核医学名词解释

合集下载

核医学 名解

核医学  名解

1.核医学(中)nuclear medicine 核医学是利用核素及其标记物进行临床诊断、疾病治疗以及生物医学研究的一门学科;广义则是放射性核素和核射线在医学上的应用及其理论研究的总称。

2.放射性活度(简称活度)(中)radioactivity A单位时间内发生衰变的原子核数量。

国际单位:贝可 1Bq=每秒一次(放射性核素在每秒钟内发生一次核衰变),旧制:居里 1Ci=3.7×10-10Bq3.电离(难)ionization当带电粒子(α、β粒子)通过物质时,和物质原子的核外电子发生静电作用,使电子脱离轨道束缚而形成自由电子,这一过程称为电离。

4.同位素(中)isotope核内质子数相同,但中子数不同,在元素周期表中处于同一位置的同种元素称为同位素;它们是化学性质相同的一类原子。

5.光电效应(难)photoelectric effect γ光子与介质原子的轨道电子(主要是内层电子)碰撞,把能量全部交给轨道电子,使之脱离原子而发射出来,而整个光子被吸收消失,这一作用过程称为光电效应。

6.同质异能素(中)isomer核内质子数相同,中子数也相同,但能量状态不相同的原子。

7.生物半衰期(易)biological half life放射性核素经生物代谢作用从机体内排出一半所需的时间。

8.有效半衰期(中)effective half life 是指放射性核素由于物理衰变和生物代(排)谢两者的共同作用,在体内的放射性减少一半所需的时间。

9.湮灭辐射(annihilation radiation):β+衰变产生的正电子具有一定的动能,能在介质中运动一定的距离,当其耗尽动能后,将与物质中的自由电子结合,转换为两个方向相反、能量各为0.511Mev 的γ光子的而自身消失的过程。

(β+粒子与物质作用耗尽动能后,将与物质中的电子结合,正负电荷相互抵消,两个电子的质量转换为两个方向相反、能量各为0.511Mev 的γ光子的过程)10、治疗用放射性药物(therapeutic pharmaceutical )(难)能够高度选择性浓集在病变组织产生局部电离辐射生物效应,从而抑制或破坏病变组织发挥治疗作用的一类体内放射性药物11、诊断用放射性药物(diagnostic pharmaceutical) (难)用于获得体内靶器官或病变组织的影像或功能参数,进行疾病诊断的一类体内放射性药物。

核医学的名词解释

核医学的名词解释

核医学的名词解释核医学是应用核技术在医学诊断和治疗中的一门学科。

它利用放射性同位素标记的生物分子进入体内,通过检测和分析它们的放射性衰变过程,来获得人体内部器官的结构、功能以及代谢情况等信息,从而达到对疾病进行早期诊断和治疗的目的。

核医学主要包括放射性同位素的制备及其标记、医学影像学和生物学等方面内容。

在核医学诊断中,常见的影像学技术有放射性核素显像、单光子发射计算机断层扫描(SPECT)和正电子发射断层扫描(PET)。

这些技术通过将放射性同位素标记的生物分子注射到患者体内,利用放射性同位素的放射性衰变来探测和分析患者的器官结构和功能状态。

放射性核素显像是核医学中最早也是最常用的技术之一,它是通过摄取或注射放射性同位素来探测人体内脏器官的功能状态。

比如,甲状腺扫描常用于评估甲状腺的功能和结构,心脏显像则可以用来观察心肌供血和心脏功能状况。

这些显像技术通过测量放射性同位素在患者体内的分布来反映不同器官的代谢活性,从而帮助医生进行疾病的诊断。

而SPECT和PET则在核医学诊断中扮演着更加精确和敏感的角色。

SPECT通过测量单光子的发射能量和位置,可以提供三维的断层影像,用于心脏、脑部等多个器官的检查,尤其是对于功能性异常的早期诊断具有重要价值。

PET则通过注射放射性同位素标记的生物分子,如葡萄糖等,以观察其在患者体内的分布和代谢情况。

PET可以非常精确定位和定量分析器官细胞的代谢活性,对于肿瘤、心血管和神经系统等多种疾病的早期诊断和治疗监测起到至关重要的作用。

此外,核医学还在放射性同位素治疗方面有着广泛的应用。

放射性同位素治疗是利用放射性药物直接或间接杀死和控制肿瘤细胞的方法。

与传统的手术、放疗和化疗相比,放射性同位素治疗具有创伤小、疗效高、副作用少等优势。

比如,对于甲状腺功能异常、骨转移的癌症患者,可以通过摄取放射性碘或其他放射性核素来破坏甲状腺或骨转移灶,达到治疗的目的。

在核医学领域,还有一些常用的术语和技术需要了解。

核医

核医

1 核医学:是将核技术应用与医学领域的学科,是用放射性核素诊断,治疗疾病和进行医学研究的医学学科。

2 基态:原子核可以处于不同的能量状态,平常状态下能量处于最低的状态。

3 激发态:子核在某些核反应,核裂变及放射性衰变后仍处于高能状态。

4 同位素:凡具有相同质子数而中子数不同的核素。

5 同质异能素:质子数和中子数都相同,处于不同核能状态的原子。

6 放射性衰变:放射性核素的原子由于核内结构或能级的调整,自发的释放出一种或一种以上的射线并转化为另一种原子的过程。

7 物理半衰期:反映放射性核素衰变速度,它是指放射性核素减少一半需的时间。

8 生物半衰期:指生物体内的放射性核素由于机体代谢以体内排出一半所需的时间。

9 肾图:静脉注射由肾小球滤过或肾小管上皮细胞分泌而不被再吸收的放射性示踪剂,在体外以肾图仪或SPECT连续记录,其滤过分泌和排泄的过程所记录的时间的放射性曲线称肾图。

