(完整)高一上数学期末必修一二考试卷(含答案),推荐文档
郑州市高一上期期末数学试题(必修1+必修2)(含答案)(word典藏版)
高一上期期末数学试题第Ⅰ卷 (选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知全集}6,5,4,3,2,1{=U ,}5,4,2{=A ,则=A C UA .∅B .}5,1{C .}6,3,1{D .}5,3,1{2.下列函数中,既是奇函数,又是增函数的是A .2x y = B .xy 2= C .x y lg = D .3x y =3.函数x x x f ln 1)(+-=的定义域为A .]1,(-∞B .)1,0(C .]1,0(D .),1()1,0(+∞4.已知倾斜角为045的直线经过)4,2(A ,),1(m B 两点,则=mA .3B .3-C .5D .1-5.函数x x x f 28log )(3+-=的零点所在的区间是A .)6,5(B .)4,3(C .)3,2(D .)2,1(6.已知空间直角坐标系中一点)4,1,3(A ,则点A 关于x 轴的对称点的坐标为A .)4,1,3(-B .)4,1,3(-C .)4,1,3(-D .)4,1,3(--7.已知6log 3.0=a ,63.0=b ,3.06=c ,则这三个数的大小关系是A .c b a <<B .b c a <<C .c a b <<D .a c b << 8.已知γβα,,是三个不同的平面,n m ,是两条不同的直线,下列命题中正确的是A .若αα//,//n m ,则n m //B .若βα//,//m m ,则βα//C .若γβγα⊥⊥,,则βα//D .若αββα⊄⊥⊥m m ,,,则α//m9.一个圆柱的侧面展开图是一个正方形,这个圆柱的表面积与侧面面积的比是A .ππ421+ B .ππ221+ D .ππ241+ 10.若0,0><bc ac ,则直线+by ax正视图侧视图俯视图A .第一象限B .第二象限C .第三象限D .第四象限11.某多面体的三视图如图所示,则这个多面体最长的一条棱的长是A .41B .5C .24D .4 12.过原点的直线与函数xy 2=的图象交于B A ,两点,过B 作x 轴的平行线交函数xy 4=的图象于点C ,若直线AC 垂 直于x 轴,则点A 的坐标是A .)1,0(B .)2,21( C .)2,1( D .)4,2(第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上) 13.幂函数)(x f y =的图象过点)3,3(,则=)16(f . 14.圆心在)1,2(-且与x 轴相切的圆的标准方程为 . 15.计算=⋅⋅++-9log 4log 25log 8log 932log 4log 532333 . 16.若一系列函数的解析式和值域相同,但其定义域不同,则称这些函数为“同族函数”,例如函数]2,1[,2∈=x x y 与函数]1,2[,2--∈=x x y 即为“同族函数”.请你找出下面哪些函数解析式也能被用来构造“同族函数”,答: (请填写序号)①|2|-=x y ;②x y =;③)1(log 221x y -=;④xy 5=;⑤222x y xx +=-. 三、解答题(本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分10分)已知集合}71|{<≤=x x A ,}3log 1|{2<<=x x B ,}|{a x x C <=,全集为实数 集R .(I )求B A ;(II )如果∅≠C A ,且∅=C B ,求实数a 的取值范围.设直线1l :x y 2=与直线2l :6=+y x 交于P 点.(I )当直线m 过P 点,且与直线0l :02=-y x 垂直时,求直线m 的方程; (II )当直线m 过P 点,且坐标原点O 到直线m 的距离为2时,求直线m 的方程.19.(本小题满分12分)某医药研究所开发一种抗流感新药,据监测:如果成年人按规定的剂量服用,服药后每毫升血液中的含药量y (微克)与时间t (小时)之间近似满足如右图所示的曲线.右图中:线段MN 所在直线的斜率为21-,当3≥t 时,y 与t 之间满足:at y -⎪⎭⎫⎝⎛=31(其中a 为常数).(I )集合图象,写出服药后y 与t 之间的函数关系式)(t f y =; (II )据进一步测定:每毫升血液中含药量不少于31微克时治疗疾病有效,求服药一次治疗有效的时间范围.如图所示,四棱锥ABCD P -的底面是直角梯形,⊥PA 底面ABCD ,AD AB ⊥,AD CD ⊥AB CD 2=,E 为PC 的中点,1===AB AD PA .(I )证明://BE 平面PAD ; (II )证明:⊥BE 平面PDC ; (III )求三棱锥PBD C -的体积.21.(本小题满分12分)已知以点)0()2,(>a aa C 为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点. (I )求证:AOB ∆的面积为定值;(II )设直线042=-+y x 与圆C 交于点M 、N ,若ON OM =,求圆C 的方程.22.(本小题满分12分)已知函数)(1222)(R a aa x f x x ∈++-⋅=. (I )判断并证明函数的单调性;(II )若函数)(x f 为奇函数,试求实数a 的值;(III )在(II )成立的条件下,若对任意的),1(+∞-∈x ,不等式0)1()4(<+++kx f k x f 恒成立,求实数k 的取值范围.2012—2013学年上期期末考试高中一年级 数学 参考答案1-12 CDCA BDAD BBAC13. 4;14.(x -2)2+(y +1)2=1;15.10;16.①③⑤ . 17. 解:(1)由21log 3x <<,得28x <<, …………2分∴{|28}B x x =<<. ∴{|18}AB x x =≤<.………………………4分(2)∅≠C A ,∴1a >. ……………………………6分 又∵B C =∅,∴2a ≤, …………8分 ∴12a <≤,即实数a 的取值范围是(]1,2. ……10分18.解:由26y xx y =⎧⎨+=⎩,解得点()24P ,.……………………2分(1)因为m ⊥0l ,所以直线m 的斜率221110-=-=-=l m k k , ………… ………4分又直线m 过点()24P ,,故直线m 的方程为:()422y x -=--, 即280x y +-=. …………………………6分(2)因为直线m 过点()P 2,4,当直线m 的斜率存在时,可设直线m 的方程为()42y k x -=-,即240kx y k --+=.所以坐标原点O 到直线m 的距离22421k d k -+==+,解得34k =, …………8分因此直线m 的方程为:3324044x y --⨯+=,即34100x y -+=. ……9分当直线m 的斜率不存在时,直线m 的方程为2x =,验证可知符合题意. …11分综上所述,所求直线m 的方程为2x =或34100x y -+=.……12分 19. 解:(1) 当01t ≤≤时,设y kt=,将 M (1,4)代入可得4k =; (2)分由12MN k =-可知线段MN 所在的直线方程为14(1)2y t -=-- 即:290t y +-=,∴N (3,3).…………………4分 将点N代入13t ay -⎛⎫= ⎪⎝⎭可得a =4, …………6分所以:44,01,19,13,221(),3,3t t t y t t t -⎧⎪≤<⎪⎪=-+≤≤⎨⎪⎪>⎪⎩ …………………8分(2) 当01t ≤≤时,由13y =得112t =,…………………9分当13t <≤时,3y ≥;…………………10分 当3t >时,由13y =得5t =.…………………11分故满足条件的t 的范围是1512t ≤≤. ………12分20.(1)证明:取PD 中点Q ,连结AQ 、EQ E 为PC 的中点,CD EQ //∴且CD EQ 21=又CD AB // 且CD AB 21=,AB EQ //∴且AB EQ =∴四边形ABED 是平行四边形,AQ BE //∴.又⊄BE 平面PAD ,⊂AQ 平面, ∴//BE 平面PAD .…………………4分(2)证明:⊥PA 底面ABCD ,CD PA ⊥∴.又AD CD ⊥ ,且PAAD A =, ⊥∴CD 平面PAD ,AQ CD ⊥∴.AD PA = ,Q 为PD 的中点, PD AQ ⊥∴,,CD PD D =⊥∴AQ 平面PDC .AQ BE // ,∴⊥BE 平面PDC . ………9分(3)由已知可得1DBC S ∆=又⊥PA 底面ABCD ,∴ 1133C PBD P BCD BCD V V PA S --∆==⨯⨯=…………12分21. (1)证明 由题设知,圆C 的方程为(x -a )2+22()y a -=a 2+24a,………2分当y =0时,x =0或2a ,则A (2a,0);QEDCA BP当x =0时,y =0或4a,则B(0,4a),………4分∴S △AOB =12|OA |·|OB |=12×2a ·4a =4为定值.……………5分(2)解 ∵OM =ON ,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,………………7分则直线OC 的斜率k =22a=12,∴a =2或a =-2. ……………………………9分 a >0,∴圆心为C (2,1),………11分∴圆C 的方程为(x -2)2+(y -1)2=5,……………12分 22. (1)函数()f x 为R 上的增函数.证明如下:证明:函数()f x 的定义域为R ,对任意1x ,R x ∈2,设21x x <,则121222()()()()2121x x f x f x aa122121222(22)2121(21)(21)x x x x x x . (2)分因为2x y 是R 上的增函数,且12xx ,所以1222xx <0,所以12()()f x f x <0即12()()f x f x ,函数()f x 在R 上单调递增. ……………4分(2)解:∵函数()f x 为奇函数,且R,x ∈∴()()f x f x -=-,∴222121x x a a --=-+++.即2222121x x x a a ⨯-=-+++222221x x a ⨯+=+=2,所以1a =.…………7分(3)不等式(4)(1)0f x k f kx +++<在1x >-恒成立等价于不等式(4)(1)f x k f kx +<-+在1x >-上恒成立,不等式(4)(1)f x k f kx +<--在1x >-上恒成立,又因为()f x 在(,)-∞+∞上为增函数,所以等价于不等式41x k kx +<--在1x >-上恒成立, 即不等式(1)410k x k +++<在1x >-上恒成立.………10分 设()(1)41g x k x k =+++, (1x >-)当1k >-时,函数()g x 的图象在1x >-时必有在x 轴上方的点,不符合题意;当1k =-时,30-<显然成立, 当1k <-时,必须10,1410,k k k +<⎧⎨--++≤⎩,解得1k <-.综上,实数k 的取值范围{}1k k ≤-. ………12分。
(word完整版)人教版高一上数学期末测试题必修一必修二
