可求p的值.【解答】解:∵△OFM的外接圆与抛物线C的准线相切,∴△OFM的外接圆的圆心到准线的距离等于圆的半径.∵圆面积为9π,∴圆的半径为3,又∵圆心在OF的垂直平分线上,|OF|=,∴+=3,∴p=4.故选B.【点评】本题考查圆与圆锥曲线的综合,考查学生的计算能力,属于基础题.10.以下命题正确的个数为()(1)存在无数个α,β∈R,使得等式sin(α﹣β)=sinαcosβ+cosαsinβ成立;(2)在△ABC中,“A>”是“sinA>”的充要条件;(3)命题“在△ABC中,若sinA=sinB,则A=B”的逆否命题是真命题;(4)命题“若α=,则sinα=”的否命题是“若α≠,则sinα≠”.A.1 B.2 C.3 D.4【考点】2K:命题的真假判断与应用.【专题】38 :对应思想;48 :分析法;5L :简易逻辑.【分析】(1),利用正弦的和差公式验证即可.(2),A>30°得不出sinA>,比如A=160°,若sinA>,根据正弦函数在(0,π)上的图象可得:30°<A<150°,能得到A>30°;(3),命题“在△ABC中,若sinA=sinB,则A=B”是真命题,其逆否命题是真命题;(4),利用原命题与其否命题的关系判定.【解答】解:对于(1),sin(α﹣β)=sinαcosβ﹣sinβcosα=sinαcosβ+cosαsinβ.可得sinβcosα=0,所以只要β=kπ,α任意,或者α=2kπ+,β任意.故正确.对于(2),A>30°得不出sinA>,比如A=160°,若sinA>,∵sin30°=sin150°=,∴根据正弦函数在(0,π)上的图象可得:30°<A<150°,∴能得到A>30°;得A>30°是sinA>的必要不充分条件,故错;对于(3),命题“在△ABC中,若sinA=sinB,则A=B”是真命题,其逆否命题是真命题,故正确对于(4),命题“若α=,则sinα=”的否命题是“若α≠,则sinα≠”,正确.故选:C【点评】本题考查了命题真假的判定,涉及到了三角、命题的否命题等基础知识,属于中档题.11.如图,已知椭圆C1:+y2=1,双曲线C2:﹣=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB 三等分,则C2的离心率为()A.9 B.5 C.D.3【考点】KL:直线与椭圆的位置关系.【专题】11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】由已知,|OA|=a=,设OA所在渐近线的方程为y=kx(k>0),则A(,),AB的一个三分点坐标为(,),由该点在椭圆C1上,求出=2,从而c==3a,由此能求出离心率.【解答】解:由已知,|OA|=a=,设OA所在渐近线的方程为y=kx(k>0),∴A点坐标可表示为A(x0,kx0)(x0>0)∴=,即A(,),∴AB的一个三分点坐标为(,),该点在椭圆C1上,∴,即=1,得k=2,即=2,∴c==3a,∴离心率e=.故选:D.【点评】本题考查双曲线的离心率的求法,考查椭圆性质、双曲线等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.12.已知函数F的导函数为f′(x),且f′(x)>f(x)对任意的x∈R恒成立,则下列不等式均成立的是()A.f(1)<ef(0),f(2)<e2f(0)B.f(1)>ef(0),f(2)<e2f(0)C.f(1)<ef(0),f(2)>e2f(0)D.f(1)>ef(0),f(2)>e2f(0)【考点】6A:函数的单调性与导数的关系.【专题】33 :函数思想;4R:转化法;52 :导数的概念及应用.【分析】令g(x)=,求出函数g(x)的导数,判断函数的单调性,从而求出答案.【解答】解:令g(x)=,则g′(x)=>0,故g(x)在R递增,故g(1)>g(0),g(2)>g(0),即f(1)>ef(0),f(2)>e2f(0),故选:D.【点评】本题考查了函数的单调性、导数的应用,构造函数g(x)=是解题的关键,本题是一道中档题.二、填空题:本大题共4小题,每小题5分,满分20分.13.若双曲线﹣=1(a>0)的一个焦点恰好与抛物线y2=8x的焦点重合,则双曲线的渐近线方程为y=±x .【考点】KC:双曲线的简单性质.【专题】11 :计算题;34 :方程思想;5D :圆锥曲线的定义、性质与方程.【分析】根据题意,由抛物线的标准方程求出其焦点坐标,即可得双曲线的焦点坐标,由双曲线的几何性质可得a2+3=4,解可得a=1,即可得双曲线的标准方程,由双曲线的渐近线方程即可得答案.【解答】解:根据题意,抛物线y2=8x的焦点坐标为(2,0),其双曲线﹣=1(a>0)的一个焦点也为(2,0),则有a2+3=4,解可得a=1,故双曲线的方程为:x2﹣=1,则双曲线的渐近线方程为:y=±x;故答案为:y=±x.【点评】本题考查双曲线、抛物线的标准方程,注意分析双曲线的焦点坐标.14.代数式中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式=t,则1+=t,则t2﹣t﹣1=0,取正值得t=,用类似方法可得= 3 .【考点】F3:类比推理.【专题】15 :综合题;35 :转化思想;4G :演绎法;5M :推理和证明.【分析】通过已知得到求值方法:先换元,再列方程,解方程,求解(舍去负根),再运用该方法,注意两边平方,得到方程,解出方程舍去负的即可.【解答】解:由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的式子.令=m(m>0),则两边平方得,6+═m2,即6+m=m2,解得,m=3(﹣2舍去).故答案为:3.【点评】本题考查类比推理的思想方法,考查从方法上类比,是一道基础题.15.用总长为24m的钢条制作一个长方体容器的框架,若所制作容器底面为正方形,则这个容器体积的最大值为8m3.【考点】7F:基本不等式.【专题】11 :计算题;34 :方程思想;5T :不等式.【分析】根据题意,设长方体容器的底面边长为xm,高为ym,由题意可得8x+4y=24,即2x+y=6,用x、y表示长方体的体积可得V=x2y=x2×(6﹣2x)=x×x×(6﹣2x),由基本不等式分析可得答案.【解答】解:根据题意,设长方体容器的底面边长为xm,高为ym,则有8x+4y=24,即2x+y=6,其体积V=x2y=x2×(6﹣2x)=x×x×(6﹣2x)≤[]3=8m3,当且仅当x=2时,等号成立;即这个容器体积的最大值8m3;故答案为:8m3.【点评】本题考查基本不等式的性质以及应用,关键是用x、y表示容器的体积.16.在(2+x)6(x+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,4)+f(5,3)= 400 .(用数字作答)【考点】DB:二项式系数的性质.【专题】11 :计算题;35 :转化思想;4O:定义法;5P :二项式定理.【分析】(2+x)6(x+y)4的展开式的通项为C6r26﹣r C4k x4+r﹣k y k,分别代入计算即可得到.【解答】解:(2+x)6(x+y)4的展开式的通项为C6r26﹣r x r C4k x4﹣k y k=C6r26﹣r C4k x4+r﹣k y k,∵x m y n项的系数为f(m,n),当k=4时,4+r﹣4=3,即r=3.∴f(3,4)=C6326﹣3C44=160,当k=3时,4+r﹣3=5,即r=4.∴f(5,3)=C6426﹣4C43=240,∴f(3,4)+f(5,3)=160+240=400,故答案为:400【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(10分)(2017春•荔湾区期末)已知数列{a n}中,a1=2,a n+1=2﹣(n=1,2,3,…).(Ⅰ)求a2,a3,a4的值,猜想出数列的通项公式a n;(Ⅱ)用数学归纳法证明你的猜想.【考点】RG:数学归纳法;F1:归纳推理.【专题】38 :对应思想;4F :归纳法;55 :点列、递归数列与数学归纳法.【分析】(I)根据递推公式计算并猜想通项公式;(II)先验证n=1时猜想成立,再假设n=k猜想成立,推导n=k+1的情况,得出结论.【解答】解:(I)a2=2﹣=;a3=2﹣=;a4=2﹣=;猜想:a n=.(II)当n=1时,猜想显然成立;假设n=k(k≥1)时猜想成立,即a k=,则a k+1=2﹣=2﹣==,∴当n=k+1时,猜想成立.∴a n=对任意正整数恒成立.【点评】本题考查了数学归纳法证明,属于基础题.18.(12分)(2017春•荔湾区期末)已知函数f(x)=ax+(a,b∈R)的图象过点P(1,f(1)),且在点P处的切线方程为y=3x﹣8.(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的极值.【考点】6D:利用导数研究函数的极值;6H:利用导数研究曲线上某点切线方程.【专题】34 :方程思想;4R:转化法;52 :导数的概念及应用.【分析】(Ⅰ),依题意列式计算得;(Ⅱ)由(Ⅰ)得,=得函数f(x)在(﹣∞,﹣2),(2,+∞)递减,在(﹣2,0),(0,2)递增,f(x)极小值=f(﹣2),f(x)极大值=f(2)【解答】解:(Ⅰ)∵函数f(x)=ax+(a,b∈R)的图象过点P(1,f(1)),且在点P处的切线方程为y=3x ﹣8.∴,解得;(Ⅱ)由(Ⅰ)得,=当x∈(﹣∞,﹣2),(2,+∞)时,f′(x)<0,当x∈(﹣2,0),(0,2)时,f′(x)>0.即函数f(x)在(﹣∞,﹣2),(2,+∞)递减,在(﹣2,0),(0,2)递增,∴f(x)极小值=f(﹣2)=4;f(x)极大值=f(2)=﹣4.【点评】本题考查了导数的几何意义,函数的单调性与极值,属于中档题,19.(12分)(2017春•荔湾区期末)如图四边形ABCD为边长为2的菱形,G为AC与BD交点,平面BED⊥平面ABCD,BE=2,AE=2.(Ⅰ)证明:BE⊥平面ABCD;(Ⅱ)若∠ABC=120°,求直线EG与平面EDC所成角的正弦值.【考点】MI:直线与平面所成的角;LW:直线与平面垂直的判定.【专题】35 :转化思想;49 :综合法;5H :空间向量及应用.【分析】(Ⅰ)由AC⊥DB,平面BED⊥平面ABCD,得AC⊥平面BED,即AC⊥BE.又 AE2=AB2+BE2,得BE⊥AB,即可得BE⊥平面ABCD.(Ⅱ)由(Ⅰ)得BE⊥平面ABCD,故以B为原点,建立空间直角坐标系,则E(0,0,2),D(1,,0),G(,,0),C(2,0,0),利用向量法求解.【解答】解:(Ⅰ)证明:∵四边形ABCD为菱形,∴AC⊥DB又因为平面BED⊥平面ABCD,平面BED∩平面ABCD=DB,AC⊂平面ABCD.∴AC⊥平面BED,即AC⊥BE.又BE=2,AE=2,AB=2,∴AE2=AB2+BE2,∴BE⊥AB,且AB∩BD=B,∴BE⊥平面ABCD.(Ⅱ)取AD中点H,连接BH.∵四边形ABCD为边长为2的菱形,∠ABC=120°,∴BH⊥AD,且BH=.由(Ⅰ)得BE⊥平面ABCD,故以B为原点,建立空间直角坐标系(如图)则E(0,0,2),D(1,,0),G(,,0),C(2,0,0)设面EDC的法向量为,,由,可取cos==﹣直线EG与平面EDC所成角的正弦值为.【点评】本题考查了线面垂直的判定,向量法求线面角,属于中档题.20.(12分)(2017春•荔湾区期末)某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:(Ⅰ)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(Ⅱ)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X,求x的分布列和数学期望.【考点】CH:离散型随机变量的期望与方差;B8:频率分布直方图;CG:离散型随机变量及其分布列.【专题】11 :计算题;35 :转化思想;49 :综合法;5I :概率与统计.【分析】(Ⅰ)由频率分布直方图先求出每条海鱼平均重量,由此能估计这批海鱼有多少条.(Ⅱ)从这批海鱼中随机抽取3条,[155,165)的频率为0.04×10=0.4,则X~B(3,0.4),由此能求出X的分布列和数学期望.【解答】解:(Ⅰ)由频率分布直方图得每条海鱼平均重量为:=150×0.016×10+160×0.040×10+170×0.032×10+180×0.012×10=164(g),∵经销商购进这批海鱼100千克,∴估计这批海鱼有:(100×1000)÷164≈610(条).(Ⅱ)从这批海鱼中随机抽取3条,[155,165)的频率为0.04×10=0.4,则X~B(3,0.4),P(X=0)==0.216,P(X=1)==0.432,P(X=2)==0.288,P(X=3)==0.064,∴X的分布列为:∴E(X)=3×0.4=1.2.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.21.(12分)(2017春•荔湾区期末)已知椭圆C:+=1(a>b>0)的离心率为,且经过点M(﹣3,﹣1).(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l:x﹣y﹣2=0与椭圆C交于A,B两点,点P为椭圆C上一动点,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.【考点】KL:直线与椭圆的位置关系.【专题】11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】(Ⅰ)利用椭圆的离心率为,且经过点M(﹣3,﹣1),列出方程组,求出a,b,由此能求出椭圆C的方程.(Ⅱ)将直线x﹣y﹣2=0代入中,得,x2﹣3x=0.求出点A(0,﹣2),B(3,1),从而|AB|=3,在椭圆C上求一点P,使△PAB的面积最大,则点P到直线l 的距离最大.设过点P且与直线l平行的直线方程为y=x+b.将y=x+b代入,得4x2+6bx+3(b2﹣4)=0,由根的判别式求出点P(﹣3,1)时,△PAB的面积最大,由此能求出△PAB的最大面积.【解答】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的离心率为,且经过点M(﹣3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.…(4分)(Ⅱ)将直线x﹣y﹣2=0代入中,消去y得,x2﹣3x=0.解得x=0或x=3.…(5分)∴点A(0,﹣2),B(3,1),∴|AB|==3.…(6分)在椭圆C上求一点P,使△PAB的面积最大,则点P到直线l的距离最大.设过点P且与直线l平行的直线方程为y=x+b.…(7分)将y=x+b代入,整理得4x2+6bx+3(b2﹣4)=0.…(8分)令△=(6b)2﹣4×4×3(b2﹣4)=0,解得b=±4.…(9分)将b=±4代入方程4x2+6bx+3(b2﹣4)=0,解得x=±3.由题意知当点P的坐标为(﹣3,1)时,△PAB的面积最大.…(10分)且点P(﹣3,1)到直线l的距离为d==3.…(11分)△PAB的最大面积为S==9.…(12分)【点评】本题考查椭圆方程的求法,考查三角形最大面积的求法,考查椭圆、直线方程、两点间距离公式、点到直线距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.22.(12分)(2017春•荔湾区期末)已知函数f(x)=aln(x+1)+x2﹣x,其中a为实数.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1<x2,求证:2f(x2)﹣x1>0.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【专题】35 :转化思想;49 :综合法;53 :导数的综合应用.【分析】(Ⅰ)求导数,分类讨论,利用导数的正负研究函数f(x)的单调性;(Ⅱ)所证问题转化为(1+x2)ln(x2+1)﹣x2>0,令g(x)=(1+x)ln(x+1)﹣x,x∈(0,1),根据函数的单调性证明即可.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),=.①当a﹣1≥0时,即a≥1时,f'(x)≥0,f(x)在(﹣1,+∞)上单调递增;②当0<a<1时,由f'(x)=0得,,故f(x)在(﹣1,﹣)上单调递增,在(﹣,)上单调递减,在(,+∞)上单调递增;③当a<0时,由f'(x)=0得x1=,x2=﹣(舍)f(x)在(﹣1,)上单调递减,在(,+∞)上单调递增.(Ⅱ)证明:由(Ⅰ)得若函数f(x)有两个极值点x1,x2,且x1<x2,则0<a<1,,,∴x1+x2=0,x1x2=a﹣1且x2∈(0,1),要证2f(x2)﹣x1>0⇔f(x2)+x2>0⇔aln(x2+1)+﹣x2>0⇔(1+x2)ln(x2+1)﹣x2>0,令g(x)=(1+x)ln(x+1)﹣x,x∈(0,1),∵g′(x)=ln(x+1)+>0,∴g(x)在(0,1)递增,∴g(x)>g(0)=0,∴命题得证.【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的构造与运用,转化思想.属于中档题。