可以了解两侧肾脏功能状态和上尿路排泄情况10 肿瘤的阳性显像:又称热区显像,指肿瘤由于功能代谢的改变,能够摄取正常物质所不能摄取的显像剂显示为放射浓带区。

11 有效半衰期:指生物体内的放射性核素由于机体代谢从体内排出和物理半衰变两个因素作用,减少至有效放射性活度一半所需的时间。

12 放射性活度:表示单位时间原子核的衰变能量。

国际单位为贝克(BQ)13 光电效应:R光子与介质原子的轨道电子碰撞,把能量全部交给轨道电子,使之脱离原子,光子消失。

14 湮灭辐射:正电子衰变所产生的正电子具有一定的功能,能在介质中运行一定的距离,当其能量耗尽时可与物质中的自由电子结合而转化为两个方向相反,能量各为0。

511MeV 的r光子而自身消失。

15 当量剂量:反映各种射线被吸收后所引起的生物效应几危险度的电离辐射量。

16 阴性显像:又称冷区显像,显像剂主要被有功能的正常细胞所摄取,显示正常组织器官的形态,而病变细胞摄取减低或不摄取,在显像上表示为放射性分布稀疏或缺损。

核医学名词解释

核医学名词解释

核医学名词解释1.核医学:是应用放射性核素或核射线诊断、治疗疾病和进行医学领域研究的学科。

2.SPECT:单光子发射型计算机断层仪。

3.PET:正电子发射型计算机断层仪。

4.ECT:发射式计算机断层显像。

5.放射性核素:不稳定核素的原子核能自发地放出各种射线同时变成另一种核素,称为放射性核素。

6.核衰变:放射性核素的原子核自发地放出射线,同时转变成别的原子核的过程,称为放射性核衰变,简称核衰变。

7.半衰期(T1/2):指放射性核素数目因衰变减少到原来的一半所需的时间,又称物理半衰期,常用来表示放射性核素的衰变速率。

8.生物半衰期:指生物体内的放射性核素由于机体代谢从体内排出一半所需要的时间。

9.放射性活度(A):是表示单位时间内发生衰变的原子核数,是一个反映放射性强弱的常用物理量。

其SI单位是贝克(Bq),定义为每秒一次衰变。

即1Bq=1s旧制单位是居里(Ci),1居里表示每秒3.7×1010次衰变。

居里与贝克的换算关系:1Ci=3.7×1010 Bq;1mCi=37MBq;1Bq=2.710-11Ci。

10.母牛:即放射性核素发生器,是一种从较长半衰期的放射性母体核素中分离出由它衰变而产生的较短半衰期子体放射性核素的一种装置,常用的是99Mo——99M Tc发生器。

11.放射性核素示踪技术:是以放射性核素或其标记的化学分子作为示踪剂,应用核射线探测仪器通过探测放射性核素在发生核衰变过程中发射出来的射线,来显示被标记的化学分子的踪迹,达到示踪目的,用于研究被标记的化学分子在生物体系或外界环境中的客观存在及其变化规律的一类核医学技术。

12.静态显像:当显像剂在脏器内或病变处的浓度达到高峰处于较为稳定状态进行的显像称为静态显像,是最常用的显像方法之一。

13.动态显像:在显像剂引入人体内后,迅速以设定的显像速度动态采集脏器的多种连续影像或系列影像,称为动态显像。

14.阳性显像:又称热区显像,是指显像剂主要被病变组织摄取,而且正常组织一般不摄取或摄取很少,在静态影像上病灶组织的放射性比正常组织高,而呈“热区”改变的显像。

核医学名词解释、简答、概述

核医学名词解释、简答、概述

1、核素nuclide :指质子数和中子数均相同,并且原子核处于相同能态的原子称为一种核素。

2、同位素isotope:具有相同质子数而中子数不同的核素互称同位素。

同位素具有相同的化学性质和生物学特性,不同的核物理特性。

3、同质异能素isomer:质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。

4、放射性活度radioactivity:简称活度:单位时间内原子核衰变的数量。

5、放射性核纯度:也称为放射性纯度,指所指定的放射性核素的放射性活度占药物中总放射性活度的百分比,放射性纯度只与其放射性杂志的量有关.6、放射化学纯度(放化纯):指特定化学结构的放射性药物的放射性占总放射性的百分比.7、放射性药物:指含有一个或多个放射原子(放射性核素)而用于医学诊断和治疗用的一类特殊药物。

8、正电子发射型计算机断层仪(PET):利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能,代谢成像的仪器。

9、单光子发射型计算机断层仪(SPECT):利用注入人体的单光子放射性药物发出的γ射线在计算机辅助下重建影响,构成断层影像的仪器。

10、“闪烁”现象 (flare phenomenon): 在肿瘤病人放疗或化疗后,临床表现有显著好转,骨影像表现为原有病灶的放射性聚集较治疗前更为明显,再经过一段时间后又会消失或改善,这种现象称为“闪烁”现象。

1、核医学的定义及核医学的分类.答:核医学是一门研究核素和核射线在医学中的应用及其理论的学科.及应用放射性核素诊治疾病和进行生物医学研究.核医学包括实验核医学和临床核医学.实验核医学主要包括核衰变测量,标记,示踪.体外放射分析,活化分析和放射自显影.临床诊断学是利用开放型放射性核素诊断和治疗疾病的临床医学学科.由诊断和治疗两部分组成.诊断和医学包括以脏器显像和功能测定为主要内容的体内诊断法和以体外放射分析为主要内容的体外诊断法.治疗核医学是利用放射性核素发射的核射线对病变进行高密度集中治疗.2、分子核医学的主要研究内容。

核医学名解

核医学名解

核医学:是一门利用放射性核素发射的核射线对疾病进行诊断、治疗和研究的学科。

元素:具有相同质子数的原子,化学性质相同,但其中子数可以不同。

核素:质子数相同,中子数也相同,且具有相同能量状态的原子,称为一种核素。

同一元素可有多种核素。

同质异能素:质子数和中子数都相同,但处于不同的核能状态原子。

同位素:凡同一元素的不同核素(质子数同,中子数不同)在周期表上处于相同位置,互称为该元素的同位素。

稳定核素(stable nuclide):原子核稳定,不会自发衰变的核素。

放射性核素(radionuclide):原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素。

放射性衰变(radiation decay):放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种原子的过程。

放射性活度:单位时间内原子核的衰变数量,单位:贝克。

基本衰变类型:α衰变;β衰变;正电子衰变;电子俘获;γ衰变。

半衰期(half-live):放射性原子核数从N0衰变到N0的1/2所需的时间。

核探测仪器的基本原理:电离作用、荧光现象、感光作用SPECT:单光子计算机发射断层显像仪是在γ照相机基础上发展起来的新一代仪器,分为探头、旋转支架、扫描床、计算机操作系统。