高一上学期期末数学考试复习卷(必修一+必修二)、选择题:本大题共12小题, 每小题5分,满分60分.1.直线3x 、、3y 1 0的倾斜角是(A 30 、60 、120 、1352.两条平行线l1 : 4x 3y 2 0 与l2:4x 3y 1 0之间的距离是(B. C. D.3.已知函数f log 2x, x3x, x的值是(A.4.函数f(x) lg(xx 1U的定义域是A. (1,B. [ 1,)C.( 1,1)U(1, )D.[ 1,1)U(1,5.下列函数在其定义域内既是奇函数, 又是增函数的是(A. y xB. 3xC. y log2 xD.1 y x36 •在圆x24上,与直线4 x 3y 12 0的距离最小的点的坐标为(AW6)8 6B.(--)5 58 6C(-,-)5 58 6D.(中5)7. e O1 : x2y24x 6y 12 0 与 e O2 : x2 y28x 6y 16 0的位置关系是(A .相交 B.外离 C.内含 D.内切8.函数f(x) 4 4x (e为自然对数的底)的零点所在的区间为(A. (1,2)B. (0,1)C. (1,0)D. ( 2, 1)9.已知a log:5,b2log2 3,c 1,d 30.5,那么()10.A. A. a c b C . abed D .把正方形ABCD沿对角线BD折成直二角后,下列命题正确的是:AB BC B. AC BD C. CD 平面ABC D. 平面ABC 平面ACD))上为减函数,且f(1) 0,贝U 不等式f(x) f(X )o 的解集为()xB. ( , 1)U(01)C. ( , 1)U(1,) D. ( 1,0)U(01)二、填空题:本大题共4小题,每小题5分,满分20分. 13. Ig -.5 lg ,20 的值是14. 过点(5,2)且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是15. 一个几何体的三视图如图2所示,那么这个几何体的表面积.为__42正视图俯视图216.函数y (m 2 m 1)x m 2m 1是幕函数,且在x 0, 上是减函数,则实数m三、解答题:本大题共6小题,满分70分. 17.(本小题满分14分)已知直线I : x 2y 4 0 , (1) 求与I 平行,且过点(1,4)的直线方程: (2)已知圆心为(1,4),且与直线l 相切求圆的方程;18.(本小题满分14分) 已知圆:x 2 y 2 4x 6y 120,(1) 求过点A(3,5)的圆的切线方程;12.设奇函数f(x)在(0,A. ( 1,0)U(1,)(2)点P(x, y)为圆上任意一点,求—的最值。
(完整word版)人教版高一数学(上)必修1+必修2 综合期末复习试题(解析版)
高一(上)期末数学试卷一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A∩C U B()A.{1,2}B.{3,4}C.{1}D.{2}2.函数的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)3.若a>0且a≠1,那么函数y=a x与y=log a x的图象关于()A.原点对称B.直线y=x对称C.x轴对称D.y轴对称4.若直线ax+2y+a﹣1=0与直线2x+3y﹣4=0垂直,则a的值为()A.3 B.﹣3 C.D.5.直线a、b和平面α,下面推论错误的是()A.若a⊥α,b⊂α,则a⊥b B.若a⊥α,a∥b,则b⊥αC.若a⊥b,b⊥α,则a∥α或a⊂αD.若a∥α,b⊂α,则a∥b6.正方体ABCD﹣A1B1C1D1中与AD1垂直的平面是()A.平面DD1C1C B.平面A1DB C.平面A1B1C1D1D.平面A1DB17.已知函数f(2x)=log3(8x2+7),那么f(1)等于()A.2 B.log339 C.1 D.log3158.如图,点P、Q分别是正方体ABCD﹣A1B1C1D1的面对角线AD1、BD的中点,则异面直线PQ和BC1所成的角为()A.30°B.45°C.60°D.90°9.将棱长为2的正方体木块切削成一个体积最大的球,则该球的体积为()A.B.C.D.10.已知函数f(x)的图象如图:则满足f(2x)•f(lg(x2﹣6x+120))≤0的x 的取值范围是()A.(﹣∞,1]B.[1,+∞)C.[0,+∞)D.(﹣∞,2]11.若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f (x2)+1,则下列说法一定正确的是()A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数D.f(x)+1为偶函数12.设方程5﹣x=|lgx|的两个根分别为x1,x2,则()A.x1x2<0 B.x1x2=1 C.x1x2>1 D.0<x1x2<1二、填空题(每题5分,满分20分,将答案填在答题纸上)13.计算:log3+lg25+lg4+﹣=.14.一几何体的三视图,如图,它的体积为.15.已知直线l:kx﹣y+1﹣2k=0(k∈R)过定点P,则点P的坐标为.16.已知f(x)=,g(x)=x2﹣4x﹣4,若f(a)+g(b)=0,则b的取值范围为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知三角形三顶点A(4,0),B(8,10),C(0,6),求:(1)过A点且平行与BC的直线方程;(2)AC边上的高所在的直线方程.18.已知函数f(x)=2x2﹣4x+a,g(x)=log a x(a>0且a≠1).(Ⅰ)若函数f(x)在[﹣1,2m]上不具有单调性,求实数m的取值范围;(Ⅱ)若f(1)=g(1).(ⅰ)求实数a的值;(ⅱ)设,t2=g(x),,当x∈(0,1)时,试比较t1,t2,t3的大小.19.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,PA⊥平面ABCD,点F为PC的中点.(1)求证:PA∥平面BDF;(2)求证:PC⊥BD.20.函数f(x)=a x﹣(k﹣1)a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)求k的值;(2)若f(1)<0,试分析判断y=f(x)的单调性(不需证明),并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范围.21.在三棱锥S﹣ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=.(1)证明:面SBC⊥面SAC;(2)求点A到平面SCB的距离;(3)求二面角A﹣SB﹣C的平面角的正弦值.22.已知函数g(x)=mx2﹣2mx+1+n,(n≥0)在[1,2]上有最大值1和最小值0.设f(x)=.(其中e为自然对数的底数)(1)求m,n的值;(2)若不等式f(log2x)﹣2klog2x≥0在x∈[2,4]上有解,求实数k的取值范围;(3)若方程f(|e x﹣1|)+﹣3k=0有三个不同的实数解,求实数k的取值范围.高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U={1,2,3,4,5},集合A={1,2},B={2,3},则A∩C U B()A.{1,2}B.{3,4}C.{1}D.{2}【考点】交、并、补集的混合运算.【分析】已知集合A={1,2},B={2,3},根据补集的定义,求出C U B,再根据交集的定义,求出A∩C U B;【解答】解:∵全集U={1,2,3,4,5},集合A={1,2},B={2,3},∴C U B={1,4,5},∴A∩C U B={1},故选C;2.函数的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)【考点】函数的定义域及其求法.【分析】根据分母不是0,以及对数函数的性质得到关于x的不等式组,解出即可.【解答】解:由题意得:,解得:x>﹣1或x≠1,故函数的定义域是(﹣1,1)∪(1,+∞),故选:C.3.若a>0且a≠1,那么函数y=a x与y=log a x的图象关于()A.原点对称B.直线y=x对称C.x轴对称D.y轴对称【考点】反函数.【分析】利用互为反函数的图象关于直线y=x对称即可得出.【解答】解:∵a>0且a≠1,那么函数y=a x与y=log a x互为反函数,因此其图象关于直线y=x对称.故选:B.4.若直线ax+2y+a﹣1=0与直线2x+3y﹣4=0垂直,则a的值为()A.3 B.﹣3 C.D.【考点】直线的一般式方程与直线的垂直关系.【分析】利用相互垂直的直线斜率之间的关系即可得出.【解答】解:∵直线ax+2y+a﹣1=0与直线2x+3y﹣4=0垂直,∴,解得a=﹣3.故选:B.5.直线a、b和平面α,下面推论错误的是()A.若a⊥α,b⊂α,则a⊥b B.若a⊥α,a∥b,则b⊥αC.若a⊥b,b⊥α,则a∥α或a⊂αD.若a∥α,b⊂α,则a∥b【考点】命题的真假判断与应用.【分析】A,由线面垂直的性质定理可判断;B,由线面垂直的判定定理可判断;C,由线面、线线垂直的判定定理可判断;D,若a∥α,b⊂α,则a∥b或异面【解答】解:对于A,若a⊥α,b⊂α,则a⊥b,由线面垂直的性质定理可判断A正确;对于B,若a⊥α,a∥b,则b⊥α,由线面垂直的判定定理可判断B正确;对于C,若a⊥b,b⊥α,则a∥α或a⊂α,由线面、线线垂直的判定定理可判断C正确对于D,若a∥α,b⊂α,则a∥b或异面,故D错;故选:D.6.正方体ABCD﹣A1B1C1D1中与AD1垂直的平面是()A.平面DD1C1C B.平面A1DB C.平面A1B1C1D1D.平面A1DB1【考点】直线与平面垂直的判定.【分析】由AD1⊥A1D,AD1⊥A1B1,得到AD1⊥平面A1DB1.【解答】解:正方体ABCD﹣A1B1C1D1中,在A中,AD1与平面DD1C1C相交但不垂直,故A错误;在B中,AD1与平面A1DB相交但不垂直,故B错误;在C中,AD1与平面A1B1C1D1相交但不垂直,故C错误;在D中,AD1⊥A1D,AD1⊥A1B1,A1D∩A1B1=A1,∴AD1⊥平面A1DB1,故D正确.故选:D.7.已知函数f(2x)=log3(8x2+7),那么f(1)等于()A.2 B.log339 C.1 D.log315【考点】函数的值;函数解析式的求解及常用方法.【分析】先由2x=1,解得x=,然后求f(1)的值.【解答】解:因为函数f(2x)=log3(8x2+7),所以f(1)=f(2×)=log3(8×()2+7)=log39=2.所以f(1)=2.故选A.8.如图,点P、Q分别是正方体ABCD﹣A1B1C1D1的面对角线AD1、BD的中点,则异面直线PQ和BC1所成的角为()A.30°B.45°C.60°D.90°【考点】异面直线及其所成的角.【分析】如图所示,连接D1C,则PQ∥D1C,A1B∥D1C.则∠A1BC1是异面直线PQ和BC1所成的角.【解答】解:如图所示,连接D1C,则PQ∥D1C.连接A1C1,A1B,则△A1C1B是等边三角形,A1B∥D1C.则∠A1BC1是异面直线PQ和BC1所成的角,为60°.故选:C.9.将棱长为2的正方体木块切削成一个体积最大的球,则该球的体积为()A.B.C.D.【考点】球内接多面体.【分析】根据已知中,将棱长为2的正方体木块切削成一个体积最大的球,结合正方体和圆的结构特征,就是正方体的内切球,我们可以求出球的半径,代入球的体积公式即可求出答案.【解答】解:将棱长为2的正方体木块切削成一个体积最大的球时,球的直径等于正方体的棱长2,则球的半径R=1,则球的体积V=•π•R3=故选A.10.已知函数f(x)的图象如图:则满足f(2x)•f(lg(x2﹣6x+120))≤0的x 的取值范围是()A.(﹣∞,1]B.[1,+∞)C.[0,+∞)D.(﹣∞,2]【考点】函数的图象.【分析】由x2﹣6x+120>100,可得lg(x2﹣6x+120))>2,即f(lg(x2﹣6x+120))<0,故有f(2x)≥0,2x ≤2,由此求得x的范围.【解答】解:由f(x)的图象可得,f(x)≤0,等价于x≥2;,f(x)≥0,等价于x≤2.