色谱分析分离方法概述
第七章 色谱分离技术

④ 设备简单,操作方便,且不含强烈的操作条件, 因而不容易使物质变性,特别适于不稳定的大分子 有机化合物。
缺点: 处理量小、操作周期长、不能连续操作,因此 主要用于实验室,工业生产上应用较少。
3.色谱法的分类 吸附色谱法
分配色谱法
分离机理
离子交换色谱法 凝胶色谱法
亲和色谱法
(一)基本原理
溶液中某组分的分子在运动中碰到一个固体表 面时,分子会贴在固体表面上,发生吸附作用。
1.发生吸附作用的原理:
固体表面分子(或原子)与固体内部分子(或原子) 所处的状态不同:
固体内部分子(或原子)受临近四周分子的作用力是 对称的,作用力总和为零,即彼此互相抵消,故分子处 于平衡状态。
界面上的分子所受的力不对称,作用力总和不等于零, 合力指向固体内部。
小分子
(二)凝胶过滤介质
基本要求:
不能与原料组分发生除排阻之外的任何其他相 互作用,如电荷作用、化学作用、生物学作用
高物理强度、高化学稳定性 耐高温高压、耐强酸强碱 高化学惰性 内孔径分布范围窄 颗粒大小均一度高
常用的凝胶过滤介质 葡聚糖凝胶 琼脂糖凝胶 聚丙烯酰胺凝胶
1. 葡聚糖凝胶
pH、缓冲液浓度、离子强度
③ 柱操作 柱的大小、长短 ④ 流速的控制 高速度、高效率 ⑤ 清洗 除去不结合的所有物质 ⑥ 洗脱 特异性洗脱(竞争性置换目的物) ⑦ 柱的再非生特异性洗脱(调节pH、离子强度和种类、温度)
(五)亲和色谱法的应用
1.亲和色谱法的特点: 专一、高效、简便、快速
2.应用 ① 分离和纯化各种生物分子 纯化生物大分子,适于从组织或发酵液中分离
色谱法应运而生。
色谱分离是一组相关技术的总称,又叫做色 谱法、层析法,是一种高效而有用的生物分离 技术。
色谱分析法概论

§1.1 概述
色谱法也叫层析法,它是一种
高效能的物理分离技术,将它用于
分析化学并配合适当的检测手段,
就成为色谱分析法。
色谱法的最早应用是用于分 离植物色素,其方法是这样的: 在一玻璃管中放入碳酸钙,将含 有植物色素(植物叶的提取液) 的石油醚倒入管中。
此时,玻璃管的上端立即出现几 种颜色的混合谱带。然后用纯石油醚 冲洗,随着石油醚的加入,谱带不断 地向下移动,并逐渐分开成几个不同 颜色的谱带,继续冲洗就可分别接得 各种颜色的色素,并可分别进行鉴定。 色谱法也由此而得名。
色谱流出曲线的意义: 色谱峰数(样品中单组份的最少个数)
色谱保留值(定性依据)
色谱峰高或面积(定量依据)
色谱保留值或区域宽度(色谱柱分离效
能评价指标)
色谱峰间距(固定相或流动相选择是否
合适的依据)
§1.3 色谱法基本原理
色谱分析的目的是将样品中各组分彼此分离, 组分要达到完全分离,两峰间的距离必须足够远, 两峰间的距离是由组分在两相间的分配系数决定
h. 区域宽度:色谱峰的区域宽
度是色谱流出曲线的重要参数之一
,可用于衡量色谱柱的柱效及反映 色谱操作条件下的动力学因素。宽
度越窄,其效率越高,分离的效果
也越好。
区域宽度通常有三种表示法: 标准偏差:峰高0.607 倍处峰 宽处的一半。 半峰宽W1/2:峰高一半处的峰宽。 W1/2=2.354 峰底宽W:色谱峰两侧拐点上切 线与基线的交点间的距离。W= 4
有关,与两相体积、
柱管特性和所用仪
器无关。
分配系数 K的讨论
试样一定时,K主要取决于固定相性质一定温
度下,组分的分配系数K越大,出峰越慢;每个组 分在各种固定相上的分配系数K不同;选择适宜的 固定相可改善分离效果;试样中的各组分具有不 同的K值是分离的基础;某组分的K=0时,即不被 固定相保留,最先流出。
色谱分离法

离含-SH基的蛋白质或进一步分离该蛋白质中-SH基附近的 肽段。
16.3.5 聚焦色层分离法(Focusing chromatography)
基于离子交换的原理,根据两性电解质分子 间等电点的差别进行分离纯化的洗脱层析法。
当向层析柱内通入与柱内初始pH值不同的多缓 冲剂时,柱内pH值缓慢改变,在轴向形成连续的 pH梯度,使料液中的溶质依据各自的等电点或者 吸附或者脱附逐次向下移动,彼此之间得到分离。
16.2.5色谱分离的有关术语
死体积
保留时间(tR)和溶出体积(VR) 反应样品在柱子中的保留或阻滞能力,是色谱过程的 基本热力学参数之一。
16.2.5色谱分离的有关术语
④色谱柱的理论塔板数、塔板高度 Martin和Syng最早提出塔板理论,将色谱柱比作蒸馏塔, 把一根连续的色谱柱设想成由许多小段组成。在每一小段 内,一部分空间为固定相占据,另一部分空间充满流动相 。组分随流动相进入色谱柱后,就在两相间进行分配。并 假定在每一小段内组分可以很快地在两相中达到分配平衡 ,这样一个小段称作一个理论塔板,一个理论塔板的长度 称为理论塔板高度H。经过多次分配平衡,分配系数小的 组分,先离开蒸馏塔,分配系数大的组分后离开蒸馏塔。 由于色谱柱内的塔板数相当多,因此即使组分分配系数只 有微小差异,仍然可以获得好的分离效果。
16.3.3金属螯合层析
金属螯合层析技术在现代基因工程中常用 于表达蛋白的分离
NH2
Ni
NH2
His
His His
His
protein
▁▁▁▂▃▄▅▆▇▇▆▅▄▃▂▁▁▁▁▂▃▄▅▆▇▇▆▅▄▃▂▁
16.3.3金属螯合层析
利用 IMAC 分离纯化生物大分子
15-色谱分析法简介

