二次根式综合练习(二)
二次根式混合计算练习(附答案)
两次根式混同估计之阳早格格创做1.估计题 (1)(2).2.估计:()218(12)(12)5023212322+-+-+⨯--.3.估计:(2-3)(2+3)+()20101-()2π--121-⎪⎭⎫⎝⎛4.估计(π-3)0-)12)(12(-++2312-+6、估计:)13(9-0+)322(2818)212(2----+2 7.估计(20141+ )(211++321++431++…+201420131+)8.估计:2×(2+12)-1882-212-⎛⎫⎪⎝⎭-|22-3|+38. 9.估计:4832426-÷+⨯.10.估计:(1)3132+218-5150;(2)(5-26)×(2-3);(3)(1+2+3)(1-2-3);(4)(12-481)(231-45.0). 11.估计:(1)11(24)(6)28--+ (2)3212524⨯÷ 12、估计36)22(2)2(2+---(1)327-+2)3(--31-13、估计: (1)11383322+-+(2)(753)(753)++-- 14、33364631125.041027-++---.11(24)2(6)28--+ 15、已知,3232,3232+-=-+=y x 供值:22232y xy x +-.16、估计:⑴()()24632463+-⑵20(3)(3)2732π++-+-17、估计(1)﹣×(2)(6﹣2x )÷3.20.估计:1312248233⎛÷ ⎝3631222⎝21.估计22.(1))235)(235(-++- (2))52453204(52+-22.估计:(1)()222122763⎛⎫+- ⎪⎝⎭(2)()()35233523-+23.化简:(1)83250+(2)2163)1526(-⨯-(3)(2)23()123)(123-+-+;(4)12272431233()? 24.估计(1)2543122÷⨯(2)(3)231|21|27)3(0++-+--(4)11545+204555245(5)()()201211+8π236+22--⨯-()(6)4832426-÷+⨯ (7)20121031(1)5()27(21)2----+(8)113123482732(92225(7)(3)-(10)21(232)8(3325)(3325)3(11)5.081232+-;(12)32212332a a a ⨯÷ (13))2332)(2332(-+(14)18282-+(15)3127112-+(16))31(33122-++参照问案 1.(1)﹣;(2).【剖析】试题分解:(1)先把各个两次根式举止化简,再合并共类两次根式即可; (2)根据两次根式的乘除混同运算规则估计. 解:(1)=3﹣2+﹣3=﹣;(2)=4××=.2.32-【剖析】试题分解:先将所给的各式化简成整数或者最简两次根式,而后合并共类两次根式即可. 试题剖析:本式125282632=-+-- 32=-考面:两次根式的估计. 【问案】766【剖析】试题剖析:解:619624322+-+ 26626463 =(26626463+⎭5666=766考面:两次根式的加减面评:本题主要考查了两次根式的加减运算.最先把两次根式化为最简两次根式,而后再合并共类两次根式. 4.0 【剖析】试题分解:根据真数的运算规则举止估计即可救出问案. 试题剖析:12010)21()2()1()32)(32(----++- π=234-⨯+- =0考面:真数的混同运算. 5.3(2)53.【剖析】试题分解:(1)先估计整次幂、两次根式化简、来千万于值标记、把括号展启,而后举止合并即可供解. (2)把两次根式化成最简两次根式后,合并共类两次根式即可.(1)本式(2)本式=12⨯=.考面:真数的混同运算;2.两次根式的混同运算.6.【剖析】试题分解:先举止两次根式的化简,财举止乘除运算,末尾合并共类两次根式即可供出问案.试题剖析:本式=2913⨯-+9213283=++-+-+=考面: 真数的混同运算.7.2013. 【剖析】试题分解:根据分母有理化的估计,把括号内各项分母有理化,估计后再利用仄圆好公式举止估计即可得解.试题剖析:(1211++321++431++…+201420131+)=(1+…=(1+1) =2014-1=2013.考面: 分母有理化. 8.2 【剖析】解:本式=2+1-=2+13-3+2=29.1+114【剖析】解:本式=4-(3-+4=4-3+4=1+11410.(1)342;(2)112-93;(3)-4-26;(4)8-364. 【剖析】(1)利用2a =a(a ≥0),ab =ab (a ≥0,b ≥0)化简;(2)不妨利用多项式乘法规则,分离上题提示估计; (3)利用仄圆好公式;(4)利用多项式乘法公式化简.11.(12【剖析】试题分解:(1)先把两次根式化成最简两次根式之后,再合并共类两次根式即可供出问案; (2)先把两次根式化成最简两次根式之后,再举止两次根式的乘除法运算.试题剖析:(1)-原式24=---4=;(2)4原式=310⨯考面: 两次根式的化简取估计.12.【剖析】试题分解:先举止两次根式的化简,再合并共类两次根式即可供出问案. 试题剖析:36)22(2)2(2+---=考面: 两次根式的化简供值.13.(1;(2)1--【剖析】试题分解:(1)把两次根式举止化简后,再合并共类两次即可得出问案; (2)先利用仄圆好公式展启后,再利用真足仄圆公式估计即可.试题剖析:(12=22=+=;(2)27=-78=--1=--考面: 两次根式的化简. 14.(1)1 (2)114-【剖析】解:(1)327-+2)3(--31-=.11--33-=+)( (2)33364631125.041027-++---=1111300.5.244---++=-15.385【剖析】解:果为xy y x xy y xy x y xy x +-=++-=+-22222)(2242232,38)32)(32()32()32)(32()32(3232323222=-+---++=+---+=-y x , 1)3232)(3232(=+--+=xy , 所以3851)38(2232222=+⨯=+-y xy x .16.【剖析】试题分解:先化成最简两次根式,再举止估计.试题剖析:-2(24-⨯22--考面:两次根式化简.17.【剖析】试题分解:先化成最简两次根式,再举止估计.试题剖析:--=. 考面:两次根式化简.18.(1)22; (2)6-【剖析】试题分解:(1)根据仄圆好公式,把括号展启举止估计即可供出问案.(2)分别根据仄圆、非整数的整次幂、两次根式、千万于值的意思举止估计即可得出问案. 试题剖析:(1)()()24632463+-22=-=54-32 =22.(2)2(2π+-312=+-6=-考面: 真数的混同运算. 19.(1)1;(2)13【剖析】试题分解:先把两次根式化简后,再举止加减乘除运算,即可得出问案.试题剖析:=32=-1=;(2)2÷=÷=÷13=.考面: 两次根式的混同运算.20.143.【剖析】试题分解:先将两次根式化成最简两次根式,再算括号内里的,末尾算除法.试题剖析:⎛÷⎝÷=143=.考面:两次根式运算.21.0.【剖析】试题分解:根据两次根式运算规则估计即可.=⎝.考面:两次根式估计.22.(1)2)10.【剖析】试题分解:(1)把括号内的项举止拉拢,利用仄圆好公式举止估计即可得到问案;(2)把两次根式化简后,合并共类两次根式,再举止估计即可供出问案.试题剖析:(1))235)(235(-++-25=-55=-+=(2))52453204(52+-=10==考面: 两次根式的混同运算.23.(1)18-(2)33.【剖析】试题分解:(1)根据两次根式化简估计即可;(2)应用仄圆好公式化简即可.试题剖析:(1)(18=-(2)(((22451233=-=-=.考面:两次根式化简.24.(1)92;(2)-【剖析】试题分解:(1)先来分母,再把各两次根式化为最简两次根式,举止估计;(2)曲交利用调配律来括号,再根据两次根式乘法规则估计即可.试题剖析:(1)本式92 =;(2)本式==-.考面:两次根式的混同运算;25.【剖析】试题分解:两次根式的加减,最先要把各项化为最简两次根式,是共类两次根式的才搞合并,没有是共类两次)0,0m n≥≥)0,0m n≥>,需要证明的是公式从左到左是估计,从左到左是两次根式的化简,而且两次根式的估计要对于截止有央供,能启圆的要启圆,根式中没有含分母,分母中没有含根式.试题剖析:解: 本式=18-1+3-考面:两次根式的估计.26.6-【剖析】试题分解:根据两次根式的混同运算程序战运算规则估计即可.试题剖析:22431233266233623662)?()()考面:两次根式的混同运算.27.(1)2103.(2)4.【剖析】试题分解:掌握两次根式的运算本量是解题的闭键.普遍天,两次根式的乘法:abba=•),(00≥≥ba;两次根式的除法:baba=),(0ba≥;两次根式的加减时,先将两次根式化为最简两次根式,再将被启圆数相共的两次根式举止合并.估计时,先算乘除法,能化简的根式要先举止化简再估计,末尾估计加减法,即合并共类项即可. 试题剖析:解:(1)本式=2514334⨯⨯1024334⨯⨯= =2103(2)本式8523+--=4=考面:1、两次根式的化简;2、真数的运算.28.-.【剖析】试题分解: 本题波及整指数幂、两次根式的化简、分母有理化、千万于值化简4个考面.正在估计时,需要针对于每个考面分别举止估计,而后根据真数的运算规则供得估计截止.试题剖析:本式=11-=-考面:1.真数的运算;2.整指数幂;3.分母有理化.29.2+.【剖析】试题分解:根据运算程序化各根式为最简两次根式后合并即可.试题剖析:本式1511322=⋅++=+ 考面:两次根式运算.30.2. 【剖析】试题分解:针对于有理数的乘圆,两次根式化简,整指数幂,背整数指数幂4个考面分别举止估计,而后根据真数的运算规则供得估计截止.试题剖析:本式12=-.考面:1.真数的运算;2.有理数的乘圆;3.两次根式化简;4.整指数幂;5.背整数指数幂. 31.32-22. 【剖析】试题分解:两次根式的乘法规则:)0,0(≥≥=⨯b a ab b a ,两次根式除法规则:)0,0( b a bab a ≥=÷,两次根式的乘除估计完后要化为最简两次根式,而后举止加减运算,两次根式加减的真量是合并共类两次根式.试题剖析:32-2234-223248-32426=+=÷+⨯. 考面:两次根式的混同运算.32.(1)0;(2)【剖析】试题分解:(1)本式=152310-++-=;(2)本式==.考面:1.真数的运算;2.两次根式的加减法.33.(1)1;(2)7-【剖析】试题分解:(1)解:本式=5-7+3=1;(2)解:本式=14(2720)--=7-考面:两次根式的混同运算.34.①、24;②、a 31【剖析】试题分解:根据两次根式的混同运算的规则分离两次根式的本量依次估计即可. 试题剖析:①、242222245.081232=+-=+-; ②、=⨯÷32212332a a a a a a a a 3146132232131122=⨯=⨯⨯⨯⨯⨯. 考面:真数的运算35.(1)-3)6;(4)6- 【剖析】试题分解:本题主要考查根式的根式的混同运算战0次幂运算.根据运算规则先算乘除法,是分式该当先将分式转移为整式,再按运算规则估计.试题剖析:(1)==-原式试题剖析:(2)=原式试题剖析:(3)116=+==原式试题剖析:(4)22439212186=-=⨯-⨯=-=-原式((。
二次根式混合计算练习(附答案)