广东省广州市荔湾区2016-2017学年高一下学期期末考试数学试题-含答案

广东省广州市荔湾区2016-2017学年高一下学期期末考试数学试题-含答案

2016-2017学年第二学期期末质量监测试题高一数学本试卷共4页,22小题,全卷满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一个是正确的. 1. 与60-角的终边相同的角是A. 300B. 240C. 120D. 602. 不等式240x y -+>表示的区域在直线240x y -+=的A. 左上方B. 左下方C. 右上方D. 右下方 3. 已知角α的终边经过点(3,4)P --,则cos α的值是A. 45-B. 43C. 35-D. 354. 不等式23100x x -->的解集是A .{}|25x x -≤≤B .{}|5,2x x x ≥≤-或C .{}|25x x -<<D .{}|5,2x x x ><-或 5. 若3sin ,5αα=-是第四象限角,则cos 4πα⎛⎫+⎪⎝⎭的值是A.45B .10C.10D.176. 若,a b ∈R ,下列命题正确的是A .若||a b >,则22a b >B .若||a b >,则22a b >C .若||a b ≠,则22a b ≠D .若a b >,则0a b -<7. 要得到函数3sin(2)5y x π=+图象,只需把函数3sin 2y x =图象A .向左平移5π个单位 B .向右平移5π个单位C .向左平移10π个单位 D .向右平移10π个单位 8. 已知M 是平行四边形ABCD 的对角线的交点,P 为平面ABCD 内任意—点,则PA PB PC PD +++等于A. 4PMB. 3PMC. 2PMD. PM 9. 若3cos 25α=,则44sin cos αα+的值是 A.1725 B .45C.65 D . 332510. 已知直角三角形的两条直角边的和等于4,则直角三角形的面积的最大值是 A. 4B. C. 2D.11. 已知点(),n n a 在函数213y x =-的图象上,则数列{}n a 的前n 项和n S 的最小值为A .36B .36-C .6D .6-12. 若钝角ABC ∆的内角,,A B C 成等差数列,且最大边长与最小边长的比值为m ,则m 的取值范围是A .1,2()B .2+∞(,)C .[3,)+∞D .(3,)+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分. 把答案填在答题卡上. 13. 若向量(4,2),(8,),//x ==a b a b ,则x 的值为 .14. 若关于x 的方程20x mx m -+=没有实数根,则实数m 的取值范围是 .15. 设实数,x y 满足,1,1.y x x y y ≤⎧⎪+≤⎨⎪≥-⎩则2z x y =+的最大值是 .16.设2()sin cos f x x x x =+,则()f x 的单调递减区间是 .三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知等比数列{}n a 的前n 项和为n S ,公比为q (1)q ≠,证明:1(1)1n n a q S q-=-.DA18.(本小题满分12分)已知平面向量a ,b 满足||1=a ,||2=b .(1)若a 与b 的夹角120θ=,求||+a b 的值; (2)若()()k k +⊥-a b a b ,求实数k 的值.19.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知cos sin c a B b A =+. (1)求A ;(2)若2a =,b c =,求ABC ∆的面积.20.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(1,2,3,)n =. (1)证明:数列n S n ⎧⎫⎨⎬⎩⎭是等比数列; (2)设2112n n n n b S S ++=,求数列{}n b 的前n 项和n T .21.(本小题满分12分)某电力部门需在A 、B 两地之间架设高压电线,因地理条件限制,不能直接测量A 、B 两地距离.km 的C 、D 两地(假设A 、B 、C 、D 在同一平面上)测得∠75ACB =,45BCD ∠=,30ADC ∠=,45ADB ∠=(如图),假如考虑电线的自然下垂和施工损耗等原因,实际所须电线长度为A 、B 应该准备多长的电线?22.(本小题满分12分)已知,,A B C 为锐角ABC △的内角,sin ,sin sin A B C =()a ,(1,2)=-b ,⊥a b . (1)tan B ,tan tan B C ,tan C 能否构成等差数列?并证明你的结论; (2)求tan tan tan A B C 的最小值.2016-2017学年第二学期期末质量监测高一数学参考答案与评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分. 一、选择题13. 4 14. (0,4) 15. 3 16. ()7+,1212k k k ππππ⎡⎤+∈⎢⎥⎣⎦Z 三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知等比数列{}n a 的前n 项和为n S ,公比为q (1)q ≠,证明:1(1)1n n a q S q-=-.证法1:(错位相减法)因为11n n a a q -=, …………………………………2分所以1111n n S a a q a q -=+++ (4)分211111n n n qS a q a q a q a q -=++++ …………………………………6分所以11(1)nn q S a a q -=- (8)分当1q ≠时,有1(1)1n n a q S q-=-. (10)分证法2:(叠加法)因为}{n a 是公比为q 的等比数列,所以21a a q =,32a a q =,1,n n a a q +=L …………………………………2分所以112)1(a q a a -=-,223)1(a q a a -=-,…,n n n a q a a )1(1-=-+,…………………………………6分相加得n n S q a a )1(11-=-+. …………………………………8分所以当q ≠1时,111(1)11n n n a a a q S q q+--==--. …………………………………10分证法3:(拆项法)当q ≠1时,11111111a a q qa a q q q-=⋅=----, …………………………………2分 211211111a q a q q a a q q q q-=⋅=----,……,11111111n nn n a q a q q a a q q q q---=⋅=----, …………………………………8分以上n 个式子相加得qq a q q a q a S n n n --=---=1)1(11111. …………………………………10分18.(本小题满分12分)已知平面向量a ,b 满足||1=a ,||2=b .(1)若a 与b 的夹角120θ=,求||+a b 的值; (2)若()()k k +⊥-a b a b ,求实数k 的值. 题根:《数学4》2.4.1例1、例2、例4.(综合变式)解:(1)1|||cos1201212⎛⎫=⨯⨯-=- ⎪⎝⎭a b =|a b ,…………………………………2分 22||()+=+a b a b 222=++a a b b …………………………………3分22|2|=++a |a b b | …………………………………4分 又||1=a ,||2=b ,所以2||+a b 22|2|1243=++=-+=a |a b b |,…………………………………5分所以||+=a b …………………………………6分(2)因为()()k k +⊥-a b a b ,所以()()0k k +-=a b a b , …………………………………7分 即2220k -=a b …………………………………9分 因为||1=a ,||2=b ,所以240k -=, …………………………………11分 即2k =±. …………………………………12分19.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知cos sin c a B b A =+. (1)求A ;(2)若2a =,b c =,求ABC ∆的面积.(根据2013课标卷Ⅱ理数17改编,正弦、余弦定理及三角变换的综合问题) 解:(1)解法1:由cos sin c a B b A =+及正弦定理可得sin sin cos sin sin C A B B A =+. …………………………………2分在ABC ∆中,CA B π=--,所以sin sin()sin cos cos sin C A B A B A B =+=+. …………………………………4分由以上两式得sin cos A A =,即tan 1A =, …………………………………5分 又(0,)A π∈,所以4A π=. …………………………………6分解法2:由cos sin c a B b A =+及余弦定理可得222sin 2a c b c a b A ac+-=⨯+, …………………………………2分即2222sin b c a bc A +-=, …………………………………3分 由余弦定理得2222cos b c a bc A +-=由以上两式得sin cos A A =,即tan 1A =, …………………………………5分 又(0,)A π∈,所以4A π=. …………………………………6分(2)ABC ∆的面积1sin 2S bc A ==, …………………………………7分 由2a =,及余弦定理得222242cos b c bc B b c =+-=+-, …………………………………8分因为b c =,所以2242b =,即24b ==+, …………………………………10分故ABC ∆的面积21S ===. ………………………………12分20.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(1,2,3,)n =. (1)证明:数列n S n ⎧⎫⎨⎬⎩⎭是等比数列; (2)设2112n n n n b S S ++=,求数列{}n b 的前n 项和n T .题根:《数学5》2.2习题B 组第4题. (变式题)解:(1)因为,11n n n a S S ++=-, …………………………………1分又12n n n a S n++=, 所以1(2)()n n n n S n S S ++=-, …………………………………2分 即12(1)n n nS n S +=+, 所以12()1n n S Sn n n *+=⋅∈+N .…………………………………4分 故数列n S n ⎧⎫⎨⎬⎩⎭是首项为2,公比为2的等比数列. …………………………………6分 (2)由(1)得2n nS n=,即2n n S n =. …………………………………8分 所以21211122111=2(1)2(1)1n n n n n n n b S S n n n n n n ++++===-+++,……………………10分 故数列{}n b 的前n 项和11111111223111n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. …………………12分 21.(本小题满分12分)DA某电力部门需在A 、B 两地之间架设高压电线,因地理条件限制,不能直接测量A 、B 两地距离.km 的C 、D 两地(假设A 、B 、C 、D 在同一平面上)测得∠75ACB =,45BCD ∠=,30ADC ∠=,45ADB ∠=(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度为A 、B位应该准备多长的电线?题根:《数学5》1.2例2. (改编题)解:在ACD ∆中,由已知得30CAD ∠=,又30ADC ∠=,所以AC CD ==. ……………………………………………………2分在BCD ∆中,由已知可得60CBD ∠=,由正弦定理得753sin 45+306BC +===().…………………………………6分在ABC ∆中,由余弦定理得2222cos AB AC BC ACBC BCA=+-⋅∠2()cos75522++=+-⋅=, ………………………9分 所以,AB = ……………………………………………………10分故施工单位应该准备电线长为5km . ………………………………………………12分22.(本小题满分12分)已知,,A B C 为锐角ABC △的内角,sin ,sin sin A B C =()a ,(1,2)=-b ,⊥a b . (1)tan B ,tan tan B C ,tan C 能否构成等差数列?并证明你的结论; (2)求tan tan tan A B C 的最小值.(据2016年江苏卷第14题改编,三角变换、平面向量、数列及基本不等式的综合问题) 解:(1)依题意有sin 2sin sin A B C =. ……………………………………………2分 在ABC △中,A B C π=--,所以sin sin +=sin cos cos sin A B C B C B C =+(),………………………………3分 所以2sin sin =sin cos cos sin B C B C B C +. …………………………………4分 因为ABC △为锐角三角形,所以cos 0,cos 0B C >>,所以tan tan 2tan tan B C B C +=, ……………………………………………5分所以tan B ,tan tan B C ,tan C 成等差数列. ……………………………………6分(2)法一:在锐角ABC △中,tan tan tan tan()tan()1tan tan B CA B C B C B Cπ+=--=-+=--,……………………7分即tan tan tan tan tan tan A B C A B C =++, ……………………………………8分 由(1)知tan tan 2tan tan B C B C +=,于是tan tan tan tan 2tan tan A B C A B C =+≥ …………10分整理得tan tan tan 8A B C ≥, …………………………………………11分 当且仅当tan 4A =时取等号,故tan tan tan A B C 的最小值为8. …………………………………………12分 法二:由法一知tan tan tan 1tan tan B CA B C+=--, ………………………………………7分由(1)知tan tan 2tan tan B C B C +=,于是2tan tan 2(tan tan )tan tan tan tan tan 1tan tan 1tan tan B C B C A B C B C B C B C+=-⨯=---, ……8分令tan tan (1)B C x x =>,则222tan tan tan 2(1)4811x A B C x x x ==-++≥--,……………………………11分 当且仅当2x =,即tan 4A =时取等号,故tan tan tan A B C 的最小值为8. …………………………………………12分。

2016-2017学年广东省东莞市高二(下)期末数学试卷及答案(文科)

2016-2017学年广东省东莞市高二(下)期末数学试卷及答案(文科)