PET :正电子发射计算机断层显像仪是一种探测体内11C、13N、15O、18F等正电子核素的仪器,注入人体的正电子核素标记物随血液循环分布于组织或器官。

PET/CT:以PET特性为主,同时将PET影像叠加在CT图像上,使得PET影像更加直观,解剖定位更加准确。

放射性药物:含有放射性核素, 用于医学诊断和治疗的一类特殊制剂。

显像剂:诊断用放射性药物通过一定途径引入体内靶器官靶组织的影像或功能参数。

显像剂的特点:亲骨性好,血液清除快,有效半衰期短,γ射线能量适中,骨/软组织比值增高。

放射性核素发生器(radionuclide generator):从长半衰期核素的衰变产物中分离得到短半衰期核素的装置。

核医学 名解

核医学 名解

核医学:核医学是利用核素及其标记化合物用于诊断和治疗疾病的临床医学学科,包括诊断核医学和治疗核医学。

核素:指质子数,中子数均相同,且原子核处于相同能级状态的原子。

半衰期:指放射性核素的数量因衰变减少一半所需要的时间,又称物理半衰期。

(T1/2=0.693/λ)湮灭辐射:β+衰变产生的正电子具有一定的动能,能在介质中运行一定的距离,当其能量耗尽时可与物质中的自由电子相结合,转化为两个方向相反,能量各为0.511MeV的γ光子消失,这叫湮灭辐射,是符合正电子显像的基础。

