二次函数中的动点问题课件

合集下载

浙教版初中数学中考复习:二次函数中的动点问题(共50张ppt)

浙教版初中数学中考复习:二次函数中的动点问题(共50张ppt)
y
A3
1
-1 O
x
B
图1
二次函数中的动点问题:
• 【练2】如图1,二次函数������ = ������������2 + ������������的图像过点A(-1,3),顶点B的横坐标为1. (3)如图3,一次函数y=kx(k>0)的图像与该二次函数的图像交于O、C两点,点T为该二次函数图像上 位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M在线段OC上(不与O、C重合), 过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,������������������������2为常数,试确定k的值.
y
C
B
F
E
O
DA x
二次函数中的动点问题:
• 【例1】如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴,y轴的正半轴上,且OA=4, OC=3,若抛物线经过O,A两点,且顶点在BC边上,对称轴交BE于点F,点D,E的坐标分别为 (3,0),(0,1).
• (3)点M在对称轴右侧的抛物线上,点N在x轴上,请问是否存在以A,F,M,N点为顶点的四边形是平 行四边形?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.=−Fra bibliotek1 2
������2
+
������������
+
������经过A、C
(2)点D为直线AC上方抛物线上一动点;
②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的
2倍?若存在,求点D的横坐标;若不存在,请说明理由.
y
D C
E
A
OB
x

二次函数动点问题

二次函数动点问题

5.如图,等腰直角三角形ABC以2m/s的速度沿直线L向 正方形移动,直到AB与CD重合。设xs时,三角形与正 方形重叠部分的面积为ym² 。 (1)写出y与x的函数关系式; (2)当x=2,3.5时,y分别是多少?
(3)当重叠部分的面积是正方形的面积的一半时, 三角形移动了多长时间?
动面问题
6.如图(1)等腰直角三角形ABC以2m/s的速度沿矩形 DEFG的GF边向右移动,直到BC与GF重合。已知 BC=GF=12m,EF=6m,设xs时,三角形与矩形重叠部分的 面积为ym² (1)参考图②,图③写出y与x之间的关系式; (2)当x1=2.5,x2=5时,y分别是多少? 7 (3)当重叠部分的面积为矩形面积的 时,三角形 18 移动了多长时间?
图(1)
图(2)
图(3)
P
B
Q
C
3.在梯形ABCD,AD∥BC,AB=BC=10cm,CD=6cm ∠c=90°,点P从A点出发沿线段AB以每秒Icm/s的速 度向终B点运动;动点Q同时从B点出发沿线段BC以每 秒2cm/s的速度向终点C运动.设运动的时间为t秒 (0<t<5). (1)求AD的长. (2)t为何值时,△PBQ为直角三角形. (3)设△PBQ的面积为y,求y与t之间的函数关系式 (4)是否存在某一时刻t,使△PБайду номын сангаасQ面积等于梯形形 ABCD面积的2/5?若存在, 求出此时的t值;若不存在, 说明理由;
A
P BP=12-2t,BQ=4t △PBQ的面积: S=1/2(12-2t) •4t B 即S=- 4t² +24t=- 4(t-3)² +36
Q
C
2.已知:如图,△ABC是边长3cm的等边三角形, 动点P、Q同时从A、B两点出发,分别沿AB、 BC方向匀速移动,它们的速度都是1cm/s,当点 P到达点B时,P、Q两点停止运动.设点P的运动 时间为t(s), (1)当t为何值时,△PBQ是直角三角形? (2)设四边形APQC的面积为y(cm2),求y与t 的关系式; (3)是否存在某一时刻t,使四边形APQC的面积 是△ABC面积的三分之二?若存在求出t的值,若 不存在说明理由 A

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程; ⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标. ⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线(a ≠0)与轴交于点A (1,0)和点B (-3,0),与y 轴交于点C . (1) 求抛物线的解析式;32++=bx ax y x(2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P 坐标----①C 为顶点时,以C 为圆心CM 为半径画弧,与对称轴交点即为所求点P ,②M 为顶点时,以M 为圆心MC 为半径画弧,与对称轴交点即为所求点P ,③P 为顶点时,线段MC 的垂直平分线与对称轴交点即为所求点P 。

二次函数与几何的动点及最值、存在性问题(解析版)

二次函数与几何的动点及最值、存在性问题(解析版)