2016-2017学年广东省东莞市高二(下)期末数学试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)函数f(x)=lg(x﹣1)+的定义域是()A.(1,3)B.[1,3]C.[1,3)D.(1,3]2.(5分)函数f(x)=ln|x﹣1|的图象大致是()A.B.C.D.3.(5分)直径为4的圆中,36°的圆心角所对的弧长是()A.B.C.D.4.(5分)已知幂函数y=f(x)的图象过点(,),则log4f(2)的值为()A.B.﹣C.2D.﹣25.(5分)函数y=log a(x﹣2)+1(a>0且a≠1)的图象恒过的一个定点是()A.(3,0)B.(3,1)C.(2,1)D.(2,2)6.(5分)若点P(cosα,sinα)在直线y=﹣2x上,则sin2α+2cos2α的值是()A.﹣B.﹣C.﹣2D.7.(5分)点A(sin2017°,cos2017°)在直角坐标平面上位于()A.第一象限B.第二象限C.第三象限D.第四象限8.(5分)设函数f(x)=g(x)+x3,曲线y=g(x)在点(1,g(1))处的切线方程为y =2x+1,则曲线y=f(x)在点(1,f(1))处切线的斜率为()A.4B.﹣C.5D.﹣9.(5分)终边经过点(a,a)(a≠0)的角α的集合是()A.{}B.{,}C.{α|α=+2kπ,k∈Z}D.{α|α=+kπ,k∈Z}10.(5分)已知函数ƒ(x)=,则函数f(x)的零点个数为()A.1B.2C.3D.411.(5分)设x∈R,若函数f(x)为单调递增函数,且对任意实数x,都有f(f(x)﹣e x)=e+1,则f(ln2)的值等于()A.1B.e+1C.3D.e+312.(5分)已知e是自然对数的底数,函数f(x)=e x+x﹣2的零点为a,函数g(x)=lnx+x ﹣2的零点为b,则下列不等式成立的是()A.f(1)<f(a)<f(b)B.f(a)<f(b)<f(1)C.f(a)<f(1)<f(b)D.f(b)<f(1)<f(a)二、填空题:本大题共4小题,每小题5分,共20分).13.(5分)=.14.(5分)已知如图程序框图的输出结果是y=3,则输入框中x的所有可能的值为.15.(5分)函数y=sin x+2|sin x|x∈[0,2π]的图象与直线的交点的个数为个.16.(5分)设f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),则:f(﹣1)=.三、解答题:本大题共6小题,共48分.解答写出文字说明、证明过程或演算过程. 17.(10分)已知角α的终边上有一点(a,a),其中a≠0,求sinα,cosα,tanα的值.18.(12分)已知cosαsinα=,<α<.(1)求tanα的值;(2)求的值;(3)求的值.19.(12分)二次函数f(x)满足f(x+1)﹣f(x)=2x且f(0)=1.(1)求f(x)的解析式;(2)在区间[﹣1,1]上,y=f(x)图象恒在y=2x+m的图象上方,试确定m的范围.20.(12分)已知函数f(x)=alnx+bx2+x(a,b∈R).(1)若a=﹣1,b=0,求f(x)的最小值;(2)若f(1)=f′(1)=0,求f(x)的单调递减区间.21.(12分)设函数f(x)=ka x﹣a﹣x(a>0且a≠1)是定义域R上的奇函数.(1)若f(1)>0,试求不等式f(x2+2x)+f(x﹣4)>0的解集;(2)若f(1)=,且g(x)=a2x+a﹣2x﹣4f(x),求g(x)在[1,+∞)上的最小值.22.(12分)已知函数f(x)=e x(e x﹣a)﹣a2x.(1)讨论f(x)的单调性;(2)若f(x)≥0,求a的取值范围.2016-2017学年广东省东莞市高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.【考点】33:函数的定义域及其求法.【解答】解:函数有意义,则:,求解不等式可得函数的定义域为:1<x≤3,即(1,3].故选:D.【点评】本题考查函数的定义域的求解,重点考查学生对基础概念的理解和计算能力,属于中等题.2.【考点】4N:对数函数的图象与性质.【解答】解:∵当x>1时,f(x)=ln|x﹣1|=ln(x﹣1),其图象为:∵当x<1时,f(x)=ln|x﹣1|=ln(1﹣x),其图象为:综合可得,B符合,故选:B.【点评】本题考查对数函数的图象与性质,对数函数的图象是对数函数的一种表达形式,形象地显示了函数的性质,为研究它的数量关系提供了“形”的直观性.3.【考点】G7:弧长公式.【解答】解:36°=π(弧度)=(弧度).∴36°的圆心角所对的弧长=×2=cm.故选:B.【点评】本题考查了弧长公式l=αr,属于基础题.4.【考点】4H:对数的运算性质;4V:幂函数的图象;51:函数的零点.【解答】解:由设f(x)=x a,图象过点(,),∴()a=,解得a=,∴log4f(2)=log4=.故选:A.【点评】本题考查利用待定系数法求函数解析式、知函数解析式求函数值.5.【考点】4O:对数函数的单调性与特殊点.【解答】解:令x﹣2=1,求得x=3,y=1,故函数y=log a(x﹣2)+1(a>0且a≠1)的图象恒过的一个定点(3,1),故选:B.【点评】本题主要考查对数函数的单调性和特殊点,属于基础题.6.【考点】GG:同角三角函数间的基本关系;GS:二倍角的三角函数.【解答】解:∵点P在y=﹣2x上,∴sinα=﹣2cosα,∴sin2α+2cos2α=2sinαcosα+2(2cos2α﹣1)=﹣4cos2α+4cos2α﹣2=﹣2.故选:C.【点评】本题考查二倍角的正弦,二倍角的余弦,考查计算能力,是基础题.7.【考点】GC:三角函数值的符号.【解答】解:2017°=5×360°+217°,为第三象限角,∴sin2017°=sin217°<0,cos2017°=cos217°<0;∴点A(sin2017°,cos2017°)在直角坐标平面上位于第三象限.故选:C.【点评】本题考查了三角函数的符号运用问题,是基础题目.8.【考点】6H:利用导数研究曲线上某点切线方程.【解答】解:因为曲线y=g(x)在点(1,g(1))处的切线方程为y=2x+1,所以g'(1)=2,因为f(x)=g(x)+x3,所以f′(x)=g'(x)+3x2,所以f′(1)=g'(1)+3=2+3=5,故选:C.【点评】本题主要考查导数的几何意义以及导数的基本运算,比较综合.9.【考点】G2:终边相同的角.【解答】解:当角的终边经过点(a,a)(a<0),角的集合为{α|α=2kπ+π+,k∈Z}.当角的终边经过点(a,a)(a>0),角的集合为{α|α=2kπ+,k∈Z},综上所述角的集合为{α|α=kπ+,k∈Z},故选:D.【点评】本题考查象限角和轴线角,考查了终边相同角的集合的表示,是基础题.10.【考点】3B:分段函数的解析式求法及其图象的作法;51:函数的零点.【解答】解:由得x=﹣4,由得x=4 或x=0,故选:C.【点评】本题考查求函数零点的方法,但本题为错题,建议x≥0 时,函数解析式为x (x﹣4).11.【考点】3G:复合函数的单调性.【解答】解:设t=f(x)﹣e x,则f(x)=e x+t,则条件等价为f(t)=e+1,令x=t,则f(t)=e t+t=e+1,∵函数f(x)为单调递增函数,∴函数为一对一函数,解得t=1,∴f(x)=e x+1,即f(ln2)=e ln2+1=2+1=3,故选:C.【点评】本题考查了复合函数的性质和单调性的运用.属于基础题.12.【考点】52:函数零点的判定定理.【解答】解:易知函数f(x)=e x+x﹣2在R上是增函数,g(x)=lnx+x﹣2在(0,+∞)上也是增函数;又∵f(a)=0,f(1)=e+1﹣2>0,g(b)=0,g(1)=0+1﹣2<0,∴0<a<1<b;故f(a)<f(1)<f(b);故选:C.【点评】本题考查了函数的单调性的判断与应用及函数零点的判定定理的应用,属于基础题.二、填空题:本大题共4小题,每小题5分,共20分).13.【考点】4H:对数的运算性质.【解答】解:∵lg2+lg5=lg10=1,∴lg22+lg2lg5+lg5﹣(﹣1)0=lg2(lg2+lg5)+lg5﹣1=lg2+lg5﹣1=lg10﹣1=1﹣1=0.故答案为:0.【点评】本题考查对数的运算性质,注意lg2+lg5=1的应用,属于基础题.14.【考点】EF:程序框图.【解答】解:由已知易得该程序的功能是计算并输出分段函数y=的值当x≤0时,若y=3,则,解得x=﹣8;当0<x<1时,若y=3,则,解得x=;当x≥1时,若y=3,则2x+1=3,解得x=1;故答案为:﹣8,,1【点评】本题考查的知识点是程序框图,其中根据已知的程序框图分析出程序的功能是计算本题的关键.15.【考点】H2:正弦函数的图象.【解答】解:由题意y=sin x+2|sin x|=图象如图,可知函数与y=有四个交点故答案为4【点评】本题考查正弦函数的图象,考查利用正弦函数的图象研究两个函数交点个数,利用图象是求解函数交点的个数以及方程根的个数的常用方法.16.【考点】3K:函数奇偶性的性质与判断;41:有理数指数幂及根式.【解答】解:∵f(x)是定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b(b为常数),∴f(0)=1+b=0,解得b=﹣1∴f(x)=2x+2x﹣1.当x<0时,﹣f(x)=2﹣x+2(﹣x)﹣1,∴f(x)=﹣2﹣x+2x+1,∴f(﹣1)=﹣2﹣2+1=﹣3.故答案为:﹣3.【点评】本题考查函数性质的应用,是基础题.解题时要认真审题,注意奇函数的性质的灵活运用.三、解答题:本大题共6小题,共48分.解答写出文字说明、证明过程或演算过程. 17.【考点】G9:任意角的三角函数的定义.【解答】解:角α的终边上有一点(a,a),其中a≠0,∴x=a,y=a,当a>0时,r=|OP|=a,∴sinα==,cosα==,tanα==,当a<0时,r=|OP|=﹣a,∴sinα==﹣,cosα==﹣,tanα==.【点评】本题主要考查任意角的三角函数的定义,属于基础题.18.【考点】GF:三角函数的恒等变换及化简求值.【解答】解:由cosαsinα=,且<α<.得sinα+cosα=,sinα﹣cosα=.∴sinα=,cosα=.(1)tanα=;(2)==;(3)====.【点评】本题考查三角函数的化简求值,考查灵活运用所学知识处理问题与解决问题的能力,考查计算能力,是中档题.19.【考点】36:函数解析式的求解及常用方法;3V:二次函数的性质与图象.【解答】解:(1)设为f(x)=ax2+bx+c,由题可知:f(0)=1,解得:c=1,由f(x+1)﹣f(x)=2x.可知:[a(x+1)2+b(x+1)+1]﹣(ax2+bx+1)=2x化简得:2ax+a+b=2x,所以:a=1,b=﹣1.∴f(x)=x2﹣x+1.(2)在区间[﹣1,1]上,y=f(x)图象恒在y=2x+m的图象上方,就是不等式f(x)>2x+m,可化简为x2﹣x+1>2x+m,在区间[﹣1,1]上恒成立.即:x2﹣3x+1﹣m>0.设h(x)=x2﹣3x+1﹣m,则其对称轴为x=,∴h(x)在[﹣1,1]上是单调递减函数.因此只需h(x)的最小值大于零即可,∴h(1)>0.代入得:1﹣3+1﹣m>0解得:m<﹣1所以实数m的取值范围是:m<﹣1(备注:此题分离参数也可)【点评】本题考查二次函数的解析式的求法,函数恒成立的应用,考查转化思想以及计算能力.20.【考点】6B:利用导数研究函数的单调性;6E:利用导数研究函数的最值.【解答】解:(1)若a=﹣1,b=0,则f(x)=x﹣lnx(x>0),f′(x)=1﹣=,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,易知f(x)在(0,1)上单调递减,在(1,+∞)上单调递增,故f(x)min=f(1)=1.(2)由f(1)=b+1=0得b=﹣1,∴f(x)=alnx﹣x2+x,f′(x)=﹣2x+1,f'(1)=a﹣2+1=0,a=1,∴f′(x)=﹣2x+1=﹣,由f'(x)<0得x>1,∴f(x)的单调递减区间为(1,+∞).【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及解不等式问题,是一道中档题.21.【考点】3E:函数单调性的性质与判断;3N:奇偶性与单调性的综合.【解答】解:∵f(x)为R上的奇函数,∴f(0)=0,∴k﹣1=0⇒k=1,∴f(x)=a x﹣a﹣x(1)∵f(1)>0,∴a﹣a﹣1>0,a>0,∴a>1.∴f(x)为R上的增函数由f(x2+2x)+f(x﹣4)>0得:f(x2+2x)>f(4﹣x)即:x2+3x﹣4>0⇒x<﹣4或x>1.即不等式的解集(﹣∞,﹣4)∪(1,+∞).(2)由f(1)=得a=2,由(1)可知f(x)为[1,+∞)上的增函数.f(x)≥f(1)=所以g(x)=a2x+a﹣2x﹣4f(x)=(f(x)﹣2)2﹣2≥﹣2(当f(x)=2时取等号)故g(x)在[1,+∞)上的最小值﹣2.【点评】本题是对函数单调性和奇偶性的综合考查.对函数单调性和奇偶性的综合考查的一般出题形式是解不等式的题,解题方法是先利用奇偶性进行转化,再利用单调性解不等式.22.【考点】6B:利用导数研究函数的单调性.【解答】解:(1)f(x)=e x(e x﹣a)﹣a2x=e2x﹣e x a﹣a2x,∴f′(x)=2e2x﹣ae x﹣a2=(2e x+a)(e x﹣a),①当a=0时,f′(x)>0恒成立,∴f(x)在R上单调递增,②当a>0时,2e x+a>0,令f′(x)=0,解得x=lna,当x<lna时,f′(x)<0,函数f(x)单调递减,当x>lna时,f′(x)>0,函数f(x)单调递增,③当a<0时,e x﹣a>0,令f′(x)=0,解得x=ln(﹣),当x<ln(﹣)时,f′(x)<0,函数f(x)单调递减,当x>ln(﹣)时,f′(x)>0,函数f(x)单调递增,综上所述,当a=0时,f(x)在R上单调递增,当a>0时,f(x)在(﹣∞,lna)上单调递减,在(lna,+∞)上单调递增,当a<0时,f(x)在(﹣∞,ln(﹣))上单调递减,在(ln(﹣),+∞)上单调递增,(2)①当a=0时,f(x)=e2x>0恒成立,②当a>0时,由(1)可得f(x)min=f(lna)=﹣a2lna≥0,∴lna≤0,∴0<a≤1,③当a<0时,由(1)可得:f(x)min=f(ln(﹣))=﹣a2ln(﹣)≥0,∴ln(﹣)≤,∴﹣2≤a<0,综上所述a的取值范围为[﹣2,1]【点评】本题考查了导数和函数的单调性和函数最值的关系,以及分类讨论的思想,考查了运算能力和化归能力,属于中档题.。

广东省广州市荔湾区2017-2018学年高二下学期期末考试数学文试题PDF版含答案

广东省广州市荔湾区2017-2018学年高二下学期期末考试数学文试题PDF版含答案

2017-2018学年第二学期期末教学质量监测高二数学(文科)本试卷共4页,22小题,满分150分.考试用时120分钟.最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。

第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若i12i z (i 为虚数单位),则z 的共轭复数是A .22iB .2i C .2iD .2i2.抛物线24xy 的焦点到准线的距离为A .1B . 2C .3D .43.“p 且q 是真命题”是“非p 为假命题”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.用三段论演绎推理:“复数都可以表示成实部与虚部之和的形式,因为复数z 23i的实部是2,所以复数z 的虚部是3i ”。

对于这段推理,下列说法正确的是A .大前提错误导致结论错误B .小前提错误导致结论错误C .推理形式错误导致结论错误D .推理没有问题,结论正确5.函数x e x f xln )(在点))1(,1(f 处的切线方程是A .)1(2x e y B.1ex yC.)1(x e yD.ex y 6.若2,则sin cos的值与1的大小关系是A.sin cos 1B.sincos 1 C.sin cos 1D.不能确定7.函数3()34f x x x0,1x 的最大值是A .12B .-1C .0D .18.甲、乙、丙三人中只有一人去过陈家祠,当他们被问到谁去过时,甲说:“丙没有去”;乙说:“我去过”;丙说:“甲说的是真话”。

若三人中只有一人说的是假话,那么去过陈家祠的人是A .甲B .乙C .丙D .不能确定9.某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m 千米,远地点距地面n 千米,地球半径为r 千米,则该飞船运行轨道的短轴长为A .2()()m r n r 千米B .()()m r n r 千米C .mn 2千米D .mn 千米10.函数31()3f x xax 在R 上是增函数,则实数a 的取值范围是A .0a B. 0aC. 0a D.0a11.若椭圆)0(12222baby ax 和圆c c b yx(,)2(222为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是A. )53,52( B. )55,52(C. )53,55( D. )55,0(12. 已知定义在R 上的函数()f x 是奇函数,且(2)0f ,当0x 时,有'2()()0x f x f x x,则不等式2()0xf x 的解集是A .(2,0)(2,)B.(,2)(0,2)C .(2,0)(0,2)D .(2,2)(2,)第Ⅱ卷(非选择题共90分)二、填空题: 本大题共4小题,每小题5分,共20分。