晶体(闪烁体):用于放射性测量的闪烁晶体是在放射线或原子核粒子作⽤下发生闪烁现象的晶体材料,其作用是将射线的辑射能转变为光能,因此又被称为闪烁体。

光电倍倍增管(PMT):是基于光电效应和二次电子发射效应的真空电子器件,其作用是将微弱的光信号转换成可测量的电信号,因此它也是一种光电转换放大器件。

符合探测:利用湮灭辐射的特点和两个相对探测器输出脉冲的符合来确定闪烁事件位置的方法称为电子准直,这种探测方式则称为符合探测。

甲功仪:主要用于甲状腺功能的测定和诊断,它是以甲状腺组织对放射性碘摄取率来衡量甲状腺的功能故而又称为甲状腺吸碘率测定仪。

动态显像:是显像剂引⼊体内后迅速以设定的显像速度采集脏器的多帧连续影像。

静态显像:是指当显像剂在脏器内或病变处的浓度处于稳定状态时进行的显像。

阳性显像:指显像剂主要被病变组织摄取,而正常组织⼀般不摄取或摄取很少,在静态影像上病灶组织的放射性比正常组织高而呈“热区”改变。

如心肌梗死灶显像等。

阴性显像:指显像剂主要被有功能的正常组织摄取,而病变组织基本上不摄取,在静态影像上表现为正常组织器官的形态,病变部位呈放射性分布稀疏或缺损。

如心肌灌注显像,甲状腺显像等。

负荷显像:是受检者在药物或生理性活动干预下所进行的显像。

有利于发现在静息显像下不易观察到的病变从而提高显像诊断的灵敏度。

正电子显像:是用于探测正电⼦的显像仪器通过显像剂中放射性核素发射的正电子进行的显像技术,称为正电子显像。

核医学答案完整版

核医学答案完整版

核医学答案完整版一、名题解释核医学一、名词解释:1、核医学:包括试验和医学和临床核医学。

前者主要利用核素及放射线进行生物医学的理论研究以探索生命本质中的重大问题,加深对生理生化过程和病理过程的认识。

后者则主要利用核素及放射线来诊断和治疗疾病。

2、核素:表示某种原子具有一定特征的名称,凡是原子核内质子数、中子数和能量状态均相同的一类原子,称为一种核素。

3、同位数:质子数相同,中子数不同的一些核素称为同位数。

4、同质异能素:相同的核内质子数以及中子数,但不同的能量的状态,称为同质异能态。

5、物理半衰期:放射性核素衰变其原有核素一半所需时间,称之为半衰期,用T?表示。

6、放射性活度:单位时间内发生衰变的次数,用A表示。

7、放射性比活度:某一样品中某种核素的放射性活度和该种元素化学量的比值。

某一标记化合物样品中某种核素的放射性活度和该化合物化学量的比值。

8、间接作用:当辐射的能量向生物分子传递时,通过扩散的离子及自由基起作用,并被生物分子所吸收而产生的生物学效应。

9、直接作用:电离辐射穿过生物组织时,由于其辐射能量向组织传递造成生物体的物理和化学损失。

10、开放源:指工作中使用的那些能向周围环境播散放射性核素的气态、液态、固态或粉末状、气溶状态的电离辐射源。

11、封闭源:将放射物质固定于一个全封闭的非放射性的外壳内的任何电离辐射源。

12、随机效应:指射线引起的危害在一定条件下有可能出现,也可能不出现。

13、确定性效应:指射线对人体的危害不存在几率性,只要达到一定的照射,就都会出现一定的损伤。

14、放射性药物:指含有放射性核素、用于医学诊断和治疗的一类特殊制剂。

一般由两部分组成,标记的放射性核素和被标记的化合物。

15、放射化学纯度:放射性标记化合物的放射性活度占该样品的总放射性活度的百分比。

16、放射性核素发生器:是一种从放射性核素母子体系中周期性分离出子体的装置。

17、激发: 退激时,获得的能量以光能或热能的形式释出。

核医学名解

核医学名解

1.核医学:用放射性核素诊断、治疗疾病和进行医学研究的医学科目。

2.同位素:具有相同质子数但具有不同中子数,在化学元素排在同一位置。

3.核素:是原子核的属性,原子核的质子数、中子数和原子核所处的能量状态完全相同的原子集合成为核素。

4.稳定性核素:原子核中,当核内中子数和质子数保持一定比例时,核力与斥力平衡不致发生核内成分或能态变化,这类核素称为稳定性核素。

5.放射性核素:原子核内质子或中子过多,都会使原子核失去稳定性,称为不稳定核素,又称放射性核素。

6.核衰变:不稳定核素通过自发性内部结构或能态调整使其稳定的过程。

与此同时,它将释放一种或一种以上的射线,这种性质称为放射性。

7.α衰变:是核衰变时放出α离子的衰变,主要发生在Z>82的核素。

8.β衰变:是核衰变时释放出β射线或俘获轨道电子的衰变,包括β+衰变,β-衰变和电子俘获三种形式。

9.γ衰变:是指核素由高能态向低能态、或激发态向基态跃迁过程中放射出γ射线或称单光子的衰变。

10.衰变定律:衰变过程中初始母核数的减少遵循指数函数的规律,其表达式为N=No*e^-λt。

11.半衰期(物理半衰期):某一放射性核素在衰变过程中,原有的放射性活度减少至一半所需要的时间称为T1/2。

放射性活度:单位时间内发生核衰变的次数,国际单位为贝可,定义为每秒发生一次核衰变。

12.生物半衰期:指进入生物体内的放射性活度经由各种途径从体内排出原来一半所需要的时间。

Tb13.有效半衰期:指生物体内的放射性活度由从体内排出和物理衰变双重作用,在体内减少为原来一半所需要的时间。

Teff14.SPECT:单光子发射型计算机断层显像仪。

PET:正电子发射型计算机断层显像仪。

15.放射免疫分析法:是建立在放射性分析的高度灵敏性和免疫反应的高度特异性的基础上,通过测定放射性标记抗原-抗体复合体的量来计算出待测抗原(样品)的量。

16.热结节:结节部位放射性分布高于正常甲状腺组织,有时仅结节显影而正常组织不显影,多见于功能性甲状腺腺瘤和结节性甲状腺肿。

核医学

核医学

1.核医学(Nuclear medicine) 是用放射性核素及其标记物进行诊断、治疗疾病和医学研究的医学学科2.核医学常用仪器:γ照相机,SPECT单光子发射型计算机断层扫描仪,PET正电子发射型计算机断层显像,扫描机3.放射性药物含有放射性核素, 用于医学诊断和治疗的一类特殊制剂。

用于获得体内靶器官或病变组织的影像或功能参数,进行疾病诊断的一类体内放射性药物。

也称为显像剂(imaging agent)或示踪剂(tracer)。

4.放射性元素的原子核有半数发生衰变时所需要的时间,叫半衰期(Half-life)。

核素(nuclide)是指质子数、中子数均相同,并且原子核处于相同能级状态的原子称为一种核素。

同位素(isotope):凡具有相同质子数但中子数不同的核素互称同位素。

同质异能素:(isomer)是指质子数和中子数都相同,但原子核处于不同能态的原子放射性核素(radionuclide):原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称为放射性核素。

放射性衰变:放射性核素自发的释放出一种或一种以上的射线并转化为另一种原子的过程。

5.a粒子:质量大,带电荷,故射程短,穿透力弱。

主要用于治疗β-衰变:射线的本质是高速运动的电子流,主要发生于富中子的核素。

特点:穿透力弱,在软组织中的射程仅为厘米水平。

可用于治疗。

β+衰变:射线的本质是正电子,主要发生于贫中子的核素。

特点:正电子射程短. 在通常环境中不可能长时间稳定地存在,它碰到电子就会发生湮灭,产生一对能量为511kev、方向相反的γ光子。

主要用于正电子发射断层仪显像(PET)y衰变:原子核从激发态回复到基态时,以发射 光子形式释放过剩的能量。

往往是继发于α衰变或β衰变后发生特点:本质是中性的光子流,不带电荷,运动速度快(光速),穿透力强。

适合放射性核素显像6.天然本底照射;是指人类受到天然存在的各种电离辐射源的照射。

比如,人们乘坐飞机旅行时受到的宇宙射线辐射,人们在户外受到的存在于土壤和空气中的天然放射性元素辐射照射等。

核医学

核医学

一、名词解释1核医学:是利用核素及其标记物进行临床诊断、疾病治疗以及生物医学研究的一门学科,是核科学技术与医学相结合的产物,是现代医学的重要组成部分。

2核素:是指质子数、中子数均相同,并且原子核处于相同能级状态的原子.3同位素:凡具有相同质子数但中子数不同的核素互称同位素,它具有相同的化学和生物学性质。

4同质异能素:质子数和中子数都相同,处于不同核能状态的原子称为同质异能素。

5半衰期:是实际工作中描述放射性核素衰变速率的参数,可分为物理半衰期和生物半衰期。

6闪烁现象:临床观察到约5%—10%的骨转移癌患者在给予放射性核素治疗后2—10天,骨痛加剧持续约2—4天,称为闪烁现象或反跳痛。

6阳性显像:指显像剂主要被病变组织摄取,而正常组织一般不摄取或摄取很少,在静态影像上病灶组织的放射性比正常组织高而呈热区改变,如放射免疫显像等。

7阴性显像:指显像剂主要被功能正常的组织摄取,而病变组织基本不摄取,在静态影像上表现为正常组织器官的形态,病变部位呈放射性分布稀疏或缺损,临床上常规显像如肝胶体现象等。

8超级骨显像:放射显像剂均匀分布全身骨骼,对称性异常浓聚,骨骼影像清晰,双肾常不显影、膀胱不显影或仅轻度显影,软组织内放射性分布极低,这种影像称为超级骨显像。

9γ衰变:原子核从激发态回复到基态,以发射γ光子形式释放过剩的能量这一过程称为γ衰变。

10同质异能素:质子数和中子数都相同,所处的核能状态不同的原子,激发态的原子与基态的原子互为同质异能素。

二、简答题1甲状腺功能测定仪的原理和作用?答:⑴原理:是一种利用放射性碘作为示踪剂测定人体甲状腺的仪器,它实际上是一台单探头γ射线计数测量装置,由准直器、γ闪烁探测器,放大器、单道脉冲高度分析器、定标器或计算机组成。

准直器一般采用张角型,再开口部附近的准直器轴线上是灵敏度最高的区域,因而适合浅表脏器的功能测量,准直器的张角长度约20cm,视野直径为12—15cm,当患者颈部贴近准直器时,张口刚好把甲状腺覆盖,此时探头晶体表面距颈部的距离为20cm。