色谱图及常用术语
色谱流出曲线: 由检测器输出的电信号强 度对时间作图,所得曲线 色谱峰: 曲线上突起部分
t
1、基线: 没有样品组分流出时的流出曲线; 2、峰高: 色谱峰顶点与基线之间的垂直距离; 3、区域宽度: 即色谱峰的宽度; 峰底宽度wb:Wb = 4 σ 半峰宽w1/2: W1/2 = 2.354 σ 标准偏差σ: 0.607倍峰高处峰宽的一半 。
15
分离度定义:相邻两峰保留值之差与两蜂宽之和的一半的比值
在—般情况下,由于色谱柱中溶质的浓度较低,分配系数K 为常数。——称线性色谱。 色谱峰是对称的呈高斯分布,高斯峰,其蜂底宽度等于4σ。 相邻两个蜂,其峰宽大致相等:
Rs=1,峰间距离4 σ ,4 σ分离。峰有2%的重叠 Rs=1.5,峰间距离6 σ ,称为6 σ分离,峰重叠小于1%, 两峰已完全分开。
9
峰面积A: 4、保留值 常用时间、距离或用将组分带出色谱柱所需要的流动相体
积表示,保留值由色谱分离过程中的热力学因素所决定; 在一 定色谱条件下保留值是特征的,可作为色谱定性的参数是色谱 法的重要概念之一;
a.保留时间 tR 从进样开始到色谱蜂最大值出现时所需要的时间;某组分
的保留时间就是它通过色谱柱所需要的时间; 死时间tM:多用t0表示 不被固定相保留的组分,从进样到出现峰极大值的时间;死 时间实际上就是流动相流经色谱柱所需要的时间;
3
色谱法的实质:分离; 色谱法的依据:各组分在互不相溶的两相——固定相与流动 相中吸附能力、分配系数或其它亲和作用性能的差异. 2. 色谱法的分类 (1)按流动相和固定相所处状态分类 气固色谱 气相色谱:气体作流动相 气液色谱 液相色谱:液体作流动相 液固色谱 液液色谱 超临界流体色谱: (2)按固定相的固定方式分类 柱色谱法:固定相装在色谱柱中 纸色谱法:用滤纸上的水分子作固定相 薄层色谱法:将吸附剂粉末制成薄层作固定相
色谱分析经典知识

色谱分析经典知识色谱概论1、色谱分析法色谱法是一种分离分析方法。
它利用样品中各组分与流动相和固定相的作用力不同(吸附、分配、交换等性能上的差异),先将它们分离,后按一定顺序检测各组分及其含量的方法。
2、色谱法的分离原理当混合物随流动相流经色谱柱时,就会与柱中固定相发生作用(溶解、吸附等),由于混合物中各组分物理化学性质和结构上的差异,与固定相发生作用的大小、强弱不同,在同一推动力作用下,各组分在固定相中的滞留时间不同,从而使混合物中各组分按一定顺序从柱中流出。
这种利用各组分在两相中性能上的差异,使混合物中各组分分离的技术,称为色谱法。
3、流动相色谱分离过程中携带组分向前移动的物质。
4、固定相色谱分离过程中不移动的具有吸附活性的固体或是涂渍在载体表面的液体。
5、色谱法的特点(1)分离效率高,复杂混合物,有机同系物、异构体。
(2)灵敏度高,可以检测出μg.g-1(10-6)级甚至ng.g-1(10-9)级的物质量。
(3)分析速度快,一般在几分钟或几十分钟内可以完成一个试样的分析。
(4)应用范围广,气相色谱:沸点低于400℃的各种有机或无机试样的分析。
液相色谱:高沸点、热不稳定、生物试样的分离分析。
(5)高选择性:对性质极为相似的组分有很强的分离能力。
6、色谱分析法的分类按两相状态分类,按操作形式分类,按分离原理分类。
7、按两相状态分类气相色谱(Gas Chromatography,GC),液相色谱(Liquid Chromatography,LC),超临界流体色谱(Supercritical Fluid Chromatography,SFC)。
气相色谱:流动相为气体(称为载气)。
常用的气相色谱流动相有N2、H2、He等气体,按分离柱不同可分为:填充柱色谱和毛细管柱色谱;按固定相的不同又分为:气固色谱和气液色谱。
液相色谱:流动相为液体(也称为淋洗液)。
按固定相的不同分为:液固色谱和液液色谱。
超临界流体色谱:流动相为超临界流体。
简述常见色谱分离法的类型及基本原理

简述常见色谱分离法的类型及基本原理色谱分离法是一种常用的分离分析方法,其基本原理是利用不同物质在固定相和流动相之间的分配平衡,实现物质的分离。
根据分离原理的不同,色谱分离法可以分为以下几种类型:
1. 液相色谱法(LC):该方法是最常用的色谱分离法之一,其基本原理是利用不同物质在固定相和流动相之间的分配平衡,实现物质的分离。
液相色谱法具有高分离效能、高灵敏度、高选择性等优点,被广泛应用于生物、医药、环保、化工等领域。
2. 气相色谱法(GC):该方法利用不同物质在气相状态下的吸附和解吸特性,实现物质的分离。
气相色谱法具有高分离效能、高灵敏度、分析速度快等优点,被广泛应用于环保、化工、食品、医药等领域。
3. 高效液相色谱法(HPLC):该方法是一种改进的液相色谱法,通过提高固定相的粒径和流动相的速度,提高分离效率和速度。
高效液相色谱法具有高分离效能、高灵敏度、分析速度快等优点,被广泛应用于生物、医药、环保、化工等领域。
4. 薄层色谱法(TLC):该方法是一种简便的色谱分离法,通过在薄层板上分离样品,实现物质的分离。
薄层色谱法具有操作简单、分析速度快、灵敏度高等优点,被广泛应用于食品、环保、化工等领域。
5. 离子交换色谱法(IEC):该方法利用不同物质在离子交换剂
上的吸附和解吸特性,实现物质的分离。
离子交换色谱法具有高分离效能、高灵敏度、分析速度快等优点,被广泛应用于生物、环境等领域。
不同的色谱分离法具有不同的原理和特点,应根据具体的分析需求选择合适的色谱方法。
色谱分析法概述范文