广东省高二下学期期末考试数学(文)试题 Word版含答案

广东省高二下学期期末考试数学(文)试题 Word版含答案

2015-2016学年度第二学期期末测试高二数学试题(文科)第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的) 1.若集合A ={x |-2<x <1},B ={x |0<x <2},则集合A ∩B =( ) A .{x |-1<x <1} B .{x |-2<x <1} C .{x |-2<x <2} D .{x |0<x <1} 2.设复数z 满足(1-i )z =2i ,则z =( )A .-1-iB .-1+iC .1+iD .1-i 3.已知命题:p x ∃∈R ,223x x ++=0,则p ⌝是( ) A .2,230x R x x ∀∈++≠ B .2,230x R x x ∀∈++= C .2,230x R x x ∃∈++≠ D .2,230x R x x ∃∈++=4.设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且b ⊥m ,则“α⊥β”是“a ⊥b ”的( )A .必要不充分条件B .充分不必要条件C .充分必要条件D .既不充分也不必要条件 5.已知cos α=-45,且α∈(2π,π),则tan (4π-α)= A .-17 B .-7 C .17D .7 6.若双曲线22213y x a -=(a >0)的离心率为2,则a 等于( )A .2B .C .32D .1 7.已知△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,222a b c bc =+-,4bc ,则△ABC 的面积为( )A .12B .1CD .2 8.下面框图表示的程序所输出的结果是( )A .1320B .132C .11880D .121 9.如图是一个几何体的三视图(侧视图中的弧线是半圆),则该几何 体的表面积是( )A .20+3πB .24+3πC .20+4πD .24+4π10.已知平面向量a ,b ,满足a =(1),|b |=3,a ⊥(a -2b ),则|a -b |=( ) A .2 B .3 C .4 D .611.若圆C :22x y ++2x -4y +3=0关于直线2ax +by +6=0对称,则由点(a ,b )向圆所作的切线长的最小值是( ) A .2 B .3 C .4 D .612.各项不为零的等差数列{n a }中,2a 3-27a +2a 11=0,数列{n b }是等比数列,且b 7=a 7,则b 6b 8=( )A .2B .4C .8D .16第Ⅱ卷(90分)本卷包括必考题和选考题两部分.第13—21题为必考题,每个试题考生都必须作答.第22-24题为选考题.考生根据要求作答. 二、填空题(本大题共4小题,每小题5分,共20分.)13.曲线f(x)=3x-x+3在点P(1,3)处的切线方程是_________.14.已知{na}为等差数列,公差为1,且a5是a3与a11的等比中项,则a1=_________.15.已知定义在R上的偶函数()f x在[0,)+∞单调递增,且(1)0f=,则不等式(2)0f x-≥的解集是 .16.如图,半球内有一内接正四棱锥S ABCD-,该四棱锥的体积为3,则该半球的体积为 .三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)在△ABC中,b=2,cosC=34,△ABC.(Ⅰ)求a的值;(Ⅱ)求sin2A值.18.(本小题满分12分)为了解人们对于国家新颁布的“生育二胎放开”政策的热度,现在某市进行调查,随机抽调了50人,他们年龄的频数分布及支持“生育二胎”人数如下表:(Ⅰ)由以上统计数据填下面2乘2列联表,并问是否有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异;(Ⅱ)若对年龄在[5,15)的被调查人中各随机选取两人进行调查,恰好这两人都支持“生育二胎放开”的概率是多少?参考数据:19.(本小题满分12分)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠BCD =120°,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,BF =1. (Ⅰ)求证:AD ⊥平面BFED ; (Ⅱ)已知点P 在线段EF 上,EPPF=2.求三棱锥E -APD 的体积.20.(本小题满分12分)已知曲线C 的方程是221mx ny +=(m >0,n >0),且曲线C 过A (4,2),B3)两点,O 为坐标原点. (Ⅰ)求曲线C 的方程;(Ⅱ)设M (x 1,y 1),N (x 2,y 2)是曲线C 上两点,向量p =11),q x 2y 2),且p ·q =0,若直线MN 过(0,2),求直线MN 的斜率.21.(本小题满分12分)已知函数f (x )=xe x m-.(Ⅰ)讨论函数y =f (x )在x ∈(m ,+∞)上的单调性; (Ⅱ)若m ∈(0,12],则当x ∈[m ,m +1]时,函数y =f (x )的图象是否总在函数g (x )=2x +x 图象上方?请写出判断过程.请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分,做答时,用2B 铅笔在答题卡上把所选题目对应的题号涂黑. 22.(本小题满分10分)选修4—1:几何证明选讲如图,正方形ABCD 边长为2,以A 为圆心、DA 为半径的 圆弧与以BC 为直径的半圆O 交于点F ,连结BF 并延长交 CD 于点E .(Ⅰ)求证:E 为CD 的中点; (Ⅱ)求EF ·FB 的值.23.(本小题满分10分)选修4—4:坐标系与参数方程平面直角坐标系xOy 中,曲线C :22(1)1x y -+=.直线l 经过点P (m ,0),且倾斜角为6.以O 为极点,以x 轴正半轴为极轴,建立极坐标系.(Ⅰ)写出曲线C 的极坐标方程与直线l 的参数方程;(Ⅱ)若直线l 与曲线C 相交于A ,B 两点,且|PA |·|PB |=1,求实数m 的值.24.(本小题满分10分)选修4—5:不等式选讲 已知函数f (x )=|x +6|-|m -x |(m ∈R ). (Ⅰ)当m =3时,求不等式f (x )≥5的解集;(Ⅱ)若不等式f (x )≤7对任意实数x 恒成立,求m 的取值范围.2015-2016学年度第二学期期末测试 高二数学参考答案(文科)一、选择题1-5 DBABD; 6-10 DCAAB; 11-12 CD 二、填空题13.210x y -+=; 14.1-; 15 (,1][3,)-∞+∞;16 3. 17.解:(Ⅰ)因为3cos 4C =,且0C <<π,所以sin C =.因为1sin 2S a b C =⋅⋅, 得1a =. …………………6分(Ⅱ)由余弦定理,2222cos c b a b a C =+-⋅⋅所以c =由正弦定理,sin sin c aC A=,得sin A =所以cos 8A =.所以sin 22sin cos A A A =⋅=. …………………12分 18.解:(Ⅰ)2乘2列联表……………………………2分()()()()2250(311729) 6.27372911329711K ⨯⨯-⨯=≈++++<6.635………………4分所以没有99%的把握认为以45岁为分界点对“生育二胎放开”政策的支持度有差异.………………5分(Ⅱ)设年龄在[5,15)中支持“生育二胎”的4人分别为a,b,c,d, 不支持“生育二胎”的人记为M, ………………6分则从年龄在[5,15)的被调查人中随机选取两人所有可能的结果有:(a,b ), (a,c ),(a,d ), (a, M ), (b,c ), (b,d ),(b, M ), (c, d ), (c, M ),(d, M ).…………8分设“恰好这两人都支持“生育二胎””为事件A ,………………9分则事件A 所有可能的结果有:(a,b ), (a,c ), (a,d ), (b,c ), (b,d ), (c, d ),∴()63.105P A ==………………11分 所以对年龄在[5,15)的被调查人中随机选取两人进行调查时,恰好这两人都支持“生育二胎”的概率为35.………………12分19.解:(1)在梯形ABCD 中,∵AB ∥CD ,1,AD DC CB ===120,o BCD ∠=∴ 2.AB = ∴2222cos60 3.o BD AB AD AB AD =+-⋅⋅=…………………2分 ∴222,AB AD BD =+∴.AD BD ⊥ ∵平面BFED ⊥平面,ABCD 平面BFED ⋂平面,ABCD BD =DE ⊂平面BEFD ,,DE DB ⊥ ∴,DE ABCD ⊥平面 …………………4分∴,DE AD ⊥又,DE BD D ⋂= ∴.AD BFED ⊥平面 …………………6分 (2)由(1)知BD ⊥平面,ADE …………………8分∵BD //EF , ∴,PE ADE ⊥平面且PE =…………………10分∴111||33239E APD P ADE ADE V V S PE --∆===⨯⨯=…………………12分20.解:(1)由题可得:1118211163m n m n ⎧+=⎪⎪⎨⎪+=⎪⎩,解得4, 1.m n ==所以曲线C 方程为22y 4x 1.+= ........4分(2)设直线MN 的方程为23+=kx y ,代入椭圆方程为1422=+x y 得:221(4)0.4++-=k x ∴441,43221221+-=+-=+k x x k k x x , …………6分 ∴p q ⋅=u r r1122(2,)(2,)x y x y ⋅=042121=+y y x x …………8分 ∴0434)3(23441412222=++-⋅++-++-k k k k k k …………10分 即2,022±==-k k ................12分21.(本小题满分12分)解:(1)'22()(1)(),()()----==--x x x e x m e e x m f x x m x m '(,1)()0x m m f x ∈+<当时,,'(1,)()0x m f x ∈++∞>当时,,所以()∞f x m m m 在(,+1)上单调递减,在(+1,+)上单调递增..…………4分 (2)由(1)知()f x m m 在(,+1)上单调递减,所以其最小值为1(1)m f m e ++=.因为1(0,]2m ∈,()g x 在[,1]x m m ∈+最大值为2(1) 1.+++m m …………6分所以下面判断(1)f m +与2(1)1m m +++的大小,即判断x e 与x x )1(+的大小,其中311,.2⎛⎤=+∈ ⎥⎝⎦x m 令x x e x m x )1()(+-=,12)('--=x e x m x ,令'()()h x m x =,则'()2,=-x h x e'()20x x e =->,)('x m 单调递增;…………8分所以03)1('<-=e m ,04)23(23'>-=e m 使得012)(00'0=--=x e x m x所以)(x m 在()0,1x 上单调递减,在⎪⎭⎫ ⎝⎛23,0x 单调递增 …………10分 所以112)()(020020002000++-=--+=--=≥x x x x x x x e x m x m x01)(0200>++-=x x x 即x x e x )1(+>也即2(1)(1)1f m m m +>+++所以函数()y f x =的图象总在函数2()g x x x =+图象上方.……………..12分22.解:(Ⅰ)由题可知»BD 是以为A 圆心,DA 为半径作圆,而ABCD 为正方形,∴ED 为圆A 的切线.依据切割线定理得2ED EF EB =⋅. ………………………………2分∵圆O 以BC 为直径,∴EC 是圆O 的切线,同样依据切割线定理得2EC EF EB =⋅.……………………………4分故EC ED =.∴E 为CD 的中点. ……………………………5分(Ⅱ)连结CF ,∵BC 为圆O 的直径,∴CF BF ⊥ ………………………………6分 由BF CE BE BC S BCE ⋅=⋅=∆21211122BCES BC CE BE CF ∆=⨯=⨯得5CF ==…………………………8分 又在Rt BCE ∆中,由射影定理得24.5EF FB CF ⋅==……………………10分 23.解:(1)C 曲线的普通方程为:2222(1)1,2,x y x y x -+=+=即即22cos ρρθ=,:2cos C ρθ=即曲线的极坐标方程为. …………2分2().12x m t l t y t ⎧=+⎪⎪⎨⎪=⎪⎩直线的参数方程为为参数 …………5分 (2)12,,,A B t t l 设两点对应的参数分别为将直线的参数方程代入222,x y x +=中2220,t t m m ++-=得2122t t m m =-所以, …………8分2|2|1,1,11m m m -==+由题意得得 …………10分24.解:(1)当3m =时,()5f x ≥即|6||3|5x x +--≥,①当6x <-时,得95-≥,所以x φ∈;②当63x -≤≤时,得635x x ++-≥,即1x ≥,所以13x ≤≤; ③当3x >时,得95≥,成立,所以3x >.…………………………………4分故不等式()5f x ≥的解集为{}|1x x ≥.…………………………………5分 (Ⅱ)因为|6||||6|x m x x m x +--≤++-=|6|m + 由题意得67m +≤,则767m -≤+≤,…………8分 解得131m -≤≤,故m 的取值范围是[13,1]-.……………………………………………10分。

