2018中考数学模拟试题及答案解析(5)
2018海南中考数学试卷答案解析版
2018海南中考数学试卷答案解析版2018年的海南中考,大家都在紧张的备考阶段,数学科目想要拿高分,就得多做一些试卷练习题。
下面由店铺为大家提供关于2018海南中考数学试卷答案解析版,希望对大家有帮助!2018海南中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.2017的相反数是( )A.﹣2017B.2017C.D.【答案】A.【解析】试题分析:根据相反数特性:若a.b互为相反数,则a+b=0即可解题.∵2017+(﹣2017)=0,∴2017的相反数是(﹣2017),故选 A.考点:相反数.2.已知a=﹣2,则代数式a+1的值为( )A.﹣3B.﹣2C.﹣1D.1【答案】C.【解析】试题分析:把a的值代入原式计算即可得到结果.当a=﹣2时,原式=﹣2+1=﹣1,故选C.考点:代数式求值.3.下列运算正确的是( )A.a3+a2=a5B.a3÷a2=aC.a3a2=a6D.(a3)2=a9【答案】B.【解析】考点:同底数幂的运算法则.4.如图是一个几何体的三视图,则这个几何体是( )A.三棱柱B.圆柱C.圆台D.圆锥【解析】试题分析:根据主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,再根据几何体的特点即可得出答案.根据俯视图为圆的有球,圆锥,圆柱等几何体,主视图和左视图为三角形的只有圆锥,则这个几何体的形状是圆锥.故选D.考点:三视图.5.如图,直线a∥b,c⊥a,则c与b相交所形成的∠1的度数为( )A.45°B.60°C.90°D.120°【答案】C.【解析】试题分析:根据垂线的定义可得∠2=90°,再根据两直线平行,同位角相等可得∠2=∠1=90°.∵c⊥a,∴∠2=90°,∵a∥b,∴∠2=∠1=90°.故选C.考点:垂线的定义,平行线的性质.6.如图,在平面直角坐标系中,△ABC位于第二象限,点A的坐标是(﹣2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于x轴对称的△A2B2C2,则点A的对应点A2的坐标是( )A.(-3,2)B.(2,-3)C.(1,-2)D.(-1,2)【答案】B.【解析】试题分析:首先利用平移的性质得到△A1B1C1,进而利用关于x 轴对称点的性质得到△A2B2C2,即可得出答案.如图所示:点A的对应点A2的坐标是:(2,﹣3).故选:B.考点:平移的性质,轴对称的性质.7.海南省是中国国土面积(含海域)第一大省,其中海域面积约为2000000平方公里,数据2000000用科学记数法表示为2×10n,则n的值为( )A.5B.6C.7D.8考点:科学记数法.8.若分式的值为0,则x的值为( )A.﹣1B.0C.1D.±1【答案】A.【解析】试题分析:直接利用分式的值为零则分子为零,分母不等于零,进而而得出答案.∵分式的值为0,∴x2﹣1=0,x﹣1≠0,解得:x=﹣1.故选A.考点:分式的意义.9.今年3月12日,某学校开展植树活动,某植树小组20名同学的年龄情况如下表:年龄(岁) 12 13 14 15 16人数 1 4 3 5 7则这20名同学年龄的众数和中位数分别是( )A.15,14B.15,15C.16,14D.16,15【答案】D.【解析】试题分析:众数即为出现次数最多的数,所以从中找到出现次数最多的数即可;中位数是排序后位于中间位置的数,或中间两数的平均数.∵12岁有1人,13岁有4人,14岁有3人,15岁有5人,16岁有7人,∴出现次数最多的数据是16,∴同学年龄的众数为16岁;∵一共有20名同学,∴因此其中位数应是第10和第11名同学的年龄的平均数,∴中位数为(15+15)÷2=15,故中位数为15.故选D.考点:中位数,众数.10.如图,两个转盘分别自由转动一次,当停止转动时,两个转盘的指针都指向2的概率为( )A. B. C. D.【答案】D.【解析】试题分析:首先根据题意列出表格,然后由表格即可求得所有等可能的结果与都指向2的情况数,继而求得答案.列表如下:1 2 3 41 (1,1) (2,1) (3,1) (4,1)2 (1,2) (2,2) (3,2) (4,2)3 (1,3) (2,3) (3,3) (4,3)4 (1,4) (2,4) (3,4) (4,4)∵共有16种等可能的结果,两个转盘的指针都指向2的只有1种结果,∴两个转盘的指针都指向2的概率为,故选:D.考点:用列表法求概率.11.如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是( )A.14B.16C.18D.20【答案】C.考点:菱形的性质,勾股定理.12.如图,点A、B、C在⊙O上,AC∥OB,∠BAO=25°,则∠BOC的度数为( )A.25°B.50°C.60°D.80°【答案】B.考点:圆周角定理及推论,平行线的性质.13.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画( )条.A.3B.4C.5D.6【答案】B.【解析】试题分析:根据等腰三角形的性质,利用4作为腰或底边得出符合题意的图形即可.如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形.故选B.考点:等腰三角形的性质.14.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).若反比例函数在第一象限内的图象与△ABC有交点,则k的取值范围是( )A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤16【答案】C.【解析】试题分析:由于△ABC是直角三角形,所以当反比例函数经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.故选C.考点:反比例函数的性质.2018海南中考数学试卷二、填空题(本大题共4小题,每小题4分,共16分)15.不等式2x+1>0的解集是 x>﹣ .【答案】 .【解析】考点:一元一次不等式的解法.16.在平面直角坐标系中,已知一次函数y=x﹣1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1”,“<”或“=”)【答案】 .【解析】试题分析:根据k=1结合一次函数的性质即可得出y=x﹣1为单调递增函数,再根据x1∵一次函数y=x﹣1中k=1,∴y随x值的增大而增大.∵x1考点:一次函数的性质.17.如图,在矩形ABCD中,AB=3,AD=5,点E在DC上,将矩形ABCD沿AE折叠,点D恰好落在BC边上的点F处,那么cos∠EFC的值是 .【答案】 .【解析】试题分析:根据翻转变换的性质得到∠AFE=∠D=90°,AF=AD=5,根据矩形的性质得到∠EFC=∠BAF,根据余弦的概念计算即可.由翻转变换的性质可知,∠AFE=∠D=90°,AF=AD=5,∴∠EFC+∠AFB=90°,∵∠B=90°,∴∠BAF+∠AFB=90°,∴∠EFC=∠BAF,cos∠BAF= = ,∴cos∠EFC= ,故答案为: .考点:轴对称的性质,矩形的性质,余弦的概念.18.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 .【答案】 .【解析】试题分析:根据中位线定理得到MN的最大时,BC最大,当BC 最大时是直径,从而求得直径后就可以求得最大值.如图,∵点M,N分别是AB,AC的中点,∴MN= BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC 最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′= = =5 ,∴MN最大= .故答案为: .考点:三角形的中位线定理,等腰直角三角形的性质,圆周角定理,解直角三角形.2018海南中考数学试卷三、解答题(本大题共62分)19.计算;(1) ﹣|﹣3|+(﹣4)×2﹣1;(2)(x+1)2+x(x﹣2)﹣(x+1)(x﹣1)【答案】(1)-1;(2) .考点:整式的混合运算,实数的混合运算.20.在某市“棚户区改造”建设工程中,有甲、乙两种车辆参加运土,已知5辆甲种车和2辆乙种车一次共可运土64立方米,3辆甲种车和1辆乙种车一次共可运土36立方米,求甲、乙两种车每辆一次分别可运土多少立方米.【答案】甲种车辆一次运土8立方米,乙种车辆一次运土12立方米.【解析】试题分析:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,根据题意所述的两个等量关系得出方程组,解出即可得出答案.试题解析:设甲种车辆一次运土x立方米,乙种车辆一次运土y立方米,由题意得,,解得: .答:甲种车辆一次运土8立方米,乙种车辆一次运土12立方米..考点:二元一次方程组的应用.21.某校开展“我最喜爱的一项体育活动”调查,要求每名学生必选且只能选一项,现随机抽查了m名学生,并将其结果绘制成如下不完整的条形图和扇形图.请结合以上信息解答下列问题:(1)m= 150 ;(2)请补全上面的条形统计图;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为36° ;(4)已知该校共有1200名学生,请你估计该校约有240 名学生最喜爱足球活动.【答案】(1)150;(2)见解析;(3)36°;(4)240.【解析】试题分析:(1)根据图中信息列式计算即可;(2)求得“足球“的人数=150×20%=30人,补全上面的条形统计图即可;(3)360°×乒乓球”所占的百分比即可得到结论;(4)根据题意计算计算即可.试题解析:(1)m=21÷14%=150,(2)“足球“的人数=150×20%=30人,补全上面的条形统计图如图所示;(3)在图2中,“乒乓球”所对应扇形的圆心角的度数为360°× =36°;(4)1200×20%=240人,答:估计该校约有240名学生最喜爱足球活动.故答案为:150,36°,240.考点:条形统计图,扇形统计图,样本估计总体.22.为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如图所示,已知AE=4米,∠EAC=130°,求水坝原来的高度BC.(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)【答案】水坝原来的高度为12米..【解析】试题分析:设BC=x米,用x表示出AB的长,利用坡度的定义得到BD=BE,进而列出x的方程,求出x的值即可.考点:解直角三角形的应用,坡度.23.如图,四边形ABCD是边长为1的正方形,点E在AD边上运动,且不与点A和点D重合,连结CE,过点C作CF⊥CE交AB的延长线于点F,EF交BC于点G.(1)求证:△CDE≌△CBF;(2)当DE= 时,求CG的长;(3)连结AG,在点E运动过程中,四边形CEAG能否为平行四边形?若能,求出此时DE的长;若不能,说明理由.【答案】(1)见解析;(2) ;(3)不能.【解析】试题分析:(1)先判断出∠CBF=90°,进而判断出∠1=∠3,即可得出结论;(2)先求出AF,AE,再判断出△GBF∽△EAF,可求出BG,即可得出结论;(3)假设是平行四边形,先判断出DE=BG,进而判断出△GBF和△ECF是等腰直角三角形,即可得出∠GFB=∠CFE=45°,即可得出结论.试题解析:(1)如图,在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°﹣∠ABC=90°,∠1+∠2=∠DCB=90°,∵CF⊥CE,∴∠ECF=90°,∴∠3+∠2=∠ECF=90°,∴∠1=∠3,在△CDE和△CBF中,∴△CDE≌△CBF,(2)在正方形ABCD中,AD∥BC,∴△GBF∽△EAF,∴ ,由(1)知,△CDE≌△CBF,∴BF=DE= ,∵正方形的边长为1,∴AF=AB+BF= ,AE=AD﹣DE= ,∴,,∴BG= ,∴CG=BC﹣BG= ;(3)不能,理由:若四边形CEAG是平行四边形,则必须满足AE∥CG,AE=CG,∴AD﹣AE=BC﹣CG,∴DE=BG,由(1)知,△CDE≌△ECF,∴DE=BF,CE=CF,∴△GBF和△ECF是等腰直角三角形,∴∠GFB=45°,∠CFE=45°,∴∠CFA=∠GFB+∠CFE=90°,此时点F与点B重合,点D与点E重合,与题目条件不符,∴点E在运动过程中,四边形CEAG不能是平行四边形.考点:正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的性质,等腰直角三角形的判定.24.抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0).(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.①连结PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;②连结PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.【答案】(1) ;(2)① ;②存在,(2, )或( , ).【解答】解:(1)∵抛物线y=ax2+bx+3经过点A(1,0)和点B(5,0),∴ ,解得∴该抛物线对应的函数解析式为 ;(2)①∵点P是抛物线上的动点且位于x轴下方,∴可设P(t, )(1∵直线PM∥y轴,分别与x轴和直线CD交于点M、N,∴M(t,0),N(t, ),∴PN= .联立直线CD与抛物线解析式可得,解得或,∴C(0,3),D(7, ),分别过C、D作直线PN的直线,垂足分别为E、F,如图1,则CE=t,DF=7﹣t,∴S△PCD=S△PCN+S△PDN= PN•CE+ PNDF= PN= ,∴当t= 时,△PCD的面积有最大值,最大值为 ;②存在.∵∠CQN=∠PMB=90°,∴当△CNQ与△PBM相似时,有或两种情况,∵CQ⊥PM,垂足为Q,∴Q(t,3),且C(0,3),N(t, ),∴CQ=t,NQ= ﹣3= ,∴ ,∵P(t, ),M(t,0),B(5,0),∴BM=5﹣t,PM=0﹣( )= ,当时,则PM= BM,即,解得t=2或t=5(舍去),此时P(2, );当时,则BM= PM,即5﹣t= ( ),解得t= 或t=5(舍去),此时P( , );综上可知存在满足条件的点P,其坐标为P(2, )或( , ).考点:二次函数的综合应用,待定系数法,函数图象的交点,二次函数的性质,相似三角形的判定和性质,方程思想,分类讨论思想.。
人教版2018-2019学年度九年级中考数学试卷含答案
人教版2018-2019学年度九年级中考数学模拟试卷含答案一.选择题(共10小题,满分40分,每小题4分)1.﹣2017的倒数是()A.B.﹣C.2017 D.﹣20172.已知25x=2000,80y=2000,则等于()A.2 B.1 C.D.3.光年是天文学中的距离单位,1光年大约是9500 000 000 000km,这个数据用科学记数法表示是()A.0.95×1013 km B.9.5×1012 km C.95×1011 km D.9.5×1011 km4.下面图中所示几何体的左视图是()A.B. C. D.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.6.荆州古城是闻名遐迩的历史文化名城,“五一”期间相关部门对到荆州观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整).根据图中信息,下列结论错误的是()A.本次抽样调查的样本容量是5000B.扇形图中的m为10%C.样本中选择公共交通出行的有2500人D.若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有25万人7.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是()A.8% B.9% C.10% D.11%8.如图,已知直线l1,l2,l3分别交直线l4于点A,B,C,交直线l5于点D,E,F,且l1∥l2∥l3,若AB=4,AC=6,DF=9,则DE=()A.5 B.6 C.7 D.89.如图①,在正方形ABCD中,点P从点D出发,沿着D→A方向匀速运动,到达点A后停止运动.点Q从点D出发,沿着D→C→B→A的方向匀速运动,到达点A后停止运动.已知点P的运动速度为a,图②表示P、Q两点同时出发x秒后,△APQ的面积y与x的函数关系,则点Q的运动速度可能是()A. a B. a C.2a D.3a10.如图,AB为⊙O的弦,AB=6,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、BC的中点,则MN长的最大值是()A.2B.3 C.3D.3二.填空题(共4小题,满分20分,每小题5分)11.在草稿纸上计算:①;②;③;④,观察你计算的结果,用你发现的规律直接写出下面式子的值=.12.已知关于x的一元二次方程x2﹣m=2x有两个不相等的实数根,则m的取值范围是.13.有一个三角形纸片ABC,∠C=36°,点D是AC边上一点,沿BD方向剪开三角形纸片后,发现所得的两纸片均为等腰三角形,则∠A的度数可以是.14.如图,在直角坐标系中,点A(2,0),点B(0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折180°,使点C落在点D处.若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为.三.解答题(共2小题,满分16分,每小题8分)15.(8分)化简:(1﹣)÷16.(8分)有一石拱桥的桥拱是圆弧形,如下图所示,正常水位下水面宽AB=60m,水面到拱项距离CD=18m,当洪水泛滥时,水面宽MN=32m时,高度为5m的船是否能通过该桥?请说明理由.四.解答题(共2小题,满分16分,每小题8分)17.(8分)在如图所示的网格中,每个小方格的边长都是1.(1)分别作出四边形ABCD关于y轴、原点的对称图形;(2)以原点O为中心,将△ABD顺时针旋转90°,试画出旋转后的图形,并求旋转过程中△ABD扫过图形的面积.18.(8分)学之道在于悟.希望同学们在问题(1)解决过程中有所悟,再继续探索研究问题(2).(1)如图①,∠B=∠C,BD=CE,AB=DC.①求证:△ADE为等腰三角形.②若∠B=60°,求证:△ADE为等边三角形.(2)如图②,射线AM与BN,MA⊥AB,NB⊥AB,点P是AB上一点,在射线AM 与BN上分别作点C、点 D 满足:△CPD为等腰直角三角形.(要求:利用直尺与圆规,不写作法,保留作图痕迹)五.解答题(共2小题,满分20分,每小题10分)19.(10分)随着人们经济收入的不断提高,汽车已越来越多地进入到各个家庭.某大型超市为缓解停车难问题,建筑设计师提供了楼顶停车场的设计示意图.按规定,停车场坡道口上坡要张贴限高标志,以便告知车辆能否安全驶入.如图,地面所在的直线ME 与楼顶所在的直线AC是平行的,CD的厚度为0.5m,求出汽车通过坡道口的限高DF 的长(结果精确到0.1m,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53).20.(10分)如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.21.(12分)向阳中学为了解全校学生利用课外时间阅读的情况,调查者随机抽取若干名学生,调查他们一周的课外阅读时间,并根据调查结果绘制了如下尚不完整的统计表(图).根据图表信息,解答下列问题:频率分布表(1)填空:a=,b=,m=,n=;(2)将频数分布直方图补充完整;(3)阅读时间不低于5小时的6人中,有2名男生、4名女生.现从这6名学生中选取两名同学进行读书宣讲,求选取的两名学生恰好是两名女生的概率.七.解答题(共1小题,满分12分,每小题12分)22.(12分)已知抛物线的顶点为(1,﹣4),且经过点B(3,0).(Ⅰ)求该抛物线的解析式及抛物线与x轴的另一个交点A的坐标;(Ⅱ)点P(m,1)为抛物线上的一个动点,点P关于原点的对称点为P′.①当点P′落在该抛物线上时,求m的值;②当P′落在第二象限内,P′A取得最大值时,求m的值.23.(14分)阅读下列材料,完成任务:自相似图形定义:若某个图形可分割为若干个都与它相似的图形,则称这个图形是自相似图形.例如:正方形ABCD中,点E、F、G、H分别是AB、BC、CD、DA边的中点,连接EG,HF交于点O,易知分割成的四个四边形AEOH、EBFO、OFCG、HOGD均为正方形,且与原正方形相似,故正方形是自相似图形.任务:(1)图1中正方形ABCD分割成的四个小正方形中,每个正方形与原正方形的相似比为;(2)如图2,已知△ABC中,∠ACB=90°,AC=4,BC=3,小明发现△ABC也是“自相似图形”,他的思路是:过点C作CD⊥AB于点D,则CD将△ABC分割成2个与它自己相似的小直角三角形.已知△ACD∽△ABC,则△ACD与△ABC的相似比为;(3)现有一个矩形ABCD是自相似图形,其中长AD=a,宽AB=b(a>b).请从下列A、B两题中任选一条作答:我选择题.A:①如图3﹣1,若将矩形ABCD纵向分割成两个全等矩形,且与原矩形都相似,则a=(用含b的式子表示);②如图3﹣2若将矩形ABCD纵向分割成n个全等矩形,且与原矩形都相似,则a=(用含n,b的式子表示);B:①如图4﹣1,若将矩形ABCD先纵向分割出2个全等矩形,再将剩余的部分横向分割成3个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含b的式子表示);②如图4﹣2,若将矩形ABCD先纵向分割出m个全等矩形,再将剩余的部分横向分割成n个全等矩形,且分割得到的矩形与原矩形都相似,则a=(用含m,n,b的式子表示).参考答案与试题解析1.解:﹣2017的倒数是﹣.故选:B.2.解:∵25x=2000,80y=2000,∴25x=25×80,80y=25×80,∴25x﹣1=80,80y﹣1=25,∴(80y﹣1)x﹣1=80,∴(y﹣1)(x﹣1)=1,∴xy﹣x﹣y+1=1,∴xy=x+y,∵xy≠0,∴=1,∴+=1.故选:B.方法二:25x=2000∴25xy=2000y=(25×80)y=25y•80y=25y•25x=25x+y,∴xy=x+y,∴+=1,故选:B.3.解:9500 000 000 000km用科学记数法表示是9.5×1012 km,故选:B.4.解:图中所示几何体的左视图是.故选:B.5.解:∵解不等式①得:x≤2,解不等式②得:x>﹣1,∴不等式组的解集为﹣1<x≤2,在数轴上表示为:,故选:A.6.解:A、本次抽样调查的样本容量是=5000,正确;B、扇形图中的m为10%,正确;C、样本中选择公共交通出行的有5000×50%=2500人,正确;D、若“五一”期间到荆州观光的游客有50万人,则选择自驾方式出行的有50×40%=20万人,错误;故选:D.7.解:设平均每次下调的百分率为x,由题意,得6000(1﹣x)2=4860,解得:x1=0.1,x2=1.9(舍去).答:平均每次下调的百分率为10%.故选:C.8.解:∵l1∥l2∥l3,AB=5,AC=8,DF=12,∴,即,可得;DE=6,故选:B.9.解:本题采用筛选法.首先观察图象,可以发现图象由三个阶段构成,即△APQ的顶点Q所在边应有三种可能.当Q的速度低于点P时,当点P到达A时,点Q还在DC 上运动,之后,因A、P重合,△APQ的面积为零,画出图象只能有一个阶段构成,故A、B错误;当Q的速度是点P速度的2倍,当点P到点A时,点Q到点B.之后,点A、P重合,△APQ的面积为0.期间△APQ面积的变化可以看成两个阶段,与图象不符,C错误.故选:D.10.解:∵点M,N分别是AB,BC的中点,∴MN=AC,∴当AC取得最大值时,MN就取得最大值,当AC是直径时,最大,如图,∵∠ACB=∠D=45°,AB=6,∴AD=6,∴MN=AD=3,故选:C.11.解:∵①=1;②=3=1+2;③=6=1+2+3;④=10=1+2+3+4,∴=1+2+3+4+…+28=406.12.解:整理方程得:x2﹣2x﹣m=0∴a=1,b=﹣2,c=﹣m,方程有两个不相等的实数根,∴△=b2﹣4ac=4+4m>0,∴m>﹣1.13.解:由题意知△ABD与△DBC均为等腰三角形,①BC=CD,此时∠CDB=∠DBC=(180°﹣∠C)÷2=72°,∴∠BDA=180°﹣∠CDB=180°﹣72°=108°,AB=AD时,∠ABD=108°(舍去);或AB=BD,∠A=108°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=36°;②BC=BD,此时∠CDB=∠C=36°,∴∠BDA=180°﹣∠CDB=180°﹣36°=144°,AB=AD时,∠ABD=144°(舍去);或AB=BD,∠A=144°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=18°;③CD=BD,此时∠CDB=180°﹣2∠C=108°,∴∠BDA=180°﹣∠CDB=180°﹣108°=72°,AB=AD时,∠A=180°﹣2∠ADB=36°;或AB=BD,∠A=72°(舍去);或AD=BD,∠A=(180°﹣∠ADB)÷2=54°.综上所述,∠A的度数可以是18°或36°或54°或72°.故答案为:18°或36°或54°或72°.14.解:∵点A(2,0),点B(0,1),∴直线AB的解析式为y=﹣x+1∵直线l过点A(4,0),且l⊥AB,∴直线L的解析式为;y=2x﹣4,∠BAO+∠PAC=90°,∵PC⊥x轴,∴∠PAC+∠APC=90°,∴∠BAO=∠APC,∵∠AOB=∠ACP,∴△AOB∽△PCA,∴=,∴==,设AC=m,则PC=2m,∵△PCA≌△PDA,∴AC=AD,PC=PD,∴==,如图1:当△PAD∽△PBA时,则=,则==,∵AB==,∴AP=2,∴m2+(2m)2=(2)2,∴m=±2,当m=2时,PC=4,OC=4,P点的坐标为(4,4),当m=﹣2时,如图2,PC=4,OC=0,P点的坐标为(0,﹣4),如图3,若△PAD∽△BPA,则==,PA=AB=,则m2+(2m)2=()2,∴m=±,当m=时,PC=1,OC=,P点的坐标为(,1),当m=﹣时,如图4,PC=1,OC=,P点的坐标为(,﹣1);故答案为:P(4,4),p(0,﹣4),P(,﹣1),P(,1).15.解:原式=•=•=﹣.16.解:不能通过.设OA=R,在Rt△AOC中,AC=30,CD=18,R2=302+(R﹣18)2,R2=900+R2﹣36R+324解得R=34m连接OM,在Rt△MOE中,ME=16,OE2=OM2﹣ME2即OE2=342﹣162=900,∴OE=30,∴DE=34﹣30=4,∴不能通过.(12分)17.解:(1)所画图形如下图所示,(2)如上图所示,△A′B′D′即为△ABD顺时针旋转90°后得到的图形,在旋转过程中可知:△ABD扫过图形的面积即是线段AB所扫过的扇环面积(S1)与△ABD的面积(S2)之和(S),则有:S=S1+S2=[π×OA2﹣π×OB2]+×AD×1=[π×(22+42)﹣π×(12+12)]+×2×1=+1.18.解:(1)①证明:∵∠B=∠C,BD=CE,AB=DC,∴△ABD≌DCE,∴AB=DC,∴△ADE为等腰三角形;②∵△ABD≌△DCE,∴∠BAD=∠CDE,∵∠ADC是△ABD的外角,∴∠ADC=∠B+∠BAD,∵∠ADC=∠ADE+∠EDC,又∵∠BAD=∠CDE.