二次函数与几何的动点及最值、存在性问题目录题型01平行y轴动线段最大值与最小值问题题型02抛物线上的点到某一直线的距离问题题型03已知点关于直线对称点问题题型04特殊角度存在性问题题型05将军饮马模型解决存在性问题题型06二次函数中面积存在性问题题型07二次函数中等腰三角形存在性问题题型08二次函数中直角三角形存在性问题题型09二次函数中全等三角形存在性问题题型10二次函数中相似三角形存在性问题题型11二次函数中平行四边形存在性问题题型12二次函数中矩形存在性问题题型13二次函数中菱形存在性问题题型14二次函数中正方形存在性问题二次函数常见存在性问题:(1)等线段问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再利用点到点或点到直线的距离公式列出方程或方程组,然后解出参数的值,即可以将线段表示出来.【说明】在平面直角坐标系中该点在某一函数图像上,设该点的横坐标为m,则可用含m字母的函数解析式来表示该点的纵坐标,简称“设横表纵”或“一母式”.(2)平行y轴动线段最大值与最小值问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再用纵坐标的较大值减去较小值,再利用二次函数的性质求出动线段的最大值或最小值.(3)求已知点关于直线对称点问题:先求出直线解析式,再利用两直线垂直的性质(两直线垂直,斜率之积等于-1)求出已知点所在直线的斜率及解析式,最后用中点坐标公式即可求出对称点的坐标.(4)“抛物线上是否存在一点,使其到某一直线的距离为最值”的问题:常常利用直线方程与二次函数解析式联立方程组,求出切点坐标,运用点到直线的距离公式进行求解.(5)二次函数与一次函数、特殊图形、旋转及特殊角度综合:图形或一次函数与x 轴的角度特殊化,利用与角度有关知识点求解函数图像上的点,结合动点的活动范围,求已知点与动点是否构成新的特殊图形.2.二次函数与三角形综合(1)将军饮马问题:本考点主要分为两类:①在定直线上是否存在点到两定点的距离之和最小;②三角形周长最小或最大的问题,主要运用的就是二次函数具有对称性.(2)不规则三角形面积最大或最小值问题:利用割补法将不规则三角形分割成两个或以上的三角形或四边形,在利用“一母式”将动点坐标表示出来,作线段差,用线段差来表示三角形的底或高,用面积公式求出各部分面积,各部分面积之和就是所求三角形的面积.将三角形的面积用二次函数的结构表示出来,再利用二次函数的性质求出面积的最值及动点坐标.(3)与等腰三角形、直角三角形的综合问题:对于此类问题,我们可以利用两圆一线或两线一圆的基本模型来进行计算.问题分情况找点画图解法等腰三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为等腰三角形以AB为腰分别以点A ,B 为圆心,以AB 长为半径画圆,与已知直线的交点P 1,P 2,P 4,P 5即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标以AB 为底作线段AB 的垂直平分线,与已知直线的交点P 3即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标问题分情况找点画图解法直角三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为直角三角形以AB为直角边分别过点A ,B 作AB 的垂线,与已知直线的交点P 1,P 4即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB 2=BP 2+AP 2;②BP 2=AB 2+AP 2;③AP 2=AB 2+BP 2列方程解出坐标以AB 为斜边以AB 的中点Q 为圆心,QA 为半径作圆,与已知直线的交点P 2,P 3即为所求注:其他常见解题思路有:①作垂直,构造“三垂直”模型,利用相似列比例关系得方程求解;②平移垂线法:若以AB 为直角边,且AB 的一条垂线的解析式易求(通常为过原点O 与AB 垂直的直线),可将这条直线分别平移至过点A 或点B 得到相应解析式,再联立方程求解.(4)与全等三角形、相似三角形的综合问题:在没有指定对应点的情况下,理论上有六种情况需要讨论,但在实际情况中,通常不会超过四种,要注意边角关系,积极分类讨论来进行计算.情况一探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:①假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应点(尤其是以文字形式出现求证两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置的不确定,此时应考虑不同的对应关系,分情况讨论;②确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;③建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.情况二探究全等三角形的存在性问题的思路与探究相似三角形的存在性问题类似,但是除了要找角相等外,还至少要找一组对应边相等.3.二次函数与四边形的综合问题特殊四边形的探究问题解题步骤如下:①先假设结论成立;②设出点坐标,求边长;③建立关系式,并计算.若四边形的四个顶点位置已确定,则直接利用四边形边的性质进行计算;若四边形的四个顶点位置不确定,需分情况讨论:a.探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.b.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标,一般会用到菱形的对角线互相垂直平分、四边相等的性质列关系式.c.探究正方形:利用正方形对角线互相垂直平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.d.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.题型01平行y轴动线段最大值与最小值问题1(2023·广东东莞·一模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.(1)求此函数的关系式;(2)在AC 下方的抛物线上有一点N ,过点N 作直线l ∥y 轴,交AC 与点M ,当点N 坐标为多少时,线段MN 的长度最大?最大是多少?(3)在对称轴上有一点K ,在抛物线上有一点L ,若使A ,B ,K ,L 为顶点形成平行四边形,求出K ,L 点的坐标.(4)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,直接写出点E 的坐标;若不存在,说明理由.【答案】(1)y =x 2+2x -3(2)当N 的坐标为-32,-154 ,MN 有最大值94(3)K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12(4)存在,点E 的坐标为0,32 或0,-72或0,-1 或0,-3【分析】(1)由OA =OC =3求得A -3,0 ,C 0,-3 ,再分别代入抛物线解析式y =x 2+bx +c ,得到以b ,c 为未知数的二元一次方程组,求出b ,c 的值即可;(2)求出直线AC 的解析式,再设出M 、N 的坐标,把MN 表示成二次函数,配方即可;(3)根据平行四边形的性质,以AB 为边,以AB 为对角线,分类讨论即可;(4)设出E 的坐标,分别表示出△ADE 的平分,再分每一条都可能为斜边,分类讨论即可.【详解】(1)∵抛物线y =x 2+bx +c 经过点A ,点C ,且OA =OC =3,∴A -3,0 ,C 0,-3 ,∴将其分别代入抛物线解析式,得c =-39-3b +c =0,解得b =2c =-3 .故此抛物线的函数表达式为:y =x 2+2x -3;(2)设直线AC 的解析式为y =kx +t ,将A -3,0 ,C 0,-3 代入,得t =-3-3k +t =0 ,解得k =-1t =-3 ,∴直线AC 的解析式为y =-x -3,设N 的坐标为n ,n 2+2n -3 ,则M n ,-n -3 ,∴MN =-n -3-n 2+2n -3 =-n 2-3n =-n +32 +94,∵-1<0,∴当n =-32时,MN 有最大值,为94,把n =-32代入抛物线得,N 的坐标为-32,-154,当N 的坐标为-32,-154 ,MN 有最大值94;(3)①当以AB 为对角线时,根据平行四边形对角线互相平分,∴KL 必过-1,0 ,∴L 必在抛物线上的顶点D 处,∵y =x 2+2x -3=x +1 2-4,∴K -1,4 ,L -1,-4②当以AB 为边时,AB =KL =4,∵K 在对称轴上x =-1,∴L 的横坐标为3或-5,代入抛物线得L -5,12 或L 3,12 ,此时K 都为-1,12 ,综上,K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12 ;(4)存在,由y =x 2+2x -3=x +1 2-4,得抛物线顶点坐标为D -1,-4 ∵A -3,0 ,∴AD 2=-3+1 2+0+4 2=20,设E 0,m ,则AE 2=-3-0 2+0-m 2=9+m 2,DE 2=-1-0 2+-4-m 2=17+m 2+8m ,①AE 为斜边,由AE 2=AD 2+DE 2得:9+m 2=20+17+m 2+8m ,解得:m =-72,②DE 为斜边,由DE 2=AD 2+AE 2得:9+m 2+20=17+m 2+8m ,解得:m =32,③AD 为斜边,由AD 2=ED 2+AE 2得:20=17+m 2+8m +9+m 2,解得:m =-1或-3,∴点E 的坐标为0,32 或0,-72或0,-1 或0,-3 .【点睛】本题主要考查待定系数法求二次函数解析式,二次函数图象与性质,平行四边形的判定与性质以及勾股定理等知识,会运用待定系数法列方程组,两点间距离公式求MN 的长,由平行四边形的性质判定边相等,运用勾股定理列方程.2(2023·河南南阳·统考一模)如图,抛物线与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴的交于点C 0,-4 ,点P 是第三象限内抛物线上的一个动点,设点P 的横坐标为m ,过点P 作直线PD ⊥x 轴于点D ,作直线AC 交PD 于点E .已知抛物线的顶点P 坐标为-3,-254.(1)求抛物线的解析式;(2)求点A 、B 的坐标和直线AC 的解析式;(3)求当线段CP =CE 时m 的值;(4)连接BC ,过点P 作直线l ∥BC 交y 轴于点F ,试探究:在点P 运动过程中是否存在m ,使得CE =DF ,若存在直接写出m 的值;若不存在,请说明理由.【答案】(1)y =14x 2+32x -4(2)A -8,0 ,B 2,0 ,y =-12x -4(3)-4(4)存在,m =2-25或m =-4【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)令y =0,解方程即可求得点A 、B 的坐标,再运用待定系数法即可求得直线AC 的解析式;(3)过点C 作CF ⊥PE 于点F ,根据等腰三角形的性质可得点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,可得F m ,18m 2+12m -4 ,再由点F 与点C 的纵坐标相同建立方程求解即可;(4)过C 作CH ⊥PD 于H ,设P m ,14m 2+32m -4 ,由PF ∥BC ,可得直线PF 解析式为y =2x +14m 2-12m -4,进而可得OF =14m 2-12m -4 ,再证得Rt △CHE ≅Rt △DOF HL ,得出∠HCE =∠FDO ,进而推出∠FDO =∠CAO ,即tan ∠FDO =tan ∠CAO ,据此建立方程求解即可.【详解】(1)解:∵抛物线的顶点坐标为-3,-254∴设抛物线的解析式为y =a x +3 2-254,把点C 0,-4 代入,得:-4=9a -254,解得:a =14,∴y =14x +3 2-254=14x 2+32x -4,∴该抛物线的解析式为y =14x 2+32x -4.(2)解:令y =0,得14x 2+32x -4=0,解得:x 1=-8,x 2=2,∴A -8,0 ,B 2,0 ,,设直线AC 的解析式为y =kx +b ,则-8k +b =0b =-4 ,解得:k =-12b =-4 ,∴直线AC 的解析式为y =-12x -4.(3)解:如图,过点C 作CF ⊥PE 于点F ,∵CP =CE ,∴EF =PF ,即点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,∴F m ,18m 2+12m -4 ,∵PE ∥y 轴,CF ⊥PE ,∴CF ∥x 轴,∴18m 2+12m -4=-4,解得:m =-4或m =0(不符合题意,舍去),∴m =-4.