核医学

核医学

核医学一、名词解释。

1.同位素:相同质子数但中子数不同的核素2.同质异能素:质子数和中子数都相,所处的核能状态不同的原子数3.放射性衰变:放射性核素的原子由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种核素的原子核的过程4.光电效应:γ光子与介质原子的轨道电子碰撞,把能量全部交给轨道电子,使之脱离原子而发射出来,而整个光子被吸收消失,这一作用过程称为光电效应5.灌注-代谢不匹配:心肌灌注显像稀疏、缺损区,葡萄糖代谢显像示18F-FDG摄取正常或相对增加6.灌注-代谢匹配: 心肌灌注显像稀疏、缺损区,葡萄糖代谢显像示18F-FDG 摄取呈一致稀疏或缺损7·核医学:是利用核素及标记物进行临床诊断、疾病治疗以及生物医学研究的一门学科,是核科学技术与医学相结合的产物,是现代医学的重要组成部分8.半衰期:是指放射性核素由于衰变其数量和活度减少一半所需要的时间(包括物理、生物半衰期)9.韧致辐射:带电粒子受到原子核电场的作用,运动速度和方向突然发生变化,能量的部分或全部以X线的形式发射出来10.湮灭辐射:β+衰变产生的正电子具有一定的动能,能在介质中运行一定距离,当其能量耗尽时可与物质中的自由电子结合,转化为两个相反、能量各为0.511MeV的γ光子而自身消失11.超级骨显像:放射性显像剂在全身骨骼分布均匀、对称性的异常浓聚,骨骼影像非常清晰,而双肾常不显影,膀胱不显影或仅轻度显影,软组织内放射性分布极低12.放射性活度:表示单位时间内发生衰变的原子核数量13.反向再分布:负荷显像分布正常,静息或延迟显像分布稀疏或缺损;或者负荷显像分布缺损,静息或再分布显像原缺损更严重,这种显像被称为反向再分布二.填空1·1895年伦琴发现X线,1896贝克勒尓发现铀的天然放射性,1898居里夫妇提炼出镭和卜2.SPECT/CT、PET/CT可同时获得病变部位的功能代谢状况和精确解剖结构的定位信息3.核衰变类型:α衰变、β衰变(正电子衰变和负电子衰变{用于治疗})、电子俘获、γ衰变4.入是单位时间的衰变常数,入是反映放射性核素衰变速率的特征参数5.放射性活度的国际单位:贝克(Bq)6.SPECT结构与原理:实际上是一台高性能γ照相机的基础上增加了探头旋转装置和图像重建的计算机软件系统(基本机构:探头、旋转运动机架、计算机及辅助设备)7.吸收剂量单位:戈瑞(Gy)当量剂量单位:希沃特(Sv)8.甲亢:FT3甲减:FT49.亚急性甲状腺炎:临床表现出甲状腺摄131I率(低)和血清T3、T4水平(高)呈分离现象,来诊断亚甲炎10.甲状腺显像剂:高锝酸盐(99m TcO4-)11.可用131I全身显像寻找甲状腺癌转移灶12.甲亢患者的甲状腺显像多表现为外形增大,腺体内显像剂分布弥漫性异常增浓,周围组织本底较低13.骨动态显像:血流相、血池相、延迟相。

核医学名解

核医学名解

核医学名解名词解释(百分之百涵盖率)衰变:原子核自发放射α粒子的核衰变过程。

α粒子是电荷数为2、质量数为4的氦核He。

散射:带电粒子与物质的原子核碰撞而改变运动方向或/和能量的过程★核素:质子数、中子数均相同,并处于同一能量状态的原子,称为一种核素(nuclide)放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素,称为放射性核素(radionuclide)★同位素:质子数相同,但中子数不同的核素,它们在元素周期表中占据相同的位置,互称为同位素(isotope)★同质异能素:具有相同的质子数和中子数,处于不同核能态的核素互称为同质异能素。

基态的原子和激发态的原子互为同质异能素(isomer)。

★核衰变放射性核素由于核内结构或能级调整,自发地释放出一种或一种以上的射线并转化为另一种核素的过程,称为核衰变(nuclear decay)★物理半衰期(physical half life)指放射性核素减少一半所需要的时间(T1/2)。

★生物半排期(biological half life)指生物体内的放射性核素经各种途径从体内排出一半所需要的时间(Tb)★有效半减期(effective half life)指生物体内的放射性核素由于从体内排出和物理衰变两个因素作用,减少至原有放射性活度的一半所需的时间(Teff)。

3、确定性效应、随机效应P30答:确定性效应是指辐射损伤的严重程度与所受剂量呈正相关,有明显阈值,剂量未超过阈值不会发生有害效应;随机效应是辐射效应发生的几率与剂量相关的效应,不存在具体的阈值。

隐匿性伤害。

★阳性显像(positive imaging)是以病灶对显像剂摄取增高为异常的显像方法。

由于病灶放射性高于正常脏器、组织,故又称“热区”显像(hot spot imaging)如放射免疫显像、急性心肌梗死灶显像、肝血管瘤血池显像等。

★阴性显像(negative imaging)是以病灶对显像剂摄取减低为异常的显像方法。

核医学

核医学

核医学(nuclear medicine):利用放射性示踪技术探索生命现象、研究疾病机制和诊断疾病的学科;是利用放射性核素及其制品进行内照射治疗和近距离治疗的学科。

核医学的特点:1、基础医学与临床医学的桥梁复合型学科2、高度灵敏度(超前性)3、动态观察与自然生理4、生命过程的全面性5、核素治疗的特点:(1)靶向性(2)持续低剂量照射(3)高吸收剂量☆核素显像与X线诊断学、B超比较射线来源诊断依据特点核素体内发射放射性浓度功能分子水平X线体外穿透组织密度解剖形态结构B超机体反射组织密度解剖形态结构核素(Nuclide):质子数和中子数相同并且核的能量状态也相同同。

同位素( Isotope):质子数相同中子数不同的元素互为同位素,具有相同的化学性质和生物性质。

同质异能素:质子数和中子数都相同但核的能量状态不同的核素互称同质异能素.放射性核素:原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素放射性衰变:不稳定的核素通过发射粒子或光子、放出核能成为另一种核素的过程。