∴∠ADE=∠B=60°,∴等腰△ADE为等边三角形.(2)有三种结果,如图所示:19.解:∵AC∥ME,∴∠CAB=∠AEM,在Rt△ABC中,∠CAB=28°,AC=9m,∴BC=ACtan28°≈9×0.53=4.77(m),∴BD=BC﹣CD=4.77﹣0.5=4.27(m),在Rt△BDF中,∠BDF+∠FBD=90°,在Rt△ABC中,∠CAB+∠FBC=90°,∴∠BDF=∠CAB=28°,∴DF=BDcos28°≈4.27×0.88=3.7576≈3.8 (m),答:坡道口的限高DF的长是3.8m.20.解:(1)设反比例函数解析式为y=,把B(﹣2,﹣3)代入,可得k=﹣2×(﹣3)=6,∴反比例函数解析式为y=;把A(3,m)代入y=,可得3m=6,即m=2,∴A(3,2),设直线AB 的解析式为y=ax+b,把A(3,2),B(﹣2,﹣3)代入,可得,解得,∴直线AB 的解析式为y=x﹣1;(2)由题可得,当x满足:x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C.如图所示,延长AO交双曲线于点C1,∵点A与点C1关于原点对称,∴AO=C1O,∴△OBC1的面积等于△OAB的面积,此时,点C1的坐标为(﹣3,﹣2);如图,过点C1作BO的平行线,交双曲线于点C2,则△OBC2的面积等于△OBC1的面积,∴△OBC2的面积等于△OAB的面积,由B(﹣2,﹣3)可得OB的解析式为y=x,可设直线C1C2的解析式为y=x+b',把C1(﹣3,﹣2)代入,可得﹣2=×(﹣3)+b',解得b'=,∴直线C1C2的解析式为y=x+,解方程组,可得C2(,);如图,过A作OB的平行线,交双曲线于点C3,则△OBC3的面积等于△OBA的面积,设直线AC3的解析式为y=x+b“,把A(3,2)代入,可得2=×3+b“,解得b“=﹣,∴直线AC3的解析式为y=x﹣,解方程组,可得C3(﹣,﹣);综上所述,点C的坐标为(﹣3,﹣2),(,),(﹣,﹣).21.解:(1)∵本次调查的总人数b=9÷0.15=60,∴a=60﹣(9+18+12+6)=15,则m==0.25、n==0.2,故答案为:15、60、0.25、0.2;(2)补全频数分布直方图如下:(3)用X、Y表示男生、A、B、C、D表示女生,画树状图如下:由树状图知共有30种等可能结果,其中选取的两名学生恰好是两名女生的结果数为12,所以选取的两名学生恰好是两名女生的概率为=.22.解:(Ⅰ)∵抛物线的顶点为(1,﹣4),∴可设抛物线解析式为y=a(x﹣1)2﹣4,∵经过点B(3,0),∴0=a(3﹣1)2﹣4,解得a=1,∴抛物线解析式为y=(x﹣1)2﹣4,即y=x2﹣2x﹣3,令y=0可得x2﹣2x﹣3=0,解得x=3或x=﹣1,∴点A的坐标为(﹣1,0);(Ⅱ)①由点P(m,1)在抛物线y=x2﹣2x﹣3上,有l=m2﹣2m﹣3.又点P关于原点的对称点为P′,∴P′(﹣m,﹣1).∵点P′落在抛物线y=x2﹣2x﹣3上,∴﹣l=(﹣m)2﹣2(﹣m)﹣3,即l=﹣m2﹣2m+3,∴m2﹣2m﹣3=﹣m2﹣2m+3,解得m1=,m2=﹣;②∵P′落在第二象限内,∴点P(m,1)在第四象限,即m>0,l<0.23.解:(1)∵点H是AD的中点,∴AH=AD,∵正方形AEOH∽正方形ABCD,∴相似比为:==;故答案为:;(2)在Rt△ABC中,AC=4,BC=3,根据勾股定理得,AB=5,∴△ACD与△ABC相似的相似比为:=,故答案为:;(3)A、①∵矩形ABEF∽矩形FECD,∴AF:AB=AB:AD,即a:b=b:a,∴a=b;故答案为:②每个小矩形都是全等的,则其边长为b和a,则b:a=a:b,∴a=b;故答案为:B、①如图2,由①②可知纵向2块矩形全等,横向3块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a=a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣=,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:或;②如图3,由①②可知纵向m块矩形全等,横向n块矩形也全等,∴DN=b,Ⅰ、当FM是矩形DFMN的长时,∵矩形FMND∽矩形ABCD,∴FD:DN=AD:AB,即FD:b=a:b,解得FD=a,∴AF=a﹣a,∴AG===a,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即a:b=b:a得:a=b;Ⅱ、当DF是矩形DFMN的长时,∵矩形DFMN∽矩形ABCD,∴FD:DN=AB:AD即FD:b=b:a解得FD=,∴AF=a﹣,∴AG==,∵矩形GABH∽矩形ABCD,∴AG:AB=AB:AD即:b=b:a,得:a=b;故答案为:b或b.。
吉林省2018年中考数学全真模拟试卷(解析版)
2018年吉林省中考数学全真模拟试卷(一)一、选择题(本大题共10题,每题3分,共30分)1. 的倒数是()A. B. C. ﹣ D. ﹣【答案】B【解析】解:由×=1,得的倒数是.故选B.2. 下列计算正确的是()A. a+a=2a2B. a2•a=2a3C. (﹣ab)2=ab2D. (2a)2÷a=4a【答案】D【解析】试题分析:A、a+a=2a,故此选项错误;B、a2•a=a3,故此选项错误;C、(﹣ab)2=a2b2,故此选项错误;D、(2a)2÷a=4a,正确.故选:D.考点:整式的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.3. 下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A. 3cm,4cm,8cmB. 8cm,7cm,15cmC. 5cm,5cm,11cmD. 13cm,12cm,20cm【答案】D【解析】试题分析:根据三角形的三边关系,两边之和大于第三边,即两短边的和大于最长的边,即可作出判断.A、3+4<8,故以这三根木棒不可以构成三角形,不符合题意;B、8+7=15,故以这三根木棒不能构成三角形,不符合题意;C、5+5<11,故以这三根木棒不能构成三角形,不符合题意;D、12+13>20,故以这三根木棒能构成三角形,符合题意.考点:三角形三边关系4. 我市某中学举办了一次以“我的中国梦”为主题的演讲比赛,最后确定9名同学参加决赛,他们的决赛成绩各不相同,其中小辉已经知道自己的成绩,但能否进前5名,他还必须清楚这9名同学成绩的()A. 众数 B. 平均数 C. 中位数 D. 方差【答案】C【解析】试题分析:中位数是指第5名的成绩,知道是否进入前五就只需要知道中位数是多少就可以.考点:中位数的性质.5. 如图所示正三棱柱的主视图是()A. B. C. D.【答案】B【解析】如图所示正三棱柱的主视图是平行排列的两个矩形,故选B.6. 二次函数y=ax2+bx+c的图象如图,点C在y轴的正半轴上,且OA=OC,则()A. ac+1=bB. ab+1=cC. bc+1=aD. 以上都不是【答案】A【解析】试题分析:根据图象易得C(0,c)且c>0,再利用OA=OC可得A(﹣c,0),然后把A(﹣c,0)代入y=ax2+bx+c即可得到a、b、c的关系式ac+1=b.故选A.考点:二次项系数与系数的关系7. 将一张长方形纸片折叠成如图所示的形状,则∠ABC=()A. 73°B. 56°C. 68°D. 146°【答案】A【解析】试题分析:根据补角的知识可求出∠CBE,从而根据折叠的性质∠ABC=∠ABE=∠CBE,可得出∠ABC 的度数.∵∠CBD=34°,∴∠CBE=180°﹣∠CBD=146°,∴∠ABC=∠ABE=∠CBE=73°.考点:平行线的性质.8. 如图,在直角梯形ABCD中,DC∥AB,∠DAB=90°,AC⊥BC,AC=BC,∠ABC的平分线分别交AD、AC于点E,F,则的值是()A. B. C. D.【答案】C【解析】试题分析:作FG⊥AB于点G,由AE∥FG,得出,求出Rt△BGF≌Rt△BCF,再由AB=BC求解==.故选:C.考点:1、平行线分线段成比例,2、全等三角形及角平分线视频9. 某经销商销售一批电话手表,第一个月以550元/块的价格售出60块,第二个月起降价,以500元/块的价格将这批电话手表全部售出,销售总额超过了5.5万元.这批电话手表至少有()A. 103块B. 104块C. 105块D. 106块【答案】C【解析】试题分析:根据题意设出未知数,列出相应的不等式,从而可以解答本题.设这批手表有x块,550×60+(x﹣60)×500>55000 解得,x>104 ∴这批电话手表至少有105块考点:一元一次不等式的应用10. 如图,点A的坐标为(0,1),点B是x轴正半轴上的一动点,以AB为边作等腰直角△ABC,使∠BAC=90°,设点B的横坐标为x,点C的纵坐标为y,能表示y与x的函数关系的图象大致是()A. B. C. D.【答案】A【解析】试题分析:根据题意作出合适的辅助线,可以先证明△ADC和△AOB的关系,即可建立y与x的函数关系,从而可以得到哪个选项是正确的.作AD∥x轴,作CD⊥AD于点D,若右图所示,由已知可得,OB=x,OA=1,∠AOB=90°,∠BAC=90°,AB=AC,点C的纵坐标是y,∵AD∥x轴,∴∠DAO+∠AOD=180°,∴∠DAO=90°,∴∠OAB+∠BAD=∠BAD+∠DAC=90°,∴∠OAB=∠DAC,在△OAB和△DAC中,,∴△OAB≌△DAC(AAS),∴OB=CD,∴CD=x,∵点C到x轴的距离为y,点D到x轴的距离等于点A到x的距离1,∴y=x+1(x>0).考点:动点问题的函数图象二、填空题(本大题共10题,每题2分,共20分)11. 化简:÷=_____.【答案】m【解析】÷=×.故答案为:.点睛:本题考查了分式的除法运算,其运算法则是:两个分式相除,把除式的分子与分母颠倒位置后,再与被乘式相乘,然后分解因式约分化简.12. 我国南海海域面积为3500000km2,用科学记数法表示3500000为_____.【答案】3.5×106【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,3500000=3.5×106,故答案为:3.5×106.13. 使式子有意义的x取值范围是_____.【答案】x≥﹣1【解析】解:根据题意得:x+1≥0,解得:x≥﹣1.故答案为:x≥﹣1.14. 一个多边形的内角和是外角和的2倍,则这个多边形的边数为_____.【答案】6【解析】∵多边形的外角和是360度,多边形的内角和是外角和的2倍,则内角和是720度,720÷180+2=6,∴这个多边形是六边形,故答案为:6.15. 已知x2+x﹣5=0,则代数式(x﹣1)2﹣x(x﹣3)+(x+2)(x﹣2)的值为_____.【答案】2【解析】试题分析:先利用乘法公式展开,再合并得到原式=x2+x﹣3,然后利用整体代入的方法计算......................考点:整式的混合运算—化简求值.16. 在菱形ABCD中,E,F分别是AD,BD的中点,若EF=2,则菱形ABCD的周长是_____.【答案】16【解析】试题分析:先利用三角形中位线性质得到AB=4,然后根据菱形的性质计算菱形ABCD的周长.∵E,F分别是AD,BD的中点,∴EF为△ABD的中位线,∴AB=2EF=4,∵四边形ABCD为菱形,∴AB=BC=CD=DA=4,∴菱形ABCD的周长=4×4=16.考点:(1)菱形的性质;(2)三角形中位线定理.17. 如图,OP平分∠AOB,∠AOP=15°,PC∥OA,PD⊥OA于点D,PC=4,则PD=_____.【答案】2【解析】试题解析:如图,过点P作PE⊥OB于E,∵OP平分∠AOB,∴∠AOB=2∠AOP=2×15°=30°,∵PC∥OA,∴∠PCE=∠AOB=30°,∴PE=PC=×10=5,∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE=5.故答案为:5.18. ⊙O的半径为1,弦AB=,弦AC=,则∠BAC度数为_____.【答案】75°或15°【解析】解:有两种情况:①如图1所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OF A=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE==,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图2所示,连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OF A=90°,由垂径定理得:AE=BE=,AF=CF=,cos∠OAE═=,cos∠OAF==,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°.故答案为:75°或15°.点睛:本题考查了特殊角的三角函数值和垂径定理的应用.此题难度适中,解题的关键是根据题意作出图形,求出符合条件的所有情况.此题比较好,但是一道比较容易出错的题目.19. 如图,为保护门源百里油菜花海,由“芬芳浴”游客中心A处修建通往百米观景长廊BC的两条栈道AB,AC.若∠B=56°,∠C=45°,则游客中心A到观景长廊BC的距离AD的长约为_____米.(sin56°≈0.8,tan56°≈1.5)【答案】60【解析】试题分析:根据题意和图形可以分别表示出AD和CD的长,从而可以求得AD的长,本题得以解决.∵∠B=56°,∠C=45°,∠ADB=∠ADC=90°,BC=BD+CD=100米,∴BD=,CD=,∴+=100,解得,AD≈60考点:解直角三角形的应用.20. 如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=1,则FM的长为_____.【答案】【解析】试题分析:∵△DAE逆时针旋转90°得到△DCM,∴∠FCM=∠FCD+∠DCM=180°,∴F、C、M三点共线,∴DE=DM,∠EDM=90°,∴∠EDF+∠FDM=90°,∵∠EDF=45°,∴∠FDM=∠EDF=45°,在△DEF和△DMF中,,∴△DEF≌△DMF(SAS),∴EF=MF,设EF=MF=x,∵AE=CM=1,且BC=3,∴BM=BC+CM=3+1=4,∴BF=BM﹣MF=BM﹣EF=4﹣x,∵EB=AB﹣AE=3﹣1=2,在Rt△EBF中,由勾股定理得EB2+BF2=EF2,即22+(4﹣x)2=x2,解得:x=,∴FM=.考点:1.旋转的性质;2.全等三角形的判定与性质;3.正方形的性质.三、解答题(本大题共8题,第21、22题每题7分,第23、24、25题每题8分,第26、27题每题10分,第28题12分,共70分.解答时将文字说明、证明过程或演算步骤写在答题卡相应的位置上)21. 计算:()﹣1+﹣2sin30°+(3﹣π)0.【答案】1【解析】试题分析:原式第一项利用负整数指数幂法则计算,第二项利用二次根式的性质化简,第三项利用特殊角的三角函数值计算,最后一项利用零指数幂法则计算即可得到结果.试题解析:原式=-2+3-2×+1=1.考点:1.实数的运算,2.零指数幂,3.负整数指数幂,4.特殊角的三角函数值.22. 已知实数a、b满足(a+2)2+=0,则a+b的值.【答案】1或﹣3【解析】试题分析:根据非负数的性质列式得,a+2=0,b2﹣2b﹣3=0,解得a=﹣2,b=3或﹣1,所以,a+b=﹣2﹣1=﹣3或a+b=1.考点:1、非负数的性质:2、算术平方根;3、非负数的性质:偶次方23. 如图,一次函数y=x+m的图象与反比例函数y=的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;(2)求点C的坐标,并结合图象写出不等式组0<x+m≤的解集.【答案】(1)m=﹣1,k=2;(2)1<x≤2.【解析】试题分析:试题解析:(1)由题意可得:点A(2,1)在函数y=x+m的图象上,∴2+m=1即m=﹣1,∵A(2,1)在反比例函数y=的图象上,∴,∴k=2;(2)∵一次函数解析式为y=x﹣1,令y=0,得x=1,∴点C的坐标是(1,0),由图象可知不等式组0<x+m≤的解集为1<x≤2.点睛:本题主要考查了用待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征,用待定系数法一次函数的解析式,不等式与函数的关系,解题的关键是求出反比例函数、一次函数的解析式,利用数形结合解决问题.24. 如图,在▱ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.【答案】见解析【解析】试题分析:(1)由在▱ABCD中,E是BC的中点,利用ASA,即可判定△ABE≌△FCE,继而证得结论;(2)由AD=2AB,AB=FC=CD,可得AD=DF,又由△ABE≌△FCE,可得AE=EF,然后利用三线合一,证得结论.试题解析:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.考点:(1)平行四边形的性质;(2)全等三角形的判定与性质.25. 据报道,“国际剪刀石头布协会”提议将“剪刀石头布”作为奥运会比赛项目.某校学生会想知道学生对这个提议的了解程度,随机抽取部分学生进行了一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有_____名,扇形统计图中“基本了解”部分所对应扇形的圆心角为_____;请补全条形统计图;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数;(3)“剪刀石头布”比赛时双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,规则为:剪刀胜布,布胜石头,石头胜剪刀,若双方出现相同手势,则算打平.若小刚和小明两人只比赛一局,请用树状图或列表法求两人打平的概率.【答案】(1). 60 (2). 90°【解析】试题分析:(1)由“了解很少”的人数除以占的百分比得出学生总数,求出“基本了解”的学生占的百分比,乘以360得到结果,补全条形统计图即可;(2)求出“了解”和“基本了解”程度的百分比之和,乘以900即可得到结果;(3)列表得出所有等可能的情况数,找出两人打平的情况数,即可求出所求的概率.试题解析:(1)根据题意得:30÷50%=60(名),“了解”人数为60﹣(15+30+10)=5(名),“基本了解”占的百分比为×100%=25%,占的角度为25%×360°=90°,补全条形统计图如图所示:(2)根据题意得:900×=300(人),则估计该校学生中对将“剪刀石头布”作为奥运会比赛项目的提议达到“了解”和“基本了解”程度的总人数为300人;(3)列表如下:剪石布剪(剪,剪)(石,剪)(布,剪)石(剪,石)(石,石)(布,石)布(剪,布)(石,布)(布,布)所有等可能的情况有9种,其中两人打平的情况有3种,则P==.考点:1、条形统计图,2、扇形统计图,3、列表法与树状图法视频26. 如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.(1)求证:CD是⊙O的切线;(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,.求BE的长.【答案】(1)见解析;(2)【解析】试题分析:连接OD.根据圆周角定理得到∠ADO+∠ODB=90°,而∠CDA=∠CBD,∠CBD=∠BDO.于是∠ADO+∠CDA=90°,可以证明是切线.根据已知条件得到由相似三角形的性质得到求得由切线的性质得到根据勾股定理列方程即可得到结论.试题解析:(1)连接OD.∵OB=OD,∴∠OBD=∠BDO.∵∠CDA=∠CBD,∴∠CDA=∠ODB.又∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADO+∠ODB=90°,∴∠ADO+∠CDA=90°,即∠CDO=90°,∴OD⊥CD.∵OD是⊙O的半径,∴CD是⊙O的切线;(2)∵∠C=∠C,∠CDA=∠CBD,∴△CDA∽△CBD,BC=6,∴CD=4.∵CE,BE是⊙O的切线,∴BE=DE,BE⊥BC,∴BE2+BC2=EC2,即BE2+62=(4+BE)2,解得BE=.27. 如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC 是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分弧AC .(1)求过A,B,E三点的抛物线的解析式;(2)求证:四边形AMCD是菱形;(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.【答案】(1)y=(x+1)2﹣2;(2)见解析;(3)存在.所求点P坐标为(2,),(﹣4,).【解析】试题分析:(1)根据题意首先求出抛物线顶点E的坐标,再利用顶点式求出函数解析式;(2)利用等边三角形的性质结合圆的有关性质得出∠AMD=∠CMD=∠AMC=60°,进而得出DC=CM=MA=AD,即可得出答案;(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系式求出P点坐标.试题解析:(1)由题意可知,△MBC为等边三角形,点A,B,C,E均在⊙M上,则MA=MB=MC=ME=2,又∵CO⊥MB,∴MO=BO=1,∴A(﹣3,0),B(1,0),E(﹣1,﹣2),抛物线顶点E的坐标为(﹣1,﹣2),设函数解析式为y=a(x+1)2﹣2(a≠0)把点B(1,0)代入y=a(x+1)2﹣2,解得:a=,故二次函数解析式为:y=(x+1)2﹣2;(2)连接DM,∵△MBC为等边三角形,∴∠CMB=60°,∴∠AMC=120°,∵点D平分弧AC,∴∠AMD=∠CMD=∠AMC=60°,∵MD=MC=MA,∴△MCD,△MDA是等边三角形,∴DC=CM=MA=AD,∴四边形AMCD为菱形(四条边都相等的四边形是菱形);(3)存在.理由如下:设点P的坐标为(m,n)∵S△ABP=AB|n|,AB=4 ∴×4×|n|=5,即2|n|=5,解得:n=±,当时,(m+1)2﹣2=,解此方程得:m1=2,m2=﹣4即点P的坐标为(2,),(﹣4,),当n=﹣时,(m+1)2﹣2=﹣,此方程无解,故所求点P坐标为(2,),(﹣4,).考点:二次函数综合题.。
2018年北京市数学中考试卷及答案解析(精析版)
2018年北京中考试题解析版
数 学
(满分120分,考试时间120分钟)
一、选择题(本题共32分,每小题4分)
1. (2018北京,1,4分)-9的相反数是 ( ) A. 19- B. 19
C. 9-
D. 9 【答案】D
2. (2018北京,2,4分)首届中国(北京)国际服务贸易交易会(京交会)于2018年6月1日闭幕,本届京交会
期间签订的项目成交金额达60 110 000 000美元.将60 110 000 000用科学记数法表示应为 ( )
A 96.01110⨯. B. 960.1110⨯ C. 106.01110⨯ D.11
0.601110⨯
【答案】C
3. (2018北京,3,4分)正十边形的每个外角等于( )
A. 18°
B.36°
C. 45°
D. 60°
【答案】B
4. (2018北京,4,4分)右图是某个几何体的三视图,该几何体是( )
A. 长方体
B. 正方体
C.圆柱
D.三棱柱
【答案】D
5. (2018北京,5,4分)班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英
等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英同学从中随机取一份奖品,恰好取到科普读物的概率是( ) A. 16 B. 13 C. 12 D. 23
【答案】B
6. (2018北京,6,4分)如图,直线AB ,CD 交于点O ,射线OM 平分∠AOC ,若∠BOD=76°,则∠BOM 等于( )。
山东潍坊市2018中考数学试题及答案解析
2018年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分)1.(3分)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣2.(3分)生物学家发现了某种花粉的直径约为0.0000036毫米,数据0.0000036用科学记数法表示正确的是()A.3.6×10﹣5B.0.36×10﹣5C.3.6×10﹣6D.0.36×10﹣63.(3分)如图所示的几何体的左视图是()A.B.C.D.4.(3分)下列计算正确的是()A.a2•a3=a6 B.a3÷a=a3C.a﹣(b﹣a)=2a﹣b D.(﹣a)3=﹣a35.(3分)把一副三角板放在同一水平桌面上,摆放成如图所示的形状,使两个直角顶点重合,两条斜边平行,则∠1的度数是()A.45°B.60°C.75°D.82.5°6.(3分)如图,木工师傅在板材边角处作直角时,往往使用“三弧法”,其作法是:(1)作线段AB,分别以A,B为圆心,以AB长为半径作弧,两弧的交点为C;(2)以C为圆心,仍以AB长为半径作弧交AC的延长线于点D;(3)连接BD,BC.下列说法不正确的是()A.∠CBD=30°B.S△BDC=AB2C.点C是△ABD的外心D.sin2A+cos2D=l7.(3分)某篮球队10名队员的年龄结构如表,已知该队队员年龄的中位数为21.5,则众数与方差分别为()年龄192021222426人数11x y21 A.22,3 B.22,4 C.21,3 D.21,48.(3分)在平面直角坐标系中,点P(m,n)是线段AB上一点,以原点O为位似中心把△AOB放大到原来的两倍,则点P的对应点的坐标为()A.(2m,2n)B.(2m,2n)或(﹣2m,﹣2n)C.(m,n)D.(m,n)或(﹣m,﹣n)9.(3分)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x ≤5时,与其对应的函数值y的最大值为﹣1,则h的值为()A.3或6 B.1或6 C.1或3 D.4或610.(3分)在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP 的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,﹣300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A.Q(3,240°)B.Q(3,﹣120°) C.Q(3,600°)D.Q(3,﹣500°)11.(3分)已知关于x的一元二次方程mx2﹣(m+2)x+=0有两个不相等的实数根x1,x2.若+=4m,则m的值是()A.2 B.﹣1 C.2或﹣1 D.不存在12.(3分)如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A.B.C.D.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.(3分)因式分解:(x+2)x﹣x﹣2=.14.(3分)当m=时,解分式方程=会出现增根.15.(3分)用教材中的计算器进行计算,开机后依次按下,把显示结果输入如图的程序中,则输出的结果是.16.(3分)如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为.17.(3分)如图,点A1的坐标为(2,0),过点A1作x轴的垂线交直线l:y=x 于点B1,以原点O为圆心,OB1的长为半径画弧交x轴正半轴于点A2;再过点A2作x轴的垂线交直线l于点B2,以原点O为圆心,以OB2的长为半径画弧交x 轴正半轴于点A3;….按此作法进行下去,则的长是.18.(3分)如图,一艘渔船正以60海里/小时的速度向正东方向航行,在A处测得岛礁P在东北方向上,继续航行1.5小时后到达B处,此时测得岛礁P在北偏东30°方向,同时测得岛礁P正东方向上的避风港M在北偏东60°方向.为了在台风到来之前用最短时间到达M处,渔船立刻加速以75海里/小时的速度继续航行小时即可到达.(结果保留根号)三、解答题(本大题共7小题,共66分。