色谱分析法概述范文色谱分析法是一种广泛应用于科学研究和工业生产中的化学分析方法。
它通过利用物质在固定相和流动相之间的分配行为来分离和测定化合物。
色谱分析方法可以用于分离和确定固、液、气相中的各种有机和无机物质,具有高灵敏度、选择性、重现性和快速分析速度等优点。
气相色谱(GC)是利用气体载气和物质在固定相上的分配行为进行分离和测定的方法。
GC常用于分析挥发性有机物,如石油化工中的燃料、溶剂和有机污染物等。
GC具有高分离效率和分辨率,可以快速分析多种组分。
液相色谱(LC)是利用液体移动相和固定相之间的分配行为进行分离和测定的方法。
LC可分为正相色谱和反相色谱两种类型。
正相色谱是指流动相为非极性溶剂,固定相为极性的固体材料,用于分离非极性有机物和极性无机物。
反相色谱是指流动相为极性溶剂,固定相为非极性的固体材料,用于分离极性有机物。
LC广泛应用于食品、环境、药物等领域的分析。
超高效液相色谱(UHPLC)是一种液相色谱的高效率改进方法,其主要特点是使用高压强制液相通过色谱柱,提高分离速度和分辨率。
UHPLC主要用于分析复杂样品和需要高分辨率的分析。
离子色谱(IC)是利用离子交换柱对离子物质进行分离和测定的方法。
IC主要用于分析离子荧光染料、水中无机离子、药物中的阳离子和阴离子等。
在样品前处理方面,色谱分析法通常需要对样品进行前处理,如提取、分离、浓缩、蒸馏等。
这些步骤有助于减少样品的复杂性和提高分析的灵敏度。
在仪器方面,色谱分析法需要使用高性能液相色谱仪(HPLC)、气相色谱仪(GC)和离子色谱仪(IC)等分析仪器。
这些仪器通过控制流动相和固定相的流动速度和温度等参数来实现样品的分离和测定。
总之,色谱分析法是一种高效、可靠和灵敏的化学分析方法。
它在科学研究、环境保护、食品安全和药物分析等领域起着重要作用,为人们提供了丰富的化学信息。
色谱分析方法

色谱分析方法
色谱分析是一种用于分离、鉴定和定量化化合物的方法,它是化学分析中非常重要的一部分。
色谱分析方法主要包括气相色谱(GC)和液相色谱(HPLC)两大类,它们在不同的应用领域具有广泛的用途。
气相色谱是一种基于气相流动的分离技术,它适用于挥发性化合物的分析。
在气相色谱中,样品首先被蒸发成气态,然后通过色谱柱进行分离,最后由检测器进行检测和定量。
气相色谱具有分离效率高、分析速度快、灵敏度高等优点,因此在环境监测、食品安全、药物分析等领域得到了广泛应用。
液相色谱是一种基于液相流动的分离技术,它适用于非挥发性化合物的分析。
在液相色谱中,样品首先被溶解在流动相中,然后通过色谱柱进行分离,最后由检测器进行检测和定量。
液相色谱具有分离效果好、适用范围广、操作简便等优点,因此在生物医药、化工生产、食品加工等领域得到了广泛应用。
除了气相色谱和液相色谱外,还有许多其他类型的色谱分析方法,如超临界流体色谱、离子色谱、毛细管电泳等。
这些方法在不
同的应用领域具有独特的优势,可以满足不同化合物分析的需求。
色谱分析方法的选择取决于样品的性质、分析的目的、分离的
要求等因素。
在实际应用中,需要根据具体情况选择合适的色谱分
析方法,并结合适当的检测技术进行分析。
同时,还需要对色谱分
析方法进行优化,以提高分离效率、减少分析时间、提高灵敏度等。
总之,色谱分析方法作为一种重要的化学分析手段,在现代化
学分析中具有不可替代的地位。
通过不断地研究和改进,相信色谱
分析方法将在更广泛的领域发挥更重要的作用。
色谱分离方法

如在硅胶中拌入15%左右的硝酸银,这种加硝酸 银的硅胶对有机物中不饱和键有特殊的吸附性,因此 ,常用它分离一些不饱和化合物。
柱色谱(Column Chromatography)
3.2 洗脱剂的选择
选择原则:
凝胶 凝胶基质 珠
小分子 大分子
凝胶过滤层析过程示意图
凝胶色谱
❖ 单次展开法和多次展开法 ❖ 单向展开法和双向展开法
吸附色谱 显色
❖ 显色也称定位,即用某种方法使经色谱展开后的 混合物斑点呈现颜色,以便观察其位置
(1) 紫外线照射法 (2) 喷雾显色法 (3) 碘蒸汽显色法 (4) 生物显迹法
柱色谱
洗脱液
样品 填充物 玻璃柱
分部收集
柱色谱(Column Chromatography)
❖ 薄层色谱法选择的主要吸附剂为氧化铝、硅胶和聚酰 胺。色谱用的吸附剂要求一定的形状与粒度范围,不 同吸附剂用于分离不同类型的化合物。吸附剂还必须 具有一定的活度,活度太高或过低都不能使混合物各 组分得到有效的分离。
吸附色谱
展开剂
❖在吸附色谱中,组分的展开过程涉及吸附剂、被 分离化合物和溶剂三种之间的相互竞争。其基本 原则主要有两个:①展开剂对被分离组分有一定 的解吸能力,但又不能太大。②展开剂应该对被 分离的物质有一定的溶解度。
3.1 吸附剂的选择
实验室常用
氧化 铝
硅胶
氧化 活性 镁炭
吸附剂要求: 不能与被分离的物质和展开剂发生化学作用 吸附剂的粒度大小要均匀
柱色谱(Column Chromatography)
⑴ 氧化铝(alumina)
简述常见色谱分离法的类型及基本原理