二次根式混合计算(2 ”「_ _ _ _ _ _ 18 — 2计算:(12)(1 一.. 2) .50 -2.32 .12.3• 、2 .2; 24 - 96 ;、:127- . 48+ ; . 12+ 75计算:(八)(2+ 3)+ -宀亠二°- 2计算(兀-3)0- (J2+1)( J2 -1) + 屁十卜E_2___ 1 1 1 2014 ) ( 1+—11 +V2 J 2+J 3+L 1L +…+——” ” ).3,4. 2013,2014计算:9( —X ;厂 1;8«2「3)计算: 2 x ( 2 + l) - _8V2迈扌-心-31十;计算: ...6 ■: - ‘ 2 八』24 3 48.10.计算: (1)「32 + 18 — 50;3 2 5(2)(5-2.6 ) x ( .2- 3 );11.计算:(3)(1+ . 2 + ,3 )(1-.2 - ,3);(4)(J12 -4J — )(2\8;4®).(1) C ■ 24 - 2 2.12 —--5.2412、计算,(-2)2-、、2(、2 -2) 6<3(1 )3_27 + .. (-3)2 - 3 -1 13、计算: (1) ,8 3 (2) i :75,3)C ,7 - . 5 - . 3)14、 3 -27「;』0 -、1 3 0.1253V4 V_ 2+73 _ 2 15、已知 x = 2 _ 3」=2 ■ 3,求值:2x 1-63 6416、计算:⑴V20+V5 「3xy 2y 2. -W2442}⑵(爲)2 +(兀十V 3)0 — V 27 +73—2 17、计算(「• :「(2)(6-3 :-. 1 / 121 .计算题(1)-■ 1「辽心一、:计算((9二|?恳—^+黑(寸二(^CXI—号co)(号CXI +号co ) —申中哼 +N电—^CXI ) (0 L )(吟2+^二畔2—^2)(書+将^—谒寸)2弋Q)◎co — Q £)(^co + Qu)OL )z ^r Ipl'r — 0(L —号)—或+「(i r g —— gw —) Q) T里)x CXI +2P X粵—『CXI—二十号 + z」L I ) (9)肿(2—吟匸(L —^e )(L +^e)(“)置+§■>ICO, + 2、)(号 +号—等))XI M衣• XICXI —毎co-M 44 ・0|参考答案1 . (1)-_; (2)厶-.10【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可; (2) 根据二次根式的乘除混合运算法则计算. 解: (1 )::;;;— ::. =3 二一2 匚 + 匚一3 耳一匚;(2)一_「「严》「:=[.2. 3. 2【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可. 试题解析:原式 =1 _2 ^.2 -8.2・6 _3 _2--3-/2考点:二次根式的计算.试题解析:解:撐/—96鳥=:、6 2'6"6 T=^/6-2^/66- ------ 5?6.6考点:二次根式的加减点评:本题主要考查了二次根式的加减运算•首先把二次根式化为最简二次根式,然后再合并同类二次根式4. 0【解析】试题分析:根据实数的运算法则进行计算即可救出答案试题解析:(2 - -3)(2 • .3) • (-1)2010( ■■ 2 7丄「-(丄)-2=4-3^ -2=0考点:实数的混合运算•5. (1) 2+.3 ; (2) 5 3 .【解析】试题分析:(1)先计算零次幕、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解. (2)把二次根式化成最简二次根式后,合并同类二次根式即可.4 41 / 12(1)原式=1-1+2 3 +2- .3 =2+ J 3 ;⑵原式=3 3-4. 32 3 5 3 2= 5,3 .考点:实数的混合运算;2•二次根式的混合运算.6. 4.6.【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案 试题解析:原式=9 V 2.2 21- 3迈•厶° -(2、2)2 •纸6-3= 9 2 1 -3 2 -8 4,6-3 =4.6.考点:实数的混合运算.7. 2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.111 1试题解析:(1.2014 )( 一1 +——1 +——1+…+ ----------- 1)1 +V2 <2 +V3 J3+U412013+J2014=(1 . 2014 ) ( ,2-1+ ..3- .. 2 + .. 4-、、3+…+ '、2014 - .. 2013 ) =(1.2014) ( 2 1 -)=2014-1=2013.考点:分母有理化.8. 2【解析】=2 + 1 — ,9 + .4 = 3 — 3+ 2= 2【解析】- 3 2解:原式=4—(3 — 2・、2) +—解:原式=2= 4 - 3 + 2 2 + 口 = 1 + —244【解析】(1)利用 一 a 2=a(a > 0) , , ab a . b (a > 0,b > 0)化简;(2) 可以利用多项式乘法法则,结合上题提示计算; (3) 利用平方差公式; (4) 利用多项式乘法公式化简•11.(1) ■ 6 ;(2) 3 . 2 .4 10【解析】试题分析:(1 )先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案; (2 )先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算必6冷-子八6(2)原式=4巧汉一3汇4 5/2=3 .2 10考点:二次根式的化简与计算•12. 32.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案试题解析:i (-2)2 -、2(、,2 -2厂v3=2-2+2、、2+ - 2 =3考点:二次根式的化简求值.13. (1)3 2 3 3; (2) -1-2 石【解析】10. (1)-32 ; (2) 11 .2-9 .3 ; (3) -4-2 .6 ; (4) 8-4.6 3试题解析:(1)原式=(2 .6=3103 / 12试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案; (2)先利用平方差公式展开后,再利用完全平方公式计算即可.试题解析:(1)8 W F3、. 2 3.3---- + ------^.2 3.3 ;-2 ;(2)(J :5,.3)( J - .5 - .. 3)=7 -(、一5 '、3)2考点:二次根式的化简14. (1) 111(2) -4【解析】解:(1) 3 -27;(-3)2 - 3 -1 =-3 3-(-1) = 1.15. 385【解析】解:因为 2x 2 -3xy 2y 2 = 2x 2 - 4xy 2y 2 xy = 2(x - y)2 xy所以 2x 2 -3xy 2y 2 =2 (8 .3)21 =385 .16. -.,2 .【解析】试题分析:先化成最简二次根式 ,再进行计算. 试题解析:(J24 - J 》一2( J 1+J6)⑵—43。
二次根式混合计算练习(附标准答案)
二次根式混合计算(2 ”「2 .计算:(1、2)(1 _ • 2) • 50 _2、32 、12 • 3 •丄18 _、2 '. √24. 计算:(2— 3)(2+ 3)+ —f —'—扌5 .计算(兀一3) — (V 2 +1)( 2—1) + J 12 + 1/3—21 +J2014) ( ------- T= + --- +— --------- +…+ ---- ) 1 +√2 J 2+J3 %⅛ +√4 √201^√'20142 × ( .2 + 1 ) — -1^ 8 √2 √2舟S 迈-3|+712、计算,(-2)2 - .2( .2 -2)6 √36、计算: 9( — 2 -A I f (2 2-39 •计算:6 2 、24“ 3 - 48. 10.计算:(1) 1 . 32+1 .8-丄.50; 3 2 5 (2)(5-2 6) × ( 2 - 3); 11.计算: (3)(1+ ,2+..3)(1- .-2-..3); (4)( 12一4」(2 (1) C-24 - 213、计算: (1) , 8 3 1 1 、、3√ √τ(2) ^.7 .5 .3)C-7 - .5-^3) 1 3 0.125 3 1 - 63 4 ■ 64 _ 2+73 _ 2 _ √315、已知 X= 2 - 3 , 丫 = 2 3 ,求值:2χ2 - 3xy 2y 2 .(3J 6 — 4√2 fe√6 + 4√2 )⑵(√3)2 + (兀十 √3)0 —√27 + V 3 — 2 14、1) 16、计算:⑴√20+√5 17、计算(I ) 「- × r(2)(6 ÷3 :■.1 / 12 1 .计算题(1) -■ 1「辽心一、: 3 .摇S-岳弋 S _______ S ______________ A I _____________________ _______•.一 27*48+ 「12+ 75 27 •计算(8.计算:(1)好0—铝+号(寸L) (^0l ^e )(^0+t¾e )l Ξ'÷⅛+」黑—辱0) ⅛ (8) ^'>I B ->÷R >+^y αr (9) (¾cxl +,¾二吗cxl l ,¾2) (2) (OL) (l¾Co I L ¾2)(L ¾CO +L ¾2)O L)(6) Cxl O(L —号)—毎+「(〔r g —— Z J T ) Q) 肿(0—^)+〒^巴亍黑")0) ILC ⅞ 1^4(年+t⅛2)参考答案1 • (1)-飞(2)厶- •LO【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.解:(1 )::;;;—: =3 ~-2 ~+ 匚-3 ^=-匚;(2)—「「_=4 X : =-:■2. -3.2【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可.试题解析:原式=^2 5 2 -8 2 6 -3 -2-3 2考点:二次根式的计算.【答案】-7飞.6【解析】试题解析:解:、2;•24 - ∙.96「1=J6 2®4' T=I6必66考点:二次根式的加减点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式4. 0【解析】试题分析:根据实数的运算法则进行计算即可救出答案试题解析:(2 - 3)(^ 3) (T)2010L 2 -二)■ -(丄)‘=4 —3 * -2=O考点:实数的混合运算•5. (1) 2+ .3 ;(2) 5 3 .【解析】试题分析:(1)先计算零次幕、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解.(2)把二次根式化成最简二次根式后,合并同类二次根式即可.2.6-4.61 / 12 (1)原式=1-1+2 X3 +2- ∖ 3=2+、3 ;1 _ _⑵原式=3,3-4,3 2、、3 5.3= 5.3 .考点:实数的混合运算; 2•二次根式的混合运算.6. 4 .6【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案=9 2 1 -3 2 -8 4、、6 -3=46考点:实数的混合运算•7. 2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.III 1试题解析:(1 .2014)( 一1 +——1 +——1 +…+ ----------- 1)1 +√2 J 2+J3 丁3+丁4 ¢2013+12014=(1 .2014) ( .2-1+ W+.4- J3+∙∙∙ + ,2014-「2013)=(1 2014) ( 一 241 - )=2014-1=2013.考点:分母有理化.8. 2【解析】=2 + 1 —、、9 + A = 3 — 3+ 2= 211匚9. 1+ 24 【解析】3 2解:原式=4— (3 — 2 2 ) + 一4试题解析:原式 =9 1,2 2 -(2、、2)2 4. 6 -3 解:原式= (2)2+1 -=4 —3 + 2.2 + 3-2= 1 + 11、24 44 LLL L 4 J 6 10• (1) 2 ; (2) 11 2 -9 3 ; ( 3) -4-2 /6 ; (4) 83 3【解析】(1)利用一a2=a(a ≥0) , . ab a .. b (a ≥0,b ≥0)化简;(2)可以利用多项式乘法法则,结合上题提示计算;(3)利用平方差公式;(4)利用多项式乘法公式化简•11. (1) ; (2) 3 2 .4 10【解析】试题分析:(1)先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;(2)先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算=2&子6∣3 1(2)原式=4,3 -4 5/2考点:二次根式的化简与计算12. 32.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案_____ _ _ 6试题解析:....(-2)2 - ι2C∙ 2 -2) •Λ3=2-2+2、、2+ 2=3 2考点:二次根式的化简求值.13. (1) 32 3 3; (2) -1-2、、15.【解析】试题解析: (1)原式=(2 ,6=31023 / 12 试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案;(2)先利用平方差公式展开后,再利用完全平方公式计算即可 .试题解析: 3、2 3「3 = ------ + -------3、2 3.3•— ? 2(2)(万..3、.3)(万-.弓-'、3)=7 -( .5 、、3)2=7 -8 -2、15-2.15.考点:二次根式的化简14. (1) 1 Z X 11(2) - 4【解析】解: (1)封—27+J(—3)2 -幼-1=-3 + 3-(-1 = 1.15. 385【解析】解:因为 2χ2 -3xy 2y 2 = 2χ2 - 4xy 2y 2 xy = 2(x - y)2 xy所以 2x 2 -3Xy 2y 2 =2 (8 .3)2 1 =385 .【解析】试题分析:先化成最简二次根式 ,再进行计算.试题解析:-一2(] .√∙6)16.(2)3 一27 - 0-、 63—3 — 0丄0.5丄」 64 2 44 (2 * 3)2 _ _ 2 + √3 2 _ √3~ ___________________ 2 - 3 2 3 (2 亠)(2 -,3 ) 2 3 2 - 3Xy =( )( )=1 2 - J3 2 + √3 ,(2 - 3)2-=U 3 (2 * ,3)( 2 -、3)' (1)、8 3=(2 6 - =2、6寻訂6考点:二次根式化简.17. .【解析】试题分析:先化成最简二次根式,再进行计算.试题解析:(HE) _2(卜冏=2 庇¥ 一¥ 一2虑一逅.