广东省广州市荔湾区2016-2017学年高一下学期期末考试数学试题-含答案

广东省广州市荔湾区2016-2017学年高一下学期期末考试数学试题-含答案

2016-2017学年第二学期期末质量监测试题高一数学本试卷共4页,22小题,全卷满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一个是正确的. 1. 与60-角的终边相同的角是A. 300B. 240C. 120D. 602. 不等式240x y -+>表示的区域在直线240x y -+=的A. 左上方B. 左下方C. 右上方D. 右下方 3. 已知角α的终边经过点(3,4)P --,则cos α的值是A. 45-B. 43C. 35-D. 354. 不等式23100x x -->的解集是A .{}|25x x -≤≤B .{}|5,2x x x ≥≤-或C .{}|25x x -<<D .{}|5,2x x x ><-或 5. 若3sin ,5αα=-是第四象限角,则cos 4πα⎛⎫+⎪⎝⎭的值是A.45B .10C.10D.176. 若,a b ∈R ,下列命题正确的是A .若||a b >,则22a b >B .若||a b >,则22a b >C .若||a b ≠,则22a b ≠D .若a b >,则0a b -<7. 要得到函数3sin(2)5y x π=+图象,只需把函数3sin 2y x =图象A .向左平移5π个单位 B .向右平移5π个单位C .向左平移10π个单位 D .向右平移10π个单位 8. 已知M 是平行四边形ABCD 的对角线的交点,P 为平面ABCD 内任意—点,则PA PB PC PD +++等于A. 4PMB. 3PMC. 2PMD. PM 9. 若3cos 25α=,则44sin cos αα+的值是 A.1725 B .45C.65 D . 332510. 已知直角三角形的两条直角边的和等于4,则直角三角形的面积的最大值是 A. 4B. C. 2D.11. 已知点(),n n a 在函数213y x =-的图象上,则数列{}n a 的前n 项和n S 的最小值为A .36B .36-C .6D .6-12. 若钝角ABC ∆的内角,,A B C 成等差数列,且最大边长与最小边长的比值为m ,则m的取值范围是A .1,2()B .2+∞(,)C .[3,)+∞D .(3,)+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分. 把答案填在答题卡上. 13. 若向量(4,2),(8,),//x ==a b a b ,则x 的值为 .14. 若关于x 的方程20x mx m -+=没有实数根,则实数m 的取值范围是 .15. 设实数,x y 满足,1,1.y x x y y ≤⎧⎪+≤⎨⎪≥-⎩则2z x y =+的最大值是 .16.设2()sin cos f x x x x =,则()f x 的单调递减区间是 .三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知等比数列{}n a 的前n 项和为n S ,公比为q (1)q ≠,证明:1(1)1n n a q S q-=-.DA18.(本小题满分12分)已知平面向量a ,b 满足||1=a ,||2=b .(1)若a 与b 的夹角120θ=,求||+a b 的值; (2)若()()k k +⊥-a b a b ,求实数k 的值.19.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知cos sin c a B b A =+. (1)求A ;(2)若2a =,b c =,求ABC ∆的面积.20.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(1,2,3,)n =. (1)证明:数列n S n ⎧⎫⎨⎬⎩⎭是等比数列; (2)设2112n n n n b S S ++=,求数列{}n b 的前n 项和n T .21.(本小题满分12分)某电力部门需在A 、B 两地之间架设高压电线,因地理条件限制,不能直接测量A 、B 两地距离.km 的C 、D 两地(假设A 、B 、C 、D 在同一平面上)测得∠75ACB =,45BCD ∠=,30ADC ∠=,45ADB ∠=(如图),假如考虑电线的自然下垂和施工损耗等原因,实际所须电线长度为A 、B 倍,问施工单位应该准备多长的电线?22.(本小题满分12分)已知,,A B C 为锐角ABC △的内角,sin ,sin sin A B C =()a ,(1,2)=-b ,⊥a b . (1)tan B ,tan tan B C ,tan C 能否构成等差数列?并证明你的结论; (2)求tan tan tan A B C 的最小值.2016-2017学年第二学期期末质量监测高一数学参考答案与评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分. 一、选择题13. 4 14. (0,4) 15. 3 16. ()7+,1212k k k ππππ⎡⎤+∈⎢⎥⎣⎦Z 三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知等比数列{}n a 的前n 项和为n S ,公比为q (1)q ≠,证明:1(1)1n n a q S q-=-.证法1:(错位相减法)因为11n n a a q -=, (2)分所以1111n n S a a q a q -=+++ (4)分211111n n n qS a q a q a q a q -=++++ …………………………………6分所以11(1)nn q S a a q -=- (8)分当1q ≠时,有1(1)1n n a q S q-=-. (10)分证法2:(叠加法)因为}{n a 是公比为q 的等比数列,所以21a a q =,32a a q =,1,n n a a q +=L (2)分所以112)1(a q a a -=-,223)1(a q a a -=-,...,n n n a q a a )1(1-=-+, (6)分相加得n n S q a a )1(11-=-+. (8)分所以当q ≠1时,111(1)11n n n a a a q S q q+--==--. …………………………………10分证法3:(拆项法)当q ≠1时,11111111a a q qa a q q q-=⋅=----, …………………………………2分 211211111a q a q q a a q q q q-=⋅=----,……,11111111n nn n a q a q q a a q q q q---=⋅=----, …………………………………8分以上n 个式子相加得qq a q q a q a S n n n --=---=1)1(11111. …………………………………10分18.(本小题满分12分)已知平面向量a ,b 满足||1=a ,||2=b .(1)若a 与b 的夹角120θ=,求||+a b 的值; (2)若()()k k +⊥-a b a b ,求实数k 的值. 题根:《数学4》2.4.1例1、例2、例4.(综合变式)解:(1)1|||cos1201212⎛⎫=⨯⨯-=- ⎪⎝⎭a b =|a b ,…………………………………2分 22||()+=+a b a b 222=++a a b b …………………………………3分22|2|=++a |a b b | …………………………………4分 又||1=a ,||2=b ,所以2||+a b 22|2|1243=++=-+=a |a b b |,…………………………………5分所以||+=a b …………………………………6分(2)因为()()k k +⊥-a b a b ,所以()()0k k +-=a b a b , …………………………………7分 即2220k -=a b …………………………………9分 因为||1=a ,||2=b ,所以240k -=, …………………………………11分 即2k =±. …………………………………12分19.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知cos sin c a B b A =+. (1)求A ;(2)若2a =,b c =,求ABC ∆的面积.(根据2013课标卷Ⅱ理数17改编,正弦、余弦定理及三角变换的综合问题) 解:(1)解法1:由cos sin c a B b A =+及正弦定理可得sin sin cos sin sin C A B B A =+. …………………………………2分在ABC ∆中,CA B π=--,所以sin sin()sin cos cos sin C A B A B A B =+=+. …………………………………4分由以上两式得sin cos A A =,即tan 1A =, …………………………………5分又(0,)A π∈,所以4A π=. …………………………………6分解法2:由cos sin c a B b A =+及余弦定理可得222sin 2a c b c a b A ac+-=⨯+, …………………………………2分即2222sin b c a bc A +-=, …………………………………3分 由余弦定理得2222cos b c a bc A +-=由以上两式得sin cos A A =,即tan 1A =, …………………………………5分又(0,)A π∈,所以4A π=. …………………………………6分(2)ABC ∆的面积1sin 24S bc A bc ==, …………………………………7分由2a =,及余弦定理得222242cos b c bc B b c =+-=+, (8)分因为b c =,所以2242b =,即24b ==+, (10)分故ABC ∆的面积2144S bc ===. ………………………………12分20.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(1,2,3,)n =. (1)证明:数列n S n ⎧⎫⎨⎬⎩⎭是等比数列; (2)设2112n n n n b S S ++=,求数列{}n b 的前n 项和n T .题根:《数学5》2.2习题B 组第4题. (变式题)解:(1)因为,11n n n a S S ++=-, …………………………………1分又12n n n a S n++=, 所以1(2)()n n n n S n S S ++=-, …………………………………2分即12(1)n n nS n S +=+, 所以12()1n n S Sn n n*+=⋅∈+N . …………………………………4分DA故数列n S n ⎧⎫⎨⎬⎩⎭是首项为2,公比为2的等比数列. …………………………………6分(2)由(1)得2n nS n=,即2n n S n =. …………………………………8分所以21211122111=2(1)2(1)1n n n n n n n b S S n n n n n n ++++===-+++,……………………10分 故数列{}n b 的前n 项和11111111223111n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. …………………12分21.(本小题满分12分)某电力部门需在A 、B 两地之间架设高压电线,因地理条件限制,不能直接测量A 、B 两地距离.km 的C 、D 两地(假设A 、B 、C 、D 在同一平面上)测得∠75ACB =,45BCD ∠=,30ADC ∠=,45ADB ∠=(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度为A 、B问施工单位应该准备多长的电线?题根:《数学5》1.2例2. (改编题)解:在ACD ∆中,由已知得30CAD ∠=,又30ADC ∠=,所以AC CD ==. (2)分在BCD ∆中,由已知可得60CBD ∠=,由正弦定理得753sin 45+306BC +===() (6)分在ABC ∆中,由余弦定理得2222cos AB AC BC AC BC BCA=+-⋅∠2(cos75522+=+-⋅=, ………………………9分所以,AB = (10)分故施工单位应该准备电线长为5km . ………………………………………………12分22.(本小题满分12分)已知,,A B C 为锐角ABC △的内角,sin ,sin sin A B C =()a ,(1,2)=-b ,⊥a b . (1)tan B ,tan tan B C ,tan C 能否构成等差数列?并证明你的结论; (2)求tan tan tan A B C 的最小值.(据2016年江苏卷第14题改编,三角变换、平面向量、数列及基本不等式的综合问题) 解:(1)依题意有sin 2sin sin A B C =. ……………………………………………2分 在ABC △中,A B C π=--,所以sin sin +=sin cos cos sin A B C B C B C =+(),………………………………3分所以2sin sin =sin cos cos sin B C B C B C +. …………………………………4分 因为ABC △为锐角三角形,所以cos 0,cos 0B C >>,所以tan tan 2tan tan B C B C +=, ……………………………………………5分所以tan B ,tan tan B C ,tan C 成等差数列. ……………………………………6分(2)法一:在锐角ABC △中,tan tan tan tan()tan()1tan tan B C A B C B C B Cπ+=--=-+=--,……………………7分 即tan tan tan tan tan tan A B C A B C =++, ……………………………………8分 由(1)知tan tan 2tan tan B C B C +=,于是tan tan tan tan 2tan tan A B C A B C =+≥, …………10分 整理得tan tan tan 8A B C ≥, …………………………………………11分 当且仅当tan 4A =时取等号,故tan tan tan A B C 的最小值为8. …………………………………………12分 法二:由法一知tan tan tan 1tan tan B C A B C+=--, ………………………………………7分 由(1)知tan tan 2tan tan B C B C +=,于是2tan tan 2(tan tan )tan tan tan tan tan 1tan tan 1tan tan B C B C A B C B C B C B C+=-⨯=---, ……8分 令tan tan (1)B C x x =>,则222tan tan tan 2(1)4811x A B C x x x ==-++≥--,……………………………11分 当且仅当2x =,即tan 4A =时取等号,故tan tan tan A B C 的最小值为8. …………………………………………12分。

2016~2017学年广东广州荔湾区高二下学期广东

2016~2017学年广东广州荔湾区高二下学期广东

D. where people tend to be independent and more ambitious
(3) To Ms. Sheehy's eyes, people in their seventies are
?
A. free
B. mature
C. wise
D. adventurers
"Jane" called in and began, "I won quite a bit of money", just under £1.5 million, and I've
never, ever told anybody. Not even my husband."
Derbyshire said, "You're kidding me. Why not?"
eighties free, and those in their nineties noble. The life cycle Ms. Sheehy writes about is long
and hopeful.
(1) According to Gail Sheehy, the life cycle
"Jane" replied, "Fear that it would change our lives too dramatically. My husband had,
many years ago, a small drug problem — around 15 years ago. And I'm scared with the money
2016~2017学年广东广州荔湾区高二下学期广东 实验中学、广东广雅中学、佛山一中三校联考期末

2016-2017学年广东省广州市荔湾区高二下学期期末数学试卷(文科)(解析版)

2016-2017学年广东省广州市荔湾区高二下学期期末数学试卷(文科)(解析版)