简述常见色谱分离法的类型及基本原理色谱分离法是一类对物质进行分析和分离的重要手段,广泛应用于化学、生物化学、药品、环境等领域。
常见的色谱分离法主要包括气相色谱(Gas Chromatography,GC)、液相色谱(Liquid Chromatography,LC)、超高效液相色谱法(Ultra-High Performance Liquid Chromatography,UHPLC)、毛细管电泳(Capillary Electrophoresis,CE)等。
本文将分别对这些色谱分离法的类型和基本原理进行介绍。
一、气相色谱(GC)气相色谱是利用气相作为移动相进行分离的色谱分离法,适用于描写分析样品中挥发性和半挥发性有机化合物的组成和含量,对非极性化合物富有选择性。
其基本原理是将待分离的混合物通过一定方法进样,然后通过携带气体流动的固定相柱进行分离,使用检测器进行检测,最后形成色谱图。
GC分析主要有两种模式,即气定常模式和温度编程模式。
气定常模式:在气定常模式下,固定相的温度是恒定不变的。
样品经进样器进入柱状固定相,随着固定相温度的递增,各组分在柱中停留时间渐次增长,从而实现了分离。
温度编程模式:在温度编程模式下,固定相的温度是随时间递增的。
通过渐增柱温,可以改变各组分在柱中的停留时间,以实现对样品中组分的分离。
该方法因为能够提高分离效率,主要应用于复杂混合物的分析。
二、液相色谱(LC)液相色谱是液体相与固定相之间相互作用的色谱分离法,其基本原理是待分析的混合物通过一种液相载体进行分离,静止相可以是固体(固定相液相色谱,SPLC)或是液体(液-液色谱,LLC)。
LLC又可分为正相液相色谱(Normal Phase Liquid Chromatography,NPLC)和反相液相色谱(Reverse Phase Liquid Chromatography,RPLC)。
正相液相色谱:正相液相色谱是以极性固定相为静止相的液相色谱,常用的固定相有硅胶和氨基硅胶。
色谱分析技术

电化学法
利用电化学反应过程中产生的电流、 电位、电导等参数的变化来检测物质 含量。
质谱法
将物质离子化后,根据不同离子质量 进行分离和检测,确定物质的结构和 含量。
色谱图与色谱参数
01
02
03
04
色谱图
记录色谱柱流出组分的浓度随 时间变化的曲线图。
峰高与峰面积
用于定量测定色谱图中各组分 的含量。
分辨率
在生物医学领域的应用
生物样品的分离与分析
色谱分析技术可用于分离和鉴 定生物样品中的化合物,如氨 基酸、糖类等。
疾病标志物的检测
通过色谱分析技术,可以检测 生物样品中与疾病相关的标志 物,如肿瘤标志物、炎症标志 物等。
药物代谢与药代动力学研 究
色谱分析技术能够研究药物在 体内的代谢和排泄过程,为新 药研发和临床用药提供依据。
大气污染物的监测
色谱分析技术可用于监测大气中的有害气体 和颗粒物。
土壤污染物的监测
色谱分析技术能够检测土壤中的有害物质, 如农药残留、重金属等。
水质监测
通过色谱分析技术,可以检测水体中的有害 物质,如重金属、有机污染物等。
固体废物分析
色谱分析技术可以用于固体废物的成分分析, 评估其处理和处置的可行性。
06 案例分享
案例一:食品中农药残留的色谱分析
目的
结果
检测食品中农药残留,确保食品安全。
成功检测出食品中农药残留的种类和 浓度,为食品安全监管提供科学依据。
方法
采用气相色谱法,通过固相萃取技术对 食品中的农药残留进行提取、净化和分 离,再通过电子捕获检测器进行检测。
案例二:环境水中多环芳烃的色谱分析
在药物分析中的应用
药品质量控制
色谱分析方法

4、 保留体积(VR)Retention Volume
•组分从进样到出现峰最大值所需的载气体积。 VR= tR.FC (ml/min)。 FC-载气流速
5、 柱效能Colume efficiency
色谱柱在色谱分离过程中主要由动力学因素(操作参数)所决定的分离效能。 通常用理论板高或有效板数表示。 ①、理论板数(n)Number of theoretical plate •表示柱效能的物理量,可由下式计算 •n=5.54(tR/W)2=16()2 ②、理论板高(H)Height equivalent to a theoretical plate •单位理论板的长度。H=L/n ③ 有效板数(neff)Number of effective plate
峰与峰底之间的面积(见图3中的CHEJDC)。
标准偏差(ɑ)Standard error
0.607倍峰高处所对应峰宽之一半。
•基线Baseline
在正常操作条件下,仅有载气通过检测器系统时所产生的响应信号的曲线。
•基线漂移Baseline drift
基线随时间定向的缓慢变化。
•基线噪声(N)Baseline noise
Ei――标准样中组分i的含量;
AE――标准样中组分i的峰面积。 该方法的优点是操作简单和计算方便。缺点是仪器和操作条件对分析结果影响很大, 不像归一化和内标法定量操作中可以互相抵消。因此,标准曲线使用一段时间后应 当校正。
3、 内标法
当分析样品不能全部出峰,不能用归一法定量时,可考虑用内标法定量。 方法:准确称取样品,选择适宜的组分作为预测组分的参比物,也称内标物。加入 一定量的内标物,根据被测物和内标物的质量及在色谱图上相应的峰面积比按下式 求组分的含量; xi(%)=×100 式中 xi---试样中组分I的百分含量; ms---加入内标物的质量; As---内标物的峰面积; m---试样的质量 Ai---组分I的峰面积;fsi=fi/fs。
色谱分析法名词解释