考点:二次根式化简.18. (1)22; (2) 6-4、.3【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案(2)分别根据平方、非零数的零次幕、二次根式、绝对值的意义进行计算即可得出答案试题解析:⑴3∙. 6 -4、. 2 3・、6 4. 2=(3飞)2 -(4、.2)2=54 —32=22.(2)(两2+(兀+何 _松+I y J_2= 3 1 -3 3 2 -、3=6-4、3考点:实数的混合运算19. (1)1;(2)-3【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案试题解析:(1W"5 / 12= (3:.f x - 2 "∙∕x)3 J X1^β.考点:二次根式的混合运算【解析】试题解析:1皿—2上+√4^ ∣÷2√3 =(6√3-ZV 3+4√5)÷2√3 =空√34∙275 \3)3 3 考点:二次根式运算.21. 0.【解析】试题分析:根据二次根式运算法则计算即可 •试题解析:12 、2 产6 ∙ I 3 =2.6-3 . 6 - 1 ,6 =0.J 2 ∖*2 J 2 2考点:二次根式计算.22. (1) 2 6 ; (2) 10.【解析】试题分析:(1)把括号内的项进行组合,利用平方差公式进行计算即可得到答案;(2)把二次根式化简后,合并同类二次根式,再进行计算即可求出答案.试题解析:(1) (^-^ -2). 2)t5 -(、3 - ⑵][、、5 ( .3 -、2)]=5 -(、一3 7'2)2=5-5 2.6= 2,6(2) 2 5(4.20 -3、45 2,5)=2 .5(8 .5 -9.5 2.5)=2 5 .5 =10考点:二次根式的混合运算20. 143试题分析:先将二次根式化成最简二次根式 再算括号里面的,最后算除法.23. (1) 6廖—2^+18—4√2; (2) 33. 3【解析】试题分析:(1)根据二次根式化简计算即可(2)应用平方差公式化简即可 .4 12 324 _2、72 =6.6 _16、3 18_4. 2 3 3 3 — — _ _ 2 2 (2) 35 -2.3 3 5 2 3 =3 .5? -[2.345 —12 =33. 考点:二次根式化简24. ( 1) ; ( 2) ~6州5 .2 【解析】试题分析:(1)先去分母,再把各二次根式化为最简二次根式,进行计算;(2)直接利用分配律去括号,再根据二次根式乘法法则计算即可.(2)原式=、.6、、3-2.153-3、,2 =3、2-6 5-3,2 =-6 5 .考点:二次根式的混合运算; 25. 24-4 .2 .【解析】试题分析:二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式的不合并;二次根式的乘除法公式..m 、. n= . mn m _0,n _0 ,左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不 含分母,分母中不含根式.试题解析:解:原式=18-1 + 3 — 4 . 2 +4=24-4 . 2 .考点:二次根式的计算. 26. 6-6. 2 .【解析】试题分析:根据二次根式的混合运算顺序和运算法则计算即可. 试题解析:(〉27- .24+ 3 :)?' 12=(G- 2^6+、6)?2 .3=(.3-、6)?2 .3=6-考点:二次根式的混合运算.27. (1) (2) 4.10试题解析: (1) 22 ,12试题解析:(1)原式="2 土2 242 9 -_2 -.m=.m 需要说明的是公式从【解析】试题分析:掌握二次根式的运算性质是解题的关键.一般地,二次根式的乘法:ja∙jb = jab( aκθ, b^O);二次根式的二次根式进行合并•计算时,先算乘除法,能化简的根式要先进行化简再计算,最后计算加减法,即合并同类项即可•试题解析:解:(1)原式=4Λ∕3×:竺X」=4 5J2=4 3 仝24 1010(2)原式=3 -2-5 • 8 =4考点:1、二次根式的化简;2、实数的运算.28. ~2 3 .【解析】试题分析:本题涉及零指数幕、二次根式的化简、分母有理化、绝对值化简个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1 -3、.2-2.3考点:1.实数的运算;2.零指数幕;3.分母有理化.29. 2 2 .5 .【解析】试题分析:根据运算顺序化各根式为最简二次根式后合并即可试题解析:原式=5 5 + 1 2.5 - . 5 445亠5 =、5+ 5 -1 9 = 2 .5 -1 3=2 2.5.5 2 4 5考点:二次根式运算•30. 2.【解析】试题分析:针对有理数的乘方,二次根式化简,零指数幕,负整数指数幕4个考点分别进行计算,然后根据实数的运算法则求得计算结果•试题解析:原式=1+^.2 ∙1-3-.2+∙.2 =2.考点:1.实数的运算;2.有理数的乘方;3.二次根式化简;4.零指数幕;5.负整数指数幕.31. 2,2-2 3.【解析】的除法: Aa( a-0, b AO);二次根式的加减时,先将二次根式化为最简二次根式,再将被开方数相同4个考点.在计算时,需要针对每7 / 12试题分析 次根式的乘法法则:...a ::話b = ab(a _ 0,b _ 0), 次根式除法法则b= a (^0,b 0),二次根式的乘除计算完后要化为最简二次根式,然后进行加减运算,二次根式 ∖ b加减的实质是合并同类二次根式 •试题解析: 6 ∙,2 • 24“、..3- ... 48 =2∙..3 2 2-4^^2-^3.考点:二次根式的混合运算•32. (1) 0; (2) 4 3 •【解析】试题分析:(1)原式=1 -5 • 2 • 3-1 =0 ;(2)原式=6^- ,3 2\3-3、.3=4打. 考点: 1.实数的运算;2.二次根式的加减法.33.( 1) 【解析】试题分析: 1;( 2) 7-2、、6.(1)解:原式=5- 7+3=1;(2)解:原式=14-4、6 2、、6-(27 -20) = 7-2\6 .考点:二次根式的混合运算.■■— 1 34•①、4.2 :②、—a 3【解析】试题分析:根据二次根式的混合运算的法则结合二次根式的性质依次计算即可试题解析:①、\32 -2、1 • .、0.5 =4、2 ∙2 ^2 =4、, 2 ;⅛ 2 2考点:实数的运算35. (1) -3(2 ; (2) ^√3 ; (3) 6; (4) -69 【解析】试题分析:本题主要考查根式的根式的混合运算和 转化为整式,再按运算法则计算。
八年级数学下册《二次根式》综合练习题含答案
八年级数学下册《二次根式》综合练习题测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xx x x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232B .32321C .281D .241三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525(6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________ 8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x 5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+ 17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( ) ③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=-6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+-12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式.试写下列各式的有理化因式: (1)25与______; (2)y x 2-与______; (3)mn 与______; (4)32+与______; (5)223+与______; (6)3223-与______. 23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第二十一章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49.5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6. 11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1. 19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试21.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b (6);52 (7)49; (8)12; (9)⋅y xy 263 8..cm 62 9..72 10.210.11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1.16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5) ;36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a3.C . 4.C . 5.C .6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab + 13..112;2222222=+=+-y x xy y xy x14..1)3(;1011)2(;722)1(n n -+-- 15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x12.1. 13.错误. 14.C . 15..12+16.⋅-423411 17..321b a + 18.0. 19.原式,32y x +=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n nn n nn (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n n n n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax -4.D . 5.D . 6.B . 7.⋅66 8..1862-- 9..3314218- 10.⋅417 11..215 12..62484- 13.(1)3;(2).55-- 14.B . 15.D .16.⋅-41 17.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.。
二次根式混合计算练习(附标准答案)
二次根式混合计算(2 ”「2 .计算:(1、2)(1 _ • 2) • 50 _2、32 、12 • 3 •丄18 _、2 '. 42 T ■-A4. 计算:(2— 3)(2+ 3)+ —f —'—扌5 .计算(兀一3) — (V 2 +1)(2—1) + J 12 +— 21 +J2014) ( ------- -;= + --- +— --------- +…+ ---- ) 1 +V2 (2+J3 J 3+J4 &2013 + J20142 x ( . 2 + 1 ) — "8 一「8 迈 V 2 舟、2 迈-3|+711.计算:12、计算,(-2)2 - .2( .2 -2)6 J36、计算: 9( — 2 ;)「1f (22-39 •计算:6 2 、24“ 3 - 48. 10.计算: (1) 1 . 32+1 .8 -丄.50; 3 2 5 (2)(5-2 6) x ( 2 - 3); (3)(1+ ,2+ .3)(1- ,2 - .. 3); (4)(12-4」(2 13、计算: (1) , 8 3 1 1 、、3 (2) ^.7 .5 .3)^.7 - .5-^3) 1 3 0.125 3 1 - 63 4 ■ 64 _ 2+73 _ 215、已知 X = 2 - 3 ' 丫 = 2 3,求值:2x 2 - 3xy 2y 2 . (3J6 — 4V2fe<6 + 442}⑵(运)2 +(兀十73)0 — V 27 + V 3—2 14、 1) 16、计算:⑴V20+V5 17、计算(° - x =(2)(6 -3 :-.1 / 12 1 .计算题(1)-■ 1「辽心一、: 3 .摇5-岳弋 ff _______________________ A ( _____________________ ________________•.一 27*48+ 「12+ 75 27 •计算(8 •计算:(1)(1) C-24 - 2好cxl —铝+号(寸二 (^cxl —^e )(^cxl +^e )—「中哼+」黑—^0) 卜1^— 8 寸A -I + ^r —^: (8) 罔'>—2_>小尺>+冬衣£产(9) (呀+%K 呀—哆)(2) (0L ) 十 ££>(9L) (号2—号2)(^2+^2)O L ) 凹了「cxl —置(二) (6) CXI 0(L —号)—毎+「(〔r g ——g z (T ) Q) 号号—』I 十号肿(0—^)+〒^巴亍黑")0) 氏/J (年+ICXI E )参考答案1. ( 1)- _; (2)厶- •10【解析】试题分析:(1)先把各个二次根式进行化简,再合并同类二次根式即可;(2)根据二次根式的乘除混合运算法则计算.