∵f(2x)•f(lg(x2﹣6x+120))≤0,∵x2﹣6x+120=(x﹣3)2+111>100,∴lg(x2﹣6x+120))>2,∴f(lg(x2﹣6x+120))<0,∴f(2x)≥0,2x ≤2,∴x≤1,故选:A.11.若定义在R上的函数f(x)满足:对任意x1,x2∈R有f(x1+x2)=f(x1)+f (x2)+1,则下列说法一定正确的是()A.f(x)为奇函数B.f(x)为偶函数C.f(x)+1为奇函数D.f(x)+1为偶函数【考点】函数奇偶性的判断.【分析】对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,考察四个选项,本题要研究函数的奇偶性,故对所给的x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1进行赋值研究即可【解答】解:∵对任意x1,x2∈R有f(x1+x2)=f(x1)+f(x2)+1,∴令x1=x2=0,得f(0)=﹣1∴令x1=x,x2=﹣x,得f(0)=f(x)+f(﹣x)+1,∴f(x)+1=﹣f(﹣x)﹣1=﹣[f(﹣x)+1],∴f(x)+1为奇函数.故选C12.设方程5﹣x=|lgx|的两个根分别为x1,x2,则()A.x1x2<0 B.x1x2=1 C.x1x2>1 D.0<x1x2<1【考点】函数零点的判定定理.【分析】构造f(x)=5﹣x,g(x)=|lgx|,画出图象,判断两个函数零点位置,利用根的存在性定理得出即可.【解答】解:f(x)=5﹣x,g(x)=|lgx|的图象为:5﹣x2﹣(5﹣x1)=lgx1+lgx2=lg(x1x2)lg(x1x2)=x1﹣x2<0,x1x2∈(0,1),∴0<x1x2<1故选:D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.计算:log3+lg25+lg4+﹣=4.【考点】对数的运算性质.【分析】利用对数和指数的运算性质即可得出.【解答】解:原式=+lg(25×4)+2﹣==4.故答案为:4.14.一几何体的三视图,如图,它的体积为.【考点】由三视图求面积、体积.【分析】三视图复原的几何体是放倒的四棱柱,底面是直角梯形,根据三视图的数据,求出几何体的体积.【解答】解:三视图复原的几何体是放倒的四棱柱,底面是直角梯形,侧棱垂直底面,所以几何体的体积是:SH==故答案为:15.已知直线l:kx﹣y+1﹣2k=0(k∈R)过定点P,则点P的坐标为(2,﹣1).【考点】恒过定点的直线.【分析】kx﹣y﹣2k﹣1=0,化为y+1=k(x﹣2),即可得出直线经过的定点.【解答】解:kx﹣y﹣2k﹣1=0,化为y+1=k(x﹣2),∵k∈R,∴,解得.∴点P的坐标为(2,﹣1).故答案为(2,﹣1).16.已知f(x)=,g(x)=x2﹣4x﹣4,若f(a)+g(b)=0,则b的取值范围为[﹣1,5] .【考点】分段函数的应用.【分析】根据函数的单调性求出f(x)的值域,从而得到g(b)的取值范围,解一元二次不等式即可.【解答】解:当x时,f(x)=ln(x+1)递增,可得f(x)≥﹣ln2;当x<﹣,即﹣2<<0时,f(x)=+=(+1)2﹣1∈[﹣1,0),则f(x)的值域为[﹣1,+∞),由f(a)+g(b)=0,可得g(b)=﹣f(a),即b2﹣4b﹣4≤1,解得﹣1≤b≤5,即b的取值范围为[﹣1,5].故答案为[﹣1,5].三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知三角形三顶点A(4,0),B(8,10),C(0,6),求:(1)过A点且平行与BC的直线方程;(2)AC边上的高所在的直线方程.【考点】直线的一般式方程与直线的平行关系;直线的一般式方程与直线的垂直关系.【分析】(1)利用相互平行的直线斜率之间的关系即可得出.(2)利用相互垂直的直线斜率之间的关系即可得出.【解答】解:(1)∵k BC=,∴与BC的直线的斜率k=.故所求的直线为y﹣0=(x﹣4),化为x﹣y﹣4=0.(2)∵k AC=,∴AC边上的高所在的直线的斜率k=.∴AC边上的高所在的直线方程为,化为2x﹣3y﹣8=0.18.已知函数f(x)=2x2﹣4x+a,g(x)=log a x(a>0且a≠1).(Ⅰ)若函数f(x)在[﹣1,2m]上不具有单调性,求实数m的取值范围;(Ⅱ)若f(1)=g(1).(ⅰ)求实数a的值;(ⅱ)设,t2=g(x),,当x∈(0,1)时,试比较t1,t2,t3的大小.【考点】利用导数研究函数的单调性.【分析】(Ⅰ)可得抛物线的对称轴为x=1,由题意可得﹣1<1<2m;(Ⅱ)(i)由题意可得f(1)=0,即﹣2+a=0;(ii)当x∈(0,1)时,易求t1,t2,t3的取值范围,由范围可得大小关系;【解答】解:(Ⅰ)∵抛物线y=2x2﹣4x+a开口向上,对称轴为x=1,∴函数f(x)在(﹣∞,1]单调递减,在[1,+∞)单调递增,∵函数f(x)在[﹣1,2m]上不单调,∴2m>1,得,∴实数m的取值范围为;(Ⅱ)(ⅰ)∵f(1)=g(1),∴﹣2+a=0,∴实数a的值为2.(ⅱ)∵,t2=g(x)=log2x,,∴当x∈(0,1)时,t1∈(0,1),t2∈(﹣∞,0),t3∈(1,2),∴t2<t1<t3.19.如图,已知四棱锥P﹣ABCD的底面ABCD是菱形,PA⊥平面ABCD,点F为PC的中点.(1)求证:PA∥平面BDF;(2)求证:PC⊥BD.【考点】直线与平面平行的判定;空间中直线与直线之间的位置关系.【分析】(1)设BD与AC交于点O,利用三角形的中位线性质可得OF∥PA,从而证明PA∥平面BDF.(2)由PA⊥平面ABCD 得PA⊥BD,依据菱形的性质可得BD⊥AC,从而证得BD ⊥平面PAC,进而PC⊥BD.【解答】证明:(1)连接AC,BD与AC交于点O,连接OF.∵ABCD是菱形,∴O是AC的中点.∵点F为PC的中点,∴OF∥PA.∵OF⊂平面BDF,PA⊄平面BDF,∴PA∥平面BDF.(2)∵PA⊥平面ABCD,∴PA⊥BD.又∵底面ABCD是菱形,∴BD⊥AC.又PA∩AC=A,PA,AC⊂平面PAC,∴BD⊥平面PAC.又∵PC⊂平面PAC,∴PC⊥BD20.函数f(x)=a x﹣(k﹣1)a﹣x(a>0且a≠1)是定义域为R的奇函数.(1)求k的值;(2)若f(1)<0,试分析判断y=f(x)的单调性(不需证明),并求使不等式f(x2+tx)+f(4﹣x)<0恒成立的t的取值范围.【考点】函数恒成立问题.【分析】(1)利用奇函数的性质,f(0)=0,求解k即可.(2)判断函数的单调性,利用函数的单调性,转化不等式利用函数恒成立,通过判别式求解即可.【解答】解:(1)∵f(x)是定义域为R的奇函数,∴f(0)=0,∴1﹣(k﹣1)=0,∴k=2.(2)f(x)=a x﹣(k﹣1)a﹣x(a>0且a≠1),∵f(1)<0,∴,又a >0且a≠1,∴0<a<1,∵y=a x单减,y=a﹣x单增,故f(x)在R上单减,故不等式化为f(x2+tx)<f(x﹣4),∴x2+tx>x﹣4,即x2+(t﹣1)x+4>0恒成立,∴△=(t﹣1)2﹣16<0,解得﹣3<t<5.21.在三棱锥S﹣ABC中,∠SAB=∠SAC=∠ACB=90°,AC=1,BC=.(1)证明:面SBC⊥面SAC;(2)求点A到平面SCB的距离;(3)求二面角A﹣SB﹣C的平面角的正弦值.【考点】二面角的平面角及求法;平面与平面垂直的判定;点、线、面间的距离计算.【分析】(1)利用SA⊥AB,SA⊥AC,推出SA⊥平面ABC,得到BC⊥SA,结合BC⊥AC,证明BC⊥面SAC,然后说明面SBC⊥面SAC.(2)过点A作AE⊥SC交SC于点E,推出AE为点A到平面SCB的距离,然后在RT△SAC中,求解即可.(3)过点C作CM⊥AB交AB于点M,过点M作MN⊥SB交SB于点N,说明∠CMN为所求二面角的平面角,在RT△ABC中,求解CM,在RT△SBC中,求解CN,然后求解二面角A﹣SB﹣C的平面角的正弦值.【解答】(1)证明:∵SA⊥AB,SA⊥AC,且AB∩AC=A,∴SA⊥平面ABC,∵BC⊂面ABC,∴BC⊥SA,∵BC⊥AC,AC∩AS=A,∴BC⊥面SAC,∴面SBC⊥面SAC.(2)解:过点A作AE⊥SC交SC于点E,∵面SBC⊥面SAC,且面SBC∩面SAC=SC,∴AE⊥面SBC,即AE为点A到平面SCB的距离,在RT△SAC中,,即点A到平面SCB的距离为.(3)解:过点C作CM⊥AB交AB于点M,过点M作MN⊥SB交SB于点N,∵SA⊥平面ABC,∴面SAB⊥面ABC,∴CM⊥面SAB,∴CM⊥SB,MN∩CM=M,∴SB⊥面CMN,∴∠CMN为所求二面角的平面角,在RT△ABC中,,在RT△SBC中,,在RT△CMN中,.即二面角A﹣SB﹣C的平面角的正弦值.22.已知函数g(x)=mx2﹣2mx+1+n,(n≥0)在[1,2]上有最大值1和最小值0.设f(x)=.(其中e为自然对数的底数)(1)求m,n的值;(2)若不等式f(log2x)﹣2klog2x≥0在x∈[2,4]上有解,求实数k的取值范围;(3)若方程f(|e x﹣1|)+﹣3k=0有三个不同的实数解,求实数k的取值范围.【考点】二次函数的性质.【分析】(1)配方可得g(x)=m(x﹣1)2+1+n﹣m,当m>0和m<0时,由函数的单调性可得m和n的方程组,解方程组可得,当m=0时,g(x)=1+n,无最大值和最小值,不合题意,综合可得;(2)由(1)知,问题等价于即在x∈[2,4]上有解,求二次函数区间的最值可得;(3)原方程可化为|e x﹣1|2﹣(3k+2)|e x﹣1|+(2k+1)=0,令|e x﹣1|=t,记h(t)=t2﹣(3k+2)t+2k+1,可得或,解不等式组可得.【解答】解:(1)配方可得g(x)=m(x﹣1)2+1+n﹣m,当m>0时,g(x)在[1,2]上是增函数,由题意可得,即,解得;当m=0时,g(x)=1+n,无最大值和最小值,不合题意;当m<0时,g(x)在[1,2]上是减函数,由题意可得,即,解得,∵n≥0,故应舍去综上可得m,n的值分别为1,0(2)由(1)知,∴f(log2x)﹣2klog2x≥0在x∈[2,4]上有解等价于在x∈[2,4]上有解即在x∈[2,4]上有解.令则2k≤t2﹣2t+1,∵.记φ(t)=t2﹣2t+1,∵,∴,∴k的取值范围为.(3)原方程可化为|e x﹣1|2﹣(3k+2)|e x﹣1|+(2k+1)=0令|e x﹣1|=t,则t∈(0,+∞),由题意知t2﹣(3k+2)t+2k+1=0有两个不同的实数解t1,t2,其中0<t1<1,t2>1或0<t1<1,t2=1.记h(t)=t2﹣(3k+2)t+2k+1,则或解得k>0,∴实数k的取值范围是(0,+∞)。
高一数学必修一、必修二期末考试试卷