(以指数规律减少)放射性活度(radioactivity):单位时间内发生衰变的原子核数(次数)。

旧制单位curie居里Ci、毫居里mCi、微居里Ci 、纳nCi;国际制单位becquerel贝可Bq。

1Ci=3.7×1010Bq比活度 specific activity:单位量物质中的放射性活度。

物理半衰期 T1/2:原子数减少一半的时间。

生物半衰期:生物体内的放射性核素由于机体代谢从体内排出一半所需要的时间。

有效半衰期:放射性物质在生物体内由于物理衰变和生物代谢共同作用下减少一半的时间。

带电粒子与物质的相互作用1.电离作用:物质中的原子失去轨道电子而形成正负离子对。

2.激发作用:原子的轨道电子从低能级变为高能级。

3.散射作用:改变方向4.韧致辐射:部分能量变为X射线,自身方向改变,发生率与受作用的物质原子序数成正比。

核医学名词解释

核医学名词解释

《核医学》名词解释放射性活度(radioactivity):表示单位时间内发生衰变的原子核数。

放射性药物(radiopharmaceutical):含有放射性核素,能直接用于人体进行临床诊断、治疗和科学研究的放射性核素及其标记物。

诊断放射性药物:诊断用放射性药物通过一定途径引入体内获得靶器官或组织的影像或功能参数,亦称为显像剂(imaging agent)或示踪剂(tracer)。

治疗放射性药物:利用发射T1/2较长的 -粒子的放射性核素或其标记化合物高度选择性浓集在病变组织而产生电离辐射生物效应,从而抑制或破坏病变组织,起到治疗作用。

放射性核素发生器(radionuclide generator):它是一种能从较长半衰期的放射性母体核素中分离出衰变后产生的较短半衰期子体放射性核素的一种装置。

又称“母牛”。

放射化学纯度(radiochemical purity):简称放化纯度,指特定的化学结构的放射性药物的放射性占总放射性的百分比。

放射性核素示踪技术(radionuclide tracer technique):放射性核素或其标记物作为示踪剂,引入人体后能参与体内吸收,分泌,代谢及排泄过程,发射射线,探测仪可探测发射线并记录下其分布、位置、量和性质来了解脏器的形态、位置、大小、功能改变协助诊断疾病。

动态显像(dynamic imaging):显像剂引入后立即以特定程序采集多帧或系列图像。

利用感兴趣区生成时间-放射曲线,计算动态过程中各种定量参数。

延迟显像(delayed imaging):显像剂引入人体内2小时以后进行的显像。

有的情况下,显像剂在病变组织内的清除较正常组织慢,延迟显像可显示病变组织。

介入显像(interventional imaging):在常规显像的条件下,借助药物或生理刺激等方法增加某个脏器的功能或负荷,通过观察脏器或组织对刺激的反应能力,判断脏器或组织的血流灌注与功能的储备能力,增加正常组织与病变组织之间放射性分布的差别,从而提高显像诊断的灵敏度和特异性的方法。

核医学主要内容

核医学主要内容

总论1、核医学(nuclear medicine):核医学是一门研究核素和核射线在医学中的应用及其理论的学科,即应用放射性核素及其标记化合物或生物制品进行疾病诊治和生物医学研究。

2、核医学的分类包括实验核医学和临床核医学两部分。

3、分子核医学:是分子生物学技术和现代放射性核素示踪技术相结合而产生的一门心的核医学分支学科。

4、实验核医学是利用和技术探索生命现象的本质和规律,为认识正常生理、生化过程和病理过程提供新理论和新技术,已广泛用于医学基础理论研究;其主要内容包裹核衰变测量、标记、示踪、体外放射分析、活化分析和放射自显影等。

5、临床核医学是利用开放型放射性核素诊断和治疗疾病的临床医学学科,由诊断和治疗两部分组成。

诊断核医学包括以脏器现象和功能测定为主要内容的体内诊断法和以体外放射分析为主要内容的体外诊断法;治疗核医学利用放射性核素发射的核射线对病变进行高度集中的照射治疗。

6、实验核医学和临床核医学是同一学科的不同分支,前者的成果不断推动后者的发展,而后者在应用与时间中又不断向前者提出新的研究课题,二者相互促进,密不可分。

7、核医学优势:①安全无创:放射性核素显像为无创性检查,所用的放射性核素物理半衰期短,显像剂化学剂量极微,病人所接受的辐射吸收剂量低,因此发生毒副作用的几率极低;②分子功能显像:核医学功能显像是现代医学影像的重要组成内容之一,它是通过探测接受并记录引入人体内靶组织或器官的放射性示踪物发射的γ射线,以影像的方式显示出来,不仅可以显示脏器或病变的位置、大小、形态等解剖学结构,更重要的是可以提供有关脏器和病变的血流、功能、代谢,甚至是分子水平的化学信息;③超敏感和特异性强:利用放射性核素示踪超敏感技术早起预警和探测病变,同时利用抗原与抗体、受体与配体等特异性结合和反义显像、基因表达显像等为临床诊治疾病提供客观、科学依据;④定量分析:在保证获得高质量的分子探针或示踪剂的前提下,借助生理数学模型和计算机软件技术可以进行半定量或定量分析;⑤同时提供形态解剖和功能代谢信息。

核医名解

核医名解

PET:即正电子发射型计算机断层,利用发射正电子的放射性核素及其标记物为显像剂,对脏器或组织进行功能、代谢成像的仪器。

PET 所用的核素是组成人体基本元素的同位素如11C、13N、15O、18F;其标记化合物为人体生理所必需的、可参与生理生化代谢过程的物质,如水、葡萄糖、氨基酸、受体的配体等SPECT:即单光子发射型计算机断层仪,是利用注入人体内的单光子放射性药物发出的γ射线在计算机辅助下重建影像,构成断层影像。

半衰期(T)表示特定能态放射核素的数量因衰变减少到原来核数一半所需的时间物理半衰期T1/2:放射性核素因衰变减少一半所需要的时间。

放射免疫分析:以抗原与其特异性抗体的免疫反应为基础,利用待测抗原及定量标记抗原与限量的特异性抗体进行竞争性结合反应,以放射性测量为定量手段,检测待测抗原的浓度的方法。

放射性核素发生器(母牛发生器):是从长半衰期核素的衰变产物中分离得到短半衰期核素的装置。

如钼-锝发生器,锡-铟发生器放射性活度(A)是表示单位时间内发生衰变的原子核数。

A=λN (放射性核数目N)单位是贝可(Bq),定义为每秒一次衰变。

其旧制单位是居里(Ci)放射性药物:指含有放射性核素、用于医学诊断和治疗的一类特殊制剂。

骨显像“闪烁”现象:部分患者在接受外放疗、放射性核素靶向治疗或化疗等后,病灶可呈一过性放射性摄取增加的显像。

为骨愈合和修复的表现,此时应在治疗后6 个月左右进行评价。

过度灌注(rCBF): 脑梗死的第五天,脑血流灌注显像显示病变的放射性减低区周围出现异常的放射性增高区。

核素:具有特定质量数、原子序数与核能态,而且其平均寿命长得足以被观测的一类原子核医学是利用核素及其标记物所发出的射线进行临床诊断、疾病治疗以及生物医学研究的一门学科Ø交叉性小脑失联络现象(CCD):脑梗死患者脑血流灌注显像中,一侧大脑皮质有局限性放射性分布减低或缺损,同时可见病变对侧小脑放射性减低,多见于慢性脑血管疾病。