(4)解:存在m ,使得CE =DF ,理由如下:如图:过C 作CH ⊥PD 于H ,设P m,14m2+32m-4,由B2,0,C0,-4,由待定系数法可得直线BC解析式为y=2x-4,根据PF∥BC,设直线PF解析式为y=2x+c,将P m,14m2+32m-4代入得:1 4m2+32m-4=2m+c,∴c=14m2-12m-4,∴直线PF解析式为y=2x+14m2-12m-4,令x=0得y=14m2-12m-4,∴F0,14m2-12m-4,∴OF=14m2-12m-4,∵∠CHD=∠PDO=∠COD=90°,∴四边形CODH是矩形,∴CH=OD,∵CE=DF,∴Rt△CHE≅Rt△DOF HL,∴∠HCE=∠FDO,∵∠HCE=∠CAO,∴∠FDO=∠CAO,∴tan∠FDO=tan∠CAO,∴OF OD =OCOA,即14m2-12m-4-m=48=12,∴1 4m2-12m-4=-12m或14m2-12m-4=12m,解得:m=-4或m=4或m=2-25或m=2+25,∵P在第三象限,∴m=2-25或m=-4.【点睛】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、二次函数综合应用、等腰三角形性质、矩形判定及性质、相似三角形判定及性质、解直角三角形等知识点,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.3(2023·山东聊城·统考三模)抛物线y=-x2+bx+c与x轴交于点A3,0,与y轴交于点C0,3,点P 为抛物线上的动点.(2)若P 为直线AC 上方抛物线上的动点,作PH ∥x 轴交直线AC 于点H ,求PH 的最大值;(3)点N 为抛物线对称轴上的动点,是否存在点N ,使直线AC 垂直平分线段PN ?若存在,请直接写出点N 的纵坐标;若不存在,请说明理由.【答案】(1)b =2,c =3(2)PH 取得最大值为94(3)存在,2-2或2+2【分析】(1)将坐标代入解析式,构建方程求解;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,则PM =m ;待定系数法确定直线AC 的解析式为y =-x +3,从而确定PH =m -m 2-2m =-m 2+3m =-m -32 2+94,解得PH 最大值为94;(3)如图,设PN 与AC 交于点G ,可设直线PN 的解析式为y =x +p ,设点N (1,n ),求得y =x +(n -1);联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1,所以点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n2+1 -n =2,由二次函数解析式构建方程-(-n +3)2+2(-n +3)+3=2,解得n =2±2;【详解】(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A 3,0 ,与y 轴交于点C 0,3 ,∴-9+3b +c =0c =3,解得:b =2c =3 ,∴b =2,c =3;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,∴PM =m ,∵PH ∥x 轴,∴点H 的纵坐标为-m 2+2m +3,设直线AC 的解析式为y =kx +n ,∴3k +n =0n =3 ,解得:k =-1n =3 ,∴直线AC 的解析式为y =-x +3.∴-m 2+2m +3=-x +3,∴x =m 2-2m ,∴H m 2-2m ,-m 2+2m +3 ,∴PH =m -m 2-2m =-m 2+3m =-m -322+94,∴当m =32时,PH 取得最大值为94(3)存在点N ,使直线AC 垂直平分线段PN ,点N 的纵坐标为2-2或2+2如图,设PN 与AC 交于点G ,∵AC 垂直平分PN ,直线AC 的解析式为y =-x +3∴可设直线PN 的解析式为y =x +p 设点N (1,n ),则n =1+p ∴p =n -1,∴y =x +(n -1)联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1∴点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n 2+1 -n =2∴-(-n +3)2+2(-n +3)+3=2,解得n =2±2∴点N 的纵坐标为2-2或2+2.【点睛】本题考查利用二次函数解析式及点坐标求待定参数、待定系数法确定函数解析式、二次函数极值及其它二次函数综合问题,利用直线间的位置关系、点线间的位置关系,融合方程的知识求解坐标是解题的关键.题型02抛物线上的点到某一直线的距离问题1(2023·广东梅州·统考二模)探究求新:已知抛物线G 1:y =14x 2+3x -2,将抛物线G 1平移可得到抛物线G 2:y =14x 2.(1)求抛物线G 1平移得到抛物线G 2的平移路径;(2)设T 0,t ,直线l :y =-t ,是否存在这样的t ,使得抛物线G 2上任意一点到T 的距离等于到直线l 的距离?若存在,求出t 的值;若不存在,试说明理由;(3)设H 0,1 ,Q 1,8 ,M 为抛物线G 2上一动点,试求QM +MH 的最小值.参考公式:若点M x 1,y 1 ,N x 2,y 2 为平面上两点,则有MN =x 1-x 22+y 1-y 2 2.【答案】(1)将G 1向左平移-6个单位,向上平移11个单位(2)存在,1(3)9【分析】(1)设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,列方程组即可求解;(2)设P x 0,x 204为抛物线G 2上的一点,根据题意列方程即可;(3)点H 坐标与(2)中t =1时的T 点重合,过点M 作MA ⊥l ,垂足为A ,如图所示,则有MH =MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值.【详解】(1).解:设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,由平移法则可知14(x +a )2+3(x +a )-2+b =14x 2,整理可得14x 2+3+12a x +14a 2+3a -2+b =14x 2,可得方程组3+12a =014a 2+3a -2+b =0,解得a =-6b =11 ;∴平移路径为将G 1向左平移-6个单位,向上平移11个单位;(2)解:存在这样的t ,且t =1时满足条件,设P x 0,x 204为抛物线G 2上的一点,则点P 到直线l 的距离为x 204+t ,点P 到点T 距离为(x 0-0)2+x 204-t2,联立可得:x 204+t =(x 0-0)2+x 204-t2,两边同时平方合并同类项后可得x 20-x 20t =0解得:t =1;(3)解:点H 坐标与(2)中t =1时的T 点重合,作直线l :y =-1,过点M 作MA ⊥直线l ,垂足为A ,如图所示,则有MH =MA ,此时QM +MH =QM +MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值即QM +MA =QA =8-(-1)=9∴QM +MH 的最小值为9;【点睛】本题考查二次函数综合题,涉及到线段最小值、平移性质等,灵活运用所学知识是关键.2(2023·湖北宜昌·统考一模)如图,已知:点P 是直线l :y =x -2上的一动点,其横坐标为m (m 是常数),点M 是抛物线C :y =x 2+2mx -2m +2的顶点.(1)求点M 的坐标;(用含m 的式子表示)(2)当点P 在直线l 运动时,抛物线C 始终经过一个定点N ,求点N 的坐标,并判断点N 是否是点M 的最高位置?(3)当点P 在直线l 运动时,点M 也随之运动,此时直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),A ,B 两点到y 轴的距离之和为d .①求m 的取值范围;②求d 的最小值.【答案】(1)M -m ,-m 2-2m +2(2)N (1,3),点N 是点M 的最高位置(3)①m ≤-52或m ≥32;②d 取得最小值为2【分析】(1)将抛物线解析式写成顶点式即可求解;(2)根据解析式含有m 项的系数为0,得出当x =1时,y =3,即N (1,3),根据二次函数的性质得出-m 2-2m +2=-m +1 2+3的最大值为3,即可得出点N 是点M 的最高位置;(3)①根据直线与抛物线有交点,联立方程,根据一元二次方程根的判别式大于等于0,求得m 的范围,即可求解;②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,根据x 1+x 2=-2m +1,分情况讨论,求得d 是m 的一次函数,进而根据一次函数的性质即可求解.【详解】(1)解:y =x 2+2mx -2m +2=x +m 2-m 2-2m +2,∴顶点M -m ,-m 2-2m +2 ,(2)解:∵y =x 2+2mx -2m +2=x 2+2+2m x -1 ,∴当x =1时,y =3,抛物线C 始终经过一个定点1,3 ,即N (1,3);∵M -m ,-m 2-2m +2 ,-m 2-2m +2=-m +1 2+3,∴M 的纵坐标最大值为3,∴点N 是点M 的最高位置;(3)解:①联立y =x -2y =x 2+2mx -2m +2 ,得x 2+2mx -x -2m +4=0,∵直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),∴Δ=b 2-4ac =2m -1 2-4-2m +4 ,=4m 2+4m -15≥0,∵4m 2+4m -15=0,解得m 1=-52,m 2=32,∴当4m 2+4m -15≥0时,m ≤-52或m ≥32,②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,∴x1+x 2=-2m +1,当m =-3时,如图所示,y A =0,当-3≤m ≤-52时,y 1≥0,y 2≥0,则d =x 1+x 2 =-2m +1 ,∵-2<0,∴当m =-52时,d 取得最小值为-2×-52 +1=5+1=6,当m ≥32时,d =-x 1+x 2 =--2m +1 =2m -1,∴当m =32时,d 取得最小值为2×32-1=2,综上所述,d 取得最小值为2.【点睛】本题考查了二次函数的性质,一元二次方程与二次函数的关系,熟练掌握二次函数的性质是解题的关键.3(2023·云南楚雄·统考一模)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m ,求FP OP 的值(用含m 的式子表示).【答案】(1)A (-1,0),B (3,0)(2)0或3-41或3+41(3)13m 【分析】(1)令y =0,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线交抛物线于点D 2,D 3,D 2,D 3符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3 ,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,推出x A ⋅x C =x B ⋅x E =-3-b 可得n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q 推出q =-mn -3,推出q =-(3+b )-1-b 3 -3=13b 2+2b ,推出OF =13b 2+b ,可得结论.【详解】(1)解:令y =0,得x 2-2x -3=0,解得:x =3或-1,∴A (-1,0),B (3,0);(2)∵OP =OA =1,∴P (0,1),∴直线AC 的解析式为y =x +1.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.∵B (3,0),BD 1∥AC ,∴直线BD 1的解析式为y =x -3,由y =x -3y =x 2-2x -3,解得x =3y =0 或x =0y =-3 ,∴D 1(0,-3),∴D 1的横坐标为0.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线l 交抛物线于点D 2,D 3,D 2,D 3符合条件.直线l 的解析式为y =x +5,由y =x +5y =x 2-2x -3 ,可得x 2-3x -8=0,解得:x =3-412或3+412,∴D 2,D 3的横坐标为3-412,3+412,综上所述,满足条件的点D 的横坐标为0,3-412,3+412.