色谱分析法名词解释色谱分析法、又称层析法,色层法,层离法。
是一种物理或物理化学分离分析方法。
是先将混合物中各组分分离,而后逐个分析。
其分离原理是利用混合物中各组分在固定相和流动相中溶解、解析、吸附、脱附或其他亲和作用性能的微小差异,当两相作相对运动时,使各组分随着移动在两相中反复受到上述各种作用而得到分离。
色谱法已成为分离分析各种复杂混合物的重要方法,但对分析对象的鉴别能力较差。
色谱分析法的分类比较复杂。
根据流动相和固定相的不同,色谱法分为气相色谱法和液相色谱法。
按色谱操作终止的方法可分为展开色谱和洗脱色谱。
按进样方法可分为区带色谱、迎头色谱和顶替色谱。
色谱法分离效率高、分离速度快、灵敏度高、可进行大规模的纯物质制备。
色谱分析法chromatography基于混合物各组分在体系中两相的物理化学性能差异(如吸附、分配差异等)而进行分离和分析的方法。
国际公认俄国M.C.茨维特为色谱法的创始人。
色谱法体系中的两相作相对运动时,通常其中一个相是固定不动的,称为固定相;另一相是移动的,称为流动相。
在色谱分析过程中,物质的迁移速度取决于它们与固定相和流动相的相对作用力。
溶质和两相的吸引力是分子间的作用力,包括色散力、诱导效应、场间效应、氢键力和路易斯酸碱相互作用。
对于离子,还有离子间的静电吸引力。
被较强吸引在固定相上的溶质相对滞后于较强地吸引在流动相中的溶质,随着移动的反复进行与多次分配,使混合物中的各组分得到分离。
色谱分析法的分类比较复杂。
根据流动相和固定相的不同,色谱法分为气相色谱法和液相色谱法。
①气相色谱法的流动相是气体,又可分为:气固色谱法,其流动相是气体,固定相为固体;气液色谱法,其流动相是气体,固定相是涂在惰性固体上的液体。
②液相色谱法的流动相是液体,又可分为?液固色谱法,其流动相是液体,固定相是固体;②液液色谱法,其流动相和固定相均是液体。
按吸附剂及其使用形式可分为柱色谱、纸色谱和薄层色谱。
按吸附力可分为吸附色谱、离子交换色谱、分配色谱和凝胶渗透色谱。
色谱分离化合物

色谱分离化合物色谱分离是一种广泛应用在化学和生物化学领域中的分离技术。
它利用不同化合物在固定相和液相之间的相互作用差异,通过柱、纸或薄层等材料将液体混合物中的化合物分离开来。
色谱分离可以用于分析物质的纯度、结构和组成成分等信息,广泛应用于食品、环境、药物、化妆品等领域。
色谱分离的原理是基于化合物在不同相之间的分配系数差异。
固定相是色谱柱中的填料材料,液相则是携带溶质的流动相。
当混合物进入色谱柱时,化合物会在固定相和液相之间进行分配。
根据其与固定相和液相之间的相互作用差异,不同的化合物将通过柱子以不同的速率通过,从而实现了分离。
常见的色谱分离方法包括气相色谱(Gas Chromatography,GC)、液相色谱(Liquid Chromatography,LC)和薄层色谱(Thin Layer Chromatography,TLC)。
气相色谱(GC)是一种将样品通过气相进行分离的色谱分析技术。
GC分离的基础是样品中各组分蒸发分子在固定相和流动相之间的分配系数差异。
在GC中,样品首先通过进样口进入气相色谱柱,然后在高温下挥发蒸发,并通过柱子分离。
GC常用于分析挥发性和热稳定的化合物,如有机溶剂、环境样品中的揮发性有机化合物、石油产品中的烃类等。
液相色谱(LC)是一种将样品溶解在液相中进行分离的色谱分析技术。
LC的主要步骤包括进样、柱子分离和检测。
在LC中,样品通常由进样器通过一个柱子,其中填有固定相,并使用一个携带溶质的流动相。
在柱子中,化合物与固定相通过吸附、分配等相互作用分离。
LC广泛应用于无机、有机、生物、药物等领域中。
薄层色谱(TLC)是一种简单而经济的色谱分离方法。
在TLC中,样品涂覆在一层薄而均匀的固定相上,随后通过流动相的溶剂前进。
在固定相的选择上,常见的填料材料有硅胶、氧化铝和聚脂片等。
不同化合物根据其与固定相的相互作用差异,在薄层上表现出不同的行为,从而实现分离。
色谱分离在科学研究和实际应用中起着重要的作用。
化学中的色谱分析方法