高一数学必修一、必修二期末考试试卷一、选择题:(本大题共8小题,每小题3分)1.已知不同直线m 、n 和不同平面α、β,给出下列命题:①////m m αββα⎫⇒⎬⊂⎭②//////m n n m ββ⎫⇒⎬⎭③,m m n n αβ⊂⎫⇒⎬⊂⎭异面④//m m αββα⊥⎫⇒⊥⎬⎭其中错误的命题有( )个A .0B .1C .2D .3 2.直线l 过点(3,0)A 和点(0,2)B ,则直线l 的方程是( )A .2360x y +-=B .3260x y +-=C .2310x y +-=D .3210x y +-=3.两条平行线1:4320l x y -+=与2:4310l x y --=之间的距离是( )A .3B .35C .15D .14.直线l 的方程为0Ax By C ++=,当0A >,0B <,0C >时,直线l 必经过( ) A .第一、二、三象限 B .第二、三、四象限 C .第一、三、四象限 D .第一、二、四象限5.221:46120O x y x y +--+=e 与222:86160O x y x y +--+=e 的位置关系是( ) A .相交 B .外离 C .内含 D .内切 6.长方体的长、宽、高分别为5、4、3,则它的外接球表面积为( )A .252πB .50πC .1252πD .503π7.点(7,4)P -关于直线:6510l x y --=的对称点Q 的坐标是( ) A .(5,6) B .(2,3) C .(5,6)- D .(2,3)- 8.已知22:42150C x y x y +---=e 上有四个不同的点到直线:(7)6l y k x =-+的距离等于5,则k 的取值范围是( ) A .(,2)-∞B .(2,)-+∞C .1(,2)2D .1(,)(2,)2-∞+∞U二、填空题(本大题共7小题,每小题3分)9.如图的空间直角坐标系中,正方体棱长为2,||3||PQ PR =,则点R 的空间直角坐标为 . 10.过点(5,2)且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是 .11.过三点(2,0),(6,0),(0,6)--的圆的方程是 .12.棱长为a 的正方体中,把相邻面的中心连结起来,以这些线段为棱的八面体的体积为 .13.221:2880O x y x y +++-=e 与222:4420O x y x y +---=e 的公共弦长为 .14.曲线2232y x x =++-与直线(1)5y k x =-+有两个不同交点时,实数k 的取值范围是 .15.将半径都为2的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 .三、解答题(本大题共7小题,第16、18、19、20题每小题8分,第17、21题每小题9分,第22题5分)16.在四面体ABCD 中,已知棱AC 的长为2,其余各棱长都为1,求二面角B AC D --的大小.17.(1)过点(2,4)P 向圆22:4O x y +=作切线,求切线的方程;(2)点P 在圆2246120x y x y ++-+=上,点Q 在直线4321x y +=上,求||PQ 的最小值.18.在四面体ABCD 中,CB CD =,AD BD ⊥,且E 、F 分别是AB 、BD 的中点. 求证:(1)直线//EF 面ACD ;(2)面EFC ⊥面BCD .第二卷19.已知圆22:(2)(3)25C x y -+-=,直线:(42)(35)2120l x y λλλ++---=. (1)求证:直线l 与圆C 恒相交;(2)求直线l 被圆C 截得的弦长最短时λ的值以及最短弦长. 20.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,////AD BC FE ,AB AD ⊥,M 为EC 的中点,12AF AB BC FE AD ====. (1)求异面直线BF 与DE 所成角的大小; (2)证明:平面AMD ⊥平面CDE ;(3)求MD 与平面ABCD 所成角的正弦值. 21.在平面直角坐标系xOy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=.(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.22.已知0a >,0b >且32a b ab +=,求22a b a b +-+的最大值.高一数学期末考试参考答案题号 1 2 3 4 5 6 78 答案 D A B A D B C C 9.44(,2,)3310. 250x y -=或290x y +-=; 11. 2244120x y x y +-+-=;12.36a 13. 25 14. 5335(,][,)22--U ; 15.4863+.16.略解:90︒ 17.(1)2x =或34100x y -+=;(2)||PQ 的最小值为3. 18.证略 19.(1)直线l 过定点(3,2),而(3,2)在圆C 内部,故l 与圆C 恒相交;(2)弦长最短时,弦心距最长,设(3,2)P ,则当l CP ⊥时,弦长最短,此时42135λλ+-=-得5λ=,弦长最短223.20.(1)60︒;(2)略;(3)36MD ED AF ==,M 到面ABCD 的距离是12AF ,故6sin θ=. 21.(1)直线:0l y =或724280x y +-=;(2)设(,)P a b ,1:()l y b k x a -=-,21:()(0)l y b x a k k-=--≠,因为两圆半径相等,故221|5(4)|111a b k k k+--=++整理得|13||54|k ak b k a bk ++-=+--,故1354k ak b k a bk ++-=+--或1354k ak b k a bk ++-=--++,即(2)3a b k b a +-=-+或(8)5a b k a b -+=+-,因为k 的取值有无穷多个,故2030a b b a +-=⎧⎨-+=⎩或8050a b a b -+=⎧⎨+-=⎩,得151(,)22P -或2313(,)22P -. 22.3122321a b ab a b +=⇔+=⇔直线1x ya b+=过点31(,)2P ,如图可知22a b a b +-+即为Rt AOB ∆的内切圆直径,由直观易知,当内切圆恰与动直线AB 相切于定点P 时,内切圆直径最大设所示圆圆心(,)r r ,则2231()()22r r r =-+-得2(31)10r r -++=,取较小根3123r +-=(较大根是AOB ∆的旁切圆半径),故所求最大值3123+-。
高一数学上学期末测试卷(必修1、必修2)
高一数学期末测试卷(必修1、必修2)数 学(考试时间:120分钟 满分150分)第Ⅰ卷 (选择题 共60分)一、选择题(每小题5分,共60分。
在每小题所列的四个选项中,只有一项是符合题目要求的,请把答案的字母序号填涂在自备的答题卡上。
)1 设集合A={a,b}的所有非空子集的个数是( )A.2个B.3个C.4个D.7个 2 函数()lg(1)f x x =-的定义域为( )A .(,)-??B .[1,)+?C .(1,1)-D .(1,)+?3. 如图所示,甲、乙、丙是三个立方体图形的三视图,甲、乙、丙对应的标号正确的是①长方体 ②圆锥 ③三棱锥 ④圆柱A .④③②B .②①③C .①②③D .③②④4.已知函数()f x x =,则下列结论正确的是( )A .奇函数,在(-∞,0)上是减函数B .奇函数,在(-∞,0)上是增函数C .偶函数,在(-∞,0)上是减函数D .偶函数,在(-∞,0)上是增函数5.若A(-2,3),B(3,-2),C(21,m)三点共线,则m的值为( )A.21 B.21- C.-2 D.26.若a ,b 是异面直线,直线c ∥a ,则c 与b 的位置关系是( )A .相交 B.异面 C.平行 D.异面或相交7.如图:直线L 1 的倾斜角α1=300,直线 L 1⊥L 2 ,则L 2的斜率为()A.33-B.33 C.3- D.3(甲)(乙)(丙)主视图左视图俯视图主视图左视图俯视图主视图左视图俯视图8.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。
⑵两条直线没有公共点,则这两条直线平行。
⑶两条直线都和第三条直线垂直,则这两条直线平行。
⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。
其中正确的个数为( )A 、 0B 、 1C 、 2D 、 39. 如图,在正四棱柱ABCD -D C B A ''''中(底面是正方形的直棱柱),侧棱A A '=3, 2=AB ,则二面角A BD A --'的大小为 ( )A .30oB .45oC .60oD .90o10.已知函数2()5f x x mx =-+在区间(1,)-+?上是增函数,则( ) A ()(1)f x f ? B ()(1)f x f ? C (1)8f -?D (1)4f -?11.若直线ax+by+c=0(a,b,c,均为整数)与圆221x y +=只有一个公共点,则三条边长分别为a,b,c的三角形是( )A.直角三角形B.锐角三角形C.钝角三角形 D 锐角(或直角)三角形12.圆:012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( )A. 2B.21+C.221+D.221+ 第Ⅱ卷 (非选择题 共90分)二、填空题(每小题4分,共16分)13.已知点M (a ,b )在直线1543=+y x 上,则22a b +的最小值为14一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是323π,那么这个三棱柱的体积是____________.15已知正四棱柱的对角线长为6,且对角线与底面所成角的余弦值为33,该正四棱柱体积为 。
(word版)高一上数学期末必修一二考试卷(含答案)
人教高一上数学必修一二期末综合测试 一、选择题(每题5分,共60分)1、点P 在直线a 上,直线 a 在平面α内可记为( ) A 、P∈a,a α B 、Pa ,aα C 、Pa ,a∈αD 、P∈a,a∈α2、直线l 是平面α外的一条直线,以下条件中可推出 l∥α的是( )A 、l 与α内的一条直线不相交 B、l 与α内的两条直线不相交C 、l 与α内的无数条直线不相交 D、l 与α内的任意一条直线不相交3.直线3x+y+1=0的倾斜角为()A .50oB .120oC .60oD .-60o4、在空间中,l ,m ,n ,a ,b 表示直线, α表示平面,那么以下命题正确的选项是() A 、假设l∥α,m⊥l,那么m⊥α B 、假设l⊥m,m⊥n,那么m∥nC 、假设a⊥α,a⊥b,那么b∥αD 、假设l⊥α,l∥a,那么a⊥α5、函数y=log 2(x 2-2x-3)的递增区间是( )〔A 〕(- ,-1) 〔B 〕(- ,1)〔C 〕(1,+) 〔D 〕(3,+ ) 1 1 6.设函数a 2 2 2 3 log 2 13 ,b,c ,那么a,b,c 的大小关系是() 3 3A . abcB . acb C. cab D. cba7、如果ac0且bc0,那么直线ax by c 0不通过〔 〕A 第一象限B 第二象限C 第三象限 D 第四象限8, 右图表示某人的体重与年龄的关系 ,那么( ) A . 体重随年龄的增长而增加体重/kgB . 25岁之后体重不变 6545C. 体重增加最快的是 15 岁至25岁D. 体重增加最快的是15 岁之前40 1525509,计算lg700lg56 3lg120(lg20lg2)2年龄/岁2A. 20B. 22C. 2D. 1810、经过点A 〔1,2〕,且在两坐标轴上的截距相等的直线共有〔 〕A1条B2 条 〔 C32 条D4 条 〕,且与线段交,那么直线的斜率11 、 〔,3) , B 3, 〕,直线 l 过定点 〔,AB l kA2P11的取值范围是〔〕A4k 33k4C1D k4或k3 B4k4 4212、A,B,C,D四点不共面,且A,B,C,D到平面α的距离相等,那么这样的平面()A、1个B、4个C、7个D、无数个二、填空题(每题5分,共20分)13、在空间四边形ABCD中,E,H分别是AB,AD的中点,F,G为CB,CD上的点,且CF∶CB=CG∶CD=2∶3,假设BD=6cm,梯形EFGH的面积28cm2,那么EH与FG间的距离为。
高一必修一、二数学期末试卷及答案
高一数学期末考试一、选择题(每小题只有一个答案正确,每小题5分,共50分)1.已知集合M={R x x x y y ∈-+=,322},集合N={32≤-y y },则M =⋂N ( )。