安徽省合肥市高新区2018届中考数学一模试卷含答案解析模板
2018年安徽省合肥市高新区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中,每一小题:选对得4分,不选错选或选出的代号超过一个的一律得0分1.﹣3的倒数是()A.﹣B.3 C.D.±2.计算(m3)2÷m3的结果等于()A.m2B.m3C.m4D.m63.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.94.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.5.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④6.2017年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.方差是135 B.平均数是170C.中位数是173.5 D.众数是1777.不等式组的解集在数轴上表示正确的是()A.B.C. D.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④ D.④⑤9.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C. D.210.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:12x2﹣3y2=.12.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32017的末位数字是.13.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为.14.如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.请写出正确结论的序号(注:将你认为正确结论的序号都填上).三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣(﹣2)+(1+π)0﹣|1﹣|+﹣cos45°.16.解方程:=.四、(本大题共2小题,每小题8分,满分16分)17.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.18.一方有难八方支援.安徽地震局救援队在某次地震救援中,探测出某建筑物废墟下方点C处有生命迹象,在废墟一侧某面上选两探测点A、B,AB相距2.1米,探测线与地面的夹角分别是35°和45°(如图),试确定生命所在点C与探测面的距离(参考数据≈1.4,≈1.7)五、(本大题共2小题,每小题10分,满分20分)19.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.20.(2017•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.六、(本题满分12分)21.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(﹣3,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2),是函数y=图象上的两点,且y1>y2,求实数p的取值范围.七、(本题满分12分)22.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.八、(本题满分14分)23.音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=2,且要求喷出的抛物线水线不能到岸边,求a的取值范围.2018年安徽省合肥市高新区中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出出代号为A、B、C、D的四个结论,其中只有一个是正确的,把正确结论的代号写在题后的答题框中,每一小题:选对得4分,不选错选或选出的代号超过一个的一律得0分1.﹣3的倒数是()A.﹣B.3 C.D.±【考点】倒数.【分析】根据倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.【解答】解:﹣3的倒数是﹣.故选:A.【点评】本题主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.计算(m3)2÷m3的结果等于()A.m2B.m3C.m4D.m6【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法法则,同底数幂相除,底数不变指数相减的性质,对各选项计算后选取答案.【解答】解:(m3)2÷m3=m6÷m3=m3,故选B.【点评】本题考查同底数幂的除法法则,熟练掌握运算法则是解题的关键.3.据统计,地球上的海洋面积约为361 000 000km2,该数用科学记数法表示为3.61×10m,则m的值为()A.6 B.7 C.8 D.9【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将361 000 000用科学记数法表示为:3.61×108.故m=8.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.某几何体的主视图和左视图完全一样均如图所示,则该几何体的俯视图不可能是()A.B.C.D.【考点】由三视图判断几何体;简单组合体的三视图.【分析】本题给出了正视图与左视图,由所给的数据知凭据三视图的作法规则,来判断左视图的形状,由于正视图中的长与左视图中的长不一致,此特征即是判断俯视图开关的关键,由此标准对四个可选项依次判断即可.【解答】解:几何体的主视图和左视图完全一样均如图所示则上面的几何体从正面看和左面看的长度相等,只有等边三角形不可能,故选C.【点评】本题考点是简单空间图形的三视图,考查根据作三视图的规则来作出三个视图的能力,三视图的投影规则是:“主视、俯视长对正;主视、左视高平齐,左视、俯视宽相等”.三视图是高考的新增考点,不时出现在高考试题中,应予以重视.5.在数轴上标注了四段范围,如图,则表示的点落在()A.段①B.段②C.段③D.段④【考点】估算无理数的大小;实数与数轴.【分析】根据数的平方,即可解答.【解答】解:2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∵7.84<8<8.41,∴,∴的点落在段③,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是计算出各数的平方.6.2017年安庆市体育考试跳绳项目为学生选考项目,下表是某班模拟考试时10名同学的测试成绩(单位:个/分钟)则关于这10名同学每分钟跳绳的测试成绩,下列说法错误的是()A.方差是135 B.平均数是170C.中位数是173.5 D.众数是177【考点】方差;加权平均数;中位数;众数.【分析】根据平均数、方差、中位数和众数的定义分别进行解答,即可求出答案.【解答】解:这组数据的平均数是:(140+160+169+170×2+177×3+180×2)÷10=170,则方差=[(140﹣170)2+(160﹣170)2+(169﹣170)2+2×(170﹣170)2+3×(177﹣170)2+2×(180﹣170)2]=134.8;∵共有10个数,∴中位数是第5个和6个数的平均数,∴中位数是(170+177)÷2=173.5;∵177出现了三次,出现的次数最多,∴众数是177;∴下列说法错误的是A;故选A.【点评】此题考查了平均数、方差、中位数和众数,掌握平均数、方差、中位数和众数的定义是解题的关键,一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).7.不等式组的解集在数轴上表示正确的是()A.B.C. D.【考点】在数轴上表示不等式的解集;解一元一次不等式组.【分析】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出即可.【解答】解:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:故选:D.【点评】本题主要考查对不等式的性质,解一元一次不等式(组),在数轴上表示不等式的解集等知识点的理解和掌握,能根据不等式的解集找出不等式组的解集是解此题的关键.8.如图,点A,B为定点,定直线l∥AB,P是l上一动点,点M,N分别为PA,PB的中点,对下列各值:①线段MN的长;②△PAB的周长;③△PMN的面积;④直线MN,AB之间的距离;⑤∠APB 的大小.其中会随点P的移动而变化的是()A.②③B.②⑤C.①③④ D.④⑤【考点】三角形中位线定理;平行线之间的距离.【专题】压轴题.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得MN=AB,从而判断出①不变;再根据三角形的周长的定义判断出②是变化的;确定出点P到MN的距离不变,然后根据等底等高的三角形的面积相等确定出③不变;根据平行线间的距离相等判断出④不变;根据角的定义判断出⑤变化.【解答】解:∵点A,B为定点,点M,N分别为PA,PB的中点,∴MN是△PAB的中位线,∴MN=AB,即线段MN的长度不变,故①错误;PA、PB的长度随点P的移动而变化,所以,△PAB的周长会随点P的移动而变化,故②正确;∵MN的长度不变,点P到MN的距离等于l与AB的距离的一半,∴△PMN的面积不变,故③错误;直线MN,AB之间的距离不随点P的移动而变化,故④错误;∠APB的大小点P的移动而变化,故⑤正确.综上所述,会随点P的移动而变化的是②⑤.故选:B.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等底等高的三角形的面积相等,平行线间的距离的定义,熟记定理是解题的关键.9.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是()A.2.5 B.C. D.2【考点】直角三角形斜边上的中线;勾股定理;勾股定理的逆定理.【专题】几何图形问题.【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.【解答】解:如图,连接AC、CF,∵正方形ABCD和正方形CEFG中,BC=1,CE=3,∴AC=,CF=3,∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,AF===2,∵H是AF的中点,∴CH=AF=×2=.故选:B.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.10.如图,Rt△ABC中,AC=BC=2,正方形CDEF的顶点D、F分别在AC、BC边上,设CD的长度为x,△ABC与正方形CDEF重叠部分的面积为y,则下列图象中能表示y与x之间的函数关系的是()A.B.C.D.【考点】动点问题的函数图象;等腰三角形的性质.【专题】数形结合.【分析】分类讨论:当0<x≤1时,根据正方形的面积公式得到y=x2;当1<x≤2时,ED交AB于M,EF交AB于N,利用重叠的面积等于正方形的面积减去等腰直角三角形MNE的面积得到y=x2﹣2(x﹣1)2,配方得到y=﹣(x﹣2)2+2,然后根据二次函数的性质对各选项进行判断.【解答】解:当0<x≤1时,y=x2,当1<x≤2时,ED交AB于M,EF交AB于N,如图,CD=x,则AD=2﹣x,∵Rt△ABC中,AC=BC=2,∴△ADM为等腰直角三角形,∴DM=2﹣x,∴EM=x﹣(2﹣x)=2x﹣2,∴S△ENM=(2x﹣2)2=2(x﹣1)2,∴y=x2﹣2(x﹣1)2=﹣x2+4x﹣2=﹣(x﹣2)2+2,∴y=,故选:A.【点评】本题考查了动点问题的函数图象:通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.也考查了等腰直角三角形的性质.二、填空题(本大题共4小题,每小题5分,满分20分)11.分解因式:12x2﹣3y2=3(2x+y)(2x﹣y).【考点】提公因式法与公式法的综合运用.【分析】考查了对一个多项式因式分解的能力,本题属于基础题.当一个多项式有公因式,将其分解因式时应先提取公因式,再对余下的多项式继续分解.此题应提公因式,再用公式.【解答】解:12x2﹣3y2=3(2x﹣y)(2x+y).【点评】本题考查因式分解.因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.解答这类题时一些学生往往因分解因式的步骤、方法掌握不熟练,对一些乘法公式的特点记不准确而误选其它选项.要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以提取公因式的要先提取公因式12.观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,36=729,37=2187…,解答下列问题:3+32+33+…+32017的末位数字是9.【考点】尾数特征.【专题】规律型.【分析】根据31=3,32=9,33=27,34=81,35=243,36=729,37=2187…得出3+32+33+34…+32017的末位数字相当于:3+7+9+1+…+3+7+9,进而得出末尾数字.【解答】解:∵31=3,32=9,33=27,34=81,35=243,36=729,37=2187…∴末尾数,每4个一循环,∵2017÷4=503…3,∴3+32+33+34…+32017的末位数字相当于:3+7+9+1+…+3+7+9=(3+9+7+1)×503+19=10079的末尾数为9.故答案为:9.【点评】此题主要考查了尾数特征以及数字变化规律,根据已知得出数字变化规律是解题关键.13.如图,在⊙O中,AB为直径,BC为弦,CD为切线,连接OC.若∠BCD=50°,则∠AOC的度数为80°.【考点】切线的性质.【分析】根据切线的性质得出∠OCD=90°,进而得出∠OCB=40°,再利用圆心角等于圆周角的2倍解答即可.【解答】解:∵在⊙O中,AB为直径,BC为弦,CD为切线,∴∠OCD=90°,∵∠BCD=50°,∴∠OCB=40°,∴∠AOC=80°.故答案为:80°.【点评】本题考查了切线的性质定理以及圆周角定理的运用,熟记和圆有关的各种性质定理是解题关键.14.如图,CB、CD分别是钝角△AEC和锐角△ABC的中线,且AC=AB,给出下列结论:①AE=2AC;②CE=2CD;③∠ACD=∠BCE;④CB平分∠DCE.请写出正确结论的序号①②④(注:将你认为正确结论的序号都填上).【考点】三角形中位线定理;全等三角形的判定与性质.【专题】压轴题.【分析】根据三角形的中位线定理和三角形全等的判定,此处可以运用排除法逐条进行分析.【解答】解:根据三角形的中线的概念得AE=2AB=2AC,①正确;②作CE的中点F,连接BF.根据三角形的中位线定理得AC=2BF,又AC=AB=2BD,所以BF=BD.根据三角形的中位线定理得到BF∥AC,则∠CBF=∠ACB=∠ABC.根据SAS得到△BCD≌△BCF,所以CF=CD,即CE=2CD.②正确;③根据②中的全等三角形得到∠BCD=∠BCE,若∠ACD=∠BCE,则需∠ACD=∠BCD.而CD只是三角形的中线.错误;④正确.故正确的是①②④.【点评】考查了三角形的中线的概念,能够熟练运用三角形的中位线定理,掌握全等三角形的判定和性质.三、(本大题共2小题,每小题8分,满分16分)15.计算:﹣(﹣2)+(1+π)0﹣|1﹣|+﹣cos45°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式第一项利用去括号法则计算,第二项利用零指数幂法则计算,第三项利用绝对值的代数意义化简,第四项化为最简二次根式,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=2+1﹣+1+2﹣=4+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.解方程:=.【考点】解分式方程.【分析】因为3x﹣3=3(x﹣1),所以可确定方程的最简公分母为3(x﹣1),确定方程最简公分母后,方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:方程两边同乘3(x﹣1),得:3x=2,解得x=.经检验x=是方程的根.【点评】本题考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)分式中有常数项的注意不要漏乘常数项.四、(本大题共2小题,每小题8分,满分16分)17.如图,△A1B1C1是△ABC向右平移4个单位长度后得到的,且三个顶点的坐标分别为A1(1,1),B1(4,2),C1(3,4).(1)请画出△ABC,并写出点A,B,C的坐标;(2)求出△AOA1的面积.【考点】作图-平移变换.【分析】(1)直接把△A1B1C1是向左平移4个单位,再写出点A,B,C的坐标即可;(2)直接根据三角形的面积公式即可得出结论.【解答】解:(1)如图所示,A(﹣3,1),B(0,2),C(﹣1,4);(2)S△AOA1=×4×1=2.【点评】本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.18.一方有难八方支援.安徽地震局救援队在某次地震救援中,探测出某建筑物废墟下方点C处有生命迹象,在废墟一侧某面上选两探测点A、B,AB相距2.1米,探测线与地面的夹角分别是35°和45°(如图),试确定生命所在点C与探测面的距离(参考数据≈1.4,≈1.7)【考点】解直角三角形的应用.【分析】首先过C作CD⊥AB,设CD=x米,则DB=CD=x米,AD=CD=x米,再根据AB相距2.1米可得方程x﹣x=2.1,再解即可.【解答】解:过C作CD⊥AB,设CD=x米,∵∠ABE=45°,∴∠CBD=45°,∴DB=CD=x米,∵∠CAD=30°,∴AD=CD=x米,∵AB相距2.1米,∴x﹣x=2.1,解得:x=3.答:命所在点C与探测面的距离是3米.【点评】此题主要考查了解直角三角形的应用,关键是正确分析出CD、AD、BD的关系.五、(本大题共2小题,每小题10分,满分20分)19.为了解外来务工子女就学情况,某校对七年级各班级外来务工子女的人数情况进行了统计,发现各班级中外来务工子女的人数有1名、2名、3名、4名、5名、6名共六种情况,并制成如下两幅统计图:(1)求该校七年级平均每个班级有多少名外来务工子女?并将该条形统计图补充完整;(2)学校决定从只有2名外来务工子女的这些班级中,任选两名进行生活资助,请用列表法或画树状图的方法,求出所选两名外来务工子女来自同一个班级的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)根据外来务工子女有4名的班级占20%,可求得有外来务工子女的总班级数,再减去其它班级数,即可补全统计图;(2)根据班级个数和班级人数,求出总的外来务工子女数,再除以总班级数,即可得出答案;(3)根据(1)可知,只有2名外来务工子女的班级有2个,共4名学生,再设A1,A2来自一个班,B1,B2来自一个班,列出树状图可得出来自一个班的共有4种情况,再根据概率公式即可得出答案.【解答】解:(1)该校班级个数为4÷20%=20(个),只有2名外来务工子女的班级个数为:20﹣(2+3+4+5+4)=2(个),条形统计图补充完整如下该校平均每班外来务工子女的人数为:(1×2+2×2+3×3+4×4+5×5+6×4)÷20=4(个);(2)由(1)得只有2名外来务工子女的班级有2个,共4名学生,设A1,A2来自一个班,B1,B2来自一个班,画树状图如图所示;由树状图可知,共有12种可能的情况,并且每种结果出现的可能性相等,其中来自一个班的共有4种情况,则所选两名外来务工子女来自同一个班级的概率为:=.【点评】本题考查了条形统计图和扇形统计图、树状图的画法以及规律公式;读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(2017•威海)如图,在△ABC中,AB=AC,以AC为直径的⊙O交AB于点D,交BC于点E.(1)求证:BE=CE;(2)若BD=2,BE=3,求AC的长.【考点】相似三角形的判定与性质;等腰三角形的性质;圆周角定理.【专题】证明题.【分析】(1)连结AE,如图,根据圆周角定理,由AC为⊙O的直径得到∠AEC=90°,然后利用等腰三角形的性质即可得到BE=CE;(2)连结DE,如图,证明△BED∽△BAC,然后利用相似比可计算出AB的长,从而得到AC的长.【解答】(1)证明:连结AE,如图,∵AC为⊙O的直径,∴∠AEC=90°,∴AE⊥BC,而AB=AC,∴BE=CE;(2)连结DE,如图,∵BE=CE=3,∴BC=6,∵∠BED=∠BAC,而∠DBE=∠CBA,∴△BED∽△BAC,∴=,即=,∴BA=9,∴AC=BA=9.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了角平分线的性质和圆周角定理.六、(本题满分12分)21.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(﹣3,﹣2)两点.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2),是函数y=图象上的两点,且y1>y2,求实数p的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)首先把B(﹣3,﹣2)代入反比例函数解析式中确定k2,然后把A(2,m)代入反比例函数的解析式确定m,然后根据A,B两点坐标利用待定系数法确定一次函数的解析式;(2)根据函数的图象即可求得;(3)分两种情况结合图象即可求得.【解答】解:(1)把B(﹣3,﹣2)代入数y=中,∴k2=6,∴反比例函数解析式为y=,把A(2,m)代入y=得,m=3,把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:解得k1=1,b=1,∴一次函数解析式为y=x+1.(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分两种情况:当P在第三象限时,要使y1>y2,p的取值范围为p<﹣2;当P在第一象限时,要使y1>y2,p的取值范围为p>0;故P的取值范围是p<﹣2或p>0.【点评】此题考查了用待定系数法确定反比例函数和一次函数的解析式,也考查了反比例函数和一次函数的交点问题,函数和不等式的关系.七、(本题满分12分)22.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.【考点】四边形综合题.【分析】(1)过F作FM⊥CD,垂足为M,连接GE,由AB与CD平行,利用两直线平行内错角相等得到一对角相等,再由GE为菱形的对角线,利用菱形的性质得到一对内错角相等,利用等式的性质即可得证;(2)由于四边形ABCD为正方形,四边形HEFG为菱形,那么∠D=∠A=90°,HG=HE,而AH=DG=2,易证△AHE≌△DGH,从而有∠DHG=∠HEA,等量代换可得∠AHE+∠DHG=90°,易证四边形HEFG 为正方形;(3)欲求△FCG的面积,由已知得CG的长易求,只需求出GC边的高,通过证明△AHE≌△MFG 可得.【解答】(1)证明:过F作FM⊥CD,垂足为M,连接GE,∵CD∥AB,∴∠AEG=∠MGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠AEH=∠FGM;(2)证明:在△HDG和△AEH中,∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HDG和△AEH中,,∴Rt△HDG≌△AEH(HL),∴∠DHG=∠AEH,∴∠DHG+∠AHE=90°∴∠GHE=90°,∴菱形EFGH为正方形;(3)解:过F作FM⊥CD于M,在△AHE与△MFG中,,∴△AHE≌△MFG,∴MF=AH=x,∵DG=2x,∴CG=6﹣2x,∴y=CG•FM=•x•(6﹣2x)=﹣(x﹣)2+,=.∵a=﹣1<0,∴当x=时,y最大【点评】本题考查了正方形的性质、菱形的性质、全等三角形的判定和性质,解题的关键是作辅助线:过F作FM⊥DC,交DC延长线于M,连接GE,构造全等三角形和内错角.八、(本题满分14分)23.音乐喷泉(图1)可以使喷水造型随音乐的节奏起伏变化而变化,某种音乐喷泉形状如抛物线,设其出水口为原点,出水口离岸边18m,音乐变化时,抛物线的顶点在直线y=kx上变动,从而产生一组不同的抛物线(图2),这组抛物线的统一形式为y=ax2+bx.(1)若已知k=1,且喷出的抛物线水线最大高度达3m,求此时a、b的值;(2)若k=1,喷出的水恰好达到岸边,则此时喷出的抛物线水线最大高度是多少米?(3)若k=2,且要求喷出的抛物线水线不能到岸边,求a的取值范围.【考点】二次函数的应用.【分析】(1)根据抛物线的顶点在直线y=kx上,抛物线为y=ax2+bx,k=1,且喷出的抛物线水线最大高度达3m,可以求得a,b的值;(2)根据k=1,喷出的水恰好达到岸边,抛物线的顶点在直线y=kx上,可以求得抛物线的对称轴x 的值,从而可以得到此时喷出的抛物线水线最大高度;(3)抛物线的顶点在直线y=2x上可得b的值,根据喷出的抛物线水线不能到岸边,而出水口离岸边18m可知其对称轴﹣<9,可得a的范围.【解答】解:(1)∵y=ax2+bx的顶点为(﹣,﹣),抛物线的顶点在直线y=kx上,k=1,抛物线水线最大高度达3m,∴﹣=,=3,解得,a=﹣,b=2,即k=1,且喷出的抛物线水线最大高度达3m,此时a、b的值分别是﹣,2;(2)∵k=1,喷出的水恰好达到岸边,出水口离岸边18m,抛物线的顶点在直线y=kx上,∴此时抛物线的对称轴为x=9,y=x=9,即此时喷出的抛物线水线最大高度是9米;(3)∵y=ax2+bx的顶点为(﹣,﹣),抛物线的顶点在直线y=2x上,∴﹣×2=﹣,解得:b=4,∵喷出的抛物线水线不能到岸边,出水口离岸边18m,∴﹣<9,即:﹣<9,解得:a>﹣,又∵a<0,∴﹣<a<0.【点评】本题考查二次函数的应用,解题的关键是明确题意,根据题目给出的信息列出相应的关系式,找出所求问题需要的条件.。
【初三政治试题精选】2018届中考数学第二次模拟(5月)考试题(无锡市滨湖区含答案)
2018届中考数学第二次模拟(5月)考试题(无锡市滨湖区含
答案)
5
滨湖区2x+100.