核医学

核医学

一、绪论1.定义:核医学是利用放射性核素诊断、治疗疾病和进行医学研究的学科。

2.学科分类:根据我国专业学位点的设置,核医学属于“影像医学与核医学”学位点。

二、核物理1.核素(Nuclide):凡原子核内质子数、中子数和能量状态均相同的一类原子,统称为核素。

目前已知的核素有2300多种。

2.同质异能素(Isomer):核内质子数和中子数均相同,但所处核能状态不同的原子。

激发态的原子与基态的原子互为同质异能素,如99Tc与99mTc。

3.放射性核素(radionuclide):原子核处于不稳定状态,需通过核内结构或能级调整才能趋于稳定的核素称为放射性核素。

4.α衰变 Alpha(α)decay:放射性核衰变时释放出α射线的衰变。

α射线实质上是氦核(He)组成。

α衰变发生在原子序数大于83的重元素核素。

5.放射性活度 radioactivity,A:放射性物质的计量单位,表示放射性核素的衰变率,单位时间内,放射性物质核衰变的次数称为放射性活度,通常用A表示。

6.湮灭辐射annihilation radiation:β+衰变产生的正电子具有一定的动能,能在介质中运行一段距离,当其能量完全消失后,可与物质中的自由电子相结合,转化为一对发射方向相反、能量各为0.5llMeV的γ光子而自身消失。

这种现象称为湮没辐射。

三、放射性药物1. 最理想的用于ECT显像的核素是哪一种2-18F-2-脱氧-D-葡萄糖(18F FDG)是最常用的代谢显像剂。

最常用的放射性药物99mTc几乎可用于人体各重要脏器的形态和功能显像。

2.131I的临床应用:①131Ⅰ治疗Graves’病②131Ⅰ治疗自主功能性甲状腺结节③131Ⅰ治疗非毒性甲状腺肿④131Ⅰ治疗分化型甲状腺癌⑤131I-MIBG治疗肾上腺素能肿瘤四、辐射防护1.辐射防护的原则:使一切具有正当理由的照射应保持在可以合理做到的最低水平。

1)实践正当化 2)放射防护最优化原则3)个人剂量限值2.外照射防护措施:经典的外照射防护的三原则是: 1)时间:放射性操作应熟练、迅速。

核医学

核医学

核医学核医学是研究核技术在医学中的应用及其理论的学科。

是利用放射性示踪技术探索生命现象、研究疾病机制和诊断疾病的学科 。

是利用放射性核素及其制品进行内照射治疗和近距离治疗的学科。

是“体内的分子生物学”,是从生理生化的角度阐明和解决问题。

核医学要回答的问题:组织或细胞代谢活性的高低、功能的改变、是否存在可识别的生物标志物,如过度表达的相关抗原、受体等。

核医学要解决的问题:利用获得的代谢、功能和特定的生物标志物等信息对疾病进行诊断、鉴别诊断、治疗方案制定、疗效和预后评价,以此为基础进行或发展放射性核素靶向内照射治疗。

核医学显像的独特优势核医学已能为临床提供体内发生于细胞、亚细胞和分子水平的生物反应和变化过程的分子影像的信息。

核医学MI 的理论和技术,被其它医学影像学科借鉴或直接利用,引领并推动了MI 的发展和临床应用。

图像融合技术将代谢功能信息与解剖结构信息相结合,明显提高诊断效率,使影像诊断进入新的阶段。

核医学的特点核医学是基础医学与临床医学的桥梁核医学的超前性在线实时性反映生命过程的全面性放射性核素内照射治疗的特点靶向性:病变组织能高度特异性浓聚放射性药物,疗效好,毒副作用小。

如131I 甲状腺显像与治疗等。

持续性低剂量率照射:射线对病变进行持续的低剂量率照射,使病变组织无时间进行修复,疗效好。

高吸收剂量:内照射治疗的吸收剂量决定于病灶摄取放射性药物的多少和放射性药物在病灶内的有效半衰期。

核医学分子影像分子影像(MI )是利用显像的方法动态、定量地反映和描述生物体内细胞、亚细胞和分子水平的生物事件的过程及其结果,揭示和阐明生命的奥秘和疾病的机制。

MI 获得的信息和数据最能反映体内生物过程的真实状态。

核物理基础化学上把同种原子叫元素(Element)原子的理化特性主要取决于原子核中的质子数和中子数及其能量状态 核素(Nuclide):原子核具有特定的质子数(Z)和中子数(N)及一定能态(m)的原子,称为核素。

核医学名词解释及考试重点

核医学名词解释及考试重点

核医学:是一门争辩核素和核射线在医学中的应用及其理论的学科,即应用放射性核素及其标记化合物或生物制品进展疾病诊治和生物医学争辩。

在反映脏器或组织的血流、受体密度和活性、代谢、功能变化方面有独特的优势。

核医学的特点:1、安全、无创2、分子功能现象3、超敏感和特异性强4、定量分析5、同时供给形态解剖和功能代谢信息。

核素:质子数和中子数均一样,并处于同一能量状态的原子同位素:具有同样的原子序数〔质子数一样,即它们在元素周期表中占据一样的位置〕,但中子数不同〔即质量数不同〕的核素,互为同位素放射性核素:原子核不稳定,它能自发放射出一种或几种核射线,由一种核素衰变为另一种核素者核衰变:放射性核素自发的放射出一种或一种以上的射线并转化为另一种核素的过程物理半衰期:放射性核素因物理衰变削减至原来的一半所需的时间生物半排期:是生物体内的放射性核素因生物代谢的作用,使其削减至原来的一半所需的时间有效半减期的概念:指生物体内的放射性核素因物理衰变和生物代谢的共同作用,使其削减至原来的一半所需的时间放射性活度:单位时间内衰变的原子数量等于原子核衰变常数与其核数目之乘积。

核医学中反映放射性强弱的常用物理量。

国际单位:贝克勒尔〔Bq〕旧单位是居里〔Ci〕,1Ci=3.7×1010B q。

分子功能影像:核医学功能代谢显像是现代医学影像的重要组成内容之一,其显像原理与X 线、B 超、计算机体层摄影〔CT〕和核磁共振〔MR〕等检查截然不同,它通过探测接收并记录引入体内靶组织或器官的放射性示踪物放射的γ射线,并以影像的方式显示出来,这不仅可以显示脏器或病变的位置、形态、大小等解剖学构造,更重要的是可以同时供给有关脏器和病变的血流、功能、代谢甚至是分子水平的化学信息,有助于疾病的早期诊断。

单光子放射型计算机断层仪(SPECT)和正电子放射型计算机断层仪〔PET〕锝-99m〔99m Tc〕特点:核性能优良,为纯γ光子放射体,能量140keV,T1/2 为6.02h,99mTc 是现象检查中最常用的放射性核素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