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,∴x A ⋅x C =x B ⋅x E =-3-b∵x A =-1,∴x C =3+b ,∴m =3+b ,∵x B =3,∴x E =-1-b 3,∴n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q∴q =-mn -3,∴q =-(3+b )-1-b 3 -3=13b 2+2b ,∴OF =13b 2+2b ,∴FP OP=13b +1=13(m -3)+1=13m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.题型03已知点关于直线对称点问题1(2023·辽宁阜新·统考中考真题)如图,在平面直角坐标系中,二次函数y =-x 2+bx -c 的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C .(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC :y =x +3交于点D ,若点M 是直线AC 上方抛物线上的一个动点,求△MCD 面积的最大值.(3)如图2,点P 是直线AC 上的一个动点,过点P 的直线l 与BC 平行,则在直线l 上是否存在点Q ,使点B 与点P 关于直线CQ 对称?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2-2x +3;(2)S △MCD 最大=98;(3)Q 1-5,-5 或1+5,5 .【分析】(1)根据抛物线的交点式直接得出结果;(2)作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,先求出抛物线的对称轴,进而求得C ,D 坐标及CD 的长,从而得出过M 的直线y =x +m 与抛物线相切时,△MCD 的面积最大,根据x +m =-x 2-2x +3的△=0求得m 的值,进而求得M 的坐标,进一步求得CD 上的高MQ 的值,进一步得出结果;(3)分两种情形:当点P 在线段AC 上时,连接BP ,交CQ 于R ,设P (t ,t +3),根据CP =CB 求得t 的值,可推出四边形BCPQ 是平行四边形,进而求得Q 点坐标;当点P 在AC 的延长线上时,同样方法得出结果.【详解】(1)解:由题意得,y =-(x +3)(x -1)=-x 2-2x +3;(2)解:如图1,作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,∵OA =OC =3,∠AOC =90°,∴∠CAO =∠ACO =45°,∴∠MEQ =∠AEF =90°-∠CAO =45°,抛物线的对称轴是直线:x =-3+12=-1,∴y =x +3=-1+3=2,∴D (1,2),∵C (0,3),∴CD =2,故只需△MCD 的边CD 上的高最大时,△MCD 的面积最大,设过点M 与AC 平行的直线的解析式为:y =x +m ,当直线y =x +m 与抛物线相切时,△MCD 的面积最大,由x +m =-x 2-2x +3得,x 2+3x +(m -3)=0,由△=0得,32-4(m -3)=0得,m -3=94,∴x 2+3x +94=0,∴x 1=x 2=-32,∴y =--32 2-2×-32 +3=154,y =x +3=-32+3=32,∴ME =154-32=94,∴MQ =ME ⋅sin ∠MEQ =ME ⋅sin45°=94×22=928,∴S △MCD 最大=12×2×928=98;(3)解:如图2,当点P 在线段AC 上时,连接BP ,交CQ 于R ,∵点B 和点Q 关于CQ 对称,∴CP =CB ,设P (t ,t +3),由CP 2=CB 2得,2t 2=10,∴t 1=-5,t 2=5(舍去),∴P -5,3-5 ,∵PQ ∥BC ,∴CR =BR =1,∴CR =QR ,∴四边形BCPQ 是平行四边形,∵1+(-5)-0=1-5,0+(3-5)-3=-5,∴Q 1-5,-5 ;如图3,当点P 在AC 的延长线上时,由上可知:P 5,3+5 ,同理可得:Q 1+5,5 ,综上所述:Q 1-5,-5 或1+5,5 .【点睛】本题考查了二次函数及其图象的性质,一元二次方程的解法,平行四边形的判定和性质,轴对称的性质等知识,解决问题的关键是分类讨论.2(2023·四川甘孜·统考中考真题)已知抛物线y =x 2+bx +c 与x 轴相交于A -1,0 ,B 两点,与y 轴相交于点C 0,-3 .(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,△PBC 的面积与△ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ,试探究,是否存在满足条件的点E ,使得点P 恰好落在直线BC 上,如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)b =-2,c =-3.(2)y =x +1(3)存在,点P 的坐标为1+21,-2+21 或1-21,-2-21【分析】(1)由待定系数法即可求解;(2)S △PBC =S △ABC 得到AP ∥BC ,即可求解;(3)由题意的:∠AEP =∠AEP ,P E =PE ,即可求解.【详解】(1)由题意,得1-b +c =0,c =-3.∴b =-2,c =-3.(2)由(1)得抛物线的解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,得x 1=-1,x 2=3.∴B 点的坐标为3,0 .∵S △PBC =S △ABC ,∴AP ∥BC .∵B 3,0,C 0,-3 ,∵AP∥BC,∴可设直线AP的解析式为y=x+m.∵A(-1,0)在直线AP上,∴0=-1+m.∴m=1.∴直线AP的解析式为y=x+1.(3)设P点坐标为m,n.∵点P在直线y=x+1和抛物线y=x2-2x-3上,∴n=m+1,n=m2-2m-3.∴m+1=m2-2m-3.解得m1=4,m2=-1(舍去).∴点P的坐标为4,5.由翻折,得∠AEP=∠AEP ,P E=PE.∵AP∥BC,∴∠PAE=∠AEP '.∴∠PAE=∠PEA.∴PE=PA=4+12=52.2+5-0设点E的坐标为t,t-3,则PE2=t-42.2+t-3-52=52∴t=6±21.当t=6+21时,点E的坐标为6+21,3+21.设P (s,s-3),由P E=AP,P E=PE=52得:s-6-212,2=522+s-3-3-21解得:s=1+21,则点P 的坐标为1+21,-2+21.当t=6-21时,同理可得,点P 的坐标为1-21,-2-21.综上所述,点P 的坐标为1+21,-2+21.或1-21,-2-21【点睛】本题是二次函数的综合题,主要考查了用待定系数法求一次函数、二次函数的解析式,二次函数的性质,此题题型较好,综合性比较强,用的数学思想是分类讨论和数形结合的思想.3(2023·江苏连云港·连云港市新海实验中学校考二模)如图,“爱心”图案是由抛物线y=-x2+m的一部分及其关于直线y=-x的对称图形组成,点E、F是“爱心”图案与其对称轴的两个交点,点A、B、C、D是该图案与坐标轴的交点,且点D的坐标为6,0.(1)求m 的值及AC 的长;(2)求EF 的长;(3)若点P 是该图案上的一动点,点P 、点Q 关于直线y =-x 对称,连接PQ ,求PQ 的最大值及此时Q 点的坐标.【答案】(1)m =6,AC =6+6(2)52(3)2542,Q -234,-12【分析】(1)用待定系数法求得m 与抛物线的解析式,再求出抛物线与坐标轴的交点坐标,进而求得A 的坐标,根据对称性质求得B ,C 的坐标,即可求得结果;(2)将抛物线的解析式与直线EF 的解析式联立方程组进行求解,得到E ,F 的坐标,即可求得结果;(3)设P (m ,-m 2+6),则Q (m 2-6,-m ),可得PQ =2×m -12 2-252 ,即求m -12 2-252的最值,根据二次函数的最值,即可得到m 的值,即可求得.【详解】(1)把D 6,0 代入y =-x 2+m 得0=-6+m解得m =6∴抛物线的解析式为:y =-x 2+6∴A 0,6根据对称性可得B -6,0 ,C 0,-6∴AC =AO +OC =6+6(2)联立y =-x y =-x 2+6解得x =3y =-3 或x =-2y =2 ∴E -2,2 ,F 3,-3∴EF =-2-3 2+2+3 2=52(3)设P (m ,-m 2+6),则Q (m 2-6,-m )∴PQ =m -m 2-6 2+-m 2+6--m 2整理得PQ =2×m -12 2-254 ∵m -12 2≥0∴当m -12 2=0时,即m =12时,m -12 2-254 有最大值为254∴PQ 的最大值为2542∴12 2-6=-234故Q -234,-12【点睛】本题考查二次函数综合应用,涉及待定系数法求函数解析式,两点间的距离公式,求抛物线与一次函数的交点坐标,二次函数的最值等知识,解题的关键是掌握关于直线y =-x 对称的点坐标的关系.题型04特殊角度存在性问题1(2023·山西忻州·统考模拟预测)如图,抛物线y =18x 2+34x -2与x 轴交于A ,B 两点,与y 轴交于点C .P 是直线AC 下方抛物线上一个动点,过点P 作直线l ∥BC ,交AC 于点D ,过点P 作PE ⊥x 轴,垂足为E ,PE 交AC 于点F .(1)直接写出A ,B ,C 三点的坐标,并求出直线AC 的函数表达式;(2)当线段PF 取最大值时,求△DPF 的面积;(3)试探究在拋物线的对称轴上是否存在点Q ,使得∠CAQ =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)A -8,0 ,B 2,0 ,C 0,-2 .y =-14x -2(2)85(3)存在,-3,3 或-3,-253【分析】(1)对于直线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 即求出三个点的坐标,设直线AC 的表达式为y =kx +b ,利用待定系数法求解即可;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,表示出PF =-18m 2-m ,求出PF max =2,再表示出点D 到直线PF 的距离d =85,利用S △DPF =12⋅PF ⋅d 进行求解即可;(3)由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,用解直角三角形的方法求出QH =174,即可求出Q 点坐标,当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,即可求解.【详解】(1)解:对于抛物线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 ,即点A ,B ,C 三点的坐标分别为-8,0 ,2,0 ,0,-2 ,设直线AC 的表达式为y =kx +b ,则-8k +b =0b =-2 ,解得k =-14b =-2 ,∴直线AC 的函数表达式为y =-14x -2;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,PF =-14m -2 -18m 2+34m -2 =-18m 2-m ,当m =--12×-18 =-4时,PF 最大,PF max =-18×(-4)2--4 =2,此时,P -4,-3 ,由B 2,0 ,C 0,-2 ,可得直线BC 的函数表达式为y =x -2,设直线l 的函数表达式为y =x +p ,将P -4,-3 代入可得p =1,∴直线l 的函数表达式为y =x +1,由y =-14x -2y =x +1 ,解得x =-125y =-75,∴D -125,-75 ,点D 到直线PF 的距离d =-125--4 =85,∴S △DPF =12⋅PF ⋅d =12×2×85=85.(3)存在,理由:由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,如下图:设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,则∠ACO =∠QHA ,则tan ∠ACO =tan ∠QHA =4,当x =3时,y =-14x -2=-54,则点H -3,-54 ,由点A ,H 的坐标得,AH =5174,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,设TH =x ,则QT =4x ,则QH =17x ,则AH =AT +TH =5x =5174,则x =174,则QH =17x =174,则174-54=3,则点Q -3,3 ;当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,则直线AQ 的表达式为y =-53x +8 ,当x =-3时,y =-5x +8 =-25,。