(1)写出司每月的利润(万元)与销售单价x(元)之间函数解析式;
(2)当销售单价为多少元时,司每月能够获得最大利润?最大利润是多少?
(3)根据工商部门规定,这种纪念品的销售单价不得高于32元.如果司要获得每月不低于350万元的利润,那么制造这种纪念品每月的最低制造成本需要多少万元?
26.(本题满分10分)如图,在Rt△Ac中,∠A=30°,点(0,0),c(1,0),点A在轴正半轴上,以Ac为一边做等腰直角△AcP,使得点P在第一象限。
(1)求出所有符合题意的点P的坐标;
(2)在△Ac内部存在一点Q,使得AQ、Q、cQ之和最小,请求出这个和的最小值。
27.如图,已知抛物线(b、c是常数,且c<0)与x轴交于A、B两点(点A在点B的左侧),与轴的负半轴交于点c,且B=2c.(1)点B的横坐标为_______,b=______,(上述结果均用含c 的代数式表示);
(2)点D是线段B的中点,若△AcD的面积为3,求抛物线的解析式;
(3)在(2)的条下,点P是x轴下方的抛物线上的一动点,连结PB、Pc.。
湖北省武汉市四校联考2018年中考数学模拟试卷(3月份,带答案)
2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)一.选择题(每小题3分,共30分)1.(3分)化简的结果为()A .±5B .25C .﹣5D .52.(3分)若代数式在实数范围内有意义,则实数x 的取值范围是()A .x <3B .x >3C .x ≠3D .x=33.(3分)下列计算结果是x 5的为()A .x 10÷x 2B .x 6﹣xC .x 2•x 3D .(x 3)24.(3分)在一次中学生田径运动会上,参加跳远的15名运动员的成绩如下表所示成绩(米) 4.504.604.654.704.754.80人数232341则这些运动员成绩的中位数、众数分别是()A .4.65、4.70B .4.65、4.75C .4.70、4.75D .4.70、4.705.(3分)计算(x +2)(x +3)的结果为()A .x 2+6B .x 2+5x +6C .x 2+5x +5D .x 2+6x +66.(3分)点P (2,﹣3)关于x 轴对称点的坐标为()A .(2,3)B .(﹣2,3)C .(﹣2,﹣3)D .(﹣3,2)7.(3分)如图所示的正方体的展开图是()A .B .C .D .8.(3分)按照一定规律排列的n 个数:1,﹣2,4,﹣8,16,﹣32,64…若最后两个数的差为﹣1536,则n为()A.9B.10C.11D.129.(3分)已知一个三角形的三边长分别是6、7、8,则其内切圆直径为()A.B.C.D.210.(3分)已知抛物线y1=(x﹣x1)(x﹣x2)交x轴于A(x1,0)B(x2,0)两点,且点A在点B的左边,直线y2=2x+t经过点A.若函数y=y1+y2的图象与x轴只有一个公共点时,则线段AB的长为()A.4B.8C.16D.无法确定二.填空题(每小题3分,共18分)11.(3分)计算﹣2+3×4的结果为12.(3分)计算:=.13.(3分)将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.(3分)一个不透明的袋中共有5个小球,分别为2个红球和3个黄球,它们除颜色外完全相同,随机摸出两个小球,则摸出两个颜色不同小球的概率是.15.(3分)如图,等边△ABC的边长为8,D、E两点分别从顶点B、C出发,沿边BC、CA以1个单位/s、2个单位/s的速度向顶点C、A运动,DE的垂直平分线交BC边于F点,若某时刻tan∠CDE=时,则线段CF的长度为.16.(3分)在平面直角坐标系中,A(4,0),直线l:y=6与y轴交于点B,点P是直线l上点B右侧的动点,以AP为边在AP右侧作等腰Rt△APQ,∠APQ=90°,当点P的横坐标满足0≤x≤8,则点Q的运动路径长为.三、解答题(共8小题,满分72分)17.(8分)解方程:7x﹣5=3x﹣1.18.(8分)如图,点C,F,E,B在一条直线上,∠CFD=∠BEA,CE=BF,DF=AE,写出CD与AB之间的关系,并证明你的结论.19.(8分)某公司为了掌握职工的工作成绩,随机抽取了部分职工的平时成绩(得分为整数,满分为160分)分为5组,第一组85~100;第二组100~115;第三组115~130;第四组130~145;第五组145~160,统计后得到如图所示的频数分布直方图(每组含最小值不含最大值)和扇形统计图,观察图形的信息,回答下列问题:(1)写出本次调查共抽取的职工数为(2)若将得分转化为等级,规定:得分低于100分评为“D”,100~130分评为“C”,130~145分评为“B”,145~160分评为“A”,求该公司1500名工作人员中,成绩评为“B”的人员大约有多少名?20.(8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.21.(8分)如图,⊙O为正方形ABCD的外接圆,E为弧BC上一点,AF⊥DE于F,连OF、OD.(1)求证:AF=EF;(2)若=,求sin∠DOF的值.22.(10分)如图,在△ABC中,AC=BC,AB⊥x轴于A,反比例函数y=(x >0)的图象经过点C,交AB于点D,已知AB=4,BC=.(1)若OA=4,求k的值.(2)连接OC,若AD=AC,求CO的长.23.(10分)如图,在四边形ABCD中,AB∥CD,∠ADC=90°,DE⊥BC于E,连AE,FE⊥AE交CD于点F.(1)求证:△AED∽△FEC;(2)若AB=2,求DF的值;(3)若AD=CD,=2,则=.24.(12分)如图,二次函数y=﹣x2+bx+c的图象与x轴交于A、B两点,与y 轴交于点C,OB=OC,点D在函数图象上,CD∥x轴且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1)求b、c的值;(2)如图1,连BE,线段OC上的点F关于直线l的对称点F’恰好在线段BE 上,求点F的坐标;(3)如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M、与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?若存在,求出点Q的坐标;若不存在,说明理由.2018年湖北省武汉市四校联考中考数学模拟试卷(3月份)参考答案与试题解析一.选择题(每小题3分,共30分)1.【解答】解:∵表示25的算术平方根,∴=5.故选:D.2.【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.3.【解答】解:A、x10÷x2=x8,不符合题意;B、x6﹣x不能进一步计算,不符合题意;C、x2•x3=x5,符合题意;D、(x3)2=x6,不符合题意;故选:C.4.【解答】解:这些运动员成绩的中位数、众数分别是4.70,4.75.故选:C.5.【解答】解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,故选:B.6.【解答】解:点P(2,﹣3)关于x轴对称点的坐标为(2,3),故选A.7.【解答】解:根据带有各种符号的面的特点及位置,可得如图所示的正方体的展开图是.故选:A.8.【解答】解:观察数列,可知:第n个数为(﹣2)n﹣1.设倒数第二个数为x,则最后一个数为﹣2x,根据题意得:x﹣(﹣2x)=﹣1536,解得:x=﹣512,∴﹣2x=1024,∴(﹣2)n﹣1=1024,∴n=11.故选:C.9.【解答】解:AB=7,BC=6,AC=8,内切圆的半径为r,切点为G、E、F,作AD⊥BC于D,设BD=x,则CD=6﹣x,在Rt△ABD中,AD2=AB2﹣BD2,在Rt△ACD中,AD2=AC2﹣CD2,∴AB2﹣BD2=AC2﹣CD2,即72﹣x2=82﹣(6﹣x)2,解得,x=,则AD==,×AD×BC=×AB×r+×AC×r+×CB×r,解得,r=,∴其内切圆直径为2,故选:D.10.【解答】解:∵线y2=2x+t经过点A(x1,0),∴2x1+t=0∴x1=﹣,A(﹣,0)∵若函数y=y1+y2的图象与x轴只有一个公共点,∴这个公共点就是点A,∴可以假设y=(x+)2=x2+tx+,∴y1=y﹣y2=x2+(t﹣2)x+﹣t.∴AB=====8.故选:B.二.填空题(每小题3分,共18分)11.【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.12.【解答】解:==x+2.故答案为x+2.13.【解答】解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:62°.14.【解答】解:画树状图如下:由树状图可知,共有20种等可能结果,其中取出的小球颜色不同的有12种结果,∴两次取出的小球颜色不同的概率为=,故答案为:.15.【解答】解:作EH⊥BC于H,设线段DE的垂直平分线交DE于G.∵△ABC是等边三角形,∴∠C=60°,在Rt△EHC中,EC=2t,∴CH=t,EH=2t,在Rt△DEH中,∵tan∠CDE==,∴DH=4t,∵BD=t,BC=8,∴t+4t+t=8,∴t=,∴DH=,EH=,CH=,∵GF垂直平分线段DE,∴DF=EF,设DF=EF=x,在Rt△EFH中,∵EF2=EH2+FH2,∴x2=()2+(﹣x)2,解得x=,∴CF=﹣+=2.故答案为2.16.【解答】解:如图,过点P作PE⊥OA,垂足为E,过点Q作QF⊥BP,垂足为F,∵BP∥OA,PE⊥OA,∴∠EPF=∠PEO=90°.∵∠APQ=90°,∴∠EPA=∠FPQ=90°﹣∠APF.在△PEA和△PFQ中,∵,∴△PEA≌△PFQ(AAS),∴PE=PF,EA=QF,若点P的坐标为(a,6),则PF=PE=6,QF=AE=|4﹣a|.∴点Q的坐标为(a+6,10﹣a).∵无论a为何值,点Q的坐标(a+6,10﹣a)都满足一次函数解析式y=﹣x+16,∴点Q始终在直线y=﹣x+16上运动.当点P的横坐标满足0≤x≤8时,点Q的横坐标满足6≤x≤14,纵坐标满足2≤y≤10,则Q的运动路径长为=8,故答案为:8.三、解答题(共8小题,满分72分)17.【解答】解:(1)移项得7x﹣3x=5﹣1,合并同类项得4x=4,系数化为1得x=1.18.【解答】解:CD∥AB,CD=AB,理由是:∵CE=BF,∴CE﹣EF=BF﹣EF,∴CF=BE,在△AEB和△CFD中,,∴△AEB≌△CFD(SAS),∴CD=AB,∠C=∠B,∴CD∥AB.19.【解答】解:(1)本次调查共抽取的职工数为20÷40%=50(人),故答案为:50;(2)1500×=420(人),答:成绩评为“B”的人员大约有420名.20.【解答】解:(1)设甲种笔记本的单价是x元,乙种笔记本的单价是y元.(1分)根据题意可得(3分)解这个方程组得(4分)答:甲种笔记本的单价是3元,乙种笔记本的单价是5元.(5分)(2)设本次购买乙种笔记本m个,则甲种笔记本(2m﹣10)个.(6分)根据题意可得m+(2m﹣10)≥80,解这个不等式得m≥30,3(2m﹣10)+5m≤320(8分)解这个不等式得m≤31.(9分)因为m为正整数,所以m的值为:30或31故本次购进甲笔记本50个、乙笔记本30个;或购进甲笔记本52个、乙笔记本31个.(10分)21.【解答】证明:(1)如图,过B作BG⊥AF于G,连接BE、OB,∵AF⊥DE,∴∠AGB=∠AFD=90°,∴∠BAF+∠ABG=90°,∵四边形ABCD是正方形,∴BD为⊙O的直径,AD=AB,∠BAD=90°,∴∠DAF+∠BAF=90°,∠BED=90°,∴∠ABG=∠DAF,∴△ABG≌△DAF,∴BG=AF,∵∠BED=∠BGF=∠AFE=90°,∴四边形GBEF是矩形,∴EF=BG,∴AF=EF;(2)作OH⊥BE于H,连接AO,GO.∵OH⊥BE,∴BH=HE,∴OH垂直平分线段BE,∵四边形GBEF是矩形,∴BE=GF,BE∥GF,∴OH垂直平分线段FG,∴OG=OF,∵∠AOD=∠AFD=90°,∴A、D、F、O四点共圆,∴∠DOF=∠DAF,∠OFG=∠ADO=45°,∴△FOG是等腰直角三角形,∴FG=OF,∵EF=BG=AF=2OF,∴AF=2FG,AG=FG=DF,设DF=a,则AF=2a,AD=a,∴sin∠DOF=sin∠DAF==.22.【解答】解:(1)作CE⊥AB,垂足为E,∵AC=BC,AB=4,∴AE=BE=2.在Rt△BCE中,BC=,BE=2,∴CE=,∵OA=4,∴C点的坐标为:(,2),∵点C在y=(x>0)的图象上,∴k=11;(2)设A点的坐标为(m,0),∵BD=BC=,∴AD=,∴D,C两点的坐标分别为:(m,),(m+,2).∵点C,D都在y=(x>0)的图象上,∴m=2(m+),∴m=6,∴C点的坐标为:(,2),作CF⊥x轴,垂足为F,∴OF=,CF=2,在Rt△OFC中,OC2=OF2+CF2,∴OC==.23.【解答】解:(1)∵DE⊥BC,EF⊥AE,∴∠BED=∠CED=90°,∵∠2+∠3=90°,∠2+∠CEF=90°,∴∠CEF=∠3,∵∠AEF=∠ADF=90°∴∠6+∠4=180°,∵∠5+∠6=180°,∴∠5=∠4,∴△ADE∽△FEC.(2)∵∠1+∠3=90°,∠2+∠3=90°,∴∠1=∠2,∵AB∥CD,∠ADC=90°,∴∠BAD+∠ADC=180°,∴∠BAD=90°,∵∠BED+∠BAD=180°,∴四边形ABCD四点共圆,∵∠AEF+∠ADF=180°,∴四边形AEFD四点共圆,∴A、B、E、F、D五点共圆,∵∠1=∠2,∴DF=AB=2.(3)作CN⊥AB交AB的延长线于N,过点E作EG⊥AN垂足为G交CD于H,延长DE交CN于M.∵==2,AB=FD,∴EG=2EH,∵GB∥CH,∴△EGB∽△EHC,∴==2,设EC=a,AB=x,CD=y,则EB=2a,∵∠NCD=∠ADC=∠DAN=90°,∴四边形ADCN是矩形,∵AD=DC∴四边形ADCN是正方形,∴AN=CN=CD=y,NB=y﹣x,∵∠NCB+∠CMD=90°,∠CMD+∠MDC=90°∴∠NCB=∠MDC,∵CN=CD,∴△CNB≌△DCM,∴CM=BN=y﹣x,DM=BC=3a,∵∠MCD=∠MEC,∠CME=∠CMD,∴△MCE∽△MDC,∴=,∴=,∴y2﹣xy=3a2①∵CM2+CD2=MD2,∴(y﹣x)2+y2=9a2②由①②消去a得x2+xy﹣y2=0∴x=y,(或x=y舍弃)∴=,∴=.故答案为:.24.【解答】解:(1)∵CD∥x轴,CD=2,∴抛物线对称轴为x=1.∴﹣=1,b=2.∵OB=OC,C(0,c),∴B点的坐标为(﹣c,0),∴0=﹣c2+2c+c,解得c=3或c=0(舍去),∴c=3;(2)设点F的坐标为(0,m).∵对称轴为直线x=1,∴点F关于直线l的对称点F的坐标为(2,m).由(1)可知抛物线解析式为y=﹣x2+2x+3=﹣(x﹣1)2+4,∴E(1,4),∵直线BE经过点B(3,0),E(1,4),∴利用待定系数法可得直线BE的表达式为y=﹣2x+6.∵点F在BE上,∴m=﹣2×2+6=2,即点F的坐标为(0,2);(3)存在点Q满足题意.设点P坐标为(n,0),则PA=n+1,PB=PM=3﹣n,PN=﹣n2+2n+3.作QR⊥PN,垂足为R,=S△APM,∵S△PQN∴(n+1)(3﹣n)=(﹣n2+2n+3)•QR,∴QR=1.①点Q在直线PN的左侧时,Q点的坐标为(n﹣1,﹣n2+4n),R点的坐标为(n,﹣n2+4n),N点的坐标为(n,﹣n2+2n+3).∴在Rt△QRN中,NQ2=1+(2n﹣3)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,);②点Q在直线PN的右侧时,Q点的坐标为(n+1,n2﹣4).同理,NQ2=1+(2n﹣1)2,∴n=时,NQ取最小值1.此时Q点的坐标为(,).综上可知存在满足题意的点Q,其坐标为(,)或(,).。
广东中考数学复习各地区2022年模拟试题分类(深圳专版)(5)——三角形(含解析)
广东中考数学复习各地区2018-2022年模拟试题分类(深圳专版)(5)——三角形一.选择题(共23小题) 1.(2022•福田区校级模拟)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,以AD 为边向外作等边△ADE ,AE =√6,连接CE ,交BD 于F ,若点M 为AB 的延长线上一点,连接CM ,连接FM 且FM 平分∠AMC ,下列选项正确的有( ) ①DF =√3−1;②S △AEC =3(1+√3)2;③∠AMC =60°;④CM +AM =√2MF .A .1个B .2个C .3个D .4个2.(2022•龙华区二模)如图,直线a ∥b ∥c ,等边三角形△ABC 的顶点A 、B 、C 分别在直线a 、b 、c 上,边BC 与直线c 所夹的角∠1=25°,则∠2的度数为( )A .25°B .30°C .35°D .45°3.(2022•宝安区二模)如图,在△ABC 中,分别以点A 和点B 为圆心,大于12AB 的长为半径作弧,两弧相交于M 、N 两点,连接MN ,交AB 于点H ,以点H 为圆心,HA 的长为半径作的弧恰好经过点C ,以点B 为圆心,BC 的长为半径作弧交AB 于点D ,连接CD ,若∠A =22°,则∠BDC =( )A .52°B .55°C .56°D .60° 4.(2022•福田区一模)如图,正方形ABCD 中,E 是BC 延长线上一点,在AB 上取一点F ,使点B 关于直线EF 的对称点G 落在AD 上,连接EG 交CD 于点H ,连接BH 交EF 于点M ,连接CM .则下列结论,其中正确的是( ) ①∠1=∠2; ②∠3=∠4; ③GD =√2CM ;④若AG =1,GD =2,则BM =√5.A .①②③④B .①②C .③④D .①②④ 5.(2022•光明区一模)如图,AB ∥CE ,∠A =40°,CE =DE ,则∠C =( )A .40°B .30°C .20°D .15° 6.(2022•南山区模拟)如图,△ABC 中,AB =5,AC =4,以点A 为圆心,任意长为半径作弧,分别交AB 、AC 于D 和E ,再分别以点D 、E 为圆心,大于二分之一DE 为半径作弧,两弧交于点F ,连接AF 并延长交BC 于点G ,GH ⊥AC 于H ,GH =2,则△ABG 的面积为( )A .4B .5C .9D .10 7.(2022•龙岗区模拟)平面直角坐标系中,已知A (1,2)、B (3,0).若在坐标轴上取点C ,使△ABC 为等腰三角形,则满足条件的点C 的个数是( ) A .5 B .6 C .7 D .8 8.(2022•宝安区三模)如图,在三角形ABC 中,AB =AC ,BC =6,三角形DEF 的周长是7,AF ⊥BC 于F ,BE ⊥AC 于E ,且点D 是AB 的中点,则AF =( )A .√5B .√7C .√3D .79.(2022•龙岗区校级模拟)如图,△ABC 中,D 是AB 的中点,E 在AC 上,且∠AED =90°+12∠C ,则BC +2AE 等于( )A .ABB .ACC .32ABD .32AC10.(2022•南山区校级一模)等腰三角形的一边为4,另一边为9,则这个三角形的周长为( )A .17B .22C .13D .17或22 11.(2022•罗湖区一模)由三角函数定义,对于任意锐角A ,有sin A =cos (90°﹣A )及sin 2A +cos 2A =1成立.如图,在△ABC 中,∠A ,∠B 是锐角,BC =a ,AC =b ,AB =c .CD ⊥AB 于D ,DE ∥AC 交BC 于E ,设CD =h ,BE =a ',DE =b ',BD =c ',则下列条件中能判定△ABC 是直角三角形的个数是( ) ①a 2+b 2=c 2;②aa '+bb '=cc ';③sin 2A +sin 2B =1;④1a 2+1a 2=1a 2.A .1个B .2个C .3个D .4个 12.(2022•龙华区二模)如图,已知a ∥b ,将一块等腰直角三角板的两个顶点分别放在直线a 、b 上.若∠1=23°,则∠2的度数为( )A .68°B .112°C .127°D .132° 13.(2022•福田区校级模拟)如图,在△ABC 中,∠B =45°,∠ACB =60°,AB =16,AD ⊥BC ,垂足为D ,∠ACB 的平分线交AD 于点E ,则AE 的长为( )A .83√2 B .4√2C .163√2D .6√214.(2022•罗湖区一模)在联欢会上,甲、乙、丙3人分别站在不在同一直线上的三点A 、B 、C 上,他们在玩抢凳子的游戏,要在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,凳子应放的最恰当的位置是△ABC 的( ) A .三条高的交点 B .重心 C .内心 D .外心 15.(2022•福田区校级模拟)下列性质中,直角三角形具有而等腰三角形不一定具有的是( ) A .两边之和大于第三边 B .内角和等于180°C .有两个锐角的和等于90°D .有一个角的平分线垂直于这个角的对边 16.(2022•南山区校级二模)如图,等腰△ABC 中,AB =AC =10,BC =6,直线EF 垂直平分AB 交AC 于D ,连接BD ,则△BCD 的周长等于( )A .13B .14C .15D .16 17.(2022•龙岗区校级二模)等腰三角形的两边分别为1和2,则其周长为( ) A .4 B .5 C .4或5 D .无法确定 18.(2022•盐田区二模)如图,直线AB ∥CD ,直线EF 分别交AB ,CD 于E ,F 两点,EG 平分∠AEF .若∠1=29°,则∠2=()A.29°B.58°C.61°D.60°19.(2022•福田区一模)如图,已知a∥b,点A在直线a上,点B,C在直线b上,若∠1=125°,∠2=50°,则∠3为()A.55°B.65°C.70°D.75°20.(2022•坪山区一模)如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.97°B.116°C.122°D.151°21.(2022•福田区校级模拟)如图,直线AB∥CD,直线EF分别交AB、CD于E、F两点,EG平分∠AEF,如果∠1=32°,那么∠2的度数是()A.64°B.68°C.58°D.60°22.(2022•福田区一模)如图,已知a∥b,点A在直线a上,点B、C在直线b上,∠1=120°,∠2=50°,则∠3为()A.70°B.60°C.45°D.30°23.(2022•宝安区二模)如图,将一副直角三角板按图中所示的位置摆放,两条斜边互相平行,则∠1=()A.75°B.70°C.65°D.60°二.填空题(共8小题)24.(2022•龙岗区校级模拟)如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,M为AB边的中点,连结ME、MD、ED,设AB=10,∠DBE=30°,则△EDM的面积为.25.