化学中的色谱分析方法色谱分析是一种在化学领域中广泛应用的分析技术,通过分离混合物中的成分并对其进行定量或定性分析。
色谱分析方法主要包括气相色谱(Gas Chromatography, GC)、液相色谱(Liquid Chromatography, LC)和超高效液相色谱(Ultra-high Performance Liquid Chromatography, UHPLC)等。
本文将重点介绍这几种色谱分析方法的原理、应用及特点。
一、气相色谱(Gas Chromatography, GC)气相色谱是一种在气相流动条件下进行分离的色谱技术。
其原理是利用气相载气将样品混合物分离成单独的组分,然后通过检测器进行检测和定量分析。
气相色谱广泛应用于食品、环境、药物、石油化工等领域。
气相色谱的主要特点包括分离效果好、分析速度快、灵敏度高、分辨率高等。
在实际应用中,气相色谱常用于分析挥发性有机物、气体成分、药物、食品添加剂等。
二、液相色谱(Liquid Chromatography, LC)液相色谱是一种在液相流动条件下进行分离的色谱技术。
其原理是利用固定相和流动相之间的相互作用将样品混合物分离成单独的组分,然后通过检测器进行检测和定量分析。
液相色谱广泛应用于生物、药物、环境、食品等领域。
液相色谱的主要特点包括适用性广、分离效果好、灵敏度高、分辨率高等。
在实际应用中,液相色谱常用于分析生物样品、药物、天然产物、环境污染物等。
三、超高效液相色谱(Ultra-high Performance Liquid Chromatography, UHPLC)超高效液相色谱是一种高效、快速的液相色谱技术。
其原理是利用超高压力将样品混合物快速分离成单独的组分,然后通过检测器进行检测和定量分析。
超高效液相色谱广泛应用于生物、药物、环境、食品等领域。
超高效液相色谱的主要特点包括分离效果好、分析速度快、灵敏度高、分辨率高等。
在实际应用中,超高效液相色谱常用于分析生物样品、药物、天然产物、环境污染物等。
12 色谱分析法

仪器分析
1、基线—在实验操 作条件下,色谱 柱中只有流动相 通过(没有组分 流出时)的曲线 叫基线。 稳定情况下:一条 水平直线。 基线上下波动称为 噪音。
仪器分析
2、色谱峰的高度h
峰高h —色谱峰最高点与基线之间的距离,可用 mm,mV,mA表示。峰的高低与组分浓度有关, 峰越高越窄越好。
h
仪器分析
1.涡流扩散项 A A = 2λdp
(1)影响因素: ①λ:填充物的不规则程度。λ↓,A↓。 ②dP:填充物的平均颗粒直径。 dP ↓,A↓。
(2)减小A的方法:
①填充色谱柱时要均匀、紧密;
②使用适当细度、颗粒均匀的填充物。
仪器分析
2. 分子扩散项 B / u 以GC为例: B / u = 2γ Dg / u (1)影响因素: ①γ:弯曲因子,填充物对分子扩散的障碍因素, γ ↓,B↓,(B/u)↓。 ②Dg:组分在流动相中的扩散系数。 Dg ↓,B↓, (B/u)↓。 影响Dg的因素: 与载气分子量的平方根成反比; 随T柱↓而↓,随P柱↑而↓。
仪器分析
(2)保留时间tR —— —组分流经色谱 柱时所需时间。 进样开始到柱后 出现最大值时所 需的时间。操作 条件不变时,一 种组分对应有一 个tR定值。
仪器分析
(3)调整保留时间t’R
扣除了死时间的保 留时间。 t’R=tR-t0 t’R 体现的是组分在 柱中被吸附或溶解 的实际时间。
VR kVg KVl
VR KVl Vg
仪器分析
(二)塔板理论
把色谱柱比作一个精馏塔,将连续的色 谱分离过程分割成多次的平衡过程的重 复,同时引入理论塔板数作为衡量柱效 率的指标。 对一个色谱柱来说,若色谱柱长度L固 定,每一块塔板的高度用H表示,称为 塔板高度。
色谱法分离原理