二次函数中的动点问题

二次函数中的动点问题

二次函数中的动点问题二次函数是高中数学课程中比较重要的一种函数类型,它的图像是一个开口朝上或朝下的抛物线,可以用来表达很多实际问题中的关系。

其中,二次函数中的动点问题是一个常见的问题,主要涉及到了抛物线上某点的运动轨迹,对于此类问题的讨论可以帮助我们深入理解二次函数以及抛物线的特点和应用。

一、动点问题的形式通过一个具体的例子来展示二次函数中的动点问题。

设有一根长60m、重量为100N的弹性绳悬挂于两个点P、Q 之间,弹性绳呈现一个U形。

现有一质量为m的物体从点P 处自由下落,然后受到弹性绳的支撑反弹,反弹高度为h,再落回原点P处。

此时,假设物体在下落或反弹的任意时刻都在弹性绳的中垂线上,我们可以通过求出物体在任意时刻的高度求解出反弹的高度h与物体的质量m的关系。

初步分析这个问题,可以列出物体所在的位置函数,即h(t)。

我们假设物体下落时时间t=0s,其高度为0m,则有:h(t) = at^2 + bt其中,a和b都是常数,t是时间。

物体在弹性绳上下运动,向下运动的时候速度会不断加快,直到反弹的时候速度为0,然后速度逐渐加快,到达下落的时候又达到最大值。

因此,可以得出物体的速度函数v(t):v(t) = 2at + b而物体的位置函数是速度函数的积分,因此可以解出:h(t) = at^2 + bt + c其中,c是一个常数,其值等于物体下落的初速度的平方除以2g(g为重力加速度,约为9.8m/s^2)。