(2022•龙岗区一模)如图,在△ABC中,∠BAC的平分线AD和边BC的垂直平分线ED相交于点D,过点D作DF垂直于AC交AC的延长线于点F,若AB=8,AC=4,则CF的长为.26.(2022•宝安区校级一模)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA8的长度为.27.(2022•龙岗区模拟)如图△ABC中,AB=AC,∠BAC=120°,∠DAE=60°,BD=5,CE=8,则DE的长为.28.(2022•深圳三模)如图,在△ABC中,AB=AC.M、N分别是AB、AC的中点,D、E为BC上的点,连接DN、EM.若AB=5cm,BC=6cm,DE=3cm,则图中阴影部分的面积为cm2.29.(2022•福田区校级模拟)如图,△ABC中,AB=AC=8,D为BC上一点,BD=3,∠ADE=∠B=30°,则AE的长为.30.(2022•龙岗区校级模拟)如图,D、E分别是△ABC边AB、BC上的点,AD=2BD,BE=CE.设△ADF 的面积为S1,△CEF的面积为S2,若S△ABC=6,则S1﹣S2=.31.(2022•深圳模拟)如图,△ABC的顶点均在坐标轴上AE⊥BC于点E,交y轴于点D,已知点B,C的坐标分别为B(0,6),C(2,0).若AD=BC,则△AOD的面积为.三.解答题(共5小题)32.(2022•宝安区二模)如图1,在平面直角坐标系中,等边△ABC的边BC在x轴上,A(0,3),B(−√3,0),点M(m,0)为x轴上的一个动点,连接AM,将AM绕点A逆时针旋转60°得到AN.(1)当M点在B点的左方时,连接CN,求证:△BAM≌△CAN;(2)如图2,当M点在边BC上时,过点N作ND∥AC交x轴于点D,连接MN,若S四边形ACDN=43S△MND,试求D点的坐标;(3)如图3,是否存在点M,使得点N恰好在抛物线y=﹣2x2+4√3x+3上,如果存在,请求出m的值,如果不存在,请说明理由.33.(2022•龙岗区模拟)四边形ABCD中,AD=BC,BE=DF,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ADE≌△CBF;(2)若AC与BD相交于点O,求证:AO=CO.34.(2022•龙岗区模拟)如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC =AE+CD.35.(2022•宁波一模)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.36.(2022•南山区一模)如图,在Rt△ABC中,∠C=90°,∠A=30°.点D是AB中点,点E为边AC 上一点,连接CD,DE,以DE为边在DE的左侧作等边三角形DEF,连接BF.(1)△BCD的形状为;(2)随着点E位置的变化,∠DBF的度数是否变化?并结合图说明你的理由;(3)当点F落在边AC上时,若AC=6,请直接写出DE的长.广东中考数学复习各地区2022-2022年模拟试题分类(深圳专版)(5)——三角形参考答案与试题解析一.选择题(共23小题)1.【答案】C【解答】解:如图,过点F作FG⊥CD于G,作∠HFC=∠DCE,交CD于H,连接OE交AD于P,连接AF,在AM上截取MQ=MC,连接FQ,∵四边形ABCD是正方形,△ADE是等边三角形,∴AD=CD,AE=AD=√6,∠ADE=60°,∠ADC=90°,∠ADB=∠CDB=45°,∴∠EDC=150°,DE=DC=√6,∴∠DEC=∠DCE=15°,∴∠HFC=∠DCE=15°,∴HC=HF,∠FHG=30°,∵FG⊥CD,∠BDC=45°,∠FHG=30°,∴DG=GF,GH=√3GF,HF=2GF=HC,∴DF=√2GF,∵CD=DG+HG+HC=(3+√3)GF=√6,∴GF=√6−√22,∴DF=√2GF=√3−1,故①正确;∵DE=AE,DO=AO,∴EO垂直平分AD,∴EP⊥AD,又∵△AED是等边三角形,AD=DE=√6,∴AP=√62,EP=√3AP=3√22,∵DO=AO,∠AOD=90°,OP⊥AD,AD=√6,∴OP=√6 2,∴EO=OP+EP=3√2+√62,∵S△AEC=S△AEO+S△EOC=12×3√2+√62×√6=3(√3+1)2,故②正确;∵FM平分∠AMC,∴∠CMF=∠AMF,又∵CM=QM,FM=FM,∴△CMF≌△QMF(SAS),∴∠MCF=∠FQM,FC=FQ,∵AD=CD,∠ADB=∠CDB,DF=DF,∴△ADF≌△CDF(SAS),∴AF=CF,∠DCF=∠DAF=15°,∴∠F AQ=75°,F A=FQ=FC,∴∠FQA=F AQ=75°,∴∠FQM=∠FCM=105°,∴∠DCM=120°,∵DC∥AB,∴∠AMC+∠DCM=180°,∴∠AMC=60°,故③正确;如图,过点C作CN⊥MF于N,设BM=a,∵∠CBM=90°,∠CMB=60°,∴CM=2BM=2a,CB=√3a=AB,∴AM=√3a+a,∴AM+CM=(√3+3)a,∵∠CMF=12∠CMA=30°,∴∠CFM=180°﹣105°﹣30°=45°,∵CN⊥FM,∠CMN=30°,∠CFM=45°,∴CN=12CM=a,MN=√3a,FN=CN=a,∴MF=√3a+a,∴AM+CM=√3MF,故④错误,故选:C.2.【答案】C【解答】解:∵b∥c,∴∠3=∠1=25°,∵△ABC是等边三角形,∴∠ABC=60°,∴∠4=∠ABC﹣∠3=60°﹣25°=35°,∵a∥b,∴∠2=∠4=35°,故选:C.3.【答案】C【解答】解:连接CH,由题意得,直线MN是线段AB的垂直平分线,∴AH=BH,∵CH=AH,∴CH=12AB,∴∠ACB=90°,∵∠A=22°,∴∠ACH=∠A=22°,∴∠BCH=∠B=68°,∵BC=BD,∴∠BDC=∠BCD=12(180°﹣68°)=56°,故选:C.4.【答案】A【解答】解:如图1中,过点B作BK⊥GH于K.∵B,G关于EF对称,∴EB=EG,∴∠EBG=∠EGB,∵四边形ABCD是正方形,∴AB=BC,∠A=∠ABC=∠BCD=90°,AD∥BC,∴∠AGB=∠EBG,∴∠AGB=∠BGK,∵∠A=∠BKG=90°,BG=BG,∴△BAG≌△BKG(AAS),∴BK=BA=BC,∠ABG=∠KBG,∵∠BKH=∠BCH=90°,BH=BH,∴Rt△BHK≌Rt△BHC(HL),∴∠1=∠2,∠HBK=∠HBC,故①正确,∴∠GBH=∠GBK+∠HBK=12∠ABC=45°,过点M作MQ⊥GH于Q,MP⊥CD于P,MR⊥BC于R.∵∠1=∠2,∴MQ=MP,∵∠MEQ=∠MER,∴MQ=MR,∴MP=MR,∴∠4=∠MCP=12∠BCD=45°,∴∠GBH=∠4,故②正确,如图2中,过点M作MW⊥AD于W,交BC于T.∵B,G关于EF对称,∴BM=MG,∵CB=CD,∠4=∠MCD,CM=CM,∴△MCB≌△MCD(SAS),∴BM=DM,∴MG=MD,∵MW⊥DG,∴WG=WD,∵∠BTM=∠MWG=∠BMG=90°,∴∠BMT+∠GMW=90°,∵∠GMW+∠MGW=90°,∴∠BMT=∠MGW,∵MB=MG,∴△BTM≌△MWG(AAS),∴MT=WG,∵MC=√2TM,DG=2WG,∴DG=√2CM,故③正确,∵AG=1,DG=2,∴AD=AB=TM=3,EM=WD=TM=1,BT=AW=2,∴BM=√aa2+aa2=√22+12=√5,故④正确,故选:A.5.【答案】C【解答】解:∵AB∥CE,∴∠AEC=∠A=40°,∵CE=DE,∴∠C=∠D,∴∠AEC=∠C+∠D=2∠C,∴∠C=12∠AEC=12×40°=20°.故选:C.6.【答案】B【解答】解:作GM⊥AB于M,如图,由作法得AG平分∠BAC,而GH⊥AC,GM⊥AB,∴GM=GH=2,∴S△ABG=12×5×2=5.故选:B.7.【答案】C【解答】解:∵点A、B的坐标分别为(1,2)、B(3,0).∴AB=2√2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(B点除外),即(﹣1,0)、(0,2+√7)、(0,2−√7),即满足△ABC是等腰三角形的C点有3个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有2个交点,即满足△ABC是等腰三角形的C点有2个.综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有7个.故选:C.8.【答案】B【解答】解:∵AF⊥BC,BE⊥AC,D是AB的中点,∴DE=DF=12AB,∵AB=AC,AF⊥BC,∴点F是BC的中点,∴BF=FC=3,∵BE⊥AC,∴EF=12BC=3,∴△DEF的周长=DE+DF+EF=AB+3=7,∴AB=4,由勾股定理知AF=√aa2−aa2=√7,故选:B.9.【答案】B【解答】解:如图,过点B作BF∥DE交AC于点F.则∠BFC=∠DEF.又∵点D是AB的中点,∴EF=AE.∵∠DEF=∠BFC=180°﹣∠AED=180°﹣(90°+12∠C)=90°−12∠C,∴∠FBC=∠BFC,∴BC=FC,∴BC+2AE=AC.故选:B.10.【答案】B【解答】解:当腰长为4时,则三角形的三边长为:4、4、9;∵4+4<9,∴不能构成三角形;因此这个等腰三角形的腰长为9,则其周长=9+9+4=22.故选:B.11.【答案】D【解答】解:∵a2+b2=c2,∴∠ACB=90°,∴△ABC 是直角三角形,故①正确,∵DE ∥AC ,∴△DEB ∽△ACB , ∴aa aa =aa aa =aa aa , ∴a′a =a′a =a′a ,不妨设a′a =a′a =a′a =k , 则a ′=ak ,b ′=bk ,c ′=ck ,∵aa '+bb '=cc ',∴a 2k +b 2k =c 2k ,∴a 2+b 2=c 2,∴△ABC 是直角三角形,故②正确, ∵sin 2A +sin 2B =1,sin 2A +cos 2A =1,∴sin 2B =cos 2A ,∴sin B =cos A ,∵sin A =cos (90°﹣A ),∴90°﹣∠B =∠A ,∴∠A +∠B =90°,∴△ABC 是直角三角形,故③正确,∵1a 2+1a 2=1a 2, ∴a 2a 2+a 2a 2=1,∴sin 2B +sin 2A =1,∴△ABC 是直角三角形,故④正确.故选:D .12.【答案】B【解答】解:如图,∵a ∥b ,∴∠1=∠3=23°,∵∠4=45°,∠2=∠5,∴∠2=180°﹣∠3﹣∠5=112°,故选:B .13.【答案】C【解答】解:在Rt △ABD 中,∵∠ADB =90°,AB =16,∠B =45°,∴BA =DA =8√2,在Rt △ADC 中,∵∠ADC =90°,∠ACD =60°,AD =8√2,∴CD =8√63,∵CE 平分∠ACD ,∴∠ECD =30°,∴DE =CD •tan30°=8√23, ∴AE =AD ﹣DE =8√2−8√23=16√23,故选:C .14.【答案】D【解答】解:∵三角形的三条垂直平分线的交点到中间的凳子的距离相等,∴凳子应放在△ABC 的三条垂直平分线的交点最适当.15.【答案】C【解答】解:A、两边之和大于第三边,不符合题意;B、对于任意一个三角形都有内角和等于180°,不符合题意;C、只有直角三角形才有两个锐角的和等于90°,符合题意;D、等腰三角形顶角的平分线垂直于顶角的对边,而直角三角形(等腰直角三角形除外)没有任何一个角的平分线垂直于这个角的对边,不符合题意.故选:C.16.【答案】D【解答】解:∵MN是线段AB的垂直平分线,∴AD=BD,∵AB=AC=10,∴BD+CD=AD+CD=AC=10,∴△BCD的周长=AC+BC=10+6=16.故选:D.17.【答案】B【解答】解:由题意可知,三角形为等腰三角形,又由三边关系得出三角形第三边只能是2,所以周长是5.若另一边是1的话,则1+1=2不成立.故选:B.18.【答案】B【解答】解:∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=58°.∵AB∥CD,∴∠2=58°.故选:B.19.【答案】D【解答】解:∵a∥b,∠1=125°,∴∠ACD=125°,∵∠2=50°,∴∠3=125°﹣50°=75°.故选:D.20.【答案】D【解答】解:∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故选:D.21.【答案】A【解答】解:∵AB∥CD,∴∠1=∠AEG.∵EG平分∠AEF,∴∠AEF=2∠AEG,∴∠AEF=2∠1=64°.∴∠2=64°.22.【答案】A【解答】解:∵a ∥b ,∠1=120°,∴∠ACD =120°,∵∠2=50°,∴∠3=120°﹣50°=70°,故选:A .23.【答案】A【解答】解:如图,∵AB ∥DE ,∴∠ABC =∠D =45°,又∵∠A =30°,∴∠1=∠A +∠ABC =75°,故选:A .二.填空题(共8小题)24.【答案】见试题解答内容【解答】解:∵在△ABC 中,AD ⊥BC ,垂足为点D ,BE ⊥AC ,垂足为点E ,∴△ABE ,△ADB 是直角三角形,∴EM ,DM 分别是它们斜边上的中线,∴EM =DM =12AB =5,∵ME =12AB =MA ,∴∠MAE =∠MEA , ∴∠BME =2∠MAE , 同理,MD =12AB =MA ,∴∠MAD =∠MDA ,∴∠BMD =2∠MAD ,∴∠EMD =∠BME ﹣∠BMD =2∠MAE ﹣2∠MAD =2∠DAC =60°,∴△EDM 是边长为5的等边三角形,∴S △EDM =√34×52=25√34. 故答案为:25√34.25.【答案】见试题解答内容【解答】解:连接CD ,DB ,过点D 作DM ⊥AB 于点M ,∵AD 平分∠F AB ,∴∠F AD =∠DAM ,在△AFD 和△AMD 中,{∠aaa =∠aaaaaaa =aaaa aa =aa ,∴△AFD ≌△AMD (AAS )∴AF =AM ,FD =DM ,∵DE 垂直平分BC∴CD =BD ,在Rt △CDF 和Rt △BDM 中,{aa =aa aa =aa , ∴Rt △CDF ≌Rt △BDM (HL )∴BM =CF ,∵AB =AM +BM =AF +MB =AC +CF +MB =AC +2CF ,∴8=4+2CF ,解得,CF =2,故答案为:2.26.【答案】见试题解答内容【解答】解:∵△OAA 1为等腰直角三角形,OA =1,∴AA 1=OA =1,OA 1=√2OA =√2;∵△OA 1A 2为等腰直角三角形,∴A 1A 2=OA 1=√2,OA 2=√2OA 1=2;∵△OA 2A 3为等腰直角三角形,∴A 2A 3=OA 2=2,OA 3=√2OA 2=2√2;∵△OA 3A 4为等腰直角三角形,∴A 3A 4=OA 3=2√2,OA 4=√2OA 3=4.∵△OA 4A 5为等腰直角三角形,∴A 4A 5=OA 4=4,OA 5=√2OA 4=4√2.∵△OA 5A 6为等腰直角三角形,∴A 5A 6=OA 5=4√2,OA 6=√2OA 5=8.∴OA 8的长度为√28=16.故答案为:16.27.【答案】见试题解答内容【解答】解:∵AB =AC ,∴可把△AEC 绕点A 顺时针旋转120°得到△AE ′B ,∴BE ′=EC =8,AE ′=AE ,∠E ′AB =∠EAC ,∵∠BAC =120°,∠DAE =60°,∴∠BAD +∠EAC =60°,∴∠E ′AD =∠E ′AB +∠BAD =60°,在△E ′AD 和△EAD 中{aa ′=aa aa′aa =aaaa aa =aa,∴△E ′AD ≌△EAD (SAS ),∴E ′D =ED ,过E ′作EF ⊥BD 于点F ,∵AB =AC ,∠BAC =120°,∴∠ABC =∠C =∠E ′BA =30°,∴∠E′BF=60°,∴∠BE′F=30°,∴BF=12BE′=4,E′F=4√3,∵BD=5,∴FD=BD﹣BF=1,在Rt△E′FD中,由勾股定理可得E′D=√(4√3)2+12=7,∴DE=7.故答案为7.28.【答案】见试题解答内容【解答】解:连接MN,作AF⊥BC于F,∵M、N分别是AB、AC的中点,∴MN=12BC=3,MN∥BC,∴AF⊥MN,∵AB=AC,AF⊥BC,∴FC=12BC=3,在Rt△AFC中,AF=√aa2−aa2=4,图中阴影部分的三个三角形的底长都是3cm,高的和为4cm,∴图中阴影部分的面积=12×3×4=6(cm2),故答案为:6.29.【答案】见试题解答内容【解答】解:如下图所示∵AB=AC∠B=∠C=30°=∠ADE而∠ADB=∠DAE+∠C∠DEC=∠DAE+∠ADE∴∠ADB=∠DEC又由∠B=∠C∴△ABD∽△DCE∴aa aa =aa aa又∵AB =8,∠B =30°∴AM =4,BM =CM =4√3∴CD =8√3−3于是有3aa =8√3−3 ∴CE =3√3−98于是AE =AC ﹣CE =8﹣3√3+98=738−3√3 故答案为738−3√3.30.【答案】见试题解答内容【解答】解:∵BE =CE ,∴BE =12BC ,∵S △ABC =6, ∴S △ABE =12S △ABC =12×6=3.∵AD =2BD ,S △ABC =6, ∴S △BCD =13S △ABC =13×6=2,∵S △ABE ﹣S △BCD =(S △ADF +S 四边形BEFD )﹣(S △CEF +S 四边形BEFD )=S △ADF ﹣S △CEF ,即S △ADF ﹣S △CEF =S △ABE ﹣S △BCD =3﹣2=1.故答案为:131.【答案】见试题解答内容【解答】解:∵AE ⊥BC ,∴∠AEC =90°,∵∠EAC +∠ACE =90°,∠DAO +∠ADO =90°,∴∠ADO =∠ACE ,在△ADO 和△BCO 中{∠aaa =∠aaaaaaa =aaaa aa =aa,∴△ADO ≌△BCO (AAS ),∴OD =OC =2,OA =OB =6,∴△AOD 的面积=12×2×6=6. 故答案为6.三.解答题(共5小题)32.【答案】见试题解答内容【解答】解:(1)证明:∵△ABC 是等边三角形,∴∠BAC =60°,AB =AC ,∵将AM 绕点A 逆时针旋转60°得到AN ,∴AM =AN ,∠MAN =60°=∠BAC ,即∠CAN +∠BAN =∠MAB +∠BAN ,∴∠CAN =∠MAB ,∴△BAM ≌△CAN (SAS );(2)如图1,连接CN ,由(1)可知△BAM ≌△CAN ,∴∠B =∠ACN =60°,∵DN ∥AC ,∴∠NDC =∠ACB =60°,∴∠NCD =60°,∴△CDN 是等边三角形,∴CN =DN ,∠CND =60°,∵AM =AN ,∠MAN =60°,∴△AMN 是等边三角形,∴AN =MN ,∠ANM =60°,∴∠ANC =∠MND ,∴△ANC ≌△MND (SAS ),∴S △ACN =S △MND ,∵S 四边形ACDN =43S △MND =S △ACN +S △CDN , ∴13a △aaa =a △aaa ,∴CD =13aa =13AB ,∵A (0,3),B (−√3,0),∴OA =3,OB =√3,∴AB =√aa 2+aa 2=2√3,∴CD =2√33,∴OD =OC +CD =√3+2√33=5√33, ∴D (5√33,0);(3)如图2,过点C 作CE ∥AB 交y 轴于点E ,由(1),(2)可知点N 在直线CE 上,CE 与抛物线交于点N 1,N 2,∴∠ABC =∠OCE =60°,OC =OB =√3, ∴OE =3,∴E (0,﹣3),设直线CE 的解析式为y =kx +b , ∴{√3a +a =0a =−3,解得:{a =√3a =−3, ∴直线CE 的解析式为y =√3x ﹣3, ∴{a =−2a 2+4√3a +3a =√3a −3, 解得:{a 1=2√3a 1=3,{a 2=−√32a 2−92, ∴N 1(2√3,3),N 2(−√32,−92), 若AM 绕点A 逆时针旋转60°得到AN 1时,M (m ,0), ∴AM =AN 1=2√3,∵AB =2√3,AN 1∥x 轴,∴点M 与点C 重合,即m =√3,若AM 绕点A 逆时针旋转60°得到AN 2时,M (m ,0), ∵C (0,√3),∴CN 2=(√3+|√32)2+(0+92)2=3√3, 由(1)可知BM 2=CN 2=3√3, ∴OM 2=OB +BM 2=√3+3√3=4√3, ∴m =﹣4√3.综合以上可得,m =√3或﹣4√3.33.【答案】见试题解答内容【解答】证明:(1)∵BE =DF , ∴BE ﹣EF =DF ﹣EF ,即BF =DE ,∵AE ⊥BD ,CF ⊥BD ,∴∠AED =∠CFB =90°,在Rt △ADE 与Rt △CBF 中,{aa =aa aa =aa , ∴Rt △ADE ≌Rt △CBF ;(2)如图,连接AC 交BD 于O ,∵Rt △ADE ≌Rt △CBF ,∴∠ADE =∠CBF ,∴AD ∥BC ,∴四边形ABCD 是平行四边形,∴AO =CO .34.【答案】见试题解答内容 【解答】证明:在AC 上取AF =AE ,连接OF ,∵AD 平分∠BAC 、∴∠EAO =∠F AO ,在△AEO 与△AFO 中,{aa =aa aaaa =aaaa aa =aa∴△AEO ≌△AFO (SAS ),∴∠AOE =∠AOF ;∵AD 、CE 分别平分∠BAC 、∠ACB ,∴∠ECA +∠DAC =12∠ACB +12∠BAC =12(∠ACB +∠BAC )=12(180°﹣∠B )=60°则∠AOC =180°﹣∠ECA ﹣∠DAC =120°;∴∠AOC =∠DOE =120°,∠AOE =∠COD =∠AOF =60°, 则∠COF =60°,∴∠COD =∠COF ,∴在△FOC 与△DOC 中,{∠aaa =∠aaa aa =aa aaaa =aaaa,∴△FOC ≌△DOC (ASA ),∴DC =FC ,∵AC =AF +FC ,∴AC =AE +CD .35.【答案】见试题解答内容 【解答】(1)证明:∵AD 平分∠CAB ,DE ⊥AB ,∠C =90°, ∴CD =ED ,∠DEA =∠C =90°,∵在Rt △ACD 和Rt △AED 中{aa =aaaa =aa , ∴Rt △ACD ≌Rt △AED (HL );(2)∵DC =DE =1,DE ⊥AB ,∴∠DEB =90°,∵∠B =30°,∴BD =2DE =236.【答案】见试题解答内容【解答】解:(1)∵在Rt △ABC 中,∠C =90°,∠A =30°, ∴AB =2BC ,∠CBD =60°.∵点D 是AB 中点,∴BD =BC ,∴△BCD 为等边三角形.故答案为:等边三角形.(2)∠DBF 的度数不变,理由如下:∵∠ACB =90°,点D 是AB 中点,∴CD =12AB =AD , ∴∠ECD =30°.∵△BDC 为等边三角形,∴BD =DC ,∠BDC =60°.又∵△DEF 为等边三角形,∴DF =DE ,∠FDE =60°,∴∠BDF +∠FDC =∠EDC +∠FDC =60°,∴∠BDF =∠CDE .在△BDF 和△CDE 中,{aa =aaaaaa =aaaa aa =aa ,∴△BDF ≌△CDE (SAS ),∴∠DBF =∠DCE =30°,即∠DBF 的度数不变.(3)∵△DEF 为等边三角形,∴∠DEF =∠DFE =60°.∵∠A =∠ECD =30°,∴∠ADE =∠CDF =30°,∴△CDF 、△ADE 为等腰三角形,∴CF =DF =EF =DE =AE ,∴DE =AE =13AC =2.。