A.{4-≥y y } B.{51≤≤-y y } C.{14-≤≤-y y } D.φ2.如图,U 是全集,M 、P 、S 是U 的三个子集,则阴影部分所表示的集合是( )A.(M S P ⋂⋂)B.(M S P ⋃⋂)C.(M ⋂P )⋂(C U S )D.(M ⋂P )⋃(C U S )3.若函数()x f y =的定义域是[2,4],⎪⎪⎭⎫ ⎝⎛=x f y 21log 的定义域是( ) A.[21,1] B.[4,16] C.[41,161] D.[2,4] 4.下列函数中,值域是R +的是( ) A.132+-=x x y B.32+=x y ,+∞∈,0(x )C.12++=x x yD.x y 31= 5.设P 是△ABC 所在平面α外一点,H 是P 在α内的射影,且PA ,PB ,PC 与α所成的角相等,则H 是△ABC 的( )A.内心B.外心C.垂心D.重心6.已知二面角α-l -β的大小为60°,m ,n 为异面直线,且m ⊥α,n ⊥β,则m ,n 所成的角为( )A.30°B.60°C.90°D.120°7.函数2()ln f x x x=-的零点所在的大致区间是 ( ) A.(1,2) B.(,3)e C.(2,)e D.(,)e +∞8.已知0.30.2a =,0.2log 3b =,0.2log 4c =,则( )A. a>b>cB. a>c>bC. b>c>aD. c>b>a9.在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,A A 1=1,则B C 1与平面BB 1D 1D 所成的角的正弦值为( ) A.63 B.255 C.155 D.10510.如图,平行四边形ABCD 中,AB ⊥BD ,沿BD 将△ABD 折起,使平面ABD ⊥平面BCD ,连接AC ,则在四面体ABCD 的四个面中,互相垂直的平面的对数为( )A .1B .2C .3D .4二、填空题:本大题共4小题,每小题5分,满分20分11.已知函数()()()2log 030x x x f x x >⎧⎪=⎨⎪⎩…,则()0f f =⎡⎤⎣⎦ . 12.函数b a y x+=(a >0且a 1≠)的图象经过点(1,7),其反函数的图象经过点(4,0),则b a = 13.函数⎪⎪⎭⎫ ⎝⎛=x y 3121log log 的定义域为 14.α、β是两个不同的平面,m 、n 是平面α及β之外的两条不同直线,给出四个结论:①m ⊥n ;②α⊥β;③n ⊥β;④m ⊥α,以其中三个论断作为条件,余下一个作为结论,写出你认为正确的一个命题是__________.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤.15、(12分)已知1()(1)1x x a f x a a -=>+ (1)判断函数()y f x =的奇偶性;(2)探讨()y f x =在区间(,)-∞+∞上的单调性16.(12分)如图,在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB =AD ,∠BAD =60°,E ,F 分别是AP ,AD 的中点.求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面P AD .17、(14分)如图,正方形ABCD 和四边形ACEF 所在的平面互相垂直,EF ∥AC ,AB =2,CE =EF =1.(1)求证:AF ∥平面BDE ;(2)求证:CF ⊥平面BDE .、18、(14分)已知函数2()22,(0)f x ax x a a =+--≤(1)若1,a =-求函数()y f x =的零点;(2)若函数在区间(0,1]上恰有一个零点,求a 的取值范围;19、(14分)北京市的一家报刊摊点,从报社买进《北京日报》的价格是每份0.20元,卖出的价格是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社。
(2021年整理)高一上数学期末必修一二考试卷(含答案)
高一上数学期末必修一二考试卷(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高一上数学期末必修一二考试卷(含答案))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高一上数学期末必修一二考试卷(含答案)的全部内容。
人教高一上数学必修一二期末综合测试一、选择题(每小题5分,共60分)1、点P 在直线a 上,直线a 在平面α内可记为( ) A 、P ∈a ,a ⊂α B 、P ⊂a ,a ⊂αC 、P ⊂a ,a ∈αD 、P ∈a ,a ∈α2、直线l 是平面α外的一条直线,下列条件中可推出l ∥α的是( ) A 、l 与α内的一条直线不相交 B 、l 与α内的两条直线不相交C 、l 与α内的无数条直线不相交D 、l 与α内的任意一条直线不相交 3的倾斜角为 ( )A .50ºB .120ºC .60ºD . -60º4、在空间中,l,m ,n ,a ,b 表示直线,α表示平面,则下列命题正确的是( ) A 、若l ∥α,m ⊥l,则m ⊥α B 、若l ⊥m ,m ⊥n ,则m ∥n C 、若a ⊥α,a ⊥b ,则b ∥αD 、若l ⊥α,l ∥a ,则a ⊥α5、函数y=log 2(x 2-2x —3)的递增区间是( )(A)(-∞,—1) (B )(—∞,1) (C )(1,+∞) (D )(3,+∞)6.设函数11232221,,log ,333a b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭则,,a b c 的大小关系是( )A. a b c << B 。
a c b << C. c a b << D 。
高一必修一、二数学期末试卷及答案
高一数学期末考试一、选择题(每题只有一个答案正确,每题 5 分,共 50分)1.已知会合 M={ y y x 22x3, x R },会合N={ y y23},则M N()。
A.{ y y 4 }B.{ y 1 y 5 }C.{ y4y 1 }D.2.如图, U 是全集, M 、P、 S 是 U 的三个子集,则暗影部分所表示的会合是()A.( M P)SB.( M P)SC.( M P)( C U S)D.( M P)( C U S)3.若函数y f x 的定义域是[2,4], y f log 1x 的定义域是()2A.[1,1] B.[4, 16] C.[1 , 1] D.[2, 4] 21644.以下函数中,值域是 R+的是()A. y x23x 1B. y2x3, x(0,)C. y x2x1D. y13x5.设 P 是△ ABC 所在平面α外一点, H 是 P 在α内的射影,且PA, PB, PC与α所成的角相等,则 H 是△ ABC的()A.心里B.外心C.垂心D.重心6.已知二面角α- l-β的大小为 60°,m, n 为异面直线,且m⊥ α,n ⊥β,则 m,n 所成的角为 ()°.60 °C°°7.函数f ( x)ln x 2()的零点所在的大概区间是xA. (1,2)B. (e,3)C.(2, e)D.(e,)8.已知a0.3blog0.23 c log0.2 4)0.2 ,,,则(A. a>b>cB. a>c>bC. b>c>aD. c>b>a9.在长方体ABCD-A1B1C1D1中, AB= BC= 2, A A1= 1,则 BC1与平面 BB1D1 D 所成的角的正弦值为 ()10.如图,平行四边形ABCD中, AB⊥ BD,沿 BD 将△ ABD 折起,使平面ABD⊥平面 BCD,连结 AC,则在四周体ABCD的四个面中,相互垂直的平面的对数为() A.1B. 2C.3D.4二、填空题:本大题共 4 小题,每题 5 分,满分20 分11.已知函数f x log 2 x x0. x,,则 f f 03x 012.函数y a x b ( a >0且 a1)的图象经过点(1, 7),其反函数的图象经过点(4,0),则 a b=13.函数y log 1 log 1 x 的定义域为2314.α、β是两个不一样的平面, m、n 是平面α及β以外的两条不一样直线,给出四个结论:① m⊥ n;②α⊥ β;③ n⊥ β;④ m⊥ α,以此中三个论断作为条件,余下一个作为结论,写出你以为正确的一个命题是 __________ .三、解答题:本大题共 6 小题,满分 80 分.解答须写出文字说明、证明过程和演算步骤.15、( 12分)已知 f ( x)a xa x1( a11)(1)判断函数y f (x) 的奇偶性;(2)商讨y f ( x) 在区间(,) 上的单一性16.(12 分 )如图,在四棱锥P- ABCD中,平面 PAD⊥平面 ABCD,AB= AD,∠ BAD=60°,E,F 分别是 AP, AD 的中点.求证:(1)直线 EF∥平面 PCD;(2)平面 BEF⊥平面 PAD.17、( 14 分)如图,正方形ABCD和四边形ACEF所在的平面相互垂直,EF∥ AC, AB=2,CE= EF= 1.(1)求证: AF∥平面 BDE;(2)求证: CF⊥平面 BDE.、18、( 14分)已知函数 f ( x)ax22x2a,( a0)(1)若a1, 求函数y f ( x) 的零点;a 的取值范围;(2)若函数在区间(0,1]上恰有一个零点,求19、( 14 分)北京市的一家报刊摊点,从报社买进《北京日报》的价钱是每份元,卖出的价格是每份元,卖不掉的报纸能够以每份元的价钱退回报社。
高一上数学期末必修一二考试卷(含答案)
人教高一上数学必修一二期 (每小题5分,共60分)1、点P 在a上,直a 在平面α为() A 、P ∈a ,a αB 、Pa ,a αC 、Pa ,a ∈αD 、P ∈a ,a ∈α2、直线l 是平面α外的一条直线,下列条件中l ∥α的是() A 、l 与α内的一条直线不相交B 、l 与α内的两条直线不相交 C 、l 与α内的无数条直线不相交D 、l 与α内的任意一条直线不相交3.线3x+y +1=0的为() A .50oB .120oC .60oD .-60o 4、在空间中,l ,m ,n ,a ,b 表示直线,α表示平面,则下列命题正确的是() A 、若l ∥α,m ⊥l ,则m ⊥αB 、若l ⊥m ,m ⊥n ,则m ∥n C 、若a ⊥α,a ⊥b ,则b ∥αD 、若l ⊥α,l ∥a ,则a ⊥α 5、函数y=log2(x 2-2x-3)的递增区间是() (A )(-,-1)(B )(-,1)(C )(1,+)(D )(3,+) 11 6.设函数 22231 a,b,clog,则a ,b,c 的大小关系是()2 333 A.abcB.acbC.cabD.cba7、如果ac0且bc0,那么直线axbyc0不通过() A 第一象限B 第二象限C 第三象限D 第四象限 8,右图表示某人的体重与年龄的关系,则()体重/kgA.体重随年龄的增长而增加 B.25岁之后体重不变6545C .体重增加最快的是125岁 4D.体重增加最快的是15岁之前25 015501 年龄/岁2 9,计算lg700lg563lg20(lg20lg2) 2 A.20B.22C.2D.18 10、经过点A (1,2),且在两坐A1条B2条C3条D4条 11、已知A (2,3),B (的取值范围是() A 33 4kBk4C 44 1 kDk4或 2 k3 412、A,B,C,D 四点不共面,且A,B,C,D 到平面α的距离相等,则这样的平面() A 、1个B 、4个C 、7个D 、无数个 二、填空题(每小题5分,共20分)13、在空间四边形A B C D 中,E ,AB ,AD 的中点,F ,G 为CB ,CD 上的点,且CF ∶CB=CG ∶CD=2∶ 3,若B D =6c m ,梯形E F G H 28cm EH 与FG 间的距离为。
(完整版)山东省高一数学第一学期期末考试试卷(必修1与必修2)及参考答案