解:(1 )::;;;—: :. =3 二-2 匚+ 匚-3 耳-匚;(2)—「「_=4 X :=-:.2. -3.2【解析】试题分析:先将所给的各式化简成整数或最简二次根式,然后合并同类二次根式即可.试题解析:原式=^2 5 2 -8 2_3 _2-3 2考点:二次根式的计算.【答案】-7.、.6.6【解析】试题解析:解:、2;•24 - ..96「1=3左2®4、6 T2.6-4.6=I6必66点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式4. 0【解析】试题分析:根据实数的运算法则进行计算即可救出答案试题解析:(2 - 3)(^ 3) (-1)201°( 2 -二)-(丄)‘=4 —3 * -2=0考点:实数的混合运算•5. (1) 2+ .3 ;(2) 5 3 .【解析】试题分析:(1)先计算零次幕、二次根式化简、去绝对值符号、把括号展开,然后进行合并即可求解.(2)把二次根式化成最简二次根式后,合并同类二次根式即可.1 / 12(1)原式=1-1+2、、3+2- \3=2+、3 ;1 _ _⑵原式=3,3-4,3 2、、3 5.3= 5.3 .考点:实数的混合运算; 2•二次根式的混合运算.6. 4 .6【解析】试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案=9 2 1 -3 2 -8 4、、6 -3=46考点:实数的混合运算•7. 2013.【解析】试题分析:根据分母有理化的计算,把括号内各项分母有理化,计算后再利用平方差公式进行计算即可得解.111 1试题解析:(1 .2014)( 一1 +——1 +——1 +…+ ----------- 1)1 +V2 <2 +V3 丁 3+J4 12013+12014=(1 .2014) ( .2-1+ W+.4- J3+…+ , 2014 -「2013)=(1 2014) ( 一 241 - )=2014-1=2013.考点:分母有理化.8. 2【解析】=2 + 1 —、、9 + ,4 = 3 — 3+ 2= 211匚9. 1+ 24 【解析】3 2解:原式=4— (3 — 2 2 ) + 一4试题解析:原式 =9 1,2 2 1 3.2 2.22~ 2 2 -(2、、2)2 4. 6 -3解:原式= (2)2+ 1 -2 =4 —3 + 2.2 + 鼻2 = 1 + 11 •- 24 44 L L L L 4 J 6 10 - (1) 2 ; (2) 11 ■•: 2 -9 3 ; ( 3) -4-2 ,/6 ; (4) 8 3 3【解析】(1)利用 一 a 2=a(a > 0) , . ab a , b (a > 0,b > 0)化简;(2) 可以利用多项式乘法法则,结合上题提示计算;(3) 利用平方差公式;(4) 利用多项式乘法公式化简•11. (1) . 6-^^ ; (2) 3 2 . 4 10【解析】试题分析:(1 )先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;(2 )先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算=2&子-手乜;3 1 (2)原式=4,3 - 4 5/2考点:二次根式的化简与计算12. 32.【解析】试题分析:先进行二次根式的化简,再合并同类二次根式即可求出答案_____ _ _ 6试题解析:....(-2)2 - \2(、. 2 -2厂\3=2-2+2、、2+ 2=3 2考点:二次根式的化简求值.13. (1) 323 3 ; (2) -1-2J5.【解析】试题解析: (1)原式=(2 ,6=32 103 / 12试题分析:(1)把二次根式进行化简后,再合并同类二次即可得出答案;(2)先利用平方差公式展开后,再利用完全平方公式计算即可 .试题解析: 3、2 3「3 = ------ + -------3、2 3.3_ •— ? 2(2)(万馬、.3)(万-.弓-、、3)=7 -( .5 、、3)2=7 -8 -2、15-2.15.考点:二次根式的化简14. (1) 1 /、 11(2) - 4【解析】解: (1)封—27+J(—3)2 -幼—1=-3 + 3-(-1 = 1.15. 385【解析】解:因为 2x 2 -3xy 2y 2 = 2x 2 - 4xy 2y 2 xy = 2(x - y)2 xy所以 2x 2 -3xy 2y 2 =2 (8 .3)2 1 =385 .【解析】试题分析:先化成最简二次根式 ,再进行计算.试题解析:&24 -£)一2(] •「6)16.(2)3 一27 - 0 -、 63—3 — 0丄0.5丄」64 2 44 _ _ 2 + v'3 2 _ 爲 ________________ 2 - 3 2 3 (2 亠)(2 -,3 ) 2 3 2 - 3xy =\ )( )=1 2 - J3 2 + 73 ,(2 * 3)2 (2 - 3)2- =8 "J 3 (2 * ,3)( 2 -、3)' (1) 、8 3=(2 6 -=2、6寻訂6考点:二次根式化简.17. .【解析】试题分析:先化成最简二次根式,再进行计算.试题解析: (屈书_2毎価=2艮乎一乎一2屁J .考点:二次根式化简.18. (1)22; (2) 6-4、.3【解析】试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案(2)分别根据平方、非零数的零次幕、二次根式、绝对值的意义进行计算即可得出答案试题解析:⑴ 3.. 6 -4、. 2 3・、6 4. 2=(3飞)2 -(4、.2)2=54 —32=22.(2)(两2+(兀+何_松+応_2= 3 1 -3 3 2 -、3=6-4、3考点:实数的混合运算19. (1) 1; (2)-3【解析】试题分析:先把二次根式化简后,再进行加减乘除运算,即可得出答案试题解析:5 / 12= (3:.fx - 2』x ) 31_3.考点:二次根式的混合运算【解析】试题解析:1*2—2上+74^ 卜2巧=(673-?73+475)斗273 =空73斗273 \3 )33 考点:二次根式运算.21 . 0.【解析】试题分析:根据二次根式运算法则计算即可 •试题解析:12 、2 产6 • I 3 =2.6-3 . 6 - 1 ,6 =0. I 2 I 2 2考点:二次根式计算.22. (1) 2 6 ; (2) 10.【解析】试题分析:(1)把括号内的项进行组合,利用平方差公式进行计算即可得到答案;(2)把二次根式化简后,合并同类二次根式,再进行计算即可求出答案.试题解析:(1) (•. 5 - 3 •、一 2)( •. 5」3 - 2)t5 -(、3 - ⑵][、、5 ( .3 -、2)]=5 -(、一3 7'2)2=5-5 2.6= 2,6(2) 2 5(4.20 -3、45 2,5)=2 .5(8 .5 -9.5 2.5)=2 5 .5 =10考点:二次根式的混合运算20. 143试题分析:先将二次根式化成最简二次根式 再算括号里面的,最后算除法.23. (1) 6廖—2^+18—4运;(2) 33. 3【解析】试题分析:(1)根据二次根式化简计算即可(2)应用平方差公式化简即可 .4 12 324 _2、72 =6.6 _16、3 18_4. 2 3 3 3 — — _ _ 2 2 (2) 35 -2.3 3 5 2 3 =3 .5? -[2.345 —12 =33. 考点:二次根式化简24. ( 1) ; ( 2) -6舛5 .2 【解析】试题分析:(1 )先去分母,再把各二次根式化为最简二次根式,进行计算;(2 )直接利用分配律去括号,再根据二次根式乘法法则计算即可.(2)原式=、.6、、3-2.15 3-3、, 2 =3、2-6 5-3,2 =-6 5 .考点:二次根式的混合运算; 25. 24-4 .2 .【解析】试题分析:二次根式的加减,首先要把各项化为最简二次根式,是同类二次根式的才能合并,不是同类二次根式 的不合并;二次根式的乘除法公式..m 、. n= . mn m _0,n _0 ,左到右是计算,从右到左是二次根式的化简,并且二次根式的计算要对结果有要求,能开方的要开方,根式中不 含分母,分母中不含根式.试题解析:解:原式=18-1 + 3 — 4 . 2 +4=24-4 . 2 .考点:二次根式的计算. 26. 6-6. 2 .【解析】试题分析:根据二次根式的混合运算顺序和运算法则计算即可. 试题解析:(〉27- .24+ 3 :)?' 12=(G- 2^6+、6)?2 .3=(.3-、6)?2 .3=6-考点:二次根式的混合运算.27. (1) (2) 4.10试题解析: (1) 22 ,12试题解析:(1)原式="2 土2 2429 -_2 -.m=.m 需要说明的是公式从7 / 12【解析】试题分析:掌握二次根式的运算性质是解题的关键 .一般地,二次根式的乘法: ja.jb = jab ( a^O, b^O );二次根式 的二次根式进行合并•计算时,先算乘除法,能化简的根式要先进行化简再计算,最后计算加减法,即合并同类 项即可•试题解析: 解:(1)原式=4弋3汇空X 丄=4 5J2=4 3 仝 2 4 1010(2)原式=3 -2-5 • 8 =4考点:1、二次根式的化简;2、实数的运算.28. -2 ■. 3 .【解析】试题分析: 本题涉及零指数幕、二次根式的化简、分母有理化、绝对值化简 个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:原式=1-3.3 .2-1 .3- 2= -2.3考点:1.实数的运算;2.零指数幕;3.分母有理化. 29. 2 2 5 .【解析】试题分析:根据运算顺序化各根式为最简二次根式后合并即可 试题解析:原式=5 5 + - 2.5 - . 5 4 45亠5 =、5+ 5 -1 9 = 2 .5 -1 3=2 2.5.5 2 4 5 考点:二次根式运算•30. 2.【解析】试题分析:针对有理数的乘方,二次根式化简,零指数幕,负整数指数幕4个考点分别进行计算,然后根据实数的运算法则求得计算结果•试题解析:原式 =1+2,. 2・1-3'.2+・.2 =2.考点:1.实数的运算;2.有理数的乘方;3.二次根式化简;4.零指数幕;5.负整数指数幕. 31. 2,2-2 3.【解析】的除法: ♦ I a- b A0);二次根式的加减时,先将二次根式化为最简二次根式,再将被开方数相同4个考点.在计算时,需要针对每试题分析 次根式的乘法法则:...a ::話b = ab(a _ 0,b _ 0), 次根式除法法则b= a (^0,b 0),二次根式的乘除计算完后要化为最简二次根式,然后进行加减运算,二次根式\ b加减的实质是合并同类二次根式 •试题解析: 6 ・,2 • 24“、..3- ... 48 =2、.3 2 2-4 ^^2-^3.考点:二次根式的混合运算•32. (1) 0; (2) 4 3 •【解析】试题分析:(1)原式=1 -5 • 2 • 3-1 =0 ;(2)原式=6_3-,3 2\3-3、.3=4打. 考点: 1.实数的运算;2.二次根式的加减法.33.( 1) 【解析】试题分析: 1;( 2) 7-2、、6.(1 )解:原式=5- 7+3=1;(2)解:原式=14-4、6 2、、6 -(27 -20) = 7-2\6 .考点:二次根式的混合运算.■■― 1 34•①、4.2 :②、—a 3【解析】试题分析:根据二次根式的混合运算的法则结合二次根式的性质依次计算即可试题解析:①、\32 -2、1 • .、0.5 =4、、2「2 ^2 =4、, 2 ;\8 2 2考点:实数的运算35. (1) -3(2 ; (2) ^73 ; ( 3) 6; (4)七 9【解析】试题分析:本题主要考查根式的根式的混合运算和 转化为整式,再按运算法则计算。
(完整版)二次根式混合运算125题(有答案)ok
53、原式=6 ﹣3 ﹣ +5﹣4=(6﹣3﹣ ) +1= +1
54、原式= = ;
55、原式= = .
56、原式=[ ﹣( ﹣ )][ +( ﹣ )]=5﹣( ﹣ )2=5﹣(5﹣2 )=2 6 ;
84、原式=5﹣6=﹣1;
85、原式=4+ =
86、(1+ )(1﹣ )﹣( ﹣1)2+( +1)2=1﹣( )2﹣(2﹣2 +1)+2+2 +1
=1﹣2﹣2+2 ﹣1+2+2 +1=4 ﹣1.
87、原式= +4× ﹣ +1= + +1=1+ .
88、原式=(40 ) =30 =15 ;
89、原式=2 +2=2+ .
12、原式=2 +3 ﹣ = ;
13、原式= = ;
14、原式=(7+ )(7+ )=14×2 =
15、原式= =3+6﹣10=﹣1;
16、原式=2﹣ =﹣2.
17、原式= ﹣2 + =3 ﹣2 + =
18、原式=(3 ﹣2 )(3 +2 )=18﹣12=6;
19、原式= (2 ﹣ + )= ( + )= +1
43、原式= = =4
44、 =(4÷2) =
45、原式=2 +3 ﹣7 =﹣2 ;
46、原式= = =14.