山东省青岛市2018年中考数学模拟试题1(含解析)
2018年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.52.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=17.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = .10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= °.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了根木棒.(只填结果)24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分,)1.(3分)﹣的绝对值是()A.﹣B.﹣C.D.5【解答】解:|﹣|=.故选:C.2.(3分)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s 用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s【解答】解:0.000 000 001=1×10﹣9,故选:D.3.(3分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项错误;B、不是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.4.(3分)计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【解答】解:a•a5﹣(2a3)2=a6﹣4a6=﹣3a6.故选:D.5.(3分)如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在格点上.若线段AB上有一个点P( a,b),则点P在A′B′上的对应点P′的坐标为()A.(a﹣2,b+3) B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选:A.6.(3分)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.7.(3分)如图,一扇形纸扇完全打开后,外侧两竹条AB和AC的夹角为120°,AB长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【解答】解:∵AB=25,BD=15,∴AD=10,∴S贴纸=2×(﹣)=2×175π=350πcm2,故选:B.8.(3分)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2 B.x<﹣2或0<x<2C.﹣2<x<0或0<x<2 D.﹣2<x<0或x>2【解答】解:∵反比例函数与正比例函数的图象均关于原点对称,∴A、B两点关于原点对称,∵点A的横坐标为2,∴点B的横坐标为﹣2,∵由函数图象可知,当﹣2<x<0或x>2时函数y1=k1x的图象在y2=的上方,∴当y1>y2时,x的取值范围是﹣2<x<0或x>2.故选:D.二、填空题(本题满分18分,共有6道小题,每小题3分,)9.(3分)计算: = 2 .【解答】解:原式===2.故答案为:2.10.(3分)“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有2400 名.【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为:2400.11.(3分)如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD= 62 °.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.12.(3分)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为s=.【解答】解:由题意可得:sh=3×2×1,则s=.故答案为:s=.13.(3分)如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.故答案为:.14.(3分)如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm 长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为144 cm3.【解答】解:如图由题意得:△ABC为等边三角形,△OPQ为等边三角形,AD=AK=BE=BF=CG=CH=4cm,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=cm,∵PQ=OP=DE=20﹣2×4=12(cm),∴QM=OP•sin60°=12×=6(cm),∴无盖柱形盒子的容积=×12×6×=144(cm3);故答案为:144.三、解答题(共1小题,满分4分)15.(4分)已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【解答】解::①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O为圆心,OE长为半径作圆;如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题,)16.(8分)(1)化简:(+n)÷;(2)关于x的一元二次方程2x2+3x﹣m=0有两个不相等的实数根,求m的取值范围.【解答】解:(1)原式=•=•=;(2)∵方程2x2+3x﹣m=0有两个不相等的实数根,∴△=9+8m>0,解得:m>﹣.17.(6分)小颖和小丽做“摸球”游戏:在一个不透明的袋子中装有编号为1﹣4的四个球(除编号外都相同),从中随机摸出一个球,记下数字后放回,再从中摸出一个球,记下数字.若两次数字之和大于5,则小颖胜,否则小丽胜,这个游戏对双方公平吗?请说明理由.【解答】解:这个游戏对双方不公平.理由:列表如下:所有等可能的情况有16种,其中数字之和大于5的情况有(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)共6种,故小颖获胜的概率为: =,则小丽获胜的概率为:,∵<,∴这个游戏对双方不公平.18.(6分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C两点的俯角分别为45°,35°.已知大桥BC与地面在同一水平面上,其长度为100m,请求出热气球离地面的高度.(结果保留整数)(参考数据:sin35°≈,cos35°≈,tan35°≈)【解答】解:作AD⊥BC交CB的延长线于D,设AD为x,由题意得,∠ABD=45°,∠ACD=35°,在Rt△ADB中,∠ABD=45°,∴DB=x,在Rt △ADC 中,∠ACD=35°, ∴tan ∠ACD=, ∴=,解得,x ≈233m .19.(6分)甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:(1)写出表格中a ,b ,c 的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员? 【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大重新排列为:3、4、6、7、7、8、8、8、9、10, ∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定;综合以上各因素,若选派一名队员参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.(8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?【解答】解:(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,,解得:x=0.5,经检验x=0.5是原方程的解,∴(1+20%)x=0.6(米),答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料.(2)根据题意得:l=0.6n+0.5(3000﹣n)=0.1n+1500,∵甲盒的数量不少于乙盒数量的2倍,∴n≥2(3000﹣n)解得:n≥2000,∴2000≤n<3000,∵k=0.1>0,∴l随n增大而增大,∴当n=2000时,l最小1700米.21.(8分)已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF 分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.22.(10分)如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?【解答】解:(1)根据题意得B(0,4),C(3,),把B(0,4),C(3,)代入y=﹣x2+bx+c得,解得.所以抛物线解析式为y=﹣x2+2x+4,则y=﹣(x﹣6)2+10,所以D(6,10),所以拱顶D到地面OA的距离为10m;(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),当x=2或x=10时,y=>6,所以这辆货车能安全通过;(3)令y=8,则﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,则x1﹣x2=4,所以两排灯的水平距离最小是4m.23.(10分)问题提出:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?问题探究:不妨假设能搭成m种不同的等腰三角形,为探究m与n之间的关系,我们可以从特殊入手,通过试验、观察、类比,最后归纳、猜测得出结论.探究一:(1)用3根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?此时,显然能搭成一种等腰三角形.所以,当n=3时,m=1(2)用4根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?只可分成1根木棒、1根木棒和2根木棒这一种情况,不能搭成三角形,所以,当n=4时,m=0(3)用5根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和3根木棒,则不能搭成三角形若分为2根木棒、2根木棒和1根木棒,则能搭成一种等腰三角形,所以,当n=5时,m=1 (4)用6根相同的木棒搭成一个三角形,能搭成多少种不同的三角形?若分成1根木棒、1根木棒和4根木棒,则不能搭成三角形若分为2根木棒、2根木棒和2根木棒,则能搭成一种等腰三角形,所以,当n=6时,m=1 综上所述,可得表①探究二:(1)用7根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(仿照上述探究方法,写出解答过程,并把结果填在表②中)(2)分别用8根、9根、10根相同的木棒搭成一个三角形,能搭成多少种不同的等腰三角形?(只需把结果填在表②中)你不妨分别用11根、12根、13根、14根相同的木棒继续进行探究,…解决问题:用n根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(设n分别等于4k﹣1、4k、4k+1、4k+2,其中k是整数,把结果填在表③中)问题应用:用2016根相同的木棒搭一个三角形(木棒无剩余),能搭成多少种不同的等腰三角形?(要求写出解答过程)其中面积最大的等腰三角形每个腰用了672 根木棒.(只填结果)【解答】解:探究二:(1)7=1+1+5(舍去);7=2+2+3(符合要求);7=3+3+1(符合要求);(2)8=1+1+6(舍去);8=2+2+4(舍去);8=3+3+2(符合要求);9=1+1+7(舍去);9=2+2+5(舍去);9=3+3+3(符合要求);9=4+4+1(符合要求);10=1+1+8(舍去);10=2+2+6(舍去);10=3+3+4(符合要求);10=4+4+2(符合要求);填表如下:解决问题:令n=a+a+b=2a+b,则:b=n﹣2a,根据三角形三边关系定理可知:2a>b且b>0,∴,解得:,若n=4k﹣1,则,a的整数解有k个;若n=4k,则k<a<2k,a的整数解有k﹣1个;若n=4k+1,则,a的整数解有k个;若n=4k+2,则,a的整数解有k个;填表如下:问题应用:(1)∵2016=4×504,∴k=504,则可以搭成k﹣1=503个不同的等腰三角形;(2)当等腰三角形是等边三角形时,面积最大,∴2016÷3=672.24.(12分)已知:如图,在矩形ABCD中,AB=6cm,BC=8cm,对角线AC,BD交于点O.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF:S△ACD=9:16?若存在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【解答】解:(1)∵在矩形ABCD中,AB=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ACD,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)过点O作OH⊥BC交BC于点H,则OH=CD=AB=3cm.由矩形的性质可知∠PDO=∠EBO,DO=BO,又得∠DOP=∠BOE,∴△DOP≌BOE,∴BE=PD=8﹣t,则S△BOE=BE•OH=×3(8﹣t)=12﹣t.∵FQ∥AC,∴△DFQ∽△DOC,相似比为=,∴=∵S△DOC=S矩形ABCD=×6×8=12cm2,∴S△DFQ=12×=∴S五边形OECQF=S△DBC﹣S△BOE﹣S△DFQ=×6×8﹣(12﹣t)﹣=﹣t2+t+12;∴S与t的函数关系式为S=﹣t2+t+12;(3)存在,∵S△ACD=×6×8=24,∴S五边形OECQF:S△ACD=(﹣t2+t+12):24=9:16,解得t=3,或t=,∴t=3或时,S五边形S五边形OECQF:S△ACD=9:16;(4)如图3,过D作DM⊥PE于M,DN⊥AC于N,∵∠POD=∠COD,∴DM=D N=,∴ON=OM==,∵OP•DM=3PD,∴O P=5﹣t,∴PM=﹣t,∵PD2=PM2+DM2,∴(8﹣t )2=(﹣t )2+()2,解得:t=16(不合题意,舍去),t=,∴当t=时,OD 平分∠COP .。
2018年浙江省宁波市慈溪市中考数学模拟考试试卷(3月份)(解析版)
2018年浙江省宁波市慈溪市中考数学模拟试卷(3月份)一、选择题(本题有12小题,每小题4分,共48分)1.计算-1X2的结果是()A.1B.2C.-3D.-22.下列计算正确的是()A.x+x=x2B.x*x=2xC.(x2)3=x5D.x34-x=x23.2015年我国大学生毕业人数将达到7490000A,这个数据用科学记数法表示为()A.7.49X107B.7.49X106C.74.9X105D.0.749X1074.若正多边形的一个内角是150°,则该正多边形的边数是()A.6B.12C.16D.185.实数a在数轴上的位置如图所示,则下列说法不正确的是()~~a0~2>A.a的相反数大于2B.a的相反数是2C.\a\>2D.2aV06.一小组8位同学一分钟跳绳的次数如下:150,176,168,183,172,164,168,185,则这组数据的中位数为()A.172B.171C.170D.1687.如图,平行四边形ABCD的顶点A、B、。
在上,顶点C在。
的直径BE上,连接AE,ZE=36°,则ZADC的度数是()8.不等式3x2x-5的最小整数解是(9.在平面直角坐标系中,点P(m,2m-2),则点F不可能在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,在矩形ABCQ中,AD=1,AB>1,AG平分Z8AQ,分别过点8、C作BELAG于点E,CF±AG于点F,贝ij(A£-GF)的值为()11.将抛物线(x+2) 2+5绕着点(0,3)旋转180。
以后,所得图象的解析式是()A.y=- —(x+2)2+5B.y=-—(x-2)2-522C.y———(x- 2)?+2D.y=——(x- 2)?+12212.如图,在矩形曲CD中,AB=5,AD=3,动点F满足S^PAB=^S^ABCD>则点F到A、B两点距离之和PA+PB的最小值为()A.V29B.V34C.5扼D.V41二、填空题(本题有6小题,每小题4分,共24分)13.分解因式:x3 -9x=.14.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是.15.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.50.6小芳家二月份用电200千瓦时,交电费105元,则a=.16.在uABCD中,AB=3,BC=4,当口ABCD的面积最大时,下列结论:①AC=5;(2)ZA+ZC=180°;@AC±BD;@AC=BD.其中正确的有.(填序号)17.一个圆锥的三视图如图,则此圆锥的表面积为正视图左视图俯视图18,如图,RtZXABC中,AC=3,BC=4,ZACB=90°,P为AB上一点,S.AP=2BP,若点A绕点C顺时针旋转60°,则点F随之运动的路径长是.三、解答题(本题有8小题,共78分,各小题都必须写出解答过程)19.(6分)计算:(T)2016-(号)2+-(/16- cos60°20.(8分)随着经济的快速发展,环境问题越来越受到人们的关注,某校学生会为了解节能减排、垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两个统计图.(1)本次调查的学生共有人,估计该校1200名学生中“不了解”的人数是人;(2)“非常了解”的4人有A2两名男生,Bp彪两名女生,若从中随机抽取两人向全校做环保交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.21.(9分)如图是8X8的正方形网格,A、B两点均在格点(即小正方形的顶点)上,试在下面三个图中,分别画出一个以A,B,C,。
上海市黄浦区2018年中考数学一模试卷及答案解析
2018 年上海市黄浦区中考数学一模试卷一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)【以下各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应地点上.】.(分)已知二次函数2+bx+c 的图象大概如下图,则以下关系式中建立的是()1 4 y=axA. a> 0B.b< 0C.c<0 D.b+2a>02.(4 分)若将抛物线向右平移2 个单位后,所得抛物线的表达式为y=2x2,则本来抛物线的表达式为()A. y=2x2+2 B.y=2x2﹣ 2C. y=2(x+2)2 D.y=2(x﹣2)23.(4 分)在△ ABC中,∠ C=90°,则以下等式建立的是()A.B.C.D.4.(4 分)如图,线段AB 与 CD交于点 O,以下条件中能判断 AC∥BD 的是()A. OC=1, OD=2,OA=3,OB=4 B.OA=1,AC=2,AB=3,BD=4C. OC=1, OA=2,CD=3,OB=4 D.OC=1,OA=2, AB=3, CD=4.5.(4 分)如图,向量与均为单位向量,且OA⊥OB,令,则=()A .1B .C .D .26.(4 分)如图,在△ ABC 中,∠ B=80°,∠ C=40°,直线 l 平行于 BC .现将直线 l 绕点 A 逆时针旋转,所得直线分别交边 AB 和 AC 于点 M 、N ,若△ AMN 与△ ABC 相像,则旋转角为( )A . 2 0°B .40°C . 60°D .80°二、填空题:(本大题共12 题,每题 4 分,满分48 分)7.(4 分)已知a 、b 、c 知足,a 、b 、c 都不为0,则=.8.(4分)如图,点D 、E 、F 分别位于△ABC 的三边上,知足DE ∥BC ,EF ∥ AB ,假如AD :DB=3: 2,那么BF :FC=.9.(4 分)已知向量 为单位向量,假如向量 与向量 方向相反,且长度为3,那么向量=.(用单位向量 表示)10.( 4 分)已知△ ABC ∽△ DEF ,此中极点 A 、B 、 C 分别对应极点 D 、E 、F ,假如∠ A=40°, ∠E=60°,那么∠ C=度.11.(4 分)已知锐角 α,知足 tan α =2,则 sin α= .12.(4 分)已知点 B 位于点 A 北偏东 30°方向,点 C 位于点 A 北偏西 30°方向,且 AB=AC=8 千米,那么 BC=千米.13.(4 分)已知二次函数的图象张口向下,且其图象极点位于第一象限内,请写出一个知足 上述条件的二次函数分析式为(表示为 y=a (x+m ) 2+k 的形式). .( 4 分)已知抛物线 2+bx+c 张口向上,一条平行于 x 轴的直线截此抛物线于 M 、N 两 14 y=ax点,那么线段 MN 的长度随直线向上平移而变 “”“”.(填大或小)15.( 4 分)如图,矩形 DEFG 的边 EF 在△ ABC 的边 BC 上,极点 D 、G 分别在边 AB 、AC 上.已知 AC=6,AB=8,BC=10,设 EF=x ,矩形 DEFG 的面积为 y ,则 y 对于 x 的函数关系式为.不(必写出定义域)16 4 分)如图,在△ ABC C=90° BC=6 AC=9ABC C 位于△ ABC.( 中,∠ , , ,将△ 平移使其极点 的重心 G 处,则平移后所得三角形与原△ ABC 的重叠部分面积是 .17.(4 分)如图,点 E 为矩形 ABCD 边 BC 上一点,点 F 在边 CD 的延伸线上, EF 与 AC 交于 O CE EB=1 2 BC AB=3 4 AE AFCO OA=.点,若: : , : :,⊥,则:18.(4 分)如图,平面上七个点 A 、B 、C 、 D 、E 、F 、G ,图中全部的连线长均相等,则 cos ∠BAF=.根源三、解答题:(本大题共 7 题,满分 78 分)19.(10 分)计算: 2cos230°+﹣sin60.°20.