2016-2017学年广东省广州市荔湾区高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2017春•荔湾区期末)若z•i=1﹣2i(i为虚数单位),则z的共轭复数是()A.﹣2﹣i B.2﹣i C.2+i D.﹣2+i【分析】把已知等式变形,然后利用复数代数形式的乘除运算化简得答案.【解答】解:由z•i=1﹣2i,的,∴,故选:D.【点评】本题考查复数代数形式的乘除运算,是基础的计算题.2.(5分)(2017春•荔湾区期末)抛物线x2=﹣4y的焦点到准线的距离为()A.1 B.2 C.3 D.4【分析】根据题意,由抛物线的标准方程计算可得抛物线的焦点坐标和准线方程,计算即可得答案.【解答】解:根据题意,抛物线的方程为x2=﹣4y,其焦点坐标为(0,﹣1),准线方程为y=1,焦点到准线的距离为2;故选:B.【点评】本题考查抛物线的标准方程,关键是掌握抛物线的标准方程.3.(5分)(2013•南开区二模)“p且q是真命题”是“非p为假命题”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也木必要条件【分析】本题考查判断充要条件的方法,可以根据充要条件的定义判断,本题关键是复合命题真假的判断.【解答】解:由p且q是真命题知,p和q均为真命题,所以非p为假命题,所以“p且q是真命题”是“非p为假命题”的充分条件;由非p为假命题知,p为真命题,但q真假不知,故无法判断p且q真假,所以“p且q是真命题”是“非p 为假命题”的不必要条件.故选A【点评】判断充要条件的方法是:①若p⇒q为真命题且q⇒p为假命题,则命题p是命题q的充分不必要条件;②若p⇒q为假命题且q⇒p为真命题,则命题p是命题q的必要不充分条件;③若p⇒q为真命题且q⇒p为真命题,则命题p是命题q的充要条件;④若p⇒q为假命题且q⇒p为假命题,则命题p是命题q的即不充分也不必要条件.⑤判断命题p与命题q所表示的范围,再根据“谁大谁必要,谁小谁充分”的原则,判断命题p与命题q的关系.4.(5分)(2017春•荔湾区期末)用三段论演绎推理:“复数都可以表示成实部与虚部之和的形式,因为复数z=2+3i的实部是2,所以复数z的虚部是3i”.对于这段推理,下列说法正确的是()A.大前提错误导致结论错误B.小前提错误导致结论错误C.推理形式错误导致结论错误D.推理没有问题,结论正确【分析】复数都可以表示成实部与虚部之和的形式,这个说法是错误的,即大前提是错误的.【解答】解:复数都可以表示成实部与虚部之和的形式,这个说法是错误的,大前提是错误的,∴得到的结论是错误的,∴在以上三段论推理中,大前提错误.故选:A.【点评】本题考查演绎推理的基本方法,解题的关键是理解演绎推理的三段论原理,在大前提和小前提中,若有一个说法是错误的,则得到的结论就是错误的.5.(5分)(2017•清新区校级一模)函数f(x)=e x lnx在点(1,f(1))处的切线方程是()A.y=2e(x﹣1)B.y=ex﹣1 C.y=e(x﹣1)D.y=x﹣e【分析】先求出函数f(x)=e x lnx的导数,再利用导数求出切线的斜率,再求出切点坐标,最后用点斜式方程即可得出答案.【解答】解:函数f(x)=e x lnx的导数为f′(x)=e x lnx+e x,∴切线的斜率k=f′(1)=e,令f(x)=e x lnx中x=1,得f(1)=0,∴切点坐标为(1,0),∴切线方程为y﹣0=e(x﹣1),即y=e(x﹣1).故选:C.【点评】本题考查了利用导数研究曲线上某点切线方程,考查导数的几何意义,正确求导和运用点斜式方程是解题的关键,属于基础题.6.(5分)(2017春•荔湾区期末)若,则sinα﹣cosα的值与1的大小关系是()A.sinα﹣cosα>1 B.sinα﹣cosα=1C.sinα﹣cosα<1 D.不能确定【分析】由题意可得sinα﹣cosα>0,sinαcosα<0,再根据(sinα﹣cosα)2=1﹣2sinαcosα>1,可得sinα﹣cosα的值与1的大小关系.【解答】解:若,则sinα﹣cosα>0,sinαcosα<0,∵(sinα﹣cosα)2=1﹣2sinαcosα>1,∴sinα﹣cosα>1,故选:A.【点评】本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.7.(5分)(2017•清新区校级一模)函数f(x)=3x﹣4x3,(x∈[0,1])的最大值是()A.B.﹣1 C.0 D.1【分析】求出函数的导数,求得极值点和单调区间,可得极大值且为最大值,计算即可得到所求值.【解答】解:函数f(x)=3x﹣4x3的导数为f′(x)=3﹣12x2=3(1﹣4x2),由f′(x)=0,可得x=(﹣舍去)f(x)在[0,)递增,(,1)递减,可得f(x)在x=处取得极大值,且为最大值1.故选:D.【点评】本题考查函数的最值的求法,注意运用导数,求得单调区间和极值、最值,考查运算能力,属于基础题.8.(5分)(2017春•荔湾区期末)甲、乙、丙三人中只有一人去过陈家祠,当他们被问到谁去过时,甲说:“丙没有去”;乙说:“我去过”;丙说:“甲说的是真话”.若三人中只有一人说的是假话,那么去过陈家祠的人是()A.甲B.乙C.丙D.不能确定【分析】利用反证法,即可得出结论.【解答】解:假设甲说的是假话,即丙去过,则乙也是假话,不成立;假设乙说的是假话,即乙去过,又丙没有去过,故甲去过;故选:A.【点评】本题考查进行简单的合情推理,考查学生分析解决问题的能力,比较基础.9.(5分)(2017春•荔湾区期末)某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m千米,远地点距地面n千米,地球半径为r千米,则该飞船运行轨道的短轴长为()A.2千米B.千米C.2mn千米D.mn千米【分析】宇宙飞船的运行轨道是以地球的中心F2为一个焦点的椭圆,所以近地点距地心为a﹣c,远地点距地心为a+c.就可求出a,c的值,再根据椭圆中b2=a2﹣c2求出b,就可得到短轴长.【解答】解:∵某宇宙飞船的运行轨道是以地球的中心F2为一个焦点的椭圆,设长半轴长为a,短半轴长为b,半焦距为c,则近地点A距地心为a﹣c,远地点B距地心为a+c.∴a﹣c=m+r,a+c=n+r,∴a=+r,c=.又∵b2=a2﹣c2=(+r)2﹣()2=mn+(m+n)r+r2=(m+r)(n+r)∴b=,∴短轴长为2b=2千米,故选A【点评】本题考查了椭圆的标准方程,主要在实际问题中考查a,b,c之间的关系,易错点是没有考虑地球的半径,属于中档题.10.(5分)(2017春•荔湾区期末)函数f(x)=x3﹣ax在R上是增函数,则实数a的取值范围是()A.a≥0 B.a≤0 C.a>0 D.a<0【分析】求出函数的导数,问题转化为即a≤x2在R恒成立,从而求出a的范围即可.【解答】解:f′(x)=x2﹣a,若f(x)在R递增,则x2﹣a≥0在R恒成立,即a≤x2在R恒成立,故a≤0,故选:B.【点评】本题考查了函数的单调性问题,考查导数的应用以及转化思想,是一道基础题.11.(5分)(2017春•荔湾区期末)若椭圆+=1(a>b>0)和圆x2+y2=(+c)2,(c为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e的取值范围是()A.(,)B.(,)C.(,)D.(0,)【分析】法一:联立,得=()2﹣b2,推导出,从而,且0<e<1,由此能出椭圆的离心率e的取值范围.法二:圆的半径满足,由,得2c>b,再平方得4c2>b2,在椭圆中,a2=b2+c2<5c2,从而e=,由,得b+2c<2a,推导出e<.由此能求出椭圆的离心率e的取值范围.故选:C.【解答】解:法一:联立,消去y2,得=()2﹣b2,∵椭圆+=1(a>b>0)和圆x2+y2=(+c)2,(c为椭圆的半焦距),有四个不同的交点,∴0<x2<a2,∴0<<c2,∴0<()2﹣b2<c2,∴b<<a,∴,∴,∴,∴,且0<e<1,解得.故选:C.法二:∵椭圆+=1(a>b>0)和圆x2+y2=(+c)2,(c为椭圆的半焦距),有四个不同的交点,椭圆与圆的中心都是原点,∴圆的半径满足,由,得2c>b,再平方得4c2>b2,在椭圆中,a2=b2+c2<5c2,∴e=,由,得b+2c<2a,再平方,得:b2+4c2+4bc<4a2,∴3c2+4bc<3c2,∴4bc<3b2,∴4c<3b,∴16c2<9b2,∴16c2<9a2﹣9c2,∴9a2>25c2,∴,∴e<.综上,椭圆的离心率e的取值范围是(,).故选:C.【点评】本题考查椭圆的离心率的取值范围的求法,考查椭圆性质等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.12.(5分)(2010•河东区一模)已知定义在R上的函数f(x)是奇函数,且f(2)=0,当x>0时有,则不等式x2•f(x)>0的解集是()A.(﹣2,0)∪(2,+∞) B.(﹣∞,﹣2)∪(0,2)C.(﹣2,0)∪(0,2) D.(﹣2,2)∪(2,+∞)【分析】首先根据商函数求导法则,把化为[]′<0;然后利用导函数的正负性,可判断函数y=在(0,+∞)内单调递减;再由f (2)=0,易得f(x)在(0,+∞)内的正负性;最后结合奇函数的图象特征,可得f(x)在(﹣∞,0)内的正负性.则x2f(x)>0⇔f(x)>0的解集即可求得.【解答】解:因为当x>0时,有恒成立,即[]′<0恒成立,所以在(0,+∞)内单调递减.因为f(2)=0,所以在(0,2)内恒有f(x)>0;在(2,+∞)内恒有f(x)<0.又因为f(x)是定义在R上的奇函数,所以在(﹣∞,﹣2)内恒有f(x)>0;在(﹣2,0)内恒有f(x)<0.又不等式x2f(x)>0的解集,即不等式f(x)>0的解集.所以答案为(﹣∞,﹣2)∪(0,2).故选B.【点评】本题主要考查函数求导法则及函数单调性与导数的关系,同时考查了奇偶函数的图象特征.二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)(2017春•荔湾区期末)函数f(x)=x3+ax2+x+b在x=1时取得极值,则实数a=﹣2.【分析】根据题意,可知f′(1)=0,求解方程,即可得到实数a的值.【解答】解:∵f(x)=x3+ax2+x+b,f′(x)=3x2+2ax+1,又∵f(x)在x=1时取得极值,∴f′(1)=3+2a+1=0,∴a=﹣2.故答案为:﹣2.【点评】本题考查了函数在某点取得极值的条件,要注意极值点一定是导函数对应方程的根,但是导函数对应方程的根不一定是极值点.求函数极值的步骤是:先求导函数,令导函数等于0,求出方程的根,确定函数在方程的根左右的单调性,根据极值的定义,确定极值点和极值.过程中要注意运用导数确定函数的单调性,一般导数的正负对应着函数的单调性.属于基础题.14.(5分)(2011•兴庆区校级二模)下表是降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程=0.7x+0.35,那么表中m的值为3.【分析】根据表格中所给的数据,求出这组数据的横标和纵标的平均值,表示出这组数据的样本中心点,根据样本中心点在线性回归直线上,代入得到关于m 的方程,解方程即可.【解答】解:∵根据所给的表格可以求出,∵这组数据的样本中心点在线性回归直线上,∴=0.7×4.5+0.35,∴m=3,故答案为:3【点评】本题考查线性回归方程的应用,是一个基础题,题目的运算量不大,解题的关键是理解样本中心点在线性回归直线上.15.(5分)(2017春•荔湾区期末)代数式中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式=t,则1+=t,则t2﹣t﹣1=0,取正值得t=,用类似方法可得=3.【分析】通过已知得到求值方法:先换元,再列方程,解方程,求解(舍去负根),再运用该方法,注意两边平方,得到方程,解出方程舍去负的即可.【解答】解:由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的式子.令=m(m>0),则两边平方得,6+═m2,即6+m=m2,解得,m=3(﹣2舍去).故答案为:3.【点评】本题考查类比推理的思想方法,考查从方法上类比,是一道基础题.16.(5分)(2017•红桥区二模)如图,F1、F2是双曲线﹣=1(a>0,b>0)的左、右焦点,过F1的直线l与双曲线的左右两支分别交于点A、B.若△ABF2为等边三角形,则双曲线的离心率为.【分析】设△ABF2的边长为m,则由双曲线的定义,△ABF2为等边三角形,可求m的值,在△AF1F2中,由余弦定理,可得结论.【解答】解:设△ABF2的边长为m,则由双曲线的定义,可得|BF1|=m﹣2a∴|AF1|=2m﹣2a∵|AF1|﹣|AF2|=2a∴2m﹣2a﹣m=2a∴m=4a在△AF1F2中,|AF1|=6a,|AF2|=4a,|F1F2|=2c,∠F1AF2=60°∴由余弦定理可得4c2=(6a)2+(4a)2﹣2•6a•4a•∴c=a∴=故答案为:.【点评】本题考查双曲线的几何性质,考查余弦定理的运用,属于中档题.三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)(2014•福建)已知直线l的参数方程为(t为参数),圆C 的参数方程为(θ为常数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.【分析】(1)消去参数,把直线与圆的参数方程化为普通方程;(2)求出圆心到直线的距离d,再根据直线l与圆C有公共点⇔d≤r即可求出.【解答】解:(1)直线l的参数方程为,消去t可得2x﹣y﹣2a=0;圆C的参数方程为,两式平方相加可得x2+y2=16;(2)圆心C(0,0),半径r=4.由点到直线的距离公式可得圆心C(0,0)到直线L的距离d=.∵直线L与圆C有公共点,∴d≤4,即≤4,解得﹣2≤a≤2.【点评】熟练掌握点到直线的距离公式和直线与圆有公共点的充要条件是解题的关键.18.(12分)(2017春•荔湾区期末)国家实施二孩放开政策后,为了了解人们对此政策持支持态度是否与年龄有关,计生部门将已婚且育有一孩的居民分成中老年组(45岁以上,含45岁)和中青年组(45岁以下,不含45岁)两个组别,每组各随机调查了50人,对各组中持支持态度和不支持态度的人所占的频率绘制成等高条形图,如图所示:(1)根据以上信息完成2×2列联表;(2)是否有99%以上的把握认为人们对此政策持支持态度与年龄有关?附:.【分析】(1)根据等高条形图求出满足条件的每一组的人数,填出2×2列联表即可;(2)根据2×2列联表计算K2的值,从而判断结论即可.【解答】解:(1)由等高条形图可知:中老年组中,持支持态度的有50×0.2=10人,持不支持态度的有50﹣10=40人;中青年组中,持支持态度的有50×0.5=25人,持不支持态度的有50﹣25=25人.故2×2列联表为:…(4分)(2);∴有99%以上的把握认为人们对此政策持支持态度支持与年龄有关…(10分)【点评】本题考查了2×2列联表,考查独立性检验问题,是一道中档题.19.(12分)(2014•北京)如图,在△ABC中,∠B=,AB=8,点D在边BC上,且CD=2,cos∠ADC=.(1)求sin∠BAD;(2)求BD,AC的长.【分析】根据三角形边角之间的关系,结合正弦定理和余弦定理即可得到结论.【解答】解:(1)在△ABC中,∵cos∠ADC=,∴sin∠ADC====,则sin∠BAD=sin(∠ADC﹣∠B)=sin∠ADC•cosB﹣cos∠ADC•sinB=×﹣=.(2)在△ABD中,由正弦定理得BD==,在△ABC中,由余弦定理得AC2=AB2+CB2﹣2AB•BCcosB=82+52﹣2×8×=49,即AC=7.【点评】本题主要考查解三角形的应用,根据正弦定理和余弦定理是解决本题本题的关键,难度不大.20.(12分)(2017春•荔湾区期末)如图①在直角梯形ABCP中,BC∥AP,AB ⊥BC,CD⊥AP,AD=DC=PD=2,E,F,G分别是线段PC、PD,BC的中点,现将△PDC折起,使平面PDC⊥平面ABCD(如图②)(Ⅰ)求证AP∥平面EFG;(Ⅱ)求三棱锥P﹣EFG的体积.【分析】(Ⅰ)由题目条件,结合面面平行的判定定理,即可证得结论;(Ⅱ)得出GC=1,结合棱锥的体积公式,即可得出答案.【解答】解:(Ⅰ)∵EF∥CD∥AB,EG∥PB,根据面面平行的判定定理∴平面EFG∥平面PAB,又PA⊂面PAB,∴AP∥平面EFG…(6分)(Ⅱ)由题设可知BC⊥平面PDC,G是BC的中点,BC=2,所以GC=1,又,所以﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(12分)【点评】本题考查学生的推理论证的能力,考查学生的计算能力,属于中档题.21.(12分)(2017春•荔湾区期末)已知椭圆C:+=1(a>b>0)的离心率为,且经过点M(﹣3,﹣1).(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l:x﹣y﹣2=0与椭圆C交于A,B两点,点P为椭圆C上一动点,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.【分析】(Ⅰ)利用椭圆的离心率为,且经过点M(﹣3,﹣1),列出方程组,求出a,b,由此能求出椭圆C的方程.(Ⅱ)将直线x﹣y﹣2=0代入中,得,x2﹣3x=0.求出点A(0,﹣2),B(3,1),从而|AB|=3,在椭圆C上求一点P,使△PAB的面积最大,则点P 到直线l的距离最大.设过点P且与直线l平行的直线方程为y=x+b.将y=x+b代入,得4x2+6bx+3(b2﹣4)=0,由根的判别式求出点P(﹣3,1)时,△PAB的面积最大,由此能求出△PAB的最大面积.【解答】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的离心率为,且经过点M(﹣3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.…(4分)(Ⅱ)将直线x﹣y﹣2=0代入中,消去y得,x2﹣3x=0.解得x=0或x=3.…(5分)∴点A(0,﹣2),B(3,1),∴|AB|==3.…(6分)在椭圆C上求一点P,使△PAB的面积最大,则点P到直线l的距离最大.设过点P且与直线l平行的直线方程为y=x+b.…(7分)将y=x+b代入,整理得4x2+6bx+3(b2﹣4)=0.…(8分)令△=(6b)2﹣4×4×3(b2﹣4)=0,解得b=±4.…(9分)将b=±4代入方程4x2+6bx+3(b2﹣4)=0,解得x=±3.由题意知当点P的坐标为(﹣3,1)时,△PAB的面积最大.…(10分)且点P(﹣3,1)到直线l的距离为d==3.…(11分)△PAB的最大面积为S==9.…(12分)【点评】本题考查椭圆方程的求法,考查三角形最大面积的求法,考查椭圆、直线方程、两点间距离公式、点到直线距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.22.(12分)(2017•山西二模)已知函数f(x)=lnx+ax2+bx(其中a,b)为常数且a≠0)在x=1处取得极值.(Ⅰ)当a=1时,求f(x)的单调区间;(Ⅱ)若f(x)在(0,e]上的最大值为1,求a的值.【分析】(I)由函数的解析式,可求出函数导函数的解析式,进而根据x=1是f (x)的一个极值点f′(1)=0,可构造关于a,b的方程,根据a=1求出b值;可得函数导函数的解析式,分析导函数值大于0和小于0时,x的范围,可得函数f(x)的单调区间;(II)对函数求导,写出函数的导函数等于0的x的值,列表表示出在各个区间上的导函数和函数的情况,做出极值,把极值同端点处的值进行比较得到最大值,最后利用条件建立关于a的方程求得结果.【解答】解:(I)因为f(x)=lnx+ax2+bx所以f′(x)=+2ax+b,…(2分)因为函数f(x)=lnx+ax2+bx在x=1处取得极值f′(1)=1+2a+b=0…(3分)当a=1时,b=﹣3,f′(x)=,f′(x),f(x)随x的变化情况如下表:…(5分)所以f(x)的单调递增区间为(0,),(1,+∞)单调递减区间为(,1)…(6分)(II)因为f′(x)=令f′(x)=0,x1=1,x2=…(7分)因为f(x)在x=1处取得极值,所以x2=≠x1=1,当<0时,f(x)在(0,1)上单调递增,在(1,e]上单调递减所以f(x)在区间(0,e]上的最大值为f(1),令f(1)=1,解得a=﹣2…(9分)当a>0,x2=>0当<1时,f(x)在(0,)上单调递增,(,1)上单调递减,(1,e)上单调递增所以最大值1可能在x=或x=e处取得而f()=ln+a()2﹣(2a+1)=ln﹣<0所以f(e)=lne+ae2﹣(2a+1)e=1,解得a=…(11分)当1≤<e时,f(x)在区间(0,1)上单调递增,(1,)上单调递减,(,e)上单调递增所以最大值1可能在x=1或x=e处取得而f(1)=ln1+a﹣(2a+1)<0所以f(e)=lne+ae2﹣(2a+1)e=1,解得a=,与1<x2=<e矛盾…(12分)当x2=≥e时,f(X)在区间(0,1)上单调递增,在(1,e)单调递减,所以最大值1可能在x=1处取得,而f(1)=ln1+a﹣(2a+1)<0,矛盾综上所述,a=或a=﹣2.…(13分)【点评】本题考查的知识点是利用导数研究函数的极值,利用导数研究函数的单调性,以及利用导数研究函数在闭区间上的最值,其中根据已知条件确定a,b 值,得到函数导函数的解析式并对其符号进行分析,是解答的关键.属于中档题.。