47、原式=10﹣7+ =3+ ;
48、原式= ×(2 ﹣ + )= + × = +1;
二次根式练习10套(附答案)
二次根式练习01一、填空题1、下列和数1415926.3)1( .3.0)2(722)3( 2)4( 38)5(-2)6(π...3030030003.0)7(其中无理数有________,有理数有________(填序号) 2、94的平方根________,216.0的立方根________。
3、16的平方根________,64的立方根________。
4、算术平方根等于它本身的数有________,立方根等于本身的数有________。
5、若2562=x ,则=x ________,若2163-=x ,则=x ________。
6、已知ABC Rt ∆两边为3,4,则第三边长________。
7、若三角形三边之比为3:4:5,周长为24,则三角形面积________。
8、已知三角形三边长n n n n n n ,122,22,1222++++为正整数,则此三角形是________三角形。
9、如果0)6(42=++-y x ,则=+y x ________。
10、如果12-a 和a -5是一个数m 的平方根,则.__________,==m a11、三角形三边分别为8,15,17,那么最长边上的高为________。
12、直角三角形三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________。
二、选择题13、下列几组数中不能作为直角三角形三边长度的是( )A. 25,24,6===c b aB. 5.2,2,5.1===c b aC.45,2,32===c b a D. 17,8,15===c b a14、小强量得家里彩电荧屏的长为cm 58,宽为cm 46,则这台电视机尺寸是( )A. 9英寸(cm 23)B. 21英寸(cm 54)C. 29英寸(cm 74)D .34英寸(cm 87)15、等腰三角形腰长cm 10,底边cm 16,则面积( )A.296cmB. 248cmC. 224cmD. 232cm16、三角形三边c b a ,,满足ab c b a 2)(22+=+,则这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D. 等腰三角形17、2)6(-的平方根是( )A .6-B .36C. ±6D. 6±18、下列命题正确的个数有:a a a a ==233)2(,)1((3)无限小数都是无理数(4)有限小数都是有理数(5)实数分为正实数和岁实数两类( ) A .1个B. 2个C .3个D.4个19、x 是2)9(-的平方根,y 是64的立方根,则=+y x ( )A. 3B. 7C.3,7D. 1,720、直角三角形边长度为5,12,则斜边上的高( ) A. 6B. 8C.1318 D.1360 21、直角三角形边长为b a ,,斜边上高为h ,则下列各式总能成立的是( )A. 2h ab =B. 2222h b a =+C.h b a 111=+ D.222111hb a =+ 22、如图一直角三角形纸片,两直角边cm BC cm AC 8,6==,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A.cm 2B.cm 3C.cm 4D.cm 5三、计算题23、求下列各式中x 的值:04916)1(2=-x25)1)(2(2=-x8)2)(3(3-=x27)3()4(3=--x24、用计算器计算:(结果保留3个有效数字)15)1(315)2(π-6)3( 2332)4(-四、作图题25、在数轴上画出8-的点。
二次根式加减练习题(含答案)
二次根式的加减练习题一. 选择题:1. 化简a a a 13---得( ) A. (a -1)a -B. (1-a)a -C. -(a+1)aD. (a -1)a 2. 计算的结果是2736123+-( ) A. 33 B. 3 C. -36 D. -333. 设x =35,354-=+y ,则x 与y 的大小关系为( ) A. x>y B. x =yC. x<yD. x =-y 二. 填空: 4. 下列二次根式:①222②12-③81④98⑤118其中为非最简二次根式的有(在横线上写题号) ,与2是同类二次根式的有(写题号)5. 合并同类二次根式的结果为2927xy xy xy -- 。
6. 已知的值是则x x x x x ,151246932=-+ 。
三. 解答题:7. 已知的值求a a a a a -+-+=2212,321。
8. 计算: (1)a a a a a 1882624--+ (2)2)154154(--+(3))22(28+- (4)121|2|)2()21(01---+---π(5)814121218-+-+9. 条件求值: (1)已知:的值求11,122--++=x x x x 。
(2)已知:134,3223++-+=x x x x 求的值。
(3)已知:的值求代数式12944,212234+--++=x x x x x 。
10. 已知菱形ABCD 的对角线AC =472,472-=+BD ,求菱形的边长和面积。
参考答案1. B2. A3. A4. ②,③,④ ①,②,③,④5. 06. 257.解:32)32)(32(32321-=-+-=+=a ∴原式结果为-2-38. (1)原式=a a a a a 2323222622=--+(2)原式=628)154()154)(154(2)154(22=-=-+-+-+ (3)-2 (4)0 (5)39. (1)x+11111)1)(1(122--=----+=--x x x x x x x x 当221121,12-=-+-=+=原式时x (2)解:∵32+=x ∴32=-x 两边平方得x 2-4x+1=0 ∴5325)2(2)14(134223+=+-++-=++-x x x x x x x (3)解:∵212+=x ,212=-x ,∴4x 2-4x -1=0 1)144(2)144(1288441294422223234234+--+--=+--+--=+--+∴x x x x x x x x x x x x x x x x=1 10. 解:(菱形的边长)2=22)2472()2472(22=-++∴菱形的边长=6)472)(472(21,22=-+⨯=面积。
(完整)八年级二次根式综合练习题及答案解析.docx
填空题1. 使式子x 4 有意义的条件是。
【答案】x≥4【分析】二次根号内的数必须大于等于零,所以x-4≥ 0,解得x≥ 4 2. 当__________时,x 2 1 2 x 有意义。
【答案】 -2≤x≤12【分析】 x+2≥ 0, 1-2x≥ 0 解得 x≥- 2, x≤1123. 若m有意义,则 m 的取值范围是。
m 1【答案】 m≤0且m≠﹣1【分析】﹣ m≥0 解得 m≤ 0,因为分母不能为零,所以m+1≠ 0 解得 m≠﹣ 14.当 x __________ 时, 1 x 2 是二次根式。
【答案】 x 为任意实数【分析】﹙1- x﹚2是恒大于等于0 的,不论 x 的取值,都恒大于等于0,所以 x 为任意实数5.在实数范围内分解因式: x49 __________, x2 2 2x 2__________ 。
【答案】﹙x 2+ 3﹚﹙ x+3﹚﹙ x-3﹚,﹙ x- 2 ﹚2【分析】运用两次平方差公式:x 4- 9=﹙ x 2+ 3﹚﹙ x 2-3﹚=﹙ x 2+ 3﹚﹙ x+ 3 ﹚﹙x - 3 ﹚,运用完全平方差公式:x 2- 2 2 x+ 2=﹙ x- 2 ﹚26.若 4 x22x ,则 x 的取值范围是。
【答案】 x≥0【分析】二次根式开根号以后得到的数是正数,所以2x≥ 0,解得 x≥07.已知x22 x ,则x的取值范围是。
2【答案】 x≤2【分析】二次根式开根号以后得到的数是正数,所以2- x≥0,解得 x≤ 2 8.化简: x2 2 x 1 x p 1的结果是。
【答案】 1-x【分析】x2 2 x 1 =(x1)22,因为 x 1 ≥0,x<1所以结果为1-x9.当1x p5时,x2x 5 _____________ 。
1【答案】 4【分析】因为 x≥1 所以x 1 2= x 1,因为x<5所以x-5的绝对值为5-x,x- 1+5- x= 410.把 a1的根号外的因式移到根号内等于。
二次根式练习题及答案
二次根式练习题1.如果二次根式有意义,那么x应该满足的条件是.2.若两个最简二次根式与是同类二次根式,则a =.3.已知,则x2﹣4x+1的值为.4.关于x的代数式有意义,满足条件的所有整数x的和是9,则a的取值范围.5.已知,.则(1)x2+y2=.(2)(x﹣y)2﹣xy=.6.若x=1+,则x3﹣3x2+2x﹣=.7.实数a、b满足,则a2+b2的最大值为.8.已知x=,y=,且19x2+123xy+19y2=1985,则正整数n的值为.9.计算:(1)82014×(﹣0.125)2015;(2)﹣﹣(π+2020)0.10.计算题:(1)(3+)(3﹣)﹣(﹣1)2;(2)(2﹣3).11.一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.设a+b(其中a、b、m、n均为正整数),则有a+b =m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样可以把部分a+b的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=,b=.(2)利用所探索的结论,找一组正整数a、b、m、n填空:+=(+)2;(3)化简参考答案与试题解析1.如果二次根式有意义,那么x应该满足的条件是x≤,且x.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,2x+1≠0,且2﹣3x≥0,解得x≤,且x.故答案为:x≤,且x.【点评】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.2.若两个最简二次根式与是同类二次根式,则a=2.【分析】根据一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式列出方程求a即可.【解答】解:∵3a﹣1=11﹣3a,∴6a=12,∴a=2.故答案为:2.【点评】本题考查了同类二次根式,最简二次根式,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.3.已知,则x2﹣4x+1的值为2.【分析】先根据分母有理化求出x值,然后利用完全平方公式对代数式变形,再代入数据求解即可.【解答】解:===,x2﹣4x+1=x2﹣4x+4﹣4+1=(x﹣2)2﹣3,把代入上式中,原式===2,故答案为:2.【点评】本题主要考查了代数式求值,二次根式的运算,分母有理化等知识点,解题的关键在于能够利用完全平方公式对代数式进行变形求解.4.关于x的代数式有意义,满足条件的所有整数x的和是9,则a的取值范围﹣1<a≤0.【分析】根据二次根式的被开方数是非负数求出x的取值范围,根据满足条件的所有整数x的和是9,得到x=4,3,2,从而1<a+2≤2,从而得出答案.【解答】解:∵4﹣x≥0,x﹣a﹣2≥0,∴a+2≤x≤4,∵满足条件的所有整数x的和是9,∴x=4,3,2,∴1<a+2≤2,∴﹣1<a≤0.故答案为:﹣1<a≤0.【点评】本题考查了二次根式有意义的条件,根据二次根式的被开方数是非负数求出x 的取值范围是解题的关键.5.已知,.则(1)x2+y2=14.(2)(x﹣y)2﹣xy=11.【分析】(1)先分母有理化求出x,再去求x﹣y和xy的值,根据完全平方公式进行变形,最后代入求出答案即可;(2)把x﹣y=﹣2,xy=1代入,即可求出答案.【解答】解:(1)∵x===2﹣,y=2+,∴x﹣y=(2﹣)﹣(2+)=﹣2,xy=(2﹣)×(2+)=4﹣3=1,∴x2+y2=(x﹣y)2+2xy=(﹣2)2+2×1=12+2=14,故答案为:14;(2)由(1)知:x﹣y=﹣2,xy=1,所以(x﹣y)2﹣xy=(﹣2)2﹣1=12﹣1=11,故答案为:11.【点评】本题考查了二次根式的化简求值,分母有理化和完全平方公式等知识点,能求出x﹣y和xy的值是解此题的关键,注意:(x﹣y)2=x2﹣2xy+y2.6.若x=1+,则x3﹣3x2+2x﹣=5.【分析】先将原式进行分组,然后进行因式分解,代入x的值,再根据二次根式混合运算顺序(先算乘方,然后算乘法,最后算加减)及计算法则进行计算.【解答】解:原式=(x3﹣3x2)+2x﹣=x2(x﹣3)+2x﹣,当x=1+时,原式=(1+)2(1+﹣3)+2(1+)﹣=(1+2+7)(﹣2)+2+2﹣=(8+2)(﹣2)+2+2﹣=8﹣16+14﹣4+2+2﹣=5.故答案为:5.【点评】本题考查二次根式的混合运算,理解二次根式的性质,掌握完全平方公式(a+b)2=a2+2ab+b2的结构是解题关键.7.实数a、b满足,则a2+b2的最大值为52.【分析】根据=|a|化简变形得:|a﹣2|+|a﹣6|+|b+4|+|b﹣2|=10,a到2和6的距离之和=4,b到﹣4和2的距离之和是6,得到2≤a≤6,﹣4≤b≤2,根据|a|最大为6,|b|最大为4即可得出答案.【解答】解:原式变形为++|b+4|+|b﹣2|=10,∴|a﹣2|+|a﹣6|+|b+4|+|b﹣2|=10,∴a到2和6的距离之和是4,b到﹣4和2的距离之和是6,∴2≤a≤6,﹣4≤b≤2,∴|a|最大为6,|b|最大为4,∴a2+b2=62+(﹣4)2=36+16=52.故答案为:52.【点评】本题考查了二次根式的性质与化简,根据绝对值的性质得到2≤a≤6,﹣4≤b ≤2是解题的关键.8.已知x=,y=,且19x2+123xy+19y2=1985,则正整数n的值为2.