(10 分)用配方法把二次函数y=﹣2x2+6x+4 化为 y=a( x+m)2+k 的形式,再指出该函数图象的张口方向、对称轴和极点坐标.21.(10 分)如图,在△ ABC中,∠ ACB=90°,AC=4,BC=3,D 是边 AC的中点, CE⊥BD 交 AB 于点 E.(1)求 tan∠ ACE的值;(2)求 AE:EB.22.(10 分)如图,坡 AB的坡比为 1:2.4,坡长 AB=130米,坡 AB 的高为 BT.在坡 AB 的正面有一栋建筑物 CH,点 H、 A、 T 在同一条地平线 MN 上.(1)试问坡 AB 的高 BT为多少米?(2)若某人在坡 AB 的坡脚 A 处和中点 D 处,观察到建筑物顶部 C 处的仰角分别为 60°和30°,试求建筑物的高度 CH.(精准到米,≈1.73,≈1.41)23.(12 分)如图, BD 是△ ABC的角均分线,点 E 位于边 BC上,已知 BD 是 BA 与 BE的比率中项.(1)求证:∠ CDE= ∠ABC;(2)求证: AD?CD=AB?CE.24.(12 分)在平面直角坐标系xOy 中,对称轴为直线 x=1 的抛物线 y=ax2+bx+8 过点(﹣ 2,0).(1)求抛物线的表达式,并写出其极点坐标;(2)现将此抛物线沿 y 轴方向平移若干个单位,所得抛物线的极点为与 x 轴负半轴交于点A,过 B 作 x 轴的平行线交所得抛物线于点C,若所得抛物线的表达式.D,与 y 轴的交点为 B,AC∥BD,试求平移后25.(14 分)如图,线段 AB=5,AD=4,∠ A=90°,DP∥AB,点 C 为射线 DP 上一点, BE 均分∠ABC交线段 AD 于点 E(不与端点 A、D 重合).根源学科网Z,X,X,K](1)当∠ ABC为锐角,且 tan∠ABC=2时,求四边形 ABCD的面积;(2)当△ ABE与△ BCE相像时,求线段C D的长;(3)设 CD=x, DE=y,求 y 对于 x 的函数关系式,并写出定义域.2018 年上海市黄浦区中考数学一模试卷参照答案与试题分析一、选择题:(本大题共 6 题,每题 4 分,满分 24 分)【以下各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应地点上.】1.(4 2 bx c 的图象大概如下图,则以下关系式中建立的是()分)已知二次函数 y=ax + +A. a> 0B.b< 0C.c<0 D.b+2a>0【解答】解:∵抛物线张口向下,对称轴大于1,与 y 轴交于正半轴,∴a<0,﹣>0,c>0,∴b>﹣ 2a,∴b+2a>0.应选: D.2.(4 分)若将抛物线向右平移 2 个单位后,所得抛物线的表达式为y=2x2,则本来抛物线的表达式为()根源A. y=2x2+2 B.y=2x2﹣2C. y=2(x+2)2 D.y=2(x﹣2)2【解答】解:∵将抛物线向右平移 2 个单位后,所得抛物线的表达式为 y=2x2,∴原抛物线可当作由抛物线 y=2x2向左平移 2 个单位可获得原抛物线的表达式,∴原抛物线的表达式为y=2( x+2)2,应选: C.3.(4 分)在△ ABC中,∠ C=90°,则以下等式建立的是()A.B.C.D.【解答】解:如下图: sinA=.应选: B.4.(4 分)如图,线段 AB 与 CD交于点 O,以下条件中能判断AC∥BD 的是()A. OC=1, OD=2,OA=3,OB=4 B.OA=1,AC=2,AB=3,BD=4C. OC=1, OA=2,CD=3,OB=4 D.OC=1,OA=2, AB=3, CD=4.【解答】解: A、∵≠,∴本选项不切合题意.B、没法判断=,∴本选项不切合题意;C、∵ OC=1,OA=2,CD=3,OB=4,∴= ,∴AC∥ BD,∴本选项切合题意;D、∵≠,∴本选项不切合题意.应选: C.5.(4 分)如图,向量与均为单位向量,且OA⊥OB,令,则=()A.1 B.C.D.2【解答】解:∵向量与均为单位向量,∴| | =1,|| =1,∵OA⊥OB,∴AB==,∵,∴=AB= ,应选: B.6.(4 分)如图,在△ ABC中,∠ B=80°,∠ C=40°,直线 l 平行于 BC.现将直线 l 绕点 A 逆时针旋转,所得直线分别交边 AB 和 AC于点 M 、N,若△ AMN 与△ ABC相像,则旋转角为()A. 20°B.40°C. 60°D.80°【解答】解:如图,直线 l 绕点 A 逆时针旋转,所得直线分别交边AB 和 AC于点 M、N,若△ AMN∽△ ACB,则∠ AMN=∠C=40°,又∵直线 l 平行于 BC,∴∠ ADE=∠B=80°,∴∠ DFM=∠ ADE﹣∠ AMN=80°﹣40°=40°,即直线 l 旋转前后的夹角为40°,∴旋转角为 40°,应选: B.二、填空题:(本大题共 12 题,每题 4 分,满分 48 分)7.(4 分)已知 a、 b、 c 知足,a、b、c都不为0,则=.【解答】解:设=k,可得: a=3k,b=4k,c=6k,把 a=3k,b=4k,c=6k 代入=,故答案为:;8.(4 分)如图,点D、E、 F 分别位于△ ABC 的三边上,知足DE∥BC,EF∥ AB,假如 AD:DB=3: 2,那么 BF:FC= 3: 2.【解答】解:解:∵ DE∥BC,∴= ,∵AD: DB=3:2,AB=AD+DB,∴= ,∴= ,∵DE∥ BC,EF∥AB,∴四边形 DEBF是平行四边形,∴DE=BF,∵BC=BF+CF,=,∴=,∴BF: CF=3:2,故答案为 3:2;9.(4 分)已知向量为单位向量,假如向量与向量方向相反,且长度为3,那么向量= ﹣3.(用单位向量表示)【解答】解:∵向量为单位向量,向量与向量方向相反,∴=﹣3 .故答案为﹣ 3 .10.(4 分)已知△ ABC∽△ DEF,此中极点A、B、 C 分别对应极点D、E、F,假如∠ A=40°,∠E=60°,那么∠ C= 80度.【解答】解:∵△ ABC∽△ DEF,∴∠ B=∠E=60°,∴∠ C=180°﹣∠ A﹣∠ B=180°﹣40°﹣60°=80°故答案为 80;11.(4 分)已知锐角α,知足 tan α =2,则 sin α=.【解答】解:如图,由 tan α==2,得 a=2b,由勾股定理,得c= = b,sin α== ,故答案为:.12.(4 分)已知点 B 位于点 A 北偏东 30°方向,点 C 位于点 A 北偏西 30°方向,且 AB=AC=8 千米,那么 BC= 8 千米.【解答】解:依据题意画出图形,如下图.(方法一)∵∠ BAD=30°,∠ CAD=30°,∴∠ BAC=∠BAD+∠ CAD=60°.又∵ AB=AC,∴△ ABC为等边三角形,∴BC=AC=8千米.故答案为: 8.(方法二)在 Rt△ABD 中,∠ BAD=30°,AB=8千米,∴BD =4 千米.同理, CD=4千米,∴BC=BD+CD=8千米.故答案为: 8.13.(4 分)已知二次函数的图象张口向下,且其图象极点位于第一象限内,请写出一个知足上述条件的二次函数分析式为y=﹣( x﹣ 1)2+1(答案不独一)(表示为y=a(x+m)2+k的形式).【解答】 解:∵二次函数的图象张口向下,且其图象极点位于第一象限内,∴知足上述条件的二次函数分析式为y=﹣( x ﹣ 1) 2+1 等.故答案为: y=﹣( x ﹣1)2+1(答案不独一).2 bx c 张口向上,一条平行于 x 轴的直线截此抛物线于 M 、N 两 14.(4 分)已知抛物线 y=ax + + 点,那么线段 MN 的长度随直线向上平移而变 大 “”“”.(填大或小)【解答】 解:设平行于 x 轴的直线直线 y=h ,依据题意得: ax 2+bx+c=h ,则 ax 2 +bx+c ﹣h=0,设 M ( x 1 ,h ), N (x 2,h ),∴x 1?x 2=﹣ ,x 1+x 2=﹣ ,∴MN 2=(x 1﹣ x 2)2=(x 1+x 2)2 ﹣4xx= ﹣ + ,∵a ,b ,c 是常数,∴MN 2 是 h 得一次函数,∵ >0,∴MN 随 h 的增而增大,∵直线向上平移 h 变大,∴线段 MN 的长度随直线向上平移而变大,故答案为:大;15.( 4 分)如图,矩形 DEFG 的边 EF 在△ ABC 的边 BC 上,极点 D 、G 分别在边 AB 、AC上.已知 AC=6,AB=8,BC=10,设 EF=x ,矩形 DEFG 的面积为 y ,则 y 对于 x 的函数关系式为 y=4.8x﹣0.48x2 .(不用写出定义域)【解答】解:作 AH 为 BC边上的高, AH 交 DG 于点 P,∵AC=6,AB=8,BC=10,∴三角形 ABC是直角三角形,∴△ ABC的高 =,∵矩形 DEFG的边 EF在△ ABC的边 BC上,∴DG∥BC,∴△ ADG∽△ ABC,∵AH⊥ BC,∴AP⊥ DG∴,∴,∴AP=∴PH=4.8﹣,∴y=x(4.8﹣)= 4.8x﹣0.48x2故答案为: y=4.8x﹣0.48x2;16.(4 分)如图,在△ ABC中,∠ C=90°,BC=6,AC=9,将△ ABC平移使其极点 C 位于△ABC 的重心 G 处,则平移后所得三角形与原△ ABC的重叠部分面积是 3 .【解答】解:设平移后直角边交斜边AB 于 M 、 N,延伸 CG交 AB 于 H.∵G 是重心,∴HG:HC=1:3,∵GN∥AC, AC=9,∴GN:AC=HG:HC,∴GN=3,同法可得 MG=2,∴S△MGN=×2×3=3.故答案为 3;17.(4 分)如图,点 E 为矩形 ABCD边 BC上一点,点 F 在边 CD的延伸线上, EF与 AC 交于点 O,若 CE: EB=1: 2, BC:AB=3: 4,AE⊥AF,则 CO:OA= 11: 30 .【解答】解:由 BC:AB=3:4,设 BC=3a,AB=4a,则 CE=a,BE=2a,∵四边形 ABCD是矩形,∴AB=CD=4a, BC=AD=3a,∠ B=∠ BCD=∠DAB=∠ADF=90°,∵EA⊥ AF,∴∠ BAD=∠EAF=90°,∴∠ BAE=∠DAF,∵∠ B=∠ADF=90°,∴△ BAE∽△ DAF,∴= =,∴DF= a,在 Rt△ ECF中, EF==,在 Rt△ ABC中, AC==5a,在 Rt△ ADF中, AF==a,∵∠ ECF+∠ EAF=180°,∴A、E、C、F 四点共圆,∴∠ ECO=∠AFO,∵∠ EOC=∠ AOF,∴△ EOC∽△ AOF,∴= = =,设 EO=x则 AO=x,设 OC=y,则 OF=y,则有,解得,∴OC= a, OA= a,∴CO: OA= a:a=11: 30.故答案为: 11: 30;18.(4 分)如图,平面上七个点A、B、C、 D、E、F、G,图中全部的连线长均相等,则cos∠BAF= .【解答】 解:连结 AC 、AD ,过点 D 作 DM ⊥AC , 垂直为 M. 设 AE 的长为 x ,则 AB=AG=BG=CG=CB=AF=AE=EF=x ,∴△ ABG 、△ AEF 、△ CBG 和△ DEF 都是等边三角形,四边形 ABCG 、四边形 AEDF 是菱形,∴∠ BAC=∠EAD=30°∴AC=AD=2×cos ∠BAC × AB=2× x= x∵∠ CAD=∠BAE ﹣∠ BAC ﹣∠ EAD=∠BAE ﹣60°,∠BAF=∠BAE ﹣∠ EAF=∠ BAE ﹣60°,∴∠ BAF=∠CAD在 Rt △ AMD 中,由于 DM=sin ∠ CAD × x ,AM=coa ∠CAD × x ,CM= x ﹣cos ∠CAD × x ,在 Rt △ CMD 中,2 2 2CD =CM +MD ,即 x 2( ﹣ ∠ × x )2+(sin ∠CAD × x )2= x cos CAD整理,得 5x 2 2 ∠=6x cos CAD∴ c os ∠CAD=∴ c os ∠BAF= .故答案为:三、解答题:(本大题共 7 题,满分 78 分)19.(10 分)计算: 2cos230°+﹣sin60.°【解答】解:原式 =2×()2+﹣,=+﹣,=3﹣.20.(10 分)用配方法把二次函数y=﹣2x2+6x+4 化为 y=a( x+m)2+k 的形式,再指出该函数图象的张口方向、对称轴和极点坐标.【解答】解: y=﹣2x2+6x+4=,=,张口向下,对称轴为直线,极点.21.(10 分)如图,在△ ABC中,∠ ACB=90°,AC=4,BC=3,D 是边 AC的中点, CE⊥BD 交 AB 于点 E.(1)求 tan∠ ACE的值;(2)求 AE:EB.【解答】解:(1)由∠ ACB=90°, CE⊥BD,得∠ ACE=∠CBD在△ BCD中, BC=3,CD= AC=2,∠ BCD=90°,得 tan∠CBD= ,即 tan∠ACE= ,(2)过 A 作 AC的垂线交 CE的延伸线于 P,则在△ CAP中, CA=4,∠ CAP=90°,tan∠ACP= ,得AP=,又∠ ACB=90°,∠ CAP=90°,得 BC∥ AP,得 AE:EB=AP: BC=8: 9.22.(10 分)如图,坡 AB的坡比为 1:2.4,坡长 AB=130米,坡 AB 的高为 BT.在坡 AB 的正面有一栋建筑物 CH,点 H、 A、 T 在同一条地平线 MN 上.(1)试问坡 AB 的高 BT为多少米?(2)若某人在坡 AB 的坡脚 A 处和中点 D 处,观察到建筑物顶部 C 处的仰角分别为 60°和30°,试求建筑物的高度 CH.(精准到米,≈1.73,≈1.41)【解答】解:(1)在△ ABT中,∠ ATB=90°, BT:AT=1:2.4,AB=130米,令TB=h,则AT=2.4h,有 h2+(2.4h)2=1302,解得 h=50(舍负),答:坡 AB 的高 BT为 50 米;(2)作 DK⊥MN 于 K,作 DL⊥ CH于 L,在△ ADK中, AD= AB=65,KD= BT=25,得 AK=60,在△ DCL中,∠ CDL=30°,令 CL=x,得 LD= ,易知四边形 DLHK是矩形,则 LH=DK,LD=HK,在△ACH中,∠ CAH=60°, CH=x 25,得 AH= ,+因此,解得,则 CH=64.4+25=89.4≈89,答:建筑物高度为 89 米.23.(12 分)如图, BD 是△ ABC的角均分线,点 E 位于边 BC上,已知 BD 是 BA 与 BE的比率中项.(1)求证:∠ CDE= ∠ABC;(2)求证: AD?CD=AB?CE.【解答】证明:(1)∵ BD 是 AB 与 BE的比率中项,∴,又 BD 是∠ ABC的均分线,则∠ ABD=∠DBE,∴△ ABD∽△ DBE,∴∠ A=∠BDE.又∠ BDC=∠A+∠ABD,∴∠ CDE=∠ABD= ∠ ABC;(2)∵∠ CDE=∠ CBD,∠ C=∠C,∴△ CDE∽△ CBD,∴.又△ ABD∽△ DBE,∴,∴,∴AD?CD=AB?CE.24.(12 分)在平面直角坐标系xOy 中,对称轴为直线x=1 的抛物线 y=ax2+bx+8 过点(﹣ 2,0).(1)求抛物线的表达式,并写出其极点坐标;(2)现将此抛物线沿 y 轴方向平移若干个单位,所得抛物线的极点为D,与 y 轴的交点为 B,与 x 轴负半轴交于点 A,过 B 作 x 轴的平行线交所得抛物线于点C,若 AC∥BD,试求平移后所得抛物线的表达式.根源:Z。
2018年江苏省扬州市江都区中考数学模拟试卷(4月份)--有答案
2018 年江苏省扬州市江都区中考数学模拟试卷(4 月份)一.选择题(共 8 小题,满分 24 分)1. ﹣3的倒数是()A .3B .C .﹣D .﹣32.下列图形中,既是中心对称,又是轴对称的是()A. B . C . D .3. 下列计算中,正确的是( )A .(2a )3=2a 3B .a 3+a 2=a 5C .a 8÷a 4=a 2D .(a 2)3=a 64. 如图所示几何体的主视图是()A.B .C .D .5. 某小组8名同学在一周内参加家务劳动的时间如下表所示,关于“劳动时间”的这组数据,以下说法正确的是( )A .中位数是4,众数是4 B .中位数是3.5,众数是4C .平均数是3.5,众数是4D .平均数是4,众数是3.5 6.如图,⊙O中,弦AB 、CD 相交于点P ,若∠A=30°,∠APD=70°,则∠B等 于()劳动时间(小时)3 3.54 4.5 人数1132A.30°B.35°C.40°D.50°7.已知一次函数y=kx+b的大致图象如图所示,则关于x的一元二次方程x2﹣2x+kb+1=0的根的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个根是08.将抛物线y=x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A.y=(x﹣8)2+5 B.y=(x﹣4)2+5C.y=(x﹣8)2+3 D.y=(x﹣4)2+3二.填空题(共 10 小题,满分 30 分,每小题 3 分)9..亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为.10.在函数中,自变量x的取值范围是.11.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.12.若两个关于x,y的二元一次方程组与有相同的解,则mn的值为.13.如图,已知圆锥的母线SA的长为4,底面半径OA的长为2,则圆锥的侧面积等于.14.如图,已知AE∥BD,∠1=130°,∠2=28°,则∠C的度数为.15.如图,直角△ABC中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为.16.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k 为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k值为.17.如图,⊙C经过原点且与两坐标轴分别交于点A与点B,点B的坐标为(﹣,0),M是圆上一点,∠BMO=120°.⊙C圆心C的坐标是.18.如图,线段AB的长为4,C为AB上一个动点,分别以AC、BC为斜边在AB 的同侧作两个等腰直角三角形ACD和BCE,连结DE,则DE长的最小值是.三.解答题(共 10 小题,满分 96 分)19.(8分)(1)计算:﹣22+| ﹣4|+()﹣1+2tan60°(2)求不等式组的解集. 20.(8分)先化简,再求值:,其中a是方程a2+a﹣6=0 的解.21.(8分)“足球运球”是中考体育必考项目之一.兰州市某学校为了解今年九年级学生足球运球的掌握情况,随机抽取部分九年级学生足球运球的测试成绩作为一个样本,按A,B,C,D四个等级进行统计,制成了如下不完整的统计图.(说明:A级:8分﹣10分,B级:7分﹣7.9分,C级:6分﹣6.9分,D级:1分﹣5.9分)根据所给信息,解答以下问题:(1)在扇形统计图中,C对应的扇形的圆心角是度;(2)补全条形统计图;(3)所抽取学生的足球运球测试成绩的中位数会落在等级;(4)该校九年级有300名学生,请估计足球运球测试成绩达到A级的学生有多少人?22.(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为;(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解).23.(10分)在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?24.(10分)在如图的正方形网格中,每一个小正方形的边长均为1.格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(﹣2,0),(﹣3,3).(1)请在图中的网格平面内建立平面直角坐标系,写出点B的坐标;(2)把△ABC绕坐标原点O顺时针旋转90°得到△A1B1C1,画出△A1B1C1,写出点B1的坐标;(3)以坐标原点O为位似中心,相似比为2,把△A1B1C1放大为原来的2倍,得到△A2B2C2画出△A2B2C2,使它与△AB1C1在位似中心的同侧;(4)请在x轴上求作一点P,使△PBB1的周长最小,并写出点P的坐标.25.(10分)如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.26.(10分)已知抛物线y=﹣x2﹣4x+c经过点A(2,0).(1)求抛物线的解析式和顶点坐标;(2)若点B(m,n)是抛物线上的一动点,点B关于原点的对称点为C.①若 B、C 都在抛物线上,求 m 的值;②若点 C 在第四象限,当 AC2 的值最小时,求 m 的值.27.(12分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.28.(12分)如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y 轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE 交 AB 于点 D,交 AC 于点 E,连接 CD,如图 2.请从下列A、B两题中任选一题作答,我选择题.A:①求线段 AD 的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段 DE 的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.参考答案一.选择题1.解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.2.解:A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选:C.3.解:A、(2a)3=8a3,故本选项错误;B、a3+a2 不能合并,故本选项错误;C、a8÷a4=a4,故本选项错误;D、(a2)3=a6,故本选项正确;故选:D.4.解:几何体的主视图为,故选:B.5.解:这组数据中4出现的次数最多,众数为4,∵共有 7 个人,∴第4个人的劳动时间为中位数,所以中位数为4,故选:A.6.解:∵∠APD是△APC的外角,∴∠APD=∠C+∠A;∵∠A=30°,∠APD=70°,∴∠C=∠APD﹣∠A=40°;∴∠B=∠C=40°;故选:C.7.解:根据图象可得k>0,b<0,所以kb<0,因为△=(﹣2)2﹣4(kb+1)=4﹣4kb﹣4=﹣4kb,所以△>0,所以方程有两个不相等的实数根.故选:A.8.解:y=x2﹣6x+21=(x2﹣12x)+21=[(x﹣6)2﹣36]+21=(x﹣6)2+3,故y=(x﹣6)2+3,向左平移2个单位后,得到新抛物线的解析式为:y=(x﹣4)2+3.故选:D.二.填空题(共 10 小题,满分 30 分,每小题 3 分)9.解:44000000=4.4×107,故答案为:4.4×107.10.解:根据二次根式有意义,分式有意义得:1﹣x≥0且x+2≠0,解得:x≤1且x≠﹣2.故答案为:x≤1 且x≠﹣2.11.解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得 n=8.则这个多边形的边数是八.12.解:联立得:,①×2+②,得:10x=20,解得:x=2,将x=2代入①,得:6﹣y=6,解得:y=0,则,将x=2、y=0代入,得:,解得:,则 mn=6,故答案为:6.13.