核医学名词解释
1.核医学:是应用放射性核素或核射线诊断、治疗疾病和进行医学领域研究的学科。

2.SPECT:单光子发射型计算机断层仪。

3.PET:正电子发射型计算机断层仪。

4.ECT:发射式计算机断层显像。

5.放射性核素:不稳定核素的原子核能自发地放出各种射线同时变成另一种核素,称为放
射性核素。

6.核衰变:放射性核素的原子核自发地放出射线,同时转变成别的原子核的过程,称为放
射性核衰变,简称核衰变。

7.半衰期(T1/2):指放射性核素数目因衰变减少到原来的一半所需的时间,又称物理半衰
期,常用来表示放射性核素的衰变速率。

8.生物半衰期:指生物体内的放射性核素由于机体代谢从体内排出一半所需要的时间。

9.放射性活度(A):是表示单位时间内发生衰变的原子核数,是一个反映放射性强弱的
常用物理量。

其SI单位是贝克(Bq),定义为每秒一次衰变。

即1Bq=1s
旧制单位是居里(Ci),1居里表示每秒×1010次衰变。

居里与贝
克的换算关系:1Ci=×1010 Bq;1mCi=37MBq;1Bq=。

10.母牛:即放射性核素发生器,是一种从较长半衰期的放射性母体核素中分离出由它衰变
而产生的较短半衰期子体放射性核素的一种装置,常用的是99Mo——99M Tc发生
器。

11.放射性核素示踪技术:是以放射性核素或其标记的化学分子作为示踪剂,应用核射线探
测仪器通过探测放射性核素在发生核衰变过程中发射出来的射
线,来显示被标记的化学分子的踪迹,达到示踪目的,用于研究
被标记的化学分子在生物体系或外界环境中的客观存在及其变
化规律的一类核医学技术。

12.静态显像:当显像剂在脏器内或病变处的浓度达到高峰处于较为稳定状态进行的显像称
为静态显像,是最常用的显像方法之一。

13.动态显像:在显像剂引入人体内后,迅速以设定的显像速度动态采集脏器的多种连续影
像或系列影像,称为动态显像。

14.阳性显像:又称热区显像,是指显像剂主要被病变组织摄取,而且正常组织一般不摄取
或摄取很少,在静态影像上病灶组织的放射性比正常组织高,而呈“热区”
改变的显像。

15.阴性显像:又称冷区显像,指显像剂主要被有功能的正常组织摄取,而病变组织基本不
摄取,在静态影像上表现为正常组织器官的形态,病变部位呈放射性分布稀
疏或缺损。

16.体外放射分析:是指在体外条件下,以结合反应为基础,以放射性核素标记物为踪剂,
以放射测量为定量手段,对体内微量物证进行定量检测的技术的总称。

17.RIA:即放射性免疫技术,是在抗原抗体的结合反应中,加入用放射性核素标记的抗原
与有限量的特异性抗体发生竞争结合,当反应达到平衡后,将反应体系中的标记
抗原抗体复合物和游离标记抗原分离,并测定其放射性,从而测出待测抗原的含
量。

18.IRMA:即免疫放射分析技术,是把放射性核素标记到抗体上,然后以过量的标记抗体
与待测抗原结合,将标记的抗原-抗体复合物与未结合的标记抗体分离,通过放
射测量求的待测抗原的含量。

19.外照射:在核医学工作实践中,若放射源位于体外,其释放出的射线作用于机体称为外
照射,外照射防护的三要素:时间防护、距离防护、屏蔽防护。

20.内照射:在临床核医学工作中,使用放射性核素药物作诊断、治疗或基础探索,若放射
抗原需进入体内,然后分布在组织或器官中,形成的照射称为内照射。

21.照射量(X):是度量X射线、γ射线对空气电离能力的量,可间接反映X、γ辐射场的
强弱。

其定义为:X或γ射线的光子在质量为dm的空气中释放出来的全
部电子被空气所阻止时,在空气中产生任意一种符号的离子总电荷的绝对
值d Q与空气质量dm之比。

单位时间内的照射量称为照射量率。

22.吸收剂量(D):是指单位质量的被照射物质dm在受到照射后吸收任何电离辐射的平均
能量d E,是用来说明物质接受照射后吸收能-量多少的一个物理量。


位为戈瑞。

23.当量剂量(H):组织中某点处的当量剂量是吸收剂量D、辐射权重因素(Q)的乘积。

24.有效剂量(E):人体各组织或器官的当量剂量乘以相应的组织权重因素后的和。

25.放射性药物:是指含有放射性核素,符合药典要求,能直接用于人体进行临床诊断、治
疗和科学研究的放射性核素及其标记化合物。

26.亚甲炎的分离现象:血中FT3、FT4增多,而吸收131I率降低(甲状腺滤泡大量破坏,是
储存的甲状腺激素大量释放入血,由于大量释放入血的甲状腺激素
可通过反馈机制抑制甲状腺功能,因此甲状腺摄取131I率明显低于
正常值)
27.超级骨显像:表现为全身骨骼核数浓聚显着增高,软组织本底极低、双肾和膀胱不显像,
常因甲状旁腺功能亢进或弥漫性骨转移癌所致。

提示:恶性肿瘤广泛骨转
移;代谢性骨病的表现之一。

28.闪烁现象:恶性肿瘤骨转移患者骨转移病灶在经过治疗后一段时间,出现病灶部位的显
像剂浓聚较治疗前更明显,而患者临床表现有明显的好转,再经过一段时间
后,骨骼病灶的显像剂浓聚又会消退提示:骨愈合和修复;不是转移性骨病。

29.Paget’s病:即畸形性骨炎,病毒引起的慢性进行性的局灶性骨代谢异常疾病,早期

局限于一骨,随病程发展大多累及多骨,特殊表现——Mickey Mouse征(椎
体相对比较特异的一种改变)
30.“炸面圈”征:骨病变中心区位明显放射性冷区,器官周围表现为代谢活动异常浓聚影,
呈圆形类似“炸面圈”征,主要见于股骨头坏死早期。

31.99M Tc:发射单光子,能量为140Kev,半衰期为,能标记多种化合物。

32.131I:发射两类射线,β-可用来治疗疾病,γ可用来显像,能量为360Kev较高不太适合
显像,目前用来诊断和治疗甲状腺疾病。

相关文档
最新文档