【分析】先将x,y分母有理化化简为含n的代数式,可得x+y=4n+2,xy=1,然后将xy =1代入19x2+123xy+19y2=1985,结果化简为x2+y2=98,进而求解.【解答】解:∵x===()2=2n+1﹣2,y=,=()2=2n+1+2,∴x+y=4n+2,xy=1,将xy=1代入19x2+123xy+19y2=1985得19x2+123+19y2=1985,化简得x2+y2=98,(x+y)2=x2+y2+2xy=98+2=100,∴x+y=10.∴4n+2=10,解得n=2.故答案为:2.【点评】本题考查二次根式的分母有理化,解题关键是利用整体思想求解.9.计算:(1)82014×(﹣0.125)2015;(2)﹣﹣(π+2020)0.【分析】(1)原式逆用积的乘方运算法则计算即可求出值;(2)原式利用二次根式性质,分母有理化,以及零指数幂法则计算即可求出值.【解答】解:(1)原式=(﹣8×0.125)2014×(﹣0.125)=(﹣1)2014×(﹣0.125)=﹣0.125;(2)原式=2﹣﹣1=﹣1.【点评】此题考查了分母有理化,幂的乘方与积的乘方,以及零指数幂,熟练掌握运算法则是解本题的关键.10.计算题:(1)(3+)(3﹣)﹣(﹣1)2;(2)(2﹣3).【分析】(1)利用平方差公式及完全平方公式进行求解较简便;(2)先化简,再算括号里的运算最后算除法即可.【解答】解:(1)(3+)(3﹣)﹣(﹣1)2=9﹣5﹣(3﹣2+1)=9﹣5﹣3+2﹣1=2;(2)(2﹣3)=(8)=﹣=.【点评】本题主要考查二次根式的混合运算,解答的关键是对相应的运算法则的掌握与运用.11.一些含根号的式子可以写成另一个式子的平方,如3+2=(1+)2.设a+b(其中a、b、m、n均为正整数),则有a+b=m2+2n2+2mn,∴a=m2+2n2,b=2mn.这样可以把部分a+b的式子化为平方式的方法.请你仿照上述的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=(m+n)2,用含m、n的式子分别表示a、b,得:a=m2+3n2,b=2mn.(2)利用所探索的结论,找一组正整数a、b、m、n填空:21+4=(1+ 2)2;(3)化简【分析】(1)将(m+n)2用完全平方公式展开,与原等式左边比较,即可得答案;(2)设a+b=,则=m2+2mn+5n2,比较完全平方式右边的值与a+b,可将a和b用m和n表示出来,再给m和n取特殊值,即可得答案;(3)利用题中描述的方法,将要化简的双重根号,先化为一重根号,再利用分母有理化化简,再合并同类二次根式和同类项即可.【解答】解:(1)∵,=m2+2mn+3n2∴a=m2+3n2,b=2mn故答案为:m2+3n2,2mn.(2)设a+b=则=m2+2mn+5n2∴a=m2+5n2,b=2mn若令m=1,n=2,则a=21,b=4故答案为:21,4,1,2.(3)=﹣=﹣=﹣=﹣=++﹣=+【点评】本题考查了利用分母有理化和利用完全平方公式对二次根式化简,以及对这种方法的拓展应用,本题具有一定的计算难度.。
二次根式精选练习题及答案
二次根式精选练习题及答案二次根式是高中数学中的一个重点内容,也是历年高考的常考题型。
掌握好二次根式的运算方法不仅有助于提高数学成绩,更能为今后学习更高深的数学知识打下坚实的基础。
下面是一些二次根式的精选练习题及其答案,供大家参考。
1.将下列二次根式合并为一个二次根式:$\sqrt{7}+\sqrt{3}-\sqrt{28}$解:$\sqrt{7}+\sqrt{3}-\sqrt{28}=\sqrt{7}+\sqrt{3}-2\sqrt{7}=-\sqrt{7}+\sqrt{3}$2.将下列二次根式化为最简形式:$\frac{2\sqrt{5}-\sqrt{2}}{\sqrt{3}+3\sqrt{5}}$解:$\frac{2\sqrt{5}-\sqrt{2}}{\sqrt{3}+3\sqrt{5}}=\frac{(2\sqrt{5}-\sqrt{2})(\sqrt{3}-3\sqrt{5})}{3-45}=\frac{-16\sqrt{5}+6\sqrt{6}}{-42}=\frac{8\sqrt{5}-3\sqrt{6}}{21}$3.将下列二次根式化为最简形式:$\sqrt{5-2\sqrt{6}}$解:设$\sqrt{5-2\sqrt{6}}=a\pm b\sqrt{6}$,则有$a^2+6b^2=5$和$2ab=-2$。
解得$a=1,b=-\frac{1}{\sqrt{6}}$或$a=-1,b=\frac{1}{\sqrt{6}}$,因此$\sqrt{5-2\sqrt{6}}=1-\frac{1}{\sqrt{6}}\sqrt{6-2\sqrt{6}}=1-\frac{1}{\sqrt{6}}\sqrt{(1-\sqrt{2})(1-\sqrt{3})}=\boxed{\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}}$4.将下列二次根式化为最简形式:$\sqrt{7+4\sqrt{3}}$解:同上题,设$\sqrt{7+4\sqrt{3}}=a+b\sqrt{3}$,则有$a^2+3b^2=7$和$2ab=4$。
二次根式综合练习
1二次根式综合练习一、单选题1.下列各式成立的是( )A .√(−3)2=−3B .√x 2=xC .√(−5)2=5D .√a 2+1=a +1 2.二次根式 √x −5 中字母x 的取值可以是( )A .x =5B .x =1C .x =2D .x =-1 3.当a <1时,化简√−a 3(1−a)的结果是( )A .a √(a −1)B .−a √a(a −1)C .a √a(−a)D .−a √a(−a) 4.二次根式 √2x −1 有意义时,x 的取值范围是( ). A .x >12 B .x ≥12 C .x <12 D .x ≤12 5.下列根式中,最简二次根式的是( )A .√4B .√12C .√12D .√106.计算并化简√5×√45 的结果为( ) A .2 B .√4 C .±2 D .±√47.下列运算正确的是( )A .√2+√3=√5B .√3−√2=1C .√2×√3=√5D .√24÷√8=√3 8.函数y =√x+3中,自变量x 的取值范围是( ) A .x >﹣3且x≠0 B .x >﹣3 C .x≥﹣3D .x≠﹣39.下列等式何者不成立( ) A .4√3+2√3=6√3 B .4√3−2√3=2√3 C .4√3×2√3=8√3 D .4√3÷2√3=2 10.下列二次根式是最简二次根式的为( )A .√10B .√20C .√23D .√3.6 11.已知y =√x −3+√3−x +1,则x +y 的平方根是( )A .2B .-2C .±2D .±112.实数a 、b 在数轴上的位置如图所示化简,√(a −b)2+√a 2−√b 2的结果为( )A .2a +2bB .−2aC .−2bD .2a −2b 13.把代数式 (a −1)√11−a中的 a −1 移到根号内,那么这个代数式等于()2A .−√1−aB .√a −1C .√1−aD .−√a −1 14.计算√2×√8+√−273的结果为( )A .﹣1B .1C .4−3√3D .7 15.若一个直角三角形的两条直角边长分别为 √13 cm 和 √14 cm ,那么此直角三角形的斜边长是( ) A .3 √2 cm B .3 √3 cm C .9cm D .27 cm 16.已知 √7 =a , √70 =b ,则 √10 等于( )A .a+bB .b-aC .abD .b a17.如图,长方形内三个相邻的正方形面积分别为4,3,和2,则图中阴影部分的面积为( )A .2B .√6C .2√3+√6−2√2−3D .2√3+2√2−5 18.√16 的值为( ) A .4 B .-4 C .±4 D .219.下列计算正确的是( ) A .√(−3)2=−3 B .√9=±3C .√−83=2D .√(−4)33=−4 20.估计 2√6 的大小应( )A .在2~3之间B .在3~4之间C .在4~5之间D .在5~6之间 21.若式子 √3−x 在实数范围内有意义,则x 的取值范围是( )A .x <3B .x ≤3C .x ≥3D .x ≠3 22.下列二次根式中,最简二次根式是( ) A .√12B .√17C .√75D .√5a 3 23.如果 a =√3+2, b =√3−2 ,那么 a 与 b 的关系是( ) A .a +b =0 B .a =b C .a =1b D .a <b 24.下列计算正确的是( )A .√2+√3=√5B .3√2−2√2=1C .√2×√3=√6D .√24÷√6=4 25.计算 4√12+3√13−√8 的结果是( ) A .√3+√2 B .√3 C .√33 D .√3−√226.下列计算正确的是( )3A .(3−2√2)(3−2√2)=9−2×3=3B .(2√x +√y )(√x −√y )=2x −yC .(3−√3)2=32−(√3)2=6D .(√x +√x +1)(√x +1−√x )=1 27.已知x 为实数,化简√−x 3−x √−1x的结果为( ) A .(x −1)√−x B .(−1−x )√−x C .(1−x )√−x D .(1+x )√−x二、填空题28.若二次根式 √x −3 在实数范围内有意义,则x 的取值范围是 . 29.二次根式 √x +4 中,字母x 的取值范围是 . 30.(√6+√5)2021×(√6−√5)2022 = . 31.若一个二次根式与 √12 的积为有理数,则这个二次根式可以是 32.计算√−83+√36−√49= ;33.如果最简二次根式√2x −1与√5是同类二次根式,那么x 的值为 . 34.已知实数a ,b ,c 表示一个三角形的三边长,它们满足 √a −3 +|b-3|+ √c −4 =0,则该三角形的形状为 35.已知1<a <3,则化简 √1−2a +a 2 ﹣ √a 2−8a +16 的结果是 .36.函数y = √x+5x 的自变量x 的取值范围为 . 37.比较大小: 1√6−√5 1√7−√6(用 >,< 或 = 填空) 38.①比较大小:- 3√2 -4;②√33的倒数为 . 39.若x 、y 满足y= √x −2 + √2−x +4,xy= . 40.如果最简二次根式 √2a −3 与 √7 是同类二次根式,那么a 的值是 .三、计算题41.计算: (1)4√12−√18+√8 (2)√12×√36√6 (3)(√2−√3)2−(√3+√2)(√3−√2) .四、解答题42.计算: 3√3−√27+(π−2020)0+√24÷√2 43.若 x , y 为实数,且 x =√y 2−1+√1−y 2+y y+1,求 x −3+y 的值.44.已知a ,b 分别为等腰三角形的两条边长,且a ,b 满足 b =3+√3a −6+5√2−a ,求此三角形的周4 长.45.有一道练习题是:对于式子 2a −√a 2−4a +4 先化简,后求值.其中 a =√2 . 小明的解法如下:2a −√a 2−4a +4 = 2a −√(a −2)2 =2a ﹣(a ﹣2)=a+2= √2 +2. 小明的解法对吗?如果不对,请改正.46.如果最简二次根式 √3a −8 与 √17−2a 是同类二次根式,那么要使式 √4a −2x +√x −a 有意义,x 的取值范围是什么?47.实数a 、b 、c 在数轴上的对应点位置如图所示,化简: √(−c)2+|a −b|+√(a +b)33−|b −c|48.古希腊的几何学家海伦给出了求三角形面积的公式:S= √p(p −a)(p −b)(p −c) ,其中a ,b ,c 为三角形的三边长,p= a+b+c 2.若一个三角形的三边长分别为2,3,4,求该三角形的面积.49.若a 、b 、c 是△ABC 的三条边长,且满足等式 √a −1+(b −√3)2+(c −2)2=0 求证:△ABC 是直角三角形50.如图所示是工人师傅做的一块三角形铁板材料,BC 边的长为2 √35 cm ,BC 边上的高AD 为 √28 cm ,求该三角形铁板的面积.每天进步一点点,就是迈向卓越的开始 5 答案解析部分1.【答案】C2.【答案】A3.【答案】B4.【答案】B5.【答案】D6.【答案】A7.【答案】D8.【答案】B9.【答案】C10.【答案】A11.【答案】C12.【答案】B13.【答案】A14.【答案】B15.【答案】B16.【答案】D17.【答案】D18.【答案】A19.【答案】D20.【答案】C21.【答案】B22.【答案】B23.【答案】A24.【答案】C25.【答案】B26.【答案】D27.【答案】C28.【答案】x≥329.【答案】x≥-430.【答案】√6−√531.【答案】√3632.【答案】-333.【答案】334.【答案】等腰三角形35.【答案】2a−536.【答案】x≥-5且x≠037.【答案】< 38.【答案】<;√339.【答案】840.【答案】541.【答案】(1)解:原式=2 √2 -3 √2 +2 √2 = √2 (2)解:原式= √12×√3×√66 =√12×3×66 =√6 (3)解:原式=5- 2 √6 -(3--2)=4- 2 √6 42.【答案】解:原式= √3−3√3+1+2√3 =143.【答案】解:由题意得,y 2-1≥0且1-y 2≥0, 所以,y 2≥1且y 2≤1,所以,y 2=1所以,y=±1,又∵y+1≠0,∴y≠-1,所以,y=1,所以,x= 11+1=12 ,∴x −3+y =(12)−3+1=944.【答案】解:∵b =3+√3a −6+5√2−a ∴3a -6≥0,2-a≥0∴a=2∴b=3∵a ,b 分别为等腰三角形的两条边长 ∴等腰三角形的另一条边为2或3∴等腰三角形的周长为:2+2+3=7或2+3+3=845.【答案】解:小明的解法不对.改正如下:7 2a −√a 2−4a +4 = 2a −√(a −2)2 =2a ﹣|a ﹣2|, ∵a= √2 ,∴a ﹣2<0,∴原式=2a+a ﹣2=3a ﹣2,把a= √2 代入得原式=3 √2 ﹣246.【答案】解:由题意,得3a ﹣8=17﹣2a ,解得a=5;4a ﹣2x≥0且x ﹣a≥,解得5≤x≤10,√4a −2x +√x −a 有意义,x 的取值范围是5≤x≤1047.【答案】解:原式=|-c|+|a-b|+a+b-|b-c|, =c+(-a+b )+a+b-(-b+c ),=c-a+b+a+b+b-c ,=3b.48.【答案】解:设a=2,b=3,c=4, ∴p= a+b+c 2=2+3+42=92∴S= √p(p −a)(p −b)(p −c)= √92(92−2)×(92−3)×(92−4) = 3√154∴该三角形的面积为 3√15449.【答案】证明:由题意,得a= 1,b= √3 ,c= 2,∵a 2+b 2= 4,c 2= 4,∴a 2+b 2=c 2, ∴△ABC 是直角三角形50.【答案】解:解:根据题意可知,S △ABC =12×BC ×AD =12×2√35×√28=√35×28=14√5故三角形铁板的面积为14 √5 cm 2。