山东省高一数学第一学期期末考试试卷(必修1、必修2)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第I 卷(选择题 共60分)一、选择题(本大题共12题,每小题5分,共60分)1、若集合}22|{-<>=x x x M 或,}|{m x x N >= ,R N M =Y ,则m 的取值范围是( )A .2-≤mB .2-<mC .2->mD .2-≥m2、幂函数)(x f 的图象过点)21,4(,那么)8(f 的值为( ) A.42 B. 64 C. 22 D. 641 3、已知直线l 、m 、n 与平面α、β给出下列四个命题:①若m ∥l ,n ∥l ,则m∥n ; ②若m ⊥α,m ∥β,则α⊥β;③若m ∥α,n ∥α,则m∥n ;④若m ⊥β,α⊥β,则m ∥α其中,假命题的个数是( )A 1B 2C 3D 44、若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( )A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值05、若直线03)1(:1=--+y a ax l 与直线02)32()1(:2=-++-y a x a l 互相垂直,则a 的值是( )A.3-B. 1C. 0或23-D. 1或3-6、如图所示,四边形ABCD 中,AD//BC ,AD=AB ,∠BCD=45°,∠BAD=90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A —BCD ,则在三棱锥A —BCD 中,下列命题正确的是( )A 、平面ABD ⊥平面ABCB 、平面ADC ⊥平面BDCC 、平面ABC ⊥平面BDCD 、平面ADC ⊥平面ABC7、如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( ) A. 6+3 B. 24+3C. 24+23D. 328、点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD=AD ,则PA 与BD 所成角的度数为( )A.30°B.45°C.60°D.90°9、已知函数⎩⎨⎧>≤=)0(log )0(3)(2x x x x f x ,那么)]81([f f 的值为( ) A . 27 B .271 C .27- D .271- 10、函数 54x x )(2+-=x f 在区间 [0,m]上的最大值为5,最小值为1,则m 的取值范围是( )A . ),2[+∞B .[2,4]C .(]2,∞- D.[0,2]11、已知函数y=f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)=2x -2x 则f(x)是( )(A)f(x)=x(x-2) (B)f(x)=|x|(x-2)(C)f(x)= |x|(|x|-2)(D)f(x)=x(|x|-2) 12、如图,在正方体ABCD-A1B1C1D1中,P为中截面的中心,则△PA1C1在该正方体各个面上的射影可能是( )A .以下四个图形都是正确的B .只有(1)(4)是正确的C .只有(1)(2)(4)是正确的D .只有(2)(3)是正确的一、选择题(本大题共12题,每小题5分,共60分)第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题, 每小题5分,共20分,把答案填在题中横线上).13、函数y =-(x -2)x 的递增区间是_______________________________.14、函数12-=x y 的定义域是_______________________________.15、若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________________________.16、经过直线2x+3y-7=0与7x+15y+1=0的交点,且平行于直线x+2y-3=0的直线方程是_______________________________.三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17、(本小题满分14分)已知△ABC 的三个顶点分别为A (2,3),B (-1,-2),C (-3,4),求(Ⅰ)BC 边上的中线AD 所在的直线方程;(Ⅱ)△ABC 的面积。
高一上学期期末考试数学试卷含答案(共3套,word版)
高一年级第一学期期末考试试题数 学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.............) 1.若A (-2,3),B (3,-2),C (12,m )三点共线,则m 的值是( ) A. 12-B. 12C. 2-D. 22.半径为R 的半圆卷成一个圆锥,则它的体积为( ) A.324R B.38R C.324R D.38R 3.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A.2+ B .12+ C .22+ D .1+4.如图,三棱柱A 1B 1C 1-ABC 中,侧棱AA 1⊥底面ABC ,底面三角形ABC 是正三角形,E 是BC 中点,则下列叙述正确的是( )A .AC ⊥平面ABB 1A 1 B .CC 1与B 1E 是异面直线 C .A 1C 1∥B 1ED .AE ⊥BB 15.设m ,n 是两条不同的直线,α,β是两个不同的平面,且m ⊂α,n ⊂β,则下列命题正确的是( )A .若m ⊥β,则α⊥β;B .若α⊥β,则m ⊥n ;C .若m ∥β,则α∥β;D .若α∥β,则m ∥n . 6.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限11C .第一、三、四象限D .第二、三、四象限7.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是( )A .108 cm 3B .100 cm 3C .92 cm 3D .84 cm 38.若a 2+b 2=2c 2(c ≠0),则直线ax +by +c =0被圆x 2+y 2=1所截得的弦长为( )A .12B .1C .22D . 29.在四面体ABCD 中,已知棱AC 的长为2,其余各棱长都为1,则二面角A —CD —B 的余弦值为( )A .12B .13C .3D .310.如图,在正方体ABCD -A1B 1C 1D 1中,E 、F 、G 、H 分别为AA 1、AB 、BB 1、B 1C 1的中点,则异面直线EF 与GH 所成的角等于( )A .45°B .60°C .90°D .120°11.若曲线21x y -=与直线b x y +=始终有交点,则b 的取值范围是( )A .[- B .[- C . D .12.已知正三棱锥P —ABC (顶点在底面的射影是底面正三角形的中心)的侧面是顶角为30°腰长为2的等腰三角形,若过A 的截面与棱PB ,PC 分别交于点D 和点E ,则截面△ADE 周长的最小值是( )A .B .CD .第Ⅱ卷(非选择题)二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上..........) 13.两个球的体积之比为8 :27,则这两个球的表面积之比为________. 14.经过点(3,1)P ,且在x轴上的截距等于在y轴上的截距的2倍的直线l 的方程是______________________.15.等腰直角△ABC 中,AB =BC =1,M 为AC 的中点,沿BM 把△ABC 折成二面角,折后A 与C 的距离为1,则二面角C —BM —A 的大小为_____________.16.已知点A (-1,1),B (2,-2),若直线l :x +my +m =0与线段AB 相交(包含端点的情况),则实数m 的取值范围是________________.三、解答题(本大题共6 小题,共70分) 17. (本小题满分10分)求满足以下条件的m 值. (1)已知直线2mx +y +6=0与直线 (m -3)x -y +7=0平行;(2)已知直线mx +(1-m )y =3与直线(m -1)x +(2m +3)y =2互相垂直.18. (本小题满分12分)如图,已知圆C 与x 轴相切于点T (1,0),与y 轴正半轴交于两点A ,B (B 在A 的上方),且|AB |=2. (1)求圆C 的标准方程;(2)求圆C 在点B 处的切线方程.19.(本小题满分12分)如图,平行四边形ABCD 中,CD =1,∠BCD =60°,BD ⊥CD ,正方形ADEF ,且面ADEF ⊥面ABCD . (1)求证:BD ⊥平面ECD ; (2)求D 点到面CEB 的距离.20.(本小题满分12分)已知△ABC 的顶点B (-1,-3),边AB 上的高CE 所在直线的方程为4370x y +-=,BC 边上中线AD 所在的直线方程为330x y --=. (1) 求直线AB 的方程; (2) 求点C 的坐标.21.(本小题满分12分)如图,直三棱柱ABCA 1B 1C 1的底面是边长为2的正三角形,E ,F 分别是BC ,CC 1的中点.(1)证明:平面AEF ⊥平面B 1BCC 1;(2)若直线A 1C 与平面A 1ABB 1所成的角为45°,求三棱锥F AEC 的体积.22.(本小题满分12分)如图,已知AA 1⊥平面ABC ,BB 1∥AA 1,AB =AC =3,BC =25,AA 1=7,BB 1=27,点E 和F 分别为BC 和A 1C 的中点. (1)求证:EF ∥平面A 1B 1BA ;(2)求直线A 1B 1与平面BCB 1所成角的大小.1A答案一、选择题(本大题共12 小题,每小题5分,共60分)二、选择题(本大题共4小题,每小题5分,共20分,)13.4:9 14.或(只写对一个方程不给分)15.16.三、解答题(本大题共6 小题,共70分)17. (10分)也可用m(m-1)+(1-m)(2m+3)=0,即m2+2m-3=0,解得m=1,或m=-3.………10分18.(12分解:(1)过点C作CM⊥AB于M,连接AC,则|CM|=|OT|=1,|AM|=|AB|=1,所以圆的半径r=|AC|==,从而圆心C(1,),即圆的标准方程为(x-1)2+(y-)2=2…………6分(2)令x=0得,y=±1,则B(0,+1),所以直线BC的斜率为k==-1,由直线与圆相切的性质知,圆C在点B处的切线的斜率为1,则圆C在点B处的切线方程为y-(+1)=1×(x-0),即y=x++1………….12分19.(12分)解:(1)证明:∵四边形ADEF为正方形,∴ED⊥AD,又∵平面ADEF⊥平面ABCD,平面ADEF∩平面ABCD=AD,∴ED⊥平面ABCD,∴ED⊥BD.又∵BD⊥CD,ED∩CD=D,∴BD⊥平面ECD.…………..4分(2)∵CD=1,∠BCD=60°,BD⊥CD,又∵正方形ADEF,∴CB=2,CE=,,∴,∴,Rt△BCD的面积等于S△BCD=1=,由得(I)ED⊥平面ABCD,∴点E到平面BCD的距离为ED=2,设点D到到面CEB的距离为h,∴=,∴h=,即点D到到面CEB的距离为………………12分20.(12分)解:(1)∵,且直线的斜率为,∴直线的斜率为,∴直线的方程为,即.………………6分(2)设,则,∴,解得,∴.………………12分21.(12分)解:(1)证明:如图,因为三棱柱ABC A1B1C1是直三棱柱,所以AE⊥BB1.又E是正三角形ABC的边BC的中点,所以AE⊥BC.又,因此AE⊥平面B1BCC1.……3分而AE⊂平面AEF,所以平面AEF⊥平面B1BCC1.……5分(2)设AB的中点为D,连接A1D,CD.因为△ABC是正三角形,所以CD⊥AB.又三棱柱ABC A1B1C1是直三棱柱,所以CD⊥AA1.又,因此CD⊥平面A1ABB1,于是∠CA1D为直线A1C与平面A1ABB1所成的角.……8分由题设,∠CA1D=45°,所以A1D=CD=AB=.