由于物体在任意时刻都在弹性绳中垂线上,因此可以确定物体的运动轨迹为抛物线。

在上述问题中,我们可以确定抛物线的顶点V的坐标为(30,hmax),其中hmax即为物体下落时的最大高度。

二、动点问题的解法对于二次函数中的动点问题,主要通过求出抛物线的顶点来解决。

通过求解出顶点的坐标、抛物线的开口方向和方程等,可以确定抛物线的形状和运动轨迹,进而判断动点的位置、速度和加速度等物理量。

具体来说,解决二次函数动点问题的步骤如下:1. 确定抛物线的形状和开口方向。

二次函数动点问题(一)

二次函数动点问题(一)

二次函数中的动点问题(一)1、熟悉掌握二次函数的概念及图像的特征。

2、掌握二次函数解析式的具体求法及二次函数的一些基本性质及利用二次函数的性质解决一些极值问题:如 边长、面积、利润等。

3、解决二次函数中因动点产生不同图形的问题及其包含的一些几何问题一、 因动点产生的相似三角形问题例1:如图,已知抛物线y =ax 2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C , D 为OC 的中点,直线AD 交抛物线于点E (2,6),且△ABE 与△ABC 的面积之比为3∶2.(1)求直线AD 和抛物线的解析式;(2)抛物线的对称轴与x 轴相交于点F ,点Q 为直线AD 上一点,且△ABQ 与△ADF 相似,直接写出....点Q 点的坐标.专项练习:直线113y x =-+分别交x 轴、y 轴于A 、B 两点,△AOB 绕点O 按逆时针方向旋转90°后得到△COD ,抛物线y =ax 2+bx +c 经过A 、C 、D 三点.(1) 写出点A 、B 、C 、D 的坐标;(2) 求经过A 、C 、D 三点的抛物线表达式,并求抛物线顶点G 的坐标;(3) 在直线BG 上是否存在点Q ,使得以点A 、B 、Q 为顶点的三角形与△COD 相似?若存在,请求出点Q 的坐标;若不存在,请说明理由.二、因动点产生的等腰三角形问题例2:如图1,在矩形ABCD 中,AB =m (m 是大于0的常数),BC =8,E 为线段BC 上的动点(不与B 、C 重合).连学习过程学习目标结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?图1专项训练:如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC 上一动点(C点除外),直线PM交AB的延长线于点D.(1)求点D的坐标(用含m的代数式表示);(2)当△APD是等腰三角形时,求m的值;(3)设过P、M、B三点的抛物线与x轴正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从O向C运动时,点H也随之运动.请直接写出点H所经过的路长(不必写解答过程).图1 图2三、因动点产生的直角三角形问题例3:如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),联结PP′、P′A、P′C.设点P的纵坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(-1,m),求m的值;(2)若点P 在第一象限,记直线AB 与P ′C 的交点为D .当P ′D ∶DC =1∶3时,求a 的值;(3)是否同时存在a 、b ,使△P ′CA 为等腰直角三角形?若存在,请求出所有满足要求的a 、b 的值;若不存在,请说明理由.专项训练:设直线l 1:y =k 1x +b 1与l 2:y =k 2x +b 2,若l 1⊥l 2,垂足为H ,则称直线l 1与l 2是点H 的直角线.(1)已知直线①122y x =-+;②2y x =+;③22y x =+;④24y x =+和点C (0,2),则直线_______和_______是点C 的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC 的顶点A (3,0)、B (2,7)、C (0,7),P 为线段OC 上一点,设过B 、P 两点的直线为l 1,过A 、P 两点的直线为l 2,若l 1与l 2是点P 的直角线,求直线l 1与l 2的解析式.四、因动点产生的平行四边形问题例4:已知平面直角坐标系xOy (如图1),一次函数334y x =+的图像与y 轴交于点A ,点M 在正比例函数32y x =的图像上,且MO =MA .二次函数 y =x 2+bx +c 的图像经过点A 、M .(1)求线段AM 的长;(2)求这个二次函数的解析式;(3)如果点B 在y 轴上,且位于点A 下方,点C 在上述二次函数的图像上,点D 在一次函数334y x =+的图像上,且四边形ABCD 是菱形,求点C 的坐标.专项训练:如图,已知O (0,0)、A (4,0)、B (4,3).动点P 从O 点出发,以每秒3个单位的速度,沿△OAB 的边OA 、AB 、BO 作匀速运动;动直线l 从AB 位置出发,以每秒1个单位的速度向x 轴负方向作匀速平移运动.若它们同时出发,运动的时间为t 秒,当点P 运动到O 时,它们都停止运动.(1)当P 在线段OA 上运动时,求直线l 与以P 为圆心、1为半径的圆相交时t 的取值范围;(2)当P 在线段AB 上运动时,设直线l 分到与OA 、OB 交于C 、D ,试问:四边形CPBD 是否可能为菱形?若能,求出此时t 的值;若不能,请说明理由,并说明如何改变直线l 的出发时间,使得四边形CPBD 会是菱形.课后练习:1、如图,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3).(1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示x 2-x 1,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 的坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC 运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.图1 图22、如图,已知一次函数y =-x +7与正比例函数43y x 的图象交于点A ,且与x 轴交于点B . (1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l //y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8?②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.3、已知: 在直角坐标系xOy 中,将直线y =kx 沿y 轴向下平移3个单位长度后恰好经过B (-3,0)及y 轴上的C 点.若抛物线y =-x 2+bx +c 与x 轴交于A ,B 两点(点A 在点B 的右侧),且经过点C .(1)求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P 的坐标.4、在平面直角坐标系中,已知抛物线经过A(-4,0)、B(0,-4)、C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值.(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O 为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.。

专题二次函数的动点问题三角形的存在性问题

专题二次函数的动点问题三角形的存在性问题

_ Q_ G_P_ O二次函数中的动点问题(一)三角形的存在性问题一、技巧提炼1、利用待定系数法求抛物线解析式的常用三种形式(1)、【一般式】已知抛物线上任意三点时,通常设解析式为 ,然后解三元方程组求解; (2)、【顶点式】已知抛物线的顶点坐标和抛物线上另一点时,通常设解析式为 求解; (3)、【交点式】已知抛物线与轴的交点的坐标时,通常设解析式为 。

2、二次函数y=ax 2+bx+c 与x 轴是否有交点,可以用方程ax 2+bx+c = 0是否有根的情况进行判定;判别式ac b 42-=∆ 二次函数与x 轴的交点情况一元二次方程根的情况△ > 0 与x 轴 交点 方程有 的实数根△ < 0 与x 轴 交点 实数根 △ = 0与x 轴 交点方程有 的实数根3、抛物线上有两个点为A (x 1,y ),B (x 2,y ) (1)对称轴是直线2x 21x x +=(2)两点之间距离公式:已知两点()()2211y ,x Q ,y ,x P , 则由勾股定理可得:221221)()(y y x x PQ -+-=练一练:已知A (0,5)和B (-2,3),则AB = 。