二次根式练习题及答案(2)(可编辑修改word版)
若代数式V 乔(X-1)。
在实数范用内有意义,则X 的取值范用为.四-解答题(共8小题)10.若禹 b 为实数,a={2b- 14+\/7-bD 抑G-b)2・二次根式练习题 A. 要使式子字有意义,则X 的取值范囤是( x>l B. x> - 1 C. x>l D. x> - 12. A. 式子/丄圧实数范用内有意义,则S 的取值范用是( V X - 1 x<l B. xWl C. x>l D. s213. 下列结论正确的是( A ・ 3a'b - a'b=2B .单项式-x=的系数是-1 C .使式子\忌有意义的X 的取值范用是x> - 2 D . 4. A. 5. 色2-1 若分1 _的值等于 a+1要使式子』应有意义,则a 的取值范囤是( )a aHO B. a> • 2 且 aT^O C ・ a> ・ 2 或 aHO D, aM - 2 且 aHO 使返豆有意义,则s 的取值范用是—• X 0,则 a=+l 6.若代数仔有意义,则X 的取值范帥 7. 已知屈二£是正整数,则实数n 的最大值为.9. 若实数a 满足a ・8 +Ja- 10=a ,则a=11.已知也=返垒陌1_3,求伽+ “严的值?n +412.已知小y为等腰三角形的两条边长,且X, y满足y = 二雄二r + 4,求此三角形的周长13.己知a、b、c满足J2d+b - 4小-c+l|=JL^+需丸.求a+b+c的平方根.14・若a、b为实数,且沪\/14 ■ Zb+Jb ■ 7+3・求寸(自• b) 2•15・已知yVJx■旷02・Z化简ly・3l - Jy2 - 8y+16・16. 已知a 、b 满足等式br/2a- 6+的-3d - 9・求出a. b 的值分别是多少? 试求五亦-傅十需溯值•已知实数a 满足{(2008- d) 2009",求" 2008=的值是多少?(1) (2)参考答素与试8解析 J Y — 11・(2016•划门)要使式- —j 恿义,则X 的取值范隔是(2A. x>l B ・ x> - 1 C. xMl D ・ xM - 1J V — 1 【解答】解:要使式子P c 有意义,2 故乳・1MS 解得:xN 】・ 则X 的取值范困是:xMl.故选:C. 2.(缈6•贵港)式勺E 做数范碉内《义,则•,的取值范碉是C A. x<l B ・ xWl C. x>l D. xNl【解答】解:依題总得:X-1>O. 解得x>l ・ 故选:C. 3. (2016-杭州校级自主招生)下列结论正确的是( A. 3a-b - a-b=2 in 项式-x :的系数是-1使式-"h+2右恿义的X 的取值范用是x> - 2 B. C, D ・ 界-1若分式 -------- 的值等于0,则沪±1a+1【解答】解:3a=b - a^b=2a=b, A 错熙爪项式的系数是• 1. B 正确:使式fVx+2竹意义的X 的取值范用是xM-2. C 错決界-1若分式 -------- 的值等于0.则沪1,错误,a+1故选:B. 4. <2016•博野县校级自主招生)要使式子』应有恿义・则a 的取值范ra 是( A ・ aHO B. a> - 2 且 aHO C ・ a> -2 或 aHO D ・ aM ・ 2 且 a 工0 【解答】解:由題意得・計2M0. aHO.解斜• aM ・2且aHO.故选:D. 5."州校级自主招生)沮警有意义,则•,的取值范収亠寻9. 【解答】解:根据题意得,3X-2M0且xHO.9 解斜x>-三且xHO ・ 3 故答案为.xM-gL xHO.yA/ V — 26.(沁•永«模拟)若代数式匕有意义,则•,的取值范册.【解答】解2根据题御X-2MS 且X-3H0. 解得• xN2且x#3:故答案是:xN2且xH3, 7.(2016春•固始县期末)已知(12- n是正整数・则实数n 的报大值为_ H・【解答】解:由题总可知12-n是一个完全平方数,且不为0.嚴小为1-所以n的最大值为12-1=11.8. (2016-大悟县_模)若代数式”x+3牛(x-l)°在实数范困内有意义,则X的取值范隔为xN・3且xH【解答】解:由題总得:寸3MS且x・lH0・解得:xM・3且xHl.故答案为.xM- 3且xHl.9・(2009 -兴化市模拟)若实数a满足la-8 认 -]0% 则沪_Ll【解答】解,根据题意得,a-105^0,解得a^lO.•••原等式可化为S a・8+&- 10%叭/d-10冷Aa- 10=61,解御:a=74.10. <2015 #•绵阳期中〉若 a. b 为实数,叫2b - 14+"7 - 2 求J(a- b) 2.【解答】解:由題总得・2b - 115= 0且7-b>0. 解得bN7且bW7, a=3i 所以• J(a-b)&J(3-7)S・L r _ 2di 7求(mF宀的值?H. <2016-^顺县校级篠拟〉已知n+4【解答】解.由題意得.16・£MO. n=- 16^0.十4H0. 则n'=16. nH - 4.解得■ n=*L则m= - 3,(m+n)浹=】• 12. (2016春•微ft县校级〃考〉已知M.y为等腰三角形的两条边长,且斗y满足尸{齐左(2« - 6別・求此三允形的周长.【解答】解:由題意得・3-x^O. 2K・6M0・解斜• x=3.则 y=4i半腰为3•底边为4时,-角形的周长为:3+3+4=10, 腰为4•底边为3时,三角形的周长为:3+4+4=11, 答:此三角形的周长为10或H ・13. (2015 春•武昌区期中)已知 a 、b 、c 满足V2d+b -4+ a-crln/b-求屮br 的 平方根.【解答】解:由題总b • cM 0且c - bMO. 所以• bNc 且cNb,所以• b=c.所以.等式可变为"2册 -4Ta ・bT =°,解 <a=tlb=2 所以•c=2.所以.a+b+c 的平方根是±>/^・ 14. (2015 R-宜兴市校级期中)若a 、b 为实数,且知期-2b+{b-7+3,求寸(a - b ) 2.【解答】解:根据题氫得:”4 我Aolb-7>0解斜:b=7 •则 a=3.则原式=a-b| = |3-7|=4.15. (2015 #•荣县校级JJ 考)已知y v#x-卩/2 - Z 化简1厂3| -£2_ 8y+16・【解答】解:根据题意得:, 2^匕 解得:E12-x>0则yV3・则原式=3 - y - y - 4|=3 - y - <4-y ) = -2y-l.16.(2014春•富顺县校级期末)已知a 、b 满足等式b 二y2a • 6十“9 - 33 -9(1)求出a 、b 的值分别是多少?⑵试求A ZT 亦-的忆【解答】解:(1)由题总:得.2a-6^0且9・3aM0, 解得&S 且aW3・所以,a=3> b=・ 9;由非负数的性质斜.2a+b-4=0, a- b+l=O- d(-9)2+ 引3%(-9)・=6-9-3.=-6・17. (2014秋•宝兴县校级期末)已知实数a满足+乜8・2009% 求a・2008’的值是多少?【解答】解:72:次根式有恿义.Aa- 20095=0.即a5= 2009,•••2008・aW-lV0・•"・2008勺0- 2009"・解得寸Q-2009=2°°&等式两边平方,整理a -2008^2009.。
八年级数学下册《二次根式》综合练习题带答案
八年级数学下册《二次根式》综合练习题一、选择题1、如果-3x+5是二次根式,则x的取值范围是()A、x≠-5B、x>-5C、x<-5D、x≤-52、等式x2-1 =x+1 ·x-1 成立的条件是()A、x>1B、x<-1C、x≥1D、x≤-13、已知a=15 -2,b=15 +2,则a2+b2+7 的值为()A、3B、4C、5D、64、下列二次根式中,x的取值范围是x≥2的是()A、2-xB、x+2C、x-2D、1 x-25、在下列根式中,不是最简二次根式的是()A、a2 +1B、2x+1C、2b4D、0.1y6、下面的等式总能成立的是()A、a2 =aB、a a2 =a2C、 a · b =abD、ab = a · b7、m为实数,则m2+4m+5 的值一定是()A、整数B、正整数C、正数D、负数8、已知xy>0,化简二次根式x-yx2的正确结果为()A、yB、-yC、-yD、--y9、若代数式(2-a)2 +(a-4)2的值是常数2,则a的取值范围是()A、a≥4B、a≤2C、2≤a≤4D、a=2或a=410、下列根式不能与48 合并的是()A、0.12B、18C、113D、-7511、如果最简根式3a-8 与17-2a 是同类二次根式,那么使4a-2x 有意义的x的范围是()A、x≤10B、x≥10C、x<10D、x>1012、若实数x、y满足x2+y2-4x-2y+5=0,则x +y3y-2x的值是()A 、1B 、32 + 2 C 、3+2 2 D 、3-2 2二、填空题 1、要使x -13-x有意义,则x 的取值范围是 。
2、若a+4 +a+2b -2 =0,则ab= 。
3、若1-a 2与a 2-1 都是二次根式,那么1-a 2+a 2-1 = 。
4、若y=1-2x +2x -1 +(x -1)2,则(x+y)2003= 。
100道二次根式混合运算
100道二次根式混合运算这里提供100道二次根式混合运算练习题,供大家练习。
第一组:1. $\sqrt{2}+\sqrt{3}$2. $\sqrt{5}+\sqrt{10}$3. $\sqrt{8}+\sqrt{27}$4. $\sqrt{7}-\sqrt{3}$5. $3\sqrt{3}-\sqrt{12}$6. $\sqrt{15}-2\sqrt{6}$7. $\sqrt{14}+3\sqrt{7}$8. $2\sqrt{18}-3\sqrt{8}$9. $\sqrt{10}-\sqrt{40}$10. $\sqrt{28}+\sqrt{10}$第二组:1. $\sqrt{18}\cdot\sqrt{20}$2. $\sqrt{16}\cdot\sqrt{50}$3. $\sqrt{8}\cdot\sqrt{7}$4. $\sqrt{27}\cdot\sqrt{12}$5. $\sqrt{15}\cdot\sqrt{5}$6. $\sqrt{40}\cdot\sqrt{10}$7. $\sqrt{14}\cdot\sqrt{28}$8. $\sqrt{32}\cdot\sqrt{2}$9. $\sqrt{98}\cdot\sqrt{196}$10. $\sqrt{36}\cdot\sqrt{9}$第三组:1. $\sqrt{\frac{1}{2}}$2. $\sqrt{\frac{3}{4}}$3. $\sqrt{\frac{7}{3}}$4. $\sqrt{\frac{2}{5}}$5. $\sqrt{\frac{9}{8}}$6. $\sqrt{\frac{16}{3}}$7. $\sqrt{\frac{50}{25}}$8. $\sqrt{\frac{45}{15}}$9. $\sqrt{\frac{2}{3}}-\sqrt{\frac{1}{4}}$10. $\sqrt{\frac{11}{4}}+\sqrt{\frac{14}{16}}$第四组:1. $\frac{\sqrt{12}}{\sqrt{3}}$2. $\frac{\sqrt{18}}{\sqrt{6}}$3. $\frac{\sqrt{42}}{\sqrt{7}}$4. $\frac{3\sqrt{16}}{\sqrt{8}}$5. $\frac{\sqrt{27}}{\sqrt{9}}$6. $\frac{2\sqrt{50}}{\sqrt{5}}$7. $\frac{\sqrt{20}}{\sqrt{5}}-\frac{\sqrt{5}}{\sqrt{20}}$8. $\frac{\sqrt{49}}{\sqrt{98}}+\frac{\sqrt{81}}{\sqrt{27}}$9. $\frac{\sqrt{75}}{\sqrt{25}}\cdot\frac{\sqrt{8}}{\sqrt{2}}$10. $\frac{2\sqrt{18}}{\sqrt{50}}\cdot\frac{3\sqrt{8}}{\sqrt{20}}$第五组:1. $\sqrt{7+\sqrt{24}}$2. $\sqrt{10+2\sqrt{21}}$3. $\sqrt{3+\sqrt{8}}$4. $\sqrt{17+4\sqrt{14}}$5. $\sqrt{20+4\sqrt{21}}$6. $\sqrt{12+\sqrt{143}}$7. $\sqrt{9+2\sqrt{10}}$8. $\sqrt{25+10\sqrt{6}}$9. $\sqrt{11+3\sqrt{20}}$10. $\sqrt{14+2\sqrt{65}}$以上100道二次根式混合运算题,可以帮助大家巩固练习二次根式的知识,加深对二次根式运算的理解。
(完整版)二次根式混合计算练习(附答案)
(1)原式=1-1+2 +2-
=2+ ;
(2)原式=
= .