在Rt△AA1D中,AA1===,所以FC=AA1=.……10分故三棱锥F AEC的体积V=S△AEC·FC=××=.……12分22.(12分)解:(1)证明:如图,连接A1B.在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又EF⊄平面A1B1BA,所以EF∥平面A1B1BA………..4分(2)解:因为AB=AC,E为BC的中点,所以AE⊥BC.因为AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,从而BB1⊥AE.又BC∩BB1=B,所以AE⊥平面BCB1,.取BB1的中点M和B1C的中点N,连接A1M,A1N,NE.因为N和E分别为B1C和BC的中点,所以NE∥B1B,NE=B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.因为AE⊥平面BCB1,所以A1N⊥平面BCB1,从而∠A1B1N为直线A1B1与平面BCB1所成的角.在△ABC中,可得AE=2,所以A1N=AE=2.因为BM∥AA1,BM=AA1,所以A1M∥AB,A1M=AB,由AB⊥BB1,有A1M⊥BB1.在Rt△A1MB1中,可得A1B1==4.在Rt△A1NB1中,sin∠A1B1N==,因此∠A1B1N=30°.所以直线A1B1与平面BCB1所成的角为30°……………12分2018--2019学年度第一学期期末考试高中一年数学科试卷完卷时间:120分钟 满分:150分第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题意要求的) 1、若角终边经过点,则( )A.B.C. D.2、函数的一条对称轴是( ) A.B.C.D.3、已知集合}1{>=x x A ,11{|()}24x B x =>,则A B ⋂=( ) A .R B .),1(+∞ C .)2,(-∞ D .)2,1( 4、( ) A.B.C.D.5、已知⎪⎩⎪⎨⎧>+-≤=0,1)1(0,2cos )(x x f x x x f π,则=)2(f ( ) A . 1- B .1 C . 3- D . 36、已知,则()()3sin 2cos 2sin sin 2πθπθπθπθ⎛⎫+++ ⎪⎝⎭⎛⎫--- ⎪⎝⎭等于( )A. 23—B. C. D. 7、若向量,,则在方向上的投影为( )A. -2B. 2C.D.8、若()f x 对于任意实数x 都有12()()21f x f x x-=+,则(2)f =( )A.0B.1C.83D.4 9、若向量,i 为互相垂直的单位向量,—j 2=j m +=且与的夹角为锐角,则实数m 的取值范围是 ( )A .⎝ ⎛⎭⎪⎫12,+∞B .(-∞,-2)∪⎝ ⎛⎭⎪⎫-2,12C .⎝ ⎛⎭⎪⎫-2,23∪⎝ ⎛⎭⎪⎫23,+∞D .⎝ ⎛⎭⎪⎫-∞,1210、已知函数2(43)3,0,()log (1)1,0,a x a x a x f x x x ⎧+-+<⎪=⎨++≥⎪⎩在R 上单调递减,则实数a 的取值范围是( )A. 13[,]34 B.1334⎛⎤ ⎥⎝⎦, C. 103⎛⎤ ⎥⎝⎦, D.30,4⎛⎫⎪⎝⎭11、已知,函数在(,)上单调递减,则的取值范围是( )A. (0,]B. (0,2]C. [,]D. [,]12、将函数()⎪⎭⎫⎝⎛=x 2cos 4x f π和直线()1x x g —=的所有交点从左到右依次记为,若P 点坐标为()30,=++A P 2....( ) A. 0 B. 2 C. 6 D. 10二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡的相应位置上)13、已知角θ的终边经过点(39,2)a a -+,且θsin >0,θcos <0则a 的取值范围是 14、已知函数3()2,(0,1)x f x a a a -=+>≠且,那么其图象经过的定点坐标是15、已知2cos ,63πα⎛⎫-=⎪⎝⎭则2sin 3πα⎛⎫-= ⎪⎝⎭________. 16、已知关于的方程0a cos 3sin =+θθ—在区间()π,0上有两个不相等的实数根,则=+2cosβα__________.三、解答题:(本大题共6小题,共70分.解答写出文字说明,写明过程或演算步骤) 17、(本题满分10 分)已知四点A (-3,1),B (-1,-2),C (2,0),D ()(1)求证:;(2) ,求实数m 的值.18、(本题满分12 分)已知是的三个内角,向量,,且. (1) 求角;(2)若,求. 19、(本题满分12 分)已知函数()log (2)log (3),a a f x x x =++-其中01a <<. (1)求函数()f x 的定义域;(2)若函数()f x 的最小值为4-,求a 的值20、(本题满分12 分)已知函数()sin()f x A x ωϕ=+,其中0,0,0A ωϕπ>><<,函数()f x 图像上相邻的两个对称中心之间的距离为4π,且在3x π=处取到最小值2-. (1)求函数()f x 的解析式;(2)若将函数()f x 图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将向左平移6π个单位,得到函数()g x 图象,求函数()g x 的单调递增区间。
(完整)高一数学必修一、必修二期末考试试卷
高一数学必修一、必修二期末考试试卷一、选择题:(本大题共8小题,每小题3分)1.已知不同直线m 、n 和不同平面α、β,给出下列命题:①////m m αββα⎫⇒⎬⊂⎭②//////m n n m ββ⎫⇒⎬⎭③,m m n n αβ⊂⎫⇒⎬⊂⎭异面④//m m αββα⊥⎫⇒⊥⎬⎭其中错误的命题有( )个A .0B .1C .2D .3 2.直线l 过点(3,0)A 和点(0,2)B ,则直线l 的方程是( )A .2360x y +-=B .3260x y +-=C .2310x y +-=D .3210x y +-=3.两条平行线1:4320l x y -+=与2:4310l x y --=之间的距离是( )A .3B .35C .15D .14.直线l 的方程为0Ax By C ++=,当0A >,0B <,0C >时,直线l 必经过( ) A .第一、二、三象限 B .第二、三、四象限 C .第一、三、四象限 D .第一、二、四象限5.221:46120O x y x y +--+=与222:86160O x y x y +--+=的位置关系是( ) A .相交 B .外离 C .内含 D .内切 6.长方体的长、宽、高分别为5、4、3,则它的外接球表面积为( )A .252πB .50πC .12523πD .503π7.点(7,4)P -关于直线:6510l x y --=的对称点Q 的坐标是( ) A .(5,6) B .(2,3) C .(5,6)- D .(2,3)- 8.已知22:42150C x y x y +---=上有四个不同的点到直线:(7)6l y k x =-+的距离等于5,则k 的取值范围是( ) A .(,2)-∞B .(2,)-+∞C .1(,2)2D .1(,)(2,)2-∞+∞二、填空题(本大题共7小题,每小题3分)9.如图的空间直角坐标系中,正方体棱长为2,||3||PQ PR =,则点R 的空间直角坐标为 . 10.过点(5,2)且在x 轴上的截距是在y 轴上的截距的2倍的直线方程是 .11.过三点(2,0),(6,0),(0,6)--的圆的方程是 .12.棱长为a 的正方体中,把相邻面的中心连结起来,以这些线段为棱的八面体的体积为 .13.221:2880O x y x y +++-=与222:4420O x y x y +---=的公共弦长为 .14.曲线2232y x x =++-与直线(1)5y k x =-+有两个不同交点时,实数k 的取值范围是 .15.将半径都为2的4个钢球完全装入形状为正四面体的容器里,这个正四面体的高的最小值为 .三、解答题(本大题共7小题,第16、18、19、20题每小题8分,第17、21题每小题9分,第22题5分)16.在四面体ABCD 中,已知棱AC 的长为2,其余各棱长都为1,求二面角B AC D --的大小.17.(1)过点(2,4)P 向圆22:4O x y +=作切线,求切线的方程;(2)点P 在圆2246120x y x y ++-+=上,点Q 在直线4321x y +=上,求||PQ 的最小值.18.在四面体ABCD 中,CB CD =,AD BD ⊥,且E 、F 分别是AB 、BD 的中点. 求证:(1)直线//EF 面ACD ;(2)面EFC ⊥面BCD .第二卷19.已知圆22:(2)(3)25C x y -+-=,直线:(42)(35)2120l x y λλλ++---=. (1)求证:直线l 与圆C 恒相交;(2)求直线l 被圆C 截得的弦长最短时λ的值以及最短弦长. 20.如图,在五面体ABCDEF 中,FA ⊥平面ABCD ,////AD BC FE ,AB AD ⊥,M 为EC 的中点,12AF AB BC FE AD ====. (1)求异面直线BF 与DE 所成角的大小; (2)证明:平面AMD ⊥平面CDE ;(3)求MD 与平面ABCD 所成角的正弦值. 21.在平面直角坐标系xOy 中,已知圆221:(3)(1)4C x y ++-=和圆222:(4)(5)4C x y -+-=.(1)若直线l 过点(4,0)A ,且被圆1C 截得的弦长为23,求直线l 的方程;(2)设P 为平面上的点,满足:存在过点P 的无穷多对互相垂直的直线1l 和2l ,它们分别与圆1C 和圆2C 相交,且直线1l 被圆1C 截得的弦长与直线2l 被圆2C 截得的弦长相等,试求所有满足条件的点P 的坐标.22.已知0a >,0b >且32a b ab +=,求22a b a b +-+的最大值.高一数学期末考试参考答案一、选择题:题号 1 2 3 4 5 6 7 8 答案 D A B A D B C C 二、填空题:9.44(,2,)3310. 250x y -=或290x y +-=; 11. 2244120x y x y +-+-=;12.36a 13. 25 14. 5335(,][,)2222--; 15.4863+.16.略解:90︒ 17.(1)2x =或34100x y -+=;(2)||PQ 的最小值为3. 18.证略 19.(1)直线l 过定点(3,2),而(3,2)在圆C 内部,故l 与圆C 恒相交;(2)弦长最短时,弦心距最长,设(3,2)P ,则当l CP ⊥时,弦长最短,此时42135λλ+-=-得5λ=,弦长最短223.20.(1)60︒;(2)略;(3)3622MD ED AF ==,M 到面ABCD 的距离是12AF ,故6sin 6θ=. 21.(1)直线:0l y =或724280x y +-=;(2)设(,)P a b ,1:()l y b k x a -=-,21:()(0)l y b x a k k-=--≠,因为两圆半径相等,故221|5(4)||1(3)|111a b k a b k k k+------=++整理得|13||54|k ak b k a bk ++-=+--,故1354k ak b k a bk ++-=+--或1354k ak b k a bk ++-=--++,即(2)3a b k b a +-=-+或(8)5a b k a b -+=+-,因为k 的取值有无穷多个,故2030a b b a +-=⎧⎨-+=⎩或8050a b a b -+=⎧⎨+-=⎩,得151(,)22P -或2313(,)22P -. 22.3122321a b ab a b +=⇔+=⇔直线1x ya b+=过点31(,)22P ,如图可知22a b a b +-+即为Rt AOB ∆的内切圆直径,由直观易知,当内切圆恰与动直线AB 相切于定点P 时,内切圆直径最大设所示圆圆心(,)r r ,则2231()()22r r r =-+-得2(31)10r r -++=,取较小根31232r +-=(较大根是AOB ∆的旁切圆半径),故所求最大值3123+-。