2.分配比 k 分配比又称容量因子,它是指在一定 温度和压力下,组分在两相间分配达平 衡时,分配在固定相和流动相中的物质 的量比。即 k = 组分在固定相中的物质的量 / 组分在流动相中的物质的量
= n s / nm
k值越大,说明组分在固定相中的量越
多,相当于柱的容量大,因此又称分配容 量或容量因子。它是衡量色谱柱对被分离 组分保留能力的重要参数。k值也决定于组 分及固定相热力学性质。它不仅随柱温、 柱压变化而变化,而且还与流动相及固定 相的体积有关。
分配比 k 值可直接从色谱图中测得。 k = (t R – t M ) / t M = tR / t M = VR / V 0
3. 分配系数K与分配比 k 的关系
K = kVM/VS =k .
其中β称为相比,它是反映各种色谱柱 柱型特点的又一个参数。例如,对填充 柱,其β值一般为6-35;对毛细管柱,其 β值为60-600。
(二)基线 在实验操作条件下,色谱柱后没有样 品组分流出时的流出曲线称为基线,稳 定的基线应该是一条水平直线。 (三)峰高 色谱峰顶点与基线之间的垂直距离, 以(h)表示。
色谱峰 信 号
进样
空气峰
h a
色谱流出曲线 色谱流出曲线和色谱峰 基线(a) 峰高(h)
(四)保留值 1.死时间tM 不被固定相吸附或溶解的物质进入色 谱柱时,从进样到出现峰极大值所需的 时间称为死时间,它正比于色谱柱的空 隙体积,如下图。
随着色谱工作的发展,通过化学反应将固 定液键合到载体表面,这种化学键合固定相 的色谱又称化学键合相色谱(CBPC)。
2.按分离机理分类
利用组分在吸附剂(固定相)上的吸附 能力强弱不同而得以分离的方法,称为 吸附色谱法。 利用组分在固定液(固定相)中溶解度 不同而达到分离的方法称为分配色谱法。 利用组分在离子交换剂(固定相)上的 亲和力大小不同而达到分离的方法,称 为离子交换色谱法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
色谱分析分离方法概述本书是色谱世界《色谱技术丛书》的第一分册。
全书共四章,主要说明了色谱法的发展及其在分析化学中的地位和作用,色谱法的特点、分类及性能比较,色谱法的原理,色谱模型理论等方面的内容。
第一章色谱法的发展及其在分析化学中的地位和作用第一节色谱法发展简史一、色谱法的出现二、色谱法的发展三、色谱法的现状和未来第二节色谱法在工业生产和科学研究中的作用一、色谱法在经济建设和科学研究中的作用二、色谱法在分析化学中的地位和作用第三节色谱法与其他方法的比较和配合一、色谱法的特点和优点二、色谱法和其他方法的配合第二章色谱法的特点、分类及性能比较第一节色谱法的定义与分类一、按流动相和固定相的状态分类二、按使用领域不同对色谱仪的分类第二节现代色谱法的应用领域和性能比较一、色谱法的应用领域二、各种色谱方法的性能比较第三章色谱法的原理第一节色谱分析的基本原理一、色谱分离的本质二、色谱分离的塔板理论第二节色谱法中常用的术语和参数一、气相色谱中常用的术语和参数二、液相色谱中常用的术语和参数第三节色谱的速率理论一、气相色谱速率理论二、液相色谱速率理论第四章色谱模型理论第一节色谱模型概述一、色谱模型理论的意义二、色谱模型的建立三、色谱模型的求解第二节线性色谱一、理想过程二、反应色谱三、扩散的影响四、相间传质阻力的影响五、同时含扩散与相同传质阻力的情形第三节单组分理想非线性色谱一、理想非线性色谱数学模型分析二、谱带发展与流出曲线三、理想非线性色谱间断解的数学意义———弱解四、非线性反应色谱第四节双组分理想非线性色谱一、数学模型分析二、情形三、简单波的传播四、激波五、谱带的发展与保留值的计算第一节色谱法发展简史俄国植物学家茨维特于1903年在波兰华沙大学研究植物叶子的组成时,用碳酸钙作吸附剂,分离植物干燥叶子的石油醚萃取物。
他把干燥的碳酸钙粉末装到一根细长的玻璃管中,然后把植物叶子的石油醚萃取液倒到管中的碳酸钙上,萃取液中的色素就吸附在管内上部的碳酸钙里,再用纯净的石油醚洗脱被吸附的色素,于是在管内的碳酸钙上形成三种颜色的6个色带。
当时茨维特把这种色带叫作“色谱”.茨维特于1906年发表在德国植物学杂志上用此名,在这一方法中把玻璃管叫作“色谱柱”,碳酸钙叫作“固定相”,纯净的石油醚叫作“流动相”。
把茨维特开创的方法叫液固色谱法。
二、色谱法的发展在茨维特提出色谱概念后的20多年里没有人关注这一伟大的发明。
直到1931年德国的Kuhn和Lederer才重复了茨维特的某些实验,用氧化铝和碳酸钙分离了α-,β-,和γ-胡萝卜素,此后用这种方法分离了60多种这类色素。
Martin 和Synge在1940年提出液液分配色谱法,即固定相是吸附在硅胶上的水,流动相是某种有机溶剂。
1941年Martin和Synge提出用气体代替液体作流动相的可能性,11年之后James和Martin发表了从理论到实践比较完整的气液色谱方法,因而获得了1952年的诺贝尔化学奖。
在此基础上1956年Golay开创了开管柱气相色谱法,习惯上称为毛细管柱气相色谱法。
1956年VanDeemter等在前人研究的基础上发展了描述色谱过程的速率理论,1965年Giddings总结和扩展了前人的色谱理论,为色谱的发展奠定了理论基础。
另一方面早在1944年Gonsden等就发展了纸色谱,1949年Macllean等在氧化铝中加入淀粉粘合剂制作薄层板使薄层色谱法(TLC)得以实际应用,而在1956年Stahl开发出薄层色谱板涂布器之后,才使TLC得到广泛地应用。
在60年代末把高压泵和化学键合固定相用于液相色谱,出现了高效液相色谱(HPLC)。
80年代初毛细管超临界流体色谱(SFC)得到发展,但在90年代后未得到较广泛的应用。
而在80年代初由Jorgenson等集前人经验而发展起来的毛细管电泳(CZE),在90年代得到广泛的发展和应用。
同时集HPLC 和CZE优点的毛细管电色谱在90年代后期受到重视。
到56世纪色谱科学将在生命科学等前沿科学领域发挥他不可代替的重要作用。
三、色谱法的现状和未来色谱法经过近一个世纪的发展,各种方法发展不平衡。
McNair认为气相色谱(GC)可能是世界上应用最广的分析技术,他仍处于上升的趋势,有报告估计GC仪器和备件在世界市场上高达10亿美元,并将以3%——4%逐年增长,其中软件35%,硬件65%。