广东省广州市数学高二下学期文数期末考试试卷

广东省广州市数学高二下学期文数期末考试试卷

广东省广州市数学高二下学期文数期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)(2019·淄博模拟) 设全集,集合,,则()A .B .C .D .2. (2分)设i为虚数单位,则(1+i)4的值为()A . 4B . ﹣4C . 4iD . ﹣4i3. (2分) (2019高一上·泉港月考) 设a=log36,b=log510,c=log714,则().A . c>b>aB . b>c>aC . a>c>bD . a>b>c4. (2分)(2017·扶沟模拟) 设命题p:∀x>0,log2x<2x+3,则¬p为()A . ∀x>0,log2x≥2x+3B . ∃x>0,log2x≥2x+3C . ∃x>0,log2x<2x+3D . ∀x<0,log2x≥2x+35. (2分)已知实数x,y满足x>y,则下列关系式恒成立的是()A .B .C .D .6. (2分)用反证法证明命题:“a,b∈N,ab可被5整除,那么a,b中至少有一个能被5整除”时,假设的内容应为()A . a,b都能被5整除B . a,b都不能被5整除C . a,b不都能被5整除D . a不能被5整除7. (2分)某单位在月份用电量(单位:千度)的数据如表:月份x2356用电量3 4.5 5.57已知用电量y与月份x之间有较好的线性相关关系,其回归方程 = x+1,由此可预测7月份用电量(单位:千度)约为()A . 6B . 7C . 8D . 98. (2分)已知f(x)是R上的偶函数,若将f(x)的图象向右平移一个单位后,则得到一个奇函数的图象,若f(2)=-1,则f(1)+f(2)+f(3)+......f(2009) = ()A . 0B . 1C . -1D . -1004.59. (2分)下图是某光缆的结构图,其中数字为某段的最大信息量,则从M到N的最大信息量为()A . 6B . 7C . 12D . 2110. (2分)已知直线l,m,平面α,β满足l⊥α,m⊂β,则“l⊥m”是“α∥β”的()A . 充要条件B . 充分不必要条件C . 必要不充分条件D . 既不充分也不必要条件11. (2分) (2019高一上·赣县月考) 已知函数y=f(x)的图象关于直线x=1对称,且在[1,+∞)上单调递减,f(0)=0,则f(x+1)>0的解集为()A . (1,+∞)B . (﹣1,1)C . (﹣∞,﹣1)D . (﹣∞,﹣1)∪(1,+∞)12. (2分) (2019高一上·郑州期中) 定义在上的函数满足:① ,② ,③ 且时,,则等于()A . 1B .C .D .二、填空题 (共4题;共4分)13. (1分)函数f(x)=的定义域为________.14. (1分)已知为数列的前项和,且,若,,给定四个命题① ;② ;③ ;④ .则上述四个命题中真命题的序号为________.15. (1分) (2017·漳州模拟) 甲、乙、丙三位同学获得某项竞赛活动的前三名,但具体名次未知.3人作出如下预测:甲说:我不是第三名;乙说:我是第三名;丙说:我不是第一名.若甲、乙、丙3人的预测结果有且只有一个正确,由此判断获得第一名的是________.16. (1分) (2018高一上·河南月考) 下列结论:①y=πx是指数函数②函数既是偶函数又是奇函数③函数的单调递减区间是④在增函数与减函数的定义中,可以把任意两个自变量”改为“存在两个自变量⑤ 与表示同一个集合⑥所有的单调函数都有最值其中正确命题的序号是________。

广东省广州市荔湾区2017-2018学年高二下学期期末考试数学文试题(含评分标准)

广东省广州市荔湾区2017-2018学年高二下学期期末考试数学文试题(含评分标准)

2017-2018学年第二学期期末教学质量监测高二数学(文科)本试卷共4页,22小题,满分150分.考试用时120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若i12i z (i 为虚数单位),则z 的共轭复数是A .22iB .2i C .2iD .2i2.抛物线24xy 的焦点到准线的距离为A .1B . 2C .3D .43.“p 且q 是真命题”是“非p 为假命题”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.用三段论演绎推理:“复数都可以表示成实部与虚部之和的形式,因为复数z 23i的实部是2,所以复数z 的虚部是3i ”。

对于这段推理,下列说法正确的是A .大前提错误导致结论错误B .小前提错误导致结论错误C .推理形式错误导致结论错误D .推理没有问题,结论正确5.函数x e x f xln )(在点))1(,1(f 处的切线方程是A .)1(2x e y B.1ex yC.)1(x e yD.ex y 6.若2,则sincos的值与1的大小关系是A.sin cos 1B.sin cos 1C.sin cos 1D.不能确定7.函数3()34f x x x0,1x 的最大值是A .12B .-1C .0D .18.甲、乙、丙三人中只有一人去过陈家祠,当他们被问到谁去过时,甲说:“丙没有去”;乙说:“我去过”;丙说:“甲说的是真话”。

若三人中只有一人说的是假话,那么去过陈家祠的人是A .甲B .乙C .丙D .不能确定9.某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m 千米,远地点距地面n 千米,地球半径为r 千米,则该飞船运行轨道的短轴长为A .2()()m r n r 千米B .()()m r n r 千米C .mn 2千米D .mn 千米10.函数31()3f x xax 在R 上是增函数,则实数a 的取值范围是A .0aB. 0aC. 0aD.0a11.若椭圆)0(12222baby ax 和圆c c b yx(,)2(222为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是A. )53,52( B. )55,52(C. )53,55( D. )55,0(12. 已知定义在R 上的函数()f x 是奇函数,且(2)0f ,当0x 时,有'2()()0x f x f x x,则不等式2()0xf x 的解集是A .(2,0)(2,)B.(,2)(0,2)C .(2,0)(0,2)D .(2,2)(2,)第Ⅱ卷(非选择题共90分)二、填空题: 本大题共4小题,每小题5分,共20分。

广东省广州市荔湾区2016-2017学年高一下学期期末考试数学试题-含答案

广东省广州市荔湾区2016-2017学年高一下学期期末考试数学试题-含答案

2016-2017学年第二学期期末质量监测试题高一数学本试卷共4页,22小题,全卷满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题所给的四个选项中,只有一个是正确的. 1. 与60-角的终边相同的角是A. 300B. 240C. 120D. 602. 不等式240x y -+>表示的区域在直线240x y -+=的A. 左上方B. 左下方C. 右上方D. 右下方 3. 已知角α的终边经过点(3,4)P --,则cos α的值是A. 45-B. 43C. 35-D. 354. 不等式23100x x -->的解集是A .{}|25x x -≤≤B .{}|5,2x x x ≥≤-或C .{}|25x x -<<D .{}|5,2x x x ><-或 5. 若3sin ,5αα=-是第四象限角,则cos 4πα⎛⎫+⎪⎝⎭的值是A.45B .10C.10D.176. 若,a b ∈R ,下列命题正确的是A .若||a b >,则22a b >B .若||a b >,则22a b >C .若||a b ≠,则22a b ≠D .若a b >,则0a b -<7. 要得到函数3sin(2)5y x π=+图象,只需把函数3sin 2y x =图象A .向左平移5π个单位 B .向右平移5π个单位C .向左平移10π个单位 D .向右平移10π个单位 8. 已知M 是平行四边形ABCD 的对角线的交点,P 为平面ABCD 内任意—点,则PA PB PC PD +++等于A. 4PMB. 3PMC. 2PMD. PM 9. 若3cos 25α=,则44sin cos αα+的值是 A.1725 B .45C.65 D . 332510. 已知直角三角形的两条直角边的和等于4,则直角三角形的面积的最大值是 A. 4B. C. 2D.11. 已知点(),n n a 在函数213y x =-的图象上,则数列{}n a 的前n 项和n S 的最小值为A .36B .36-C .6D .6-12. 若钝角ABC ∆的内角,,A B C 成等差数列,且最大边长与最小边长的比值为m ,则m的取值范围是A .1,2()B .2+∞(,)C .[3,)+∞D .(3,)+∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,满分20分. 把答案填在答题卡上. 13. 若向量(4,2),(8,),//x ==a b a b ,则x 的值为 .14. 若关于x 的方程20x mx m -+=没有实数根,则实数m 的取值范围是 .15. 设实数,x y 满足,1,1.y x x y y ≤⎧⎪+≤⎨⎪≥-⎩则2z x y =+的最大值是 .16.设2()sin cos f x x x x =,则()f x 的单调递减区间是 .三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知等比数列{}n a 的前n 项和为n S ,公比为q (1)q ≠,证明:1(1)1n n a q S q-=-.DA18.(本小题满分12分)已知平面向量a ,b 满足||1=a ,||2=b .(1)若a 与b 的夹角120θ=,求||+a b 的值; (2)若()()k k +⊥-a b a b ,求实数k 的值.19.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知cos sin c a B b A =+. (1)求A ;(2)若2a =,b c =,求ABC ∆的面积.20.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(1,2,3,)n =. (1)证明:数列n S n ⎧⎫⎨⎬⎩⎭是等比数列; (2)设2112n n n n b S S ++=,求数列{}n b 的前n 项和n T .21.(本小题满分12分)某电力部门需在A 、B 两地之间架设高压电线,因地理条件限制,不能直接测量A 、B 两地距离.km 的C 、D 两地(假设A 、B 、C 、D 在同一平面上)测得∠75ACB =,45BCD ∠=,30ADC ∠=,45ADB ∠=(如图),假如考虑电线的自然下垂和施工损耗等原因,实际所须电线长度为A 、B 倍,问施工单位应该准备多长的电线?22.(本小题满分12分)已知,,A B C 为锐角ABC △的内角,sin ,sin sin A B C =()a ,(1,2)=-b ,⊥a b . (1)tan B ,tan tan B C ,tan C 能否构成等差数列?并证明你的结论; (2)求tan tan tan A B C 的最小值.2016-2017学年第二学期期末质量监测高一数学参考答案与评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分. 一、选择题13. 4 14. (0,4) 15. 3 16. ()7+,1212k k k ππππ⎡⎤+∈⎢⎥⎣⎦Z 三、解答题:本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)已知等比数列{}n a 的前n 项和为n S ,公比为q (1)q ≠,证明:1(1)1n n a q S q-=-.证法1:(错位相减法)因为11n n a a q -=, (2)分所以1111n n S a a q a q -=+++ (4)分211111n n n qS a q a q a q a q -=++++ …………………………………6分所以11(1)nn q S a a q -=- (8)分当1q ≠时,有1(1)1n n a q S q-=-. (10)分证法2:(叠加法)因为}{n a 是公比为q 的等比数列,所以21a a q =,32a a q =,1,n n a a q +=L (2)分所以112)1(a q a a -=-,223)1(a q a a -=-,…,n n n a q a a )1(1-=-+,…………………………………6分相加得n n S q a a )1(11-=-+. (8)分所以当q ≠1时,111(1)11n n n a a a q S q q+--==--. …………………………………10分证法3:(拆项法)当q ≠1时,11111111a a q qa a q q q-=⋅=----, …………………………………2分 211211111a q a q q a a q q q q-=⋅=----,……,11111111n nn n a q a q q a a q q q q---=⋅=----, …………………………………8分以上n 个式子相加得qq a q q a q a S n n n --=---=1)1(11111. …………………………………10分18.(本小题满分12分)已知平面向量a ,b 满足||1=a ,||2=b .(1)若a 与b 的夹角120θ=,求||+a b 的值; (2)若()()k k +⊥-a b a b ,求实数k 的值. 题根:《数学4》2.4.1例1、例2、例4.(综合变式)解:(1)1|||cos1201212⎛⎫=⨯⨯-=- ⎪⎝⎭a b =|a b ,…………………………………2分 22||()+=+a b a b 222=++a a b b …………………………………3分22|2|=++a |a b b | …………………………………4分 又||1=a ,||2=b ,所以2||+a b 22|2|1243=++=-+=a |a b b |,…………………………………5分所以||+=a b …………………………………6分(2)因为()()k k +⊥-a b a b ,所以()()0k k +-=a b a b , …………………………………7分即2220k -=a b …………………………………9分 因为||1=a ,||2=b ,所以240k -=, …………………………………11分 即2k =±. …………………………………12分19.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,已知cos sin c a B b A =+. (1)求A ;(2)若2a =,b c =,求ABC ∆的面积.(根据2013课标卷Ⅱ理数17改编,正弦、余弦定理及三角变换的综合问题) 解:(1)解法1:由cos sin c a B b A =+及正弦定理可得sin sin cos sin sin C A B B A =+. …………………………………2分在ABC ∆中,CA B π=--,所以sin sin()sin cos cos sin C A B A B A B =+=+. …………………………………4分由以上两式得sin cos A A =,即ta n 1A =, …………………………………5分 又(0,)A π∈,所以4A π=. …………………………………6分解法2:由cos sin c a B b A =+及余弦定理可得222sin 2a c b c a b A ac+-=⨯+, …………………………………2分即2222sin b c a bc A +-=, …………………………………3分 由余弦定理得2222cos b c a bc A +-=由以上两式得sin cos A A =,即ta n 1A =, …………………………………5分 又(0,)A π∈,所以4A π=. …………………………………6分(2)ABC ∆的面积1sin 24S bc A ==, …………………………………7分 由2a =,及余弦定理得222242cos b c bc B b c =+-=+, …………………………………8分因为b c =,所以2242b =,即24b ==+, …………………………………10分故ABC ∆的面积2144S ===. ………………………………12分20.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(1,2,3,)n =. (1)证明:数列n S n ⎧⎫⎨⎬⎩⎭是等比数列; (2)设2112n n n n b S S ++=,求数列{}n b 的前n 项和n T .题根:《数学5》2.2习题B 组第4题. (变式题)解:(1)因为,11n n n a S S ++=-, …………………………………1分又12n n n a S n++=, 所以1(2)()n n n n S n S S ++=-, …………………………………2分即12(1)n n nS n S +=+, 所以12()1n n S Sn n n*+=⋅∈+N . …………………………………4分故数列n S n ⎧⎫⎨⎬⎩⎭是首项为2,公比为2的等比数列. …………………………………6分(2)由(1)得2n nS n=,即2n n S n =. (8)DA分所以21211122111=2(1)2(1)1n n n n n n n b S S n n n n n n ++++===-+++,……………………10分 故数列{}n b 的前n 项和11111111223111n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. …………………12分21.(本小题满分12分)某电力部门需在A 、B 两地之间架设高压电线,因地理条件限制,不能直接测量A 、B 两地距离.km 的C 、D 两地(假设A 、B 、C 、D 在同一平面上)测得∠75ACB =,45BCD ∠=,30ADC ∠=,45ADB ∠=(如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度为A 、B施工单位应该准备多长的电线?题根:《数学5》1.2例 2. (改编题)解:在ACD ∆中,由已知得30CAD ∠=,又30ADC ∠=,所以AC CD ==. (2)分在BCD ∆中,由已知可得60CBD ∠=,由正弦定理得753sin 45+306BC +===() (6)分在ABC ∆中,由余弦定理得2222cos AB AC BC AC BC BCA=+-⋅∠2(cos75522+=+-⋅=, ………………………9分所以,AB = (10)分故施工单位应该准备电线长为5km . ………………………………………………12分22.(本小题满分12分)已知,,A B C 为锐角ABC △的内角,sin ,sin sin A B C =()a ,(1,2)=-b ,⊥a b . (1)tan B ,tan tan B C ,tan C 能否构成等差数列?并证明你的结论; (2)求tan tan tan A B C 的最小值.(据2016年江苏卷第14题改编,三角变换、平面向量、数列及基本不等式的综合问题) 解:(1)依题意有sin 2sin sin A B C =. ……………………………………………2分 在ABC △中,A B C π=--,所以sin sin +=sin cos cos sin A B C B C B C =+(),………………………………3分 所以2sin sin =sin cos cos sin B C B C B C +. …………………………………4分 因为ABC △为锐角三角形,所以cos 0,cos 0B C >>,所以tan tan 2tan tan B C B C +=, ……………………………………………5分所以tan B ,tan tan B C ,tan C 成等差数列. ……………………………………6分(2)法一:在锐角ABC △中,tan tan tan tan()tan()1tan tan B C A B C B C B Cπ+=--=-+=--,……………………7分 即tan tan tan tan tan tan A B C A B C =++, ……………………………………8分 由(1)知tan tan 2tan tan B C B C +=,于是tan tan tan tan 2tan tan A B C A B C =+≥ …………10分 整理得tan tan tan 8A B C ≥, …………………………………………11分 当且仅当tan 4A =时取等号,故tan tan tan A B C 的最小值为8. …………………………………………12分 法二:由法一知tan tan tan 1tan tan B C A B C+=--, ………………………………………7分 由(1)知tan tan 2tan tan B C B C +=,于是2tan tan 2(tan tan )tan tan tan tan tan 1tan tan 1tan tan B C B C A B C B C B C B C+=-⨯=---, ……8分 令tan tan (1)B C x x =>,则222tan tan tan 2(1)4811x A B C x x x ==-++≥--,……………………………11分 当且仅当2x =,即tan 4A =时取等号,故tan tan tan A B C 的最小值为8. …………………………………………12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年第二学期期末教学质量监测高二数学(文科)本试卷共4页,22小题,满分150分.考试用时120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的 。