(完整word)人教版高一上数学期末测试题(必修一+必修二)
11高一上学期期末数学考试复习卷(必修一 +必修二)、选择题:本大题共12小题, 每小题5分,满分60分.1.直线 3x 、、3y 1 0的倾斜角是(A 30 、60、120 、1352.两条平行线 l 1 : 4x 3y 2 0 与 l 2:4x3y 1 0之间的距离是(B. C.D .3.已知函数f log 2 x, x 3x , x的值是(A.4.函数 f(x) lg(x x 1 耳的定义域是 A. (1, B. [ 1,) C.( 1,1)U(1, )D.[ 1,1)U(1,5.下列函数在其定义域内既是奇函数, 又是增函数的是( A. y x B. 3x C. y log 2 x D. 1 y x 3 6 •在圆x 24上,与直线4 x 3y 12 0的距离最小的点的坐标为( 8 A.(, 56 5) 8 6 B.(航) 8 6 C(-,-) 5 58 6 D.( 5, 5) 7. e O 1 : x 2 y 2 4x 6y 12 0 与 e O 2 : x 2 y 2 8x 6y 16 0的位置关系是( A .相交 B.外离 C.内含 D.内切8.函数 f(x) 4 4x (e 为自然对数的底) 的零点所在的区间为( A. (1,2) B. (0,1) C. (1,0) D. ( 2, 1) 9.已知a log :5,b 2log 2 3,c 1,d 30.5,那么( ) 10. A. 11. A. a c b C . abed D . 把正方形ABCD 沿对角线BD 折成直二角后,下列命题正确的是:AB BC B. AC BD C. CD 平面 ABCD. 平面ABC 平面ACD函数f (x)x—的图像为( xy &)上为减函数,且f(1) 0,贝U不等式f(x) f(X)o的解集为( )xB. ( , 1)U(01)C. ( , 1)U(1, )D. ( 1,0)U(01)二、填空题:本大题共4小题,每小题5分,满分20分.13. Ig -.5 lg ,20 的值是14. 过点(5,2)且在x轴上的截距是在y轴上的截距的2倍的直线方程是15. 一个几何体的三视图如图2所示,那么这个几何体的表面积.为__42正视图俯视图216. 函数y (m2m 1)x m 2m 1是幕函数,且在x 0, _________________________ 上是减函数,则实数m三、解答题:本大题共6小题,满分70分.17. (本小题满分14分)已知直线I : x 2y 4 0 ,(1) 求与I平行,且过点(1,4)的直线方程:(2) 已知圆心为(1,4),且与直线l相切求圆的方程;18.(本小题满分14分)已知圆:x2 y2 4x 6y 12 0,(1)求过点A(3,5)的圆的切线方程;(2)点P(x, y)为圆上任意一点,求—的最值。
(完整)高一上数学期末必修一二考试卷(含答案),推荐文档
人教高一上数学必修一二期末综合测试一、选择题(每小题5分,共60分)1、点P 在直线a 上,直线a 在平面a 内可记为()A 、P € a , a aB 、Pa , a aC 、P a , a € aD 、P € a , a € a2、直线I 是平面a 外的一条直线,下列条件中可推出 I // a 的是()3 .直线、一 3x+y+仁0的倾斜角为(A 第一象限B 第二象限C 第三象限D 第四象限8, 右图表示某人的体重与年龄的关系 ,则A. 体重随年龄的增长而增加B. 25岁之后体重不变C. 体重增加最快的是 15岁至25岁D. 体重增加最快的是 15岁之前 1 9, 计算 Ig 700 Ig 56 3Ig — 20(Ig 20 2A. 20B. 22C. 2D. 1810, 经过点A (1, 2),且在两坐标轴上的截距相等的直线共有( ) A 条 B 2 条C 3 条D 4条11、 已知A (2, 3) , ( 3,),直线 I 过定P (1, 1 ),且与线段AB 交,则直线I 的斜率k的取值范围是( )A 4 k 3B 3 k 4 Ck 丄 Dk 4 或 k —442412、 A,B,C,D 四点不共面, 且 A,B,C,D 到平面 a 的距离相等, 则这样的平面 ()A 、 1个B 、 4个C 、7个D、无数个A 、I 与a 内的一条直线不相交 内的两条直线不相交 C 、I 与a 内的无数条直线不相交内的任意一条直线不相交A . 50o .120o.60o —60o4、在空间中, I , m, n , a , b 表示直线, 表示平面,则下列命题正确的是 A 、若 I // a C 若a l5、函数y=log 2(x 2-2X -3)的递增区间是 (A )(-,-1),ml I ,贝 U ml a a , a l b ,贝U b / a、若 I 丄 m ml n ,贝U m 〃n D 若 I 丄 a , I // a , 6.设函数a ,b(B ) (-,1)i2 3 —,c 3)(C ) (1,+)(D ) (3,+log 2 1则a,b,c 的大小关系是3A. a bB.C.cab D.7、如果ac0且be 0,那么直线 ax by c 0不通过(Ig 2)2年龄/岁、填空题(每小题5分,共20分)13、 在空间四边形 ABCD 中, E , H 分别是 AB, AD 的中点,F , G 为CB, CD 上的点,且 CF : CB=CG CD=2: 3,若BD=6cm 梯形EFGH 勺面积28cm 2,贝U EH 与FG 间的距离为 ________________ 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D 第四象限
(
)
ÌåÖØ/kg
B. 25 岁之后体重不变
65
45
C. 体重增加最快的是 15 岁至 25 岁
D. 体重增加最快的是 15 岁之前
4
0
9,计算lg 700 lg 56 3lg 1 20(lg 20 lg 2)2
2
15
25
50
ÄêÁä/Ëê
A. 20
B. 22
C. 2
D. 18
10、经过点 A(1,2),且在两坐标轴上的截距相等的直线共有( )
17.(10分)设 a>0,且a≠1,解关于x的不等式a 2x2 3x1 >a x2 2x5
18.(12 分) △ABC 的两顶点 A(3,7),B( 2 ,5),若 AC 的中点在 y 轴上,BC 的中点在 x 轴上。
(1)求点 C 的坐标;(2)求 AC 边上的中线 BD 的长及直线 BD 的斜率 。
----------12 分
解:(1)1 x 0 1 x 1
19、
1x
f (x)的定义域为(1,1)
-----5分
(2) f (x)为奇函数。
1x
1 x 1
1x
f
(x)
log a
1
x
log
a
1
x
loga 1 x f (x)
f (x)为奇函数
-----10分
(3) f (x)在(1,1)上为单调增的函数
A 1条
B 2条
C 3条
D 4条
11、已知 A(2, 3) ,B ( 3, 2 ),直线l 过定点 P(1, 1),且与线段 AB 交,则直线l 的斜率
k 的取值范围是( )
A 4k3
B 3k 4
4
4
C k1 2
D k 4 或 k 3 A,B,C,D 到平面 α 的距离相等,则这样的平面( )
答案 A D B D D C D B C B D C
二、填空题
13、8cm
14、 (70°,90°) 15、 (-5,-2) 16、(9,-4)
三,解答题
17、解:当0 a 1时2x2 3x 1 x2 2x 5
x2 5x 6 0
2x3
-------5 分
当a 1时2x2 3x 1 x2 2x 5 x2 5x 6 0 x 2或x 3
-----12分
20、解: 过A作AB 于B,过A作AD MN于D, 连BD
则BD MN ADB 600
-------4 分
。
14、a,b 为异面直线,且 a,b 所成角为 40°,直线 c 与 a,b 均异面,且所成角均为 θ,若这样的 c 共
有四条,则 θ 的范围为 。
15,点 P(2,5)关于直线 x+y=0 的对称点坐标是
.
16,m 为任意实数时,直线(m-1)x+(2m-1)y=m-5 必过定点 .
三,解答题(本大题有6小题,共70分)
人教高一上数学必修一二期末综合测试
一、选择题(每小题 5 分,共 60 分)
1、点 P 在直线 a 上,直线 a 在平面 α 内可记为( )
A、P∈a,a α
B、P a,a α C、P a,a∈α
D、P∈a,a∈α
2、直线 l 是平面 α 外的一条直线,下列条件中可推出 l∥α 的是( )
A、l 与 α 内的一条直线不相交
,
则
a,
b,
c
的大小关系是(
)
A. a b c 3 B. a c b
C. c a b
D. c b a
7、如果 ac 0 且 bc 0 ,那么直线 ax by c 0 不通过( )
A 第一象限
B 第二象限
C 第三象限
8, 右图表示某人的体重与年龄的关系,则
A. 体重随年龄的增长而增加
-------10 分
18、解:(1)设C(x, y) , AC的中点在y轴上, 3 x 0 x 3 2
又 BC中点在x轴上, 5 y 0 y 5 2
C(3,-5)
----------6 分
(2) AC中点D的坐标为(0,1) BD (2)2 (5 1)2 2 5
k 1 5 2 0 2
的距离。
A
C N
MD
B
21.(14 分)已知长方体 AC1 中,棱 AB=BC=3,棱 BB1=4,连结 B1C,过 B 点作 B1C 的垂线交 CC1 于
E,交 B1C 于 F. (1) 求证 A1C⊥平面 EBD;
A1
D1
(2) 求二面角 B1—BE—A1 的正切值.
B1
C1
E F A
D
B
x
C
19.(14
分)已知函数
f(x)= log
a
1 1
x x
(a
0,
a
1)
.
(1) 求 f(x)的定义域; (2) 判断并证明f(x)的奇偶性。
(3)若a 1, 判断f (x)的单调性(不要求证明)
20.(12 分)如图, MN,A,CMN,且∠ACM= 45 , MN 为 60 ,AC=1,求 A 点 到
A、1 个
B、4 个
二、填空题(每小题 5 分,共 20 分)
C、7 个
D、无数个
13、在空间四边形 ABCD 中,E,H 分别是 AB,AD 的中点,F,G 为 CB,CD 上的点,且
CF∶CB=CG∶CD=2∶3,若 BD=6cm,梯形 EFGH 的面积
28cm2,则 EH 与 FG 间的距离为
B、若 l⊥m,m⊥n,则 m∥n
C、若 a⊥α,a⊥b,则 b∥α
D、若 l⊥α,l∥a,则 a⊥α
5、函数 y=log2(x2-2x-3)的递增区间是( )
(A)(- ,-1)
(B)(- ,1)
(C)(1,+ )
(D)(3,+ )
1
1
6.设函数
a
2 3
2
,b
2
3
,
c
log
2
1 3
22.(14 分)已知 f (x) 是定义在 x x 0 上的增函数,且 f ( ) f (x) f ( y) .
y
(1)求 f (1) 的值;
1 (2)若 f (6) 1,解不等式 f (x 5) f ( ) 2 .
x
人教高一上数学必修一二期末综合测试(答案)
一,选择题
题号 1 2 3 4 5 6 7 8 9 10 11 12
B、l 与 α 内的两条直线不相交
C、l 与 α 内的无数条直线不相交 D、l 与 α 内的任意一条直线不相交
3.直线 3 x+y+1=0 的倾斜角为 ( )
A.50º
B.120º
C.60º
D. -60º
4、在空间中,l,m,n,a,b 表示直线,α 表示平面,则下列命题正确的是( )
A、若 l∥α,m⊥l,则 m⊥α