(3)中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫⎝⎛++222121y y ,x x 。

练一练:已知A (0,5)和B (-2,3),则线段AB 的中点坐标是 4、 常见考察形式1)已知A (1,0),B (0,2),请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线2)已知A (-2,0),B (1,3),请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;总结: 两线一圆 5、求三角形的面积:(1)直接用面积公式计算;(2)割补法;(3)铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽”(a ),中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高”(h ). 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

二次函数动点问题解答方法技巧(含例解答案)

二次函数动点问题解答方法技巧(含例解答案)

函数解题思路方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数ax ²+bx+c=0中a,b,c 的符号,或由二次函数中a,b,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式ax ²+bx+c ﹙a ≠0﹚本身就是所含字母x 的二次函数;下面以a >0时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:动点问题题型方法归纳总结动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。

) 动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。

下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。

二、 抛物线上动点5、(湖北十堰市)如图①, 已知抛物线32++=bx ax y (a ≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1) 求抛物线的解析式;(2) 设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.(3) 如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.注意:第(2)问按等腰三角形顶点位置分类讨论画图再由图形性质求点P坐标----①C为顶点时,以C为圆心CM 为半径画弧,与对称轴交点即为所求点P,②M为顶点时,以M为圆心MC为半径画弧,与对称轴交点即为所求点P,③P为顶点时,线段MC的垂直平分线与对称轴交点即为所求点P。

二次函数中的动点问题

二次函数中的动点问题

详细描述
当二次函数的开口向上时,动点在顶点上会 随着时间的推移逐渐远离原点;当二次函数 的开口向下时,动点在顶点上会随着时间的 推移逐渐接近原点。
实例四:动点在二次函数图像的切线上
总结词
当动点位于二次函数图像的切线上时,其运动轨迹与二次函数的开口方向和大小有关。
详细描述
当二次函数的开口向上时,动点在切线上会随着时间的推移逐渐远离原点;当二次函数的开口向下时 ,动点在切线上会随着时间的推移逐渐接近原点。
THANKS
感谢观看
02
二次函数的基本概念
二次函数的定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
详细描述
二次函数的一般形式是$f(x) = ax^2 + bx + c$,其中$a$、 $b$和$c$是常数,且$a neq 0$。$a$决定了抛物线的开口方 向和宽度,$b$决定了抛物线的对称轴位置,而$c$决定了抛物 线与y轴的交点。
二次函数中的动点问
• 引言 • 二次函数的基本概念 • 动点问题概述 • 二次函数中的动点问题解析 • 解决二次函数中的动点问题的方法与
技巧 • 实例分析
01
引言
主题简介
01
二次函数中的动点问题主要是探 讨在给定二次函数图像中,动点 在运动过程中所满足的条件或产 生的结果。
02
动点可以是任意一点在二次函数 图像上运动,其运动轨迹和行为 受到函数表达式和参数的影响。
动点在二次函数图像的对称轴上
总结词
二次函数的图像具有对称性,当动点 位于对称轴上时,其运动状态将发生 特殊变化。
详细描述
当动点位于二次函数图像的对称轴上 时,其运动状态将发生奇偶对称的变 化。这种变化与二次函数的开口方向 、顶点和对称轴的位置有关。

二次函数动点问题PPT课件

二次函数动点问题PPT课件
(1)求AD的长.
(2)t为何值时,△PBQ为直角三角形.
(3)设△PBQ的面积为y,求y与t之间的函数关系式
(4)是否存在某一时刻t,使△PBQ面积等于梯形形 ABCD面积的2/5?若存在,
求出此时的t值Biblioteka 若不存在,说明理由;• 4.已知:如图①,在Rt△ABC中,∠C=90°,AC=4cm, BC=3cm,点P由B出发沿BA方向向A点匀速运动,速度 为1cm/s;点Q由A出发沿AC方向向点C匀速运动,速度 为2cm/s;连接PO.若设运动的时间为t(0<t<2),解 答下列问题:
• (1)当t为何值时,PQ∥BC? • (2)设△AQP的面积为y(cm2),求y与t之间的函数关
系式; • (3)是否存在某一时刻t,使△AQP面积等于四边形
PQBC的面积?若存在,求出此时的值;若不存在,说明 理由;
5.如图,等腰直角三角形ABC以2m/s的速度沿直线L向 正方形移动,直到AB与CD重合。设xs时,三角形与正 方形重叠部分的面积为ym²。
You Know, The More Powerful You Will Be
Thank You
在别人的演说中思考,在自己的故事里成长
Thinking In Other People‘S Speeches,Growing Up In Your Own Story
讲师:XXXXXX XX年XX月XX日
A
BP=12-2t,BQ=4t
P
△PBQ的面积:
S=1/2(12-2t) •4t
B
Q
C
即S=- 4t²+24t=- 4(t-3)²+36
2.已知:如图,△ABC是边长3cm的等边三角形, 动点P、Q同时从A、B两点出发,分别沿AB、 BC方向匀速移动,它们的速度都是1cm/s,当点 P到达点B时,P、Q两点停止运动.设点P的运动 时间为t(s),

二次函数动点问题

二次函数动点问题

二次函数动点问题
类型一:平行四边形
分类标准:讨论对角线
例如:请在抛物线上找一点p使得
四点构成平行四边形,则可分成以下几种情况
(1)当边
是对角线时,那么有
(2)当边
是对角线时,那么有
(3)当边
是对角线时,那么有
例题1:本题满分14分)在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.
(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横
坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、0为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
类型二:直角三角形
分类标准:讨论直角的位置或者斜边的位置
例如:请在抛物线上找一点p使得
三点构成直角三角形,则可分成以下几种情况
(1)当
为直角时,
(2)当
为直角时,
(3)当
为直角时,
例题3:如图1,已知抛物线y=x2+bx+c与x轴交于A、B两点(点A在点B左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D.
(1)求抛物线的函数表达式;(2)求直线BC的函数表达式;
(3)点E为y轴上一动点,CE的垂直平分线交CE于点F,交抛物线于P、Q 两点,且点P在第三象限.
①当线段
时,求tan∠CED的值;②当以C、D、E为顶点的三角形是直角三角形时,请直接写出点P的坐标.。

二次函数动点问题(共9张PPT)