1.若i 12i z ⋅=-(i 为虚数单位),则z 的共轭复数是A .22i --B .2i -C .2i +D .2i -+2.抛物线24=-x y 的焦点到准线的距离为A .1B . 2C .3D .4 3.“p 且q 是真命题”是“非p 为假命题”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.用三段论演绎推理:“复数都可以表示成实部与虚部之和的形式,因为复数z 23i =+ 的实部是2,所以复数z 的虚部是3i ”。

对于这段推理,下列说法正确的是 A .大前提错误导致结论错误 B .小前提错误导致结论错误 C .推理形式错误导致结论错误 D .推理没有问题,结论正确 5.函数x e x f xln )(=在点))1(,1(f 处的切线方程是A .)1(2-=x e y B.1-=ex y C.)1(-=x e y D.e x y -= 6.若2παπ<<,则sin cos αα-的值与1的大小关系是A.sin cos 1αα->B.sin cos 1αα-=C.sin cos 1αα-<D.不能确定 7.函数3()34f x x x =- []0,1x ∈的最大值是A .12B . -1C .0D .1 8.甲、乙、丙三人中只有一人去过陈家祠,当他们被问到谁去过时,甲说:“丙没有去”;乙说:“我去过”;丙说:“甲说的是真话”。

若三人中只有一人说的是假话,那么去过陈家祠的人是 A .甲 B .乙 C .丙 D .不能确定9.某宇宙飞船运行的轨道是以地球中心为一焦点的椭圆,测得近地点距地面m 千米,远地点距地面n 千米,地球半径为r 千米,则该飞船运行轨道的短轴长为A .千米B 千米C .mn 2千米D .mn 千米10.函数31()3=-f x x ax 在R 上是增函数,则实数a 的取值范围是 A .0≥a B. 0≤a C. 0>a D. 0<a11.若椭圆)0(12222>>=+b a b y a x 和圆c c b y x (,)2(222+=+为椭圆的半焦距),有四个不同的交点,则椭圆的离心率e 的取值范围是A. )53,52(B. )55,52(C. )53,55(D. )55,0( 12. 已知定义在R 上的函数()f x 是奇函数,且(2)0f =,当0x >时,有'2()()0⋅-<x f x f x x,则不等式2()0x f x ⋅>的解集是 A .(2,0)(2,)-+∞ B.(,2)(0,2)-∞- C .(2,0)(0,2)- D .(2,2)(2,)-+∞第Ⅱ卷(非选择题 共90分)二、填空题: 本大题共4小题,每小题5分,共20分。

13.函数b x ax x x f +++=23)(在1=x 时取得极值,则实数=a _______.14.下表提供了某厂节能降耗技术改造后,在生产A 产品过程中记录的产量x (吨)与相应的生产能耗y (吨)的几组对应数据:根据表中提供的数据,求出y 关于x 的线性回归方程为=0.7+0.35ˆy x ,那么表中t 的值为______. 15.代数式⋅⋅⋅+++11111中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式t =,则11t t+=,则210t t --=,取正值得51t +=,用类似方法可得=⋅⋅⋅+++666_______. 16.如图1,1F 、2F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过1F 的直线l 与双曲线C 的两支分别交于点,A B ,若2ABF ∆为等边三角形,则双曲线C 的离心率为_______.三、解答题:本大题共6个小题,共70分.解答应写出文字说明,证明过程或演算步骤。

17.(本小题满分10分)已知直线l 的参数方程为2(4x a t t y t =-⎧⎨=-⎩为参数),圆C 的参数方程为4cos (4sin x y θθθ=⎧⎨=⎩为参数)(Ⅰ)求直线l 和圆C 的普通方程;x3 4 5 6 y2.5t44.5图2BD CA图3A B (2)(1)DGCEF P ⇒DABG CF P (Ⅱ)若直线l 与圆C 有公共点,求实数a 的取值范围. 18.(本小题满分12分)国家实施二孩放开政策后,为了了解人们对此政策持支持态度是否与年龄有关,计生部门将已婚且育有一孩的居民分成中老年组(45岁以上,含45岁)和中青年组(45岁以下,不含45岁)两个组别,每组各随机调查了50人,对各组中持支持态度和不支持态度的人所占的频率绘制成等高条形图,如图所示:(Ⅰ)根据以上信息完成2×2列联表;(Ⅱ)是否有99%以上的把握认为人们对此政策持支持态度与年龄有关?附:))()()(()(22d b c a d c b a bc ad n K ++++-=19.(本小题满分12分)如图2,在ABC ∆中,,83B AB π∠==,点D 在BC 边上,且2CD =,1cos 7∠=ADC . (Ⅰ)求sin BAD ∠; (Ⅱ)求BD ,AC 的长.20.(本小题满分12分)如图⑴,在直角梯形ABCP 中,//BC AP ,AB BC ⊥,CD AP ⊥,2AD DC PD ===,,,E F G 分别是线段,,PC PD BC 的中点,现将PDC ∆折起,使平面PDC ⊥平面ABCD ,如图⑵. (Ⅰ)求证://AP 平面EFG ; (Ⅱ)求三棱锥P EFG -的体积.21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为3,且经过点()1,3--M .(Ⅰ)求椭圆C 的方程;0.2 0 0.5 1.0 中老年组 中青年组(Ⅱ)若直线02:=--y x l 与椭圆C 交于,A B 两点,点P 为椭圆C 上一动点,当△PAB 的面积最大时,求点P 的坐标及△PAB 的最大面积.22.(本小题满分12分)已知函数2()ln f x x ax bx =++(其中a ,b 为常数且0a ≠)在1x =处取得极值. (Ⅰ)当1a =时,求()f x 的单调区间;(Ⅱ)若()f x 在(0,e]上的最大值为1,求a 的值.2016—2017学年度第二学期期末质量监测高二数学(文科)参考答案与评分标准一、选择题:二、填空题:13.-2; 14.3 15. 3三、解答题:17.(本小题满分10分)已知直线l 的参数方程为2(t 4x a t y t =-⎧⎨=-⎩为参数),圆C 的参数方程为4cos (4sin x y θθθ=⎧⎨=⎩为参数)(Ⅰ)求直线l 和圆C 的普通方程;(Ⅱ)若直线l 与圆C 有公共点,求实数a 的取值范围.17.解:(Ⅰ) 消去参数t 得直线l 的一般方程:220--=l x y a ……………………2分 消去参数θ得圆C 的一般方程22:16+=x y …………………………5分若直线l 与圆C 有公共点18.(本小题12分)国家实施二孩放开政策后,为了了解人们对此政策持支持态度是否与年龄有关,计生部门将已婚且育有一孩的居民分成中老年组(45岁以上,含45岁)和中青年组(45岁以下,不含45岁)两个组别,每组各随机调查了50人,对各组中持支持态度和不支持态度的人所占的频率绘制成等高条形图,如图所示:(Ⅰ(Ⅱ附:))()()(()(22dbcadcbabcadnK++++-=18.解:(Ⅰ)由等高条形图可知:中老年组中,持支持态度的有50×0.2=10人,持不支持态度的有50-10=40人;…………………………………………………………………………2分中青年组中,持支持态度的有50×0.5=25人,持不支持态度的有50-25=25人。

…………………………………………………………………………4分故2×2列联表为:…………………………………………………………………………6分(Ⅱ8分10分9.89≈>6.635……………………………………11分∴有99%以上的把握认为人们对此政策持支持态度支持与年龄有关………12分19.(本小题满分12分)如图,在ABC∆中,,83B ABπ∠==,点D在BC边上,且2CD=,1cos7∠=ADC. (Ⅰ)求sin BAD∠;(Ⅱ)求BD,AC的长.0.20.51.0中老年组中青年组19.解:(Ⅰ)在ABC 中 ,∴()sin sin ∠=∠-∠BAD ADC B ……………………3分=sin cos cos sin ∠⋅∠-∠⋅∠ADC B ADC B ……………………4分(Ⅱ)在ABD 中=3,……………………9分 在ABC 中 ,由余弦定理得:2222cos =+-⋅AC AB BC AB BC B49=,即7=AC ……………………12分 20.(本小题满分12分)如图⑴,在直角梯形ABCP 中,BC ∥AP ,A B ⊥BC ,CD ⊥AP ,AD =DC =PD =2,E ,F ,G 分别是线段PC 、PD ,BC 的中点,现将ΔPDC 折起,使平面PDC ⊥平面ABCD ,如图⑵. (Ⅰ)求证AP ∥平面EFG ; (Ⅱ)求三棱锥P EFG -的体积.20.解:(Ⅰ)∵PDC 中,点E,F 分别是PC,PD 的中点图3A B (2)(1)DGCEF P ⇒DAB GC F P∴EF ∥CD 又CD ∥AB∴EF ∥AB ………………………………………………1分 ∵⊄面PAB EF ⊂面PAB AB 根据线面平行的判定定理EF ∥平面PAB ………………………………………………2分 同理:EG ∥平面PAB ………………………………………………3分⋂=EF EG E ………………………………………………4分∴平面EFG ∥平面PAB ,又AP ⊂面PAB ,…………………………5分 ∴AP ∥平面EFG …………………………………………………………6分 (Ⅱ)由题设可知BC ⊥平面PDC ,故GC 为三棱锥G-PEF 底面上的高G 是BC 的中点,BC =2,所以GC =1……………………………8分 又11111222PEF S PF EF ∆=⋅=⨯⨯=,……………………………9分 所以--=P EFG G PEF V V ……………………………11分1316∆=⋅=PEF S GC ----------------------------------12分21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>()1,3--M .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线02:=--y x l 与椭圆C 交于,A B 两点,点P 为椭圆C 上一动点,当△PAB 的面积最大时,求点P 的坐标及△PAB 的最大面积. 21.(本小题满分12分)解:(Ⅰ)3c e a ==, ……………………………1分 又222a b c =+,所以b a =223a b =, … ……………………2分 ()1,3--M 在椭圆C………………3分联立解得224,12b a ==,故椭圆C 的方程为141222=+y x . ……………………4分(Ⅱ)将直线02=--y x 代入141222=+y x 中消去y 得,032=-x x .解得0=x 或3=x . …………………………5分 所以点()2,0-A ,()1,3B ,所以()()23210322=++-=AB . ………………6分在椭圆C 上求一点P , 使△PAB 的面积最大,则点P 到直线l 的距离最大. 设过点P 且与直线l 平行的直线方程为b x y +=.……………………………………7分将b x y +=代入141222=+y x 整理得,()0436422=-++b bx x .…………………8分令()()22644340b b ∆=-⨯⨯-=,解得4±=b . …………………………………9分将4±=b 代入方程()0436422=-++b bx x ,解得3±=x .易知当点P 的坐标为()1,3-时,△PAB 的面积最大. ………………………………10分 且点P ()1,3-到直线l 的距离为231121322=+---=d . …………………………11分△PAB 的最大面积为=⨯⨯=d AB S 219. …………………………………………12分 22.(本小题满分12分)已知函数2()ln f x x ax bx =++(其中a ,b 为常数且0a ≠)在1x =处取得极值. (Ⅰ)当1a =时,求()f x 的单调区间;(Ⅱ)若()f x 在(0,]e 上的最大值为1,求a 的值. 22.解:(Ⅰ)因为2()ln f x x ax bx =++,所以1'()2f x ax b x=++,……………1分 因为函数2()ln f x x ax bx =++在1x =处取得极值,'(1)120f a b =++= ………………………………………………2分 当1a =时,3b =-,2231'()x x f x x-+=, ……………………3分函数()f x 定义域为(0,)∈+∞x由'()0f x >,得102x <<或1x >;由'()0f x <,得112x <<,…………………5分 即函数()f x 的单调递增区间为1(0,)2,(1,)+∞;单调递减区间为1(,1)2.(Ⅱ)因为(21)(1)'()ax x f x x --=,令'()0f x =,11x =,212x a=, ………………………………………………6分因为()f x 在1x =处取得极值,所以21112x x a=≠=,①当102a<时,()f x 在(0,1)上单调递增,在(1,]e 上单调递减, 所以()f x 在区间(0,]e 上的最大值为(1)f ,令(1)1f =,解得2a =-, ………………………………………………8分②当1012<<a 时, ()f x 在1(0,)2a 上单调递增,1(,1)2a上单调递减,(1,)e 上单调递增, 所以最大值1可能在12x a =或x e =处取得,而21111()ln ()(21)2222f a a a a a a =+-+11ln 124=--a a0< ,所以2()ln (21)1f e e ae a e =+-+=,解得12a e =-; ………………………10分③当112e a ≤<时,()f x 在区间(0,1)上单调递增,1(1,)2a 上单调递减,1(,)2e a上单调递增,所以最大值1可能在1x =或x e =处取得, 而(1)ln1(21)=10=+-+--<f a a a , 所以2()ln (21)1f e e ae a e =+-+=,解得12a e =-,与2112x e a <=<矛盾.………………………………………………11分 ④当212x e a=≥时,()f x 在区间(0,1)上单调递增,在(1,)e 上单调递减,所以最大值1可能在1x =处取得,而(1)ln1(21)=10=+-+--<f a a a ,矛盾. 综上所述,12a e =-或2a =-. ………………………………………………12分。

相关文档
最新文档