考点:实数的混合运算;2.二次根式的混合运算.
6. .
【解析】
试题分析:先进行二次根式的化简,财进行乘除运算,最后合并同类二次根式即可求出答案.
试题解析:原式=
.
考点: 实数的混合运算.
15.385
【解析】解:因为 ,
,
,
所以 .
16. .
【解析】
试题分析:先化成最简二次根式,再进行计算.
试题解析:
.
考点:二次根式化简.
17. .
【解析】
试题分析:先化成最简二次根式,再进行计算.
试题解析: .
考点:二次根式化简.
18.(1)22; (2)
【解析】
试题分析:(1)根据平方差公式,把括号展开进行计算即可求出答案.
=2+1- + =3-3+2=2
9.1+
【解析】
解:原式=4-(3-2 )+
=4-3+2 + =1+
10.(1) ;(2)11 -9 ;(3)-4-2 ;(4)8- .
【解析】(1)利用 =a(a≥0), = (a≥0,b≥0)化简;
(2)可以利用多项式乘法法则,结合上题提示计算;
(3)利用平方差公式;
点评:本题主要考查了二次根式的加减运算.首先把二次根式化为最简二次根式,然后再合并同类二次根式.
4.0
【解析】
试题分析:根据实数的运算法则进行计算即可救出答案.
试题解析:
=
=0
考点:实数的混合运算.
5.(1) 2+ ;(2) .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章二次根式综合练习【例题精选】:例1:x取什么实数时,下列各式有意义?(1)(2)(3)分析:因为二次根式中,被开方数a必须是非负数。
即:,据此,可以确定被开方数中字母的取值围。
解:(1)有意义;(2);(3)是非负数,不论取任何实数总有。
为任意实数时,都有意义;例2:下列各式中,哪些是二次根式?哪些不是?(1)(2)(3)(4)(5)分析:由二次根式定义:中,必须大于等于0,所以只要判断二次根号的被开方数是非负数即可。
解:(1)是二次根式;(2)不是二次根式;(3)是二次根式;(4)不是二次根式;(5)不是二次根式。
例3:写出下列各等式成立的条件:(1)(2)(3)(4)(5)分析:本题考察算术平方根的概念,二次根式的定义、性质及公式成立的条件,所取x的值一定要使等式左、右两边都能成立;解:(1)(2)由二次根式性质知:(3)由得:(4)由例4:如果求的算术平方根。
分析:因为是非负数。
也是非负数,而它们的和等于0,所以只有。
解:由题意,得:例5:计算:(1)(2)(3)(4)分析:利用可直接计算(1)(2)小题,由积的乘方可计算(3)(4)小题;解:(1)(2)(3)(4)例6:化简下列各式:(1)(2)已知,化简(3)(4)已知化简分析:要根据已知字母的取值围,判断二次根式的被开方数是正数的平方还是负数的平方,再由二次根式及绝对值的性质进行化简。
解:(1)例7:化简:(1)(2)分析:如果一个二次根式的被开方数中有完全平方形式的因式(或数)则要利用积的算术平方根的性质,将这些因式(或数)开出来。
解:注意:在二次根式的化简与计算中,凡是被开方数是多项式的,必先进行因式分解,再利用根式乘法法则进行计算,如果题目中没有给出字母的取值围,则需要讨论,如上题。
当时,及当,即为讨论。
例8:把根号外的因式移入根号。
分析:由二次根式的性质,如果被开方数中有的因式能开的尽,那么这些因式可用它们的算术平方根代替而移到根号外面,本题须利用上述开方的逆运算。
根据及把根号外面的非负因式平方后移至根号里面;由被开方数,,所以把移至根号里边时,外面要加负号。
解:例9:计算:(1)(2)解:(1)(2)例10:计算(1)(2)分析:首先中,被开方数是,它们是求差的运算。
所以:是错误的。
对于根号的被开方数要进行计算或因式分解。
特别是根号的被开方数能因式分解时,比直接计算要容易。
解:(1)(2)例11:计算(1)(2)解:(1)(2)例12:计算:(1)(2)(3)(4)分析:①利用二次根式的乘法法则,把各被开方数相乘,②运算时应先对各被开方数进行因数分解,这样可以简化运算过程;③计算(3)(4)两个小题时,我们这里也要执行教科书的规定:“在本章中,如果没有特别说明,所有字母都表示正数”。
后面的例题、习题也要执行这个规定。
解:(1)或:原式(2)(3)(4)注意:在做二次根式的乘法或除法运算时,一般情况下,不必化简,直接放在根号进行乘,除运算,反而容易。
例13:计算(1)(2)分析:当我们看到这样复杂的习题时,首先要有耐心,进行认真观察,只要运算程序清楚,这样的题的难度立刻就小多了;①看运算符号。
②把根号外的系数分别相乘。
③把被开方数分别相乘;明白了这样的程序以后,直接解题即可。
解:(1)原式或:原式=注意:要把分母中的根号化去或把根号的分母化去。
(2)原式=例14:计算:(1)(2)分析:本题类似于多项式乘法,因此,可以利用多项式乘法法则,转化为两个二次根式相乘,再把所得的积相加;解:(1)(2)例15:计算:分析:经过认真观察,不难发现第(1)小题满足平方差公式,第(2)(3)小题用完全平方公式。
解:(2)(3)注意:(2)中你能由得到吗?例16:计算:(1)(2)分析:只要把被开方数和二次根式的系数分别相除即可。
解:(1)(2)例17:把下列各式分母有理化(1)(2)(3)(4)分析:分母有理化指的是把分母中的根号化去,有效办法是分子、分母都乘以分母的有理化因式。
解:(1)(2)(3)(4)注意:的有理化因式是。
即:单根号的有理化因式是它本身。
的有理化因式是,即:差的有理化因式是和,反之,和的有理化因式是差,例如:的有理化因式是。
例18:已知,的整数部分为,小数部分为,求的值。
分析:若求出的值,关键在于确定、的值。
也就是要把的整数部分及小数部分求出。
解:【综合练习】:一、选择题:1、下列各式中,一定能成立的是A.B.C.D.2、如果是二次根式,那么应适合的条件是A.B.C.D.3、等式成立,那么x为A.B.C.D.4、成立,那么x为A.B.C.D.5、若那么为A.B.C.D.为任意实数6、当时,化简的结果是A.B.C.D.7、下列各式中,正确的是A.B.C.D.8、能使成立的的取值围是A.B.C.D.9、若,则A.B.C.D.10、对式子作恒等变形,使根号外不含字母m,正确的结果是A.B.C.D.11、若有意义,则x的取值围是A.B.C.D.为全体实数12、设,则的值是A.B.C.D.13、下列计算过程和结果正确的是A.B.C.D.14、若有意义,则应满足的条件是A.B.C.D.二、求的取值围,使下列各式在实数围有意义。
1、2、3、4、5、6、三、计算:1、2、3、4、5、6、四、把下列各式分母有理化:1、2、3、4、5、【答案】:一、选择题:1、A2、由已知得,,。
又:分子是4。
不可能等于零,当时。
说明分子、分母取异号,。
,选C。
3、B4、,显然成立,时,结论是否成立呢?由0的相反数仍旧是零,得出结论,成立,,选B。
5、D6、∴原式,选A。
7、C8、A9、,选D。
10、首先解释恒等变形:指的是m不论取什么样的实数,等号左、右两部分都相等;由。
当把根号外的m移到根号时,应是所以选C。
11、有意义。
指的是,选C。
12、B13、A显然错;当取全体实数时,不成立。
,C不可能成立。
所以应选D,以上用的是排除法,应注意体会和使用。
14、由得,,由得分母不等于零,即:,应满足,选A。
二、1、2、3、4、由分子得:,由分母得:。
的取值围是。
5、6、三、计算:1、2、3、4、5、6、四、1、2、3、4、5、解法一:解法二:各位同学,以上的概念题和计算题都做对了吗?特别是第3题中的乘除法计算,要明白解题程序,即:①系数相乘(或相除)这里包括符号;②被开方数相乘(或相除),希望你通过这部分习题练习,能够提高分析问题能力以及你的计算能力。
【综合练习二】:一、选择题:(每小题4分,共40分)1、如果是二次根式,那么应适合的条件是A.B.C.D.2、成立,那么的取值围是A.B.C.D.3、若那么应满足A.B.C.D.4、若,那么为A.B.C.D.为任意实数5、下列各式中正确的是A.B.C.D.(均为任意实数)6、若有意义,则应满足的条件是A.B.C.D.以上都不对7、设x为任意实数,则下列各式一定成立的是A.B.C.D.8、如果那么的取值围是A.B.C.D.9、如果,那么等于A.B.C.D.10、把分母有理化的结果是A.B.C.D.二、计算:(每小题5分,共30分)1、2、3、4、5、6、三、把下列各式分母有理化:(每小题5分,共30分)1、2、3、4、5、6、完成自我检测题后,请与下面的答案核对,并自己给出成绩,你能得满分吗?若不能,希望你不要泄气,继续争取。
【答案】:一、1、由题意,得:。
又因为分子是常数3,∴只有。
,选D。
2、∵是非负数。
∴∴,选B。
3、与(2)类似,,选A。
4、D5、利用排除法:A、C错,显然;D中,当时,右边,也是不成立的,选B。
6、由得:,由得:∴的取值围是,选C。
7、利用排除法,A、C、D都是错的,选B。
8、显然:被开方数0,,又由根号移到根号外变为,则。
的取值围是,选D。
9、直接计算即可:。
,又。
选D。
10、B二、1、30 2、3、4、5、6、此题应注意观察:是两数之差与两数之和,若把分解为后,则原式=三、1、2、3、4、5、6、【综合练习三】:一、选择题:1、计算的结果是A.B.C.D.2、若成立,则为A.B.C.D.3、已知,,那么的值是A.B.C.10 D.154、已知那么的值是A.B.C.D.二、已知,若取整数值,则的值是多少?三、求使为实数的实数的值。
四、化简:1、2、3、五、已知,求的值六、已知,求的值七、已知的小数部分是,的小数部分是,求4b-3a + ab -7的值。
八、若,求证:【解法分析】:1、(1)应考虑把它们分别有理化;选D。
(2)解法一:①由题意知:。
②可选则大于1的数化入进行验算,例如取。
这样,A、B、D排除,只有:C正确;解法二:认真观察等号左边的结构,方程两边直接平方:3、认真观察,结合已知应该把它们分别乘以2后,再因式分解,即可。
4、此题的思路是怎样出现呢?直接解出可行,但比较麻烦,有没有更简单的方法呢?这里介绍二种方法:解法一:两边平方:注意:此题的解法思路是在上加一个构成完全平方式。
2、由题意得:由(1)得:∴或是(1)的解集。
由(2)得:∴,此不等式组无解。
(1)(2)要同时成立,∴的取值围是4、从(1)中显然可以看出,有意识的给出了解题思路。
根号满足平方数的形式;(1)(2)从上题的解法中,可知,应该把7拆成4和3。
(3)认真观察后,就会发现最后两个因式满足平方差公式。
6、由已知,得:这是非负数的和等于0。
只有:7、由知:8、由。