二次函数动点问题(共9张PPT)
•〔2〕在BC上方的抛物线上是否存在一点K,使四边形ABKC的面积最大? 假设存在,求出K点的坐标及最大面积;
•〔3〕连接CP,在第一象限的抛物线上是否存在一点R,使△RPM与△RMB的 面积相等?假设存在,求出点R的坐标;假设不存在,说明理由.
3、二次函数中四边形问题:
①抛物线上的点能否构成平行四边形; ②抛物线上的点能否构成矩形、菱形或正方形。
解二次函数动点问题 解题方法及解题步骤
•解题方法:
•一般的,在二次函数动点问题中应用的解题方法: 待定系数法、数形结合、分类讨论、联系与转化、图像 的平移
变化等思想方法,并且要与平面图形的性质有机结 合,从而使得复 杂的、综合的二次函数动点问题化整为零,逐一击破。
①习抛题物 从线局〔上部3的到〕点整能体求否的构联〔成系平更2行清〕四晰中边,形列面;出相积应的S关〔系平式;方单位〕与t时间〔秒〕的函数关系式及面积S取 〔1〕求最正方大形A值BC时D的P边点长.的坐标.
〔2〕在BC上方的抛物线上是否存在一点K,使四边形ABKC的面积最大?假设存在,求出K点的坐标及最大面积;
x
图① 〔2〕设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
例1抛物线y=ax2+bx+c经过A〔-1,0〕、B〔3,0〕、C〔0,3〕三点,直线l是抛物线的对称轴.
②习题各个量、未知量的联系,对习题进展解剖,使
〔0,3〕三点,对称轴与抛物线相交于点P、与直线BC相交于点M.
二次函数动点问题
解二次函数动点问题 应用知识点
•二次函数动点问题所包含的知识点及考点:
1、二次函数中最短问题:
①是否存在一点到某两点的距离和为最短;
②是否存在一点使某三角形周长最短;

二次函数应用之动点问题

二次函数应用之动点问题

动线问题
• 4、已知:如图平行四边形ABCD,AB=4cm,BC=6cm,∠ ABC=30°.平行四边形的边BC沿着BA方向以1cm/s的 速度向AD平移,平移过程中与AB、BD、CD分别交 于M、Q、N,动点P从A出发沿着AD向点D移动,边 BC和点P同时出发,运动时间为t(s)(0≤t≤4) • (1)求平行四边形ABCD的面积. • (2)设S△PQN=y,请求出y与t的函数关系式. • (3)是否存在某一时刻t,使S△PQN ︰S四边形AB CD=1︰4.若存在,请求出t的值;若不存在,请说明理 由. • (4)连接PM,若把△PMQ沿着PM折叠后,能够与 △PMA重合,求此时点P移动的距离.
和等边△ (3)假设 △DEF和等边△ABC重合部分 )假设Rt△ 和等边 重合部分 的面积是y,请你写出y与x之间的函数关系 的面积是 ,请你写出 与 之间的函数关系 式; (4)重合部分的面积与 △DEF的面积的比 )重合部分的面积与Rt△ 的面积的比 有可能是7: 吗 如果有可能, 有可能是 :24吗?如果有可能,请求出此 的值; 时x的值;如果没有可能,请说明理由。 的值 如果没有可能,请说明理由。
在梯形 ABCD中,AD ∥ BC,AD = 3,DC = 5,AB = 4 2,∠B = 45°. 点出发沿线段BC以每秒 点M从B点出发沿线段 以每秒 个单位长度的速度向终 从 点出发沿线段 以每秒2个单位长度的速度向终 C点运动;动点 同时从 点出发沿线段 以每秒 个 点运动; 同时从C点出发沿线段 以每秒1个 点运动 动点N同时从 点出发沿线段CD以每秒 单位长度的速度向终点D运动 设运动的时间为t秒 运动. 单位长度的速度向终点 运动.设运动的时间为 秒.
二次函数的应用
------之动点、动线、动面问题 之动点、动线、 之动点
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

点G,在线段BC上是否存在一
点F,使得四边形GFED是平行 C
F
四边形?若存在,请求出点F
G
的坐标,若不存在,请说明理
由.
A(-1,0)
B
0
二次函数中的动点问题
直线x=1
这节课你有哪些收获?
1.数学知识: 2.数学方法: 3.数学思想:
二次函数中的动点问题
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
C
A B
二次函数中的动点问题
3.二次函数y=ax2+bx+c的图象如图所示,那abc, b2-4ac,2a+b,a+b+c,a-b+c 这五个代数式
中,值为正数的有( A )
y
A.4个 B.3个
C.2个 D.1个
-1
1
x
二次函数中的动点问题
二次函数中的动点问题
如图,抛物线的对称轴是直线x=1,它与x轴交于
1,0),(0,3).
y
D
(3)求直线BC的解析式.
(4)何时二次函数值大于一次 C 函数值?
A(-1,0)
B
0
二次函数中的动点问题
直线x=1
如图,抛物线的对称轴是直线x=1,它与x轴交于
A,B两点,与y轴交于点C,点A,C的坐标分别为(-
1,0),(0,3).
y
(5)若F是线段BC上的一点,
D
过F作x轴的垂线与抛物
二次函数中的动点问题
2、若A( 2 , y 1 ),B( 1 , y 2 ),C( 2 , y 3)
为二次函数 yx2 2x3的图象上的三点,
则 y 1 , y 2 , y 3 的大小关系是 ( B )
A. y1 y2 y3 B. y2 y1 y3 C. y3 y1 y2 D. y1 y3 y2
A,B两点,与y轴交于点C,点A,C的坐标分别为(-
1,0),(0,3).
y
(2)若点Q是抛物线上位于x轴
D
上方的一个动点,求△ABQ的
面积的最大值.
C(0,3)
A(-1,0)
0
二次函数中的动点问题
B 直线x=1
如图,抛物线的对称轴是直线x=1,它与x轴交于
A,B两点,与y轴交于点C,点A,C的坐标分别为(-
二次函数中的动点问题
数形结合
已知二次函数 yax2 bxc图象,尽可能多的 说出一些结论.
(1)a < 0,b > 0, c > 0.
x 1
(2) b24ac0
(3)解析式:y=-(x+1)(x-3)
(0,3)
即:y=-x2+2x+3 y=-(x-1)2+4
(-1,0)
(3,0)
(4)对称轴:直线x = 1
A,B两点,与y轴交于点C,点A,C的坐标分别为(-
1,0),(0,3).
y
(1)在抛物线上是否存在点P,
Dห้องสมุดไป่ตู้
使得△ABP的面积是△ABC的 面积的一半?若存在,求出 C(0,3)
点P的坐标,若不
存在,请说明理由.
A(-1,0)
B
0
二次函数中的动点问题
直线x=1
如图,抛物线的对称轴是直线x=1,它与x轴交于
A AC向AC右析y..y..左平 式y如y(x平x移 是y2yABCD何移、 、 、((2、(12x平x)个x(向 向 向(32向Bxx个移单左 右 左3右3)34)单)平 平 平能不位4平224的))移移移位得动移,22图62111,1到,那个个个象个22所而么单单单单先得位位位B把在位yDBD向..,,,图.,x.新上yy轴向向向象向坐x平y上上下2y下、的((标移xx平平平平的y解系((移移移2轴移11图xx析个下))444分422象个 个 个式个单抛22别单单 单(62单)为位)物22向位位 位位(,线上22B再的)、)解向
E
线交于点E,
C
①求线段EF的最大值.
②求△BCE的面积的最
大值.
A(-1,0)
F
B
0
二次函数中的动点问题
直线x=1
如图,抛物线的对称轴是直线x=1,它与x轴交于
A,B两点,与y轴交于点C,点A,C的坐标分别为(-
1,0),(0,3).
y
(6)在上题的条件下,若直线
D
BC与抛物线对称轴的交点记为
E
(5)顶点坐标(1,4)
(6)当x = 1时, y有最大值为4
(7)当x≥1,y 随 x 增大而减小; (8)当x = -1 或 3 时,y = 0 ;
当x≤1 ,y 随 x 增大而增大.
当-1 <x <3 时,y > 0 ;
二次函数中的动当点问x题< -1或x >3 时,y < 0.
等等
1变、式在变2平式:面1在:直平二角面次坐直函标角数系坐中标y,系将中x2二,次如2x函果数抛3物的线图象
相关文档
最新文档