所以如此,是因为气相色谱的灵敏度高,分离度好,分析速度快,定量分析的精密度优于1%。
将来的发展趋势是增强自动化,特别是计算机工作站的应用,以及专门的进样装置与气相色谱仪的一体化,包括顶空、吹扫捕集、固相萃取、超临界流体萃取和加速溶剂萃取。
GC/MS将以5%——10%的速度增加,GC/FTIR会维持现状,GC/NMR会有商品仪器问世。
高效液相色谱(HPLC)近年以6%——8%的速度增长,其中活跃的领域是离子色谱(IC),疏水作用色谱(HIC),手性分离及普遍使用的反相色谱,HPLC 除具有GC的优点外,还有应用面广,可以进行制备分离,在生命科学中有很大的应用前景。
HPLC的仪器市场尚未成熟,他将持续增长,主要在LC/MS系统以及开发更为简单便宜的系统。
G.Guiochon认为GC和HPLC在分离分析领域发展最好,是极为成功的范例,而超临界流体色谱(SFC)和场流分离(FFF)则处于失利的境地,毛细管区带电泳(CZE)和电色谱则处于前途未卜的状态。
关于超临界流体色谱(SFC)是Giddings和Myers早在60年代就进行了先驱性的研究工作,在80年代初期掀起SFC的热潮,而且当时认为SFC将掀起分析方法的革命,但是目前各大公司却纷纷撤消SFC的推销,放弃进一步开发SFC的计划。
毫无疑问SFC具有一些独特用途,但是他被挤在气相色谱和高效液相色谱之间,而GC和HPLC已成为广泛应用的技术,所以SFC命中注定处于被束之高阁的地位。
毛细管区带电泳(CZE)于80年代初引起分析化学家极大的兴趣,由于他具有惊人的高柱效,使许多分析化学家趋之若鹜地奔向CZE,许多色谱学家也都转向CZE,希望他能解决一切分离问题。
但是许多工业分析化学家现在沮丧了,因为虽然CZE具有很高的柱效,但是他失去了色谱方法灵活调节分离因子的机动性,他难以成为定量分析的手段,CZE分析结果的偏差要比HPLC整整大一个数量级,这是一个极大的障碍。
仪器制造商们眼巴巴地看着销售额的下降。
CZE只有他成为一个真正的定量分析方法之后才能获得广泛的应用。
要解决这一困难的问题,需要付出十分艰辛的研究。
现在电色谱(EC)成为这一领域的新秀,很多人希望EC能获得成功,尽管要下一个结论还为时尚早,但是EC驱动流动相的方式和CZE相同,都是使用了电渗流,这种流动速度的波动造成CZE在定量分析中的误差来源,要克服这一困难是近期具有挑战性的研究任务。
有许多理由说明SFC和场流分离(FFF)是不够成功的,他们不能成为分析方法的主流。
而CZE和EC是在苦难地挣扎之中,要使之成功和普及并成为定量分析方法必须具备:①易于使用,操作费用低;②能够得到准确、可重复的定量结果;③要能够解决至少一个分析化学中的重要问题。
在所有这三个问题中,他的功能必须超过其他技术。
在20世纪60年代的GC和70年代的HPLC就是这样的。
SFC,CZE和EC是很重要的分析分离方法,都有自己的某些特殊的优点,他们如能满足上述要求就会得到广泛的应用。
不过CZE还是具有极大的机遇的,用他来分析生物大分子有非常突出的优点,只要把他的定量分析精度明显地提高,他会蓬勃发展,成为极其重要的分析方法。
第二节色谱法在工业生产和科学研究中的作用一、色谱法在经济建设和科学研究中的作用世界性的科学技术和生产的发展、进步,推动了分析化学的发展,而色谱分析是分析化学的重要组成部分,从一出现就对科学的进步和生产的发展起着重要的作用。
在20世纪30--40年代他为揭开生物世界的奥秘,为分离复杂的生物组成发挥了独特的作用;年代为石油工业的研究和发展作出了贡献;60--70年代成为石油化工、化学工业等部门不可缺少的分析监测工具。
目前色谱法是生命科学、材料科学、环境科学、医药科学、食品科学、法庭科学以及航天科学等研究领域的重要手段。
各种色谱仪器已经成为各类研究室、实验室极为重要的仪器设备。
表1-1-1不同年代各种分析方法所占的比例二、色谱法在分析化学中的地位和作用色谱分析法的特点是他具有高超的分离能力,而各种分析对象又大都是混合物,为了分析鉴定他们是由什么物质组成和含量是多少,必须进行分离,所以色谱法成为许多分析方法的先决条件和必需的步骤。
从表1-1-1 的数据可以看出色谱法在近年来各类分析化学方法中占有十分重要的地位。
第三节色谱法与其他方法的比较和配合一、色谱法的特点和优点1.色谱法的特点色谱法是以其高超的分离能力为特点,他的分离效率远远高于其他分离技术如蒸馏、萃取、离心等方法。
2.色谱法的优点色谱法有许多优点:(1)分离效率高。
例如毛细管气相色谱柱(0.1--0.25μm i.d )30--50m 其理论塔板数可以到7万--12万。
而毛细管电泳柱一般都有几十万理论塔板数的柱效,至于凝胶毛细管电泳柱可达上千万理论塔板数的柱效。
(2)应用范围广。
他几乎可用于所有化合物的分离和测定,无论是有机物、无机物、低分子或高分子化合物,甚至有生物活性的生物大分子也可以进行分离和测定。
(3)分析速度快。
一般在几分钟到几十分钟就可以完成一次复杂样品的分离和分析。
近来的小内径(0.1mm i.d)、薄液膜(0.2μm)、短毛细管柱(1--10m)比原来的方法提高速度5--10倍。
(4)样品用量少。
用极少的样品就可以完成一次分离和测定。
(5)灵敏度高。
例如可以分析几纳克的样品,FID可达 10^-12g/s,ECD达10^-13g/s;检测限为10^-9g/L和10^-12g/L的浓度。
(6)分离和测定一次完成。
可以和多种波谱分析仪器联用。
(7)易于自动化,可在工业流程中使用。
二、色谱法和其他方法的配合1.色谱分析法的缺点任何分析方法都有他的优点,同时也存在某些缺点。
色谱分析法的优点是突出的,但是也有缺点,即对所分析对象的鉴别功能较差,一般来说色谱的定性分析是靠保留值定性,但在一定的色谱条件下,一个保留值可能对应许多个化合物,所以色谱方法要和其他的方法配合才能发挥他更大的作用。
2.和其他方法的配合为了分离和鉴定一个有机混合物,常常把色谱方法的高效分离能力和光谱方法的鉴别能力结合在一起,发展了各种各样的联用技术。
如最常用的气相色谱质谱联用、气相色谱富利叶红外光谱联用,近年发展起来的高效液相色谱电喷雾质谱联用、毛细管电泳质谱联用、气相色谱等离子发射光谱联用等等。