解:侧面积=4×4π÷2=8π.故答案为8π.14.解:∵AE∥BD,∠1=1 30°,∠2=28°,∴∠CBD=∠1=130°,∠CDB=∠2=28°,∴∠C=180°﹣∠CBD﹣∠CDB=180°﹣130°﹣28°=22°.故答案为:22°15.解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为AC+BC+AB=12.故答案为:12.16.解:∵正方形ADEF的面积为4,∴正方形 ADEF 的边长为 2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t﹣2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t﹣2),解得t=﹣1,k=﹣6.故答案为﹣6.17.解:连接AB,OC,∵∠AOB=90°,∴AB 为⊙C 的直径,∵∠BMO=120°,∴∠BAO=60°,∴∠BCO=2∠BAO=120°,过C作CD⊥OB于D,则OD=OB,∠DCB=∠DCO=60°,∵B(﹣,0),∴BD=OD=在Rt△COD中.CD=OD•tan30°=,∴C(﹣,),故答案为:C(﹣,).18.解:设AC=x,BC=4﹣x,∵△CDA,△BCE 均为等腰直角三角形,∴CD=x,CE=(4﹣x),∵∠ACD=45°,∠BCE=45°,∴∠DCE=90°,∴DE2=CD2+CE2= x2+(4﹣x)2=x2﹣4x+8=(x﹣2)2+4,∵根据二次函数的最值,∴当x取2时,DE取最小值,最小值为:2.故答案为:220.解:= =三.解答题(共 10 小题,满分 96 分) 19.解:(1)原式=﹣4+4﹣2+3+2=3;(2)由①得:x <3;由②得:x≥﹣1;所以不等式组的解集是:﹣1≤x<3.= =,由 a 2+a ﹣6=0,得 a=﹣3 或 a=2, ∵a﹣2≠0, ∴a≠2, ∴a=﹣3,当 a=﹣3 时,原式 = = . 21.解:(1)∵总人数为18÷45%=40人,∴C 等级人数为 40﹣(4+18+5)=13 人, 则C 对应的扇形的圆心角是360°×=117°,故答案为:117;(2) 补全条形图如下:(3)因为共有40个数据,其中位数是第20、21个数据的平均数,而第20、21 个数据均落在B 等级,所以所抽取学生的足球运球测试成绩的中位数会落在B等级,故答案为:B.(4)估计足球运球测试成绩达到A级的学生有300×=30人.22.解:(1)∵在标有数字1、2、3的3个转盘中,奇数的有1、3这2个,∴指针所指扇形中的数字是奇数的概率为,故答案为:;(2)列表如下:由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3 种,所以这两个数字之和是3的倍数的概率为=.23.解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.24.解:(1)如图所示,点B的坐标为(﹣4,1);(2)如图,△A1B1C1即为所求,点B1的坐标(1,4);(3)如图,△A2B2C2即为所求;(4)如图,作点B关于x轴的对称点B',连接B'B1,交x轴于点P,则点P即为所求,P(﹣3,0).25.(1)证明:连接OC,∵OA=OC,∴∠OCA=∠BAC,∵点C是的中点,∴∠EAC=∠BAC,∴∠EAC=∠OCA,∴OC∥AE,∵AE⊥EF,∴OC⊥EF,即 EF 是⊙O 的切线;(2)解:∵AB 为⊙O 的直径,∴∠BCA=90°,∴AC==4,∵∠EAC=∠BAC,∠AEC=∠ACB=90°, ∴△AEC∽△ACB,26.解:(1)∵抛物线y=﹣x 2﹣4x+c 经过点A (2,0), ∴﹣4﹣8+c=0,即 c=12,∴抛物线解析式为y=﹣x 2﹣4x+12=﹣(x+2)2+16,则顶点坐标为(﹣2,16);(2)①由 B (m ,n )在抛物线上可得:﹣m 2﹣4m+12=n , ∵点 B 关于原点的对称点为 C , ∴C(﹣m ,﹣n ), ∵C 落在抛物线上,∴﹣m 2+4m+12=﹣n ,即 m 2﹣4m ﹣12=n ,解得:﹣m 2+4m+12=m 2﹣4m ﹣12, 解得:m=2或m=﹣2;②∵点 C (﹣m ,﹣n )在第四象限, ∴﹣m >0,﹣n <0,即 m <0,n >0, ∵抛物线顶点坐标为(﹣2,16), ∴0<n≤16,∵ 点 B 在抛物线上, ∴﹣m 2﹣4m+12=n , ∴m 2+4m=﹣n+12,∵A(2,0),C (﹣m ,﹣n ),∴AC 2=(﹣m ﹣2)2+(﹣n )2=m 2+4m+4+n 2=n 2﹣n+16=(n ﹣)2+ ,∴ = , ∴AE== .当 n= 时,AC2 有最小值,∴﹣m2﹣4m+12= ,解得:m=,∵m<0,∴m=不合题意,舍去,则m的值为.27.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∵PA=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∴∠DAP=∠DCP,∵PA=PE,∴PC=PE,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD,∴∠CPF=∠EDF∵∠ABC=∠ADC=120°,∴∠CPF=∠EDF=180°﹣∠ADC=60°,∴△EPC 是等边三角形,∴PC=CE,∴AP=CE;28.解:(1)∵一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,∴A(4,0),C(0,8),∴OA=4,OC=8,∵AB⊥x 轴,CB⊥y 轴,∠AOC=90°,∴四边形 OABC 是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC==4,故答案为:8,4,4;(2)A、①由(1)知,BC=4,AB=8,由折叠知,CD=AD,在Rt△BCD中,BD =AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5,②由①知,D(4,5),设P(0,y),∵A(4,0),∴AP2=16+y2,DP2=16+(y﹣5)2,∵△APD 为等腰三角形,∴Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3)Ⅱ、AP=DP,∴16+y2=16+(y﹣5)2,∴y=,∴P(0,),Ⅲ、AD=DP,25=16+(y﹣5)2,∴y=2 或 8,∴P(0,2)或(0,8).B、①、由A①知,AD=5,由折叠知,AE=AC=2 ,DE⊥AC于E,在Rt△ADE中,DE==,②、∵以点 A,P,C 为顶点的三角形与△ABC 全等,∴△APC≌△ABC,或△CPA≌△ABC,∴∠APC=∠ABC=90°,∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0),如图 3,过点O作ON⊥AC于N,易证,△AON∽△ACO,∴∴AN= ,∴ ,,过点 N 作 NH⊥OA, ∴NH∥OA, ∴△ANH∽△ACO, ∴, ∴,∴NH=,AH=, ∴OH=, ∴N(,),而点 P 2 与点 O 关于 AC 对称, ∴P 2(,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣,),即:满足条件的点P 的坐标为:(0,0),(, ),(﹣ , ).。
【区级联考】北京市丰台区2018届中考数学模拟试卷(3月份)(解析版)
2018年北京市丰台区中考数学模拟试卷(3月份)一.选择题(共8小题,满分16分,每小题2分)1. 如图,在ABCD 中,BC边上的高是()A. ECB. BHC. CDD. AF 【答案】D【解析】【分析】根据三角形的高线的定义解答.【详解】根据高的定义,AF为△ABC中BC边上的高.故选D.【点睛】本题考查了三角形的高的定义,熟记概念是解题的关键.2. 如果代数式3xx+有意义,则实数x的取值范围是()A. x≥3﹣ B. x≠0 C. x≥3﹣且x≠0 D. x≥3【答案】C【解析】【分析】根据二次根式有意义和分式有意义的条件列出不等式,解不等式即可.【详解】由题意得,x+3≥0,x≠0,解得x≥−3且x≠0,故选C.【点睛】本题考查分式有意义条件,二次根式有意义的条件,熟练掌握相关知识是解题的关键.3. 如图是某几何体的三视图,则该几何体的全面积等于( )A. 112B. 136C. 124D. 84【答案】B【解析】【详解】试题解析:该几何体是三棱柱.如图:由勾股定理22-=,543´=,326全面积为:164257267247042136.´´´+´´+´=++=2故该几何体的全面积等于136.故选B.4. 如果实数,且a在数轴上对应点的位置如图所示,其中正确的是( )A.B.C.D.【答案】C【解析】的大小,进而在数轴上找到相应的位置,即可得到答案.【详解】49911,4<<Q 由被开方数越大算术平方根越大,<<即73,2<<故选C.【点睛】考查了实数与数轴的的对应关系,以及估算无理数的大小,解决本题的关键是估的大小.5. 如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=40°,那么∠2的度数 ()A. 40°B. 50°C. 60°D. 90°【答案】B【解析】【详解】分析:根据“平行线的性质、平角的定义和垂直的定义”进行分析计算即可.详解:∵AB BC ⊥,∴∠ABC=90°,∵点B 在直线b 上,∴∠1+ABC+3=180°∠∠,∴∠3=180°-1-90°=50°∠,∵a b ∥,∴∠2=3=50°.∠故选B.点睛:熟悉“平行线的性质、平角的定义和垂直的定义”是正确解答本题的关键.6. 在平面直角坐标系中,将点P(4,﹣3)绕原点旋转90°得到P1,则P1的坐标为( )A. (﹣3,﹣4)或(3,4)B. (﹣4,﹣3)C. (﹣4,﹣3)或(4,3)D. (﹣3,﹣4)【答案】A【解析】【分析】分顺时针旋转,逆时针旋转两种情形求解即可.【详解】解:如图,分两种情形旋转可得P′(3,4),P″(−3,−4),故选A.【点睛】本题考查坐标与图形变换——旋转,解题的关键是利用空间想象能力.7. 去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A. 最低温度是32℃B. 众数是35℃C. 中位数是34℃D. 平均数是33℃【答案】D【解析】【详解】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案.详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,++´++所以最低气温为31℃,众数为33℃,中位数为33℃,平均数是313233334357=33℃,故选D.点睛:本题考查了众数、中位数的知识,解答本题的关键是由折线统计图得到最高气温的7个数据.8. 如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )D.B. 2C. 52【答案】C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形BE和a.的高DE,再由图象可知,【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2...∴AD=aDE•AD=a.∴12∴DE=2.s.当点F从D到B∴Rt△DBE中,1=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a2=22+(a-1)2..解得a=52故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.二.填空题(共8小题,满分16分,每小题2分)9. 在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.【答案】13【解析】【分析】根据同时同地物高与影长成比列式计算即可得解.【详解】解:设旗杆高度为x米,,由题意得,1.5x=326解得x=13.故答案为13.【点睛】本题考查投影,解题的关键是应用相似三角形.10. 写出一个经过点(1,2)的函数表达式_____.【答案】y=x+1(答案不唯一)【解析】【分析】本题属于结论开放型题型,可以将函数的表达式设计为一次函数、反比例函数、二次函数的表达式.答案不唯一.,答案不唯一.【详解】解:所求函数表达式只要图象经过点(1,2)即可,如y=2x,y=x+1…故答案可以是:y=x+1(答案不唯一【点睛】本题考查函数,解题的关键是清楚几种函数的一般式.11. 数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等”这一推论,如图所示,若S EBMF=1,则S FGDN=_____.【答案】1【解析】【分析】根据从长方形对角线上任一点作两条分别平行于两邻边的直线,则所容两长方形面积相等得S EBMF=S FGDN,得S FGDN.【详解】∵S EBMF=S FGDN,S EBMF=1,∴S FGDN=1.【点睛】本题考查面积的求解,解题的关键是读懂题意.12. 有下列各式:①·x yy x ;②x by a¸;③62x x¸;④23·a ab b.其中,计算结果为分式的是_____.(填序号)【答案】②④【解析】【分析】根据分式的定义,将每个式子计算后,即可求解.【详解】x y·y x =1不是分式,x by a¸=xayb,62x x¸=3不是分式,2a3a·b b=323ab故选②④.【点睛】本题考查分式的判断,解题的关键是清楚分式的定义.13. 如图,CD是⊙O直径,AB是弦,若CD⊥AB,∠BCD=25°,则∠AOD=_____°.【答案】50【解析】【分析】由CD是⊙O的直径,弦AB CD⊥,根据垂径定理的即可求得»AD=»BD,又由圆周角定理,可得∠AOD=50°.【详解】∵CD是⊙O的直径,弦AB CD⊥,∴»AD=»BD,BCD=25°=∵∠,AOD=2BCD=50°∴∠∠,故答案为50【点睛】本题考查角度的求解,解题的关键是利用垂径定理.14. 《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?设有x匹大马,y匹小马,根据题意可列方程组为______.【答案】10031003x y y x +=ìïí+=ïî【解析】【分析】根据题意可以列出相应的方程组,从而可以解答本题.【详解】由题意可得,10031003x y y x +=ìïí+=ïî,故答案为:10031003x y y x +=ìïí+=ïî【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.15. 标号分别为1,2,3,4……,,n 的n 张标签(除标号外其它完全相同),任摸一张,若摸得奇数号标签的概率大于0.5,则n 可以是_____.【答案】奇数.【解析】【分析】根据概率的意义,分n 是偶数和奇数两种情况分析即可.【详解】若n 为偶数,则奇数与偶摸得奇数号标签的概率为0.5,若n 为奇数,则奇数比偶数多一个,此时摸得奇数号标签的概率大于0.5,故答案为奇数.【点睛】本题考查概率公式,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率()m P A n=.16. 阅读下面材料:数学活动课上,老师出了一道作图问题:“如图,已知直线l 和直线l 外一点P.用直尺和圆规作直线PQ ,使PQ l ⊥于点Q ”.小艾的作法如下:(1)在直线l 上任取点A ,以A 为圆心,AP 长为半径画弧.(2)在直线l 上任取点B ,以B 为圆心,BP 长为半径画弧.(3)两弧分别交于点P 和点M(4)连接PM ,与直线l 交于点Q ,直线PQ 即为所求.老师表扬了小艾的作法是对的.请回答:小艾这样作图的依据是_____.【答案】到线段两端距离相等的点在线段的垂直平分线上或两点确定一条直线或sss 或全等三角形对应角相等或等腰三角形的三线合一【解析】【分析】从作图方法以及作图结果入手考虑其作图依据..【详解】解:依题意,AP =AM ,BP =BM ,根据垂直平分线的定义可知PM ⊥直线l.因此易知小艾的作图依据是到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.故答案为到线段两端距离相等的点在线段的垂直平分线上;两点确定一条直线.【点睛】本题主要考查尺规作图,掌握尺规作图的常用方法是解题关键.三.解答题(共12小题,满分68分)17. 计算:27﹣(﹣2)0+|1|+2cos30°.【答案】2-.【解析】【分析】(1)原式利用二次根式的性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值进行化简即可得到结果.【详解】原式1122=++´,11=+-,2=.【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18. 解不等式组()()303129x x x -³ìí->+î.【答案】x <﹣3.【解析】【详解】分析:按照解一元一次不等式组的一般步骤解答即可.详解:()()303129x x x -³ìïí->+ïî①②,由①得x≤3,由②得x <﹣3,∴原不等式组的解集是x <﹣3.点睛:“熟练掌握一元一次不等式组的解法”是正确解答本题的关键.19. 如图,在ABC D 中,AB AC =,D 是BC 边上的中点,DE AB ^于点E ,DF AC ^于点F .求证:DE DF =.【答案】见解析【解析】【分析】如图,连接AD .根据AB AC =,点D 是BC 边上的中点,得出AD 平分BAC Ð,DE 、DF 分别垂直AB 、AC 于点E 和F ,DE DF =即可.【详解】证明:如图,连接AD.AB AC =Q ,点D 是BC 边上的中点,AD \平分BAC Ð,DE Q 、DF 分别垂直AB 、AC 于点E 和F .DE DF \=.【点评】本题考查的是等腰三角形的性质,角平分线性质,熟知等腰三角形三线合一的性质是解答此题的关键.20. 已知关于x 的一元二次方程22220x kx k k +++-=有两个不相等的实数根.(1)求k 的取值范围;(2)当k 为正整数时,求方程的根.【答案】(1)2k < (2)1202x x ==-,【解析】【分析】(1)根据一元二次方程22220x kx k k +++-=有两个不相等的实数根,利用判别式大于零即可解答;(2)根据k 的取值范围,结合k 为正整数即可确定k 的值,将其代入原方程,解方程即可.【小问1详解】解:根据题意,得2224242b ac k k k -=()-(+-)=480k -+>.解得2k <.【小问2详解】解:∵k 为正整数且2k <,∴1k =.∴方程可化为220x x +=,解得1202x x ==-,.【点睛】此题主要考查了根的判别式,解一元二次方程,解题关键是熟练掌握根与判别式关系.21. 如图,已知菱形ABCD,AB=AC,E、F分别是BC,AD的中点,连接AE、CF.(1)求证:四边形AECF是矩形;(2)若AB=2,求菱形的面积.【答案】(1)见解析;(2)23【解析】【分析】(1)首先证明△ABC是等边三角形,进而得出∠AEC=90°,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积.【详解】(1)证明:∵四边形ABCD是菱形,∴AB=BC,又∵AB=AC,∴△ABC是等边三角形,∵E是BC的中点,⊥(等腰三角形三线合一),∴AE BC∴∠AEC=90°,∵E、F分别是BC、AD的中点,∴AF=AD,EC=BC,∵四边形ABCD是菱形,∥且AD=BC,∴AD BC∥且AF=EC,∴AF EC∴四边形AECF是平行四边形(一组对边平行且相等的四边形是平行四边形),又∵∠AEC=90°,∴四边形AECF是矩形(有一个角是直角的平行四边形是矩形);(2)在Rt ABE△中,AE=,所以,S菱形ABCD=2×=2.【点睛】本题考查平行四边形的性质和矩形的判断,解题的关键是获取题中的信息.22. 如图,已知A(3,m),B(﹣2,﹣3)是直线AB和某反比例函数的图象的两个交点.(1)求直线AB和反比例函数的解析式;(2)观察图象,直接写出当x满足什么范围时,直线AB在双曲线的下方;(3)反比例函数的图象上是否存在点C,使得△OBC的面积等于△OAB的面积?如果不存在,说明理由;如果存在,求出满足条件的所有点C的坐标.【答案】(1)y=6x ,y=x1﹣;(2)x<﹣2或0<x<3时,直线AB在双曲线的下方;(3)存在点C,点C的坐标为(﹣3,﹣2),(43,92),(﹣43,﹣92).【解析】【分析】(1)设反比例函数解析式为y=kx,将B点坐标代入,求出反比例函数解析式,将A点坐标代入反比例解析式求出m的值,确定出点A的坐标,设直线AB的解析式为y=ax+b,将A与B的坐标代入一次函数解析式求出a与b的值,即可确定出一次函数解析式;(2)根据图像写出答案即可;(3)分3中情况求解,延长AO交双曲线于点C1,由点A与点C1关于原点对称,求出点点C1的坐标;如图,过点C1作BO的平行线,交双曲线于点C2,将OB的解析式与C1C2的解析式联立,求出点C2的坐标;A作OB的平行线,交双曲线于点C3,,将AC3的解析式与反比例函数的解析式联立,求出点C3的坐标.【详解】解:(1)设反比例函数解析式为y=kx,把B (﹣2,﹣3)代入,可得k=2×﹣(﹣3)=6,∴反比例函数解析式为y=6x;把A (3,m )代入y=6x,可得3m=6,即m=2,∴A (3,2),设直线AB 的解析式为y=ax+b ,把A (3,2),B (﹣2,﹣3)代入,可得2332a ba b=+ìí-=-+î,解得11a b =ìí=-î,∴直线AB 的解析式为y=x 1﹣;(2)由题可得,当x 满足:x <﹣2或0<x <3时,直线AB 在双曲线的下方;(3)存在点C .如图所示,延长AO 交双曲线于点C 1,∵点A 与点C 1关于原点对称,∴AO=C 1O ,∴△OBC 1的面积等于△OAB 的面积,此时,点C 1的坐标为(﹣3,﹣2);如图,过点C 1作BO 的平行线,交双曲线于点C 2,则△OBC 2的面积等于△OBC 1的面积,∴△OBC 2的面积等于△OAB 的面积,由B (﹣2,﹣3)可得OB 的解析式为y=32x ,可设直线C 1C 2的解析式为y=32x+b',把C 1(﹣3,﹣2)代入,可得﹣2=32×(﹣3)+b',解得b'=52,∴直线C 1C 2的解析式为y=32x+52,解方程组63522y x y x ì=ïïíï=+ïî,可得C 2(43,92);如图,过A 作OB 的平行线,交双曲线于点C 3,则△OBC 3的面积等于△OBA 的面积,设直线AC 3的解析式为y=32x+''b ,把A (3,2)代入,可得2=32×3+''b ,解得''b =﹣52,∴直线AC 3的解析式为y=32x ﹣52,解方程组63522y x y x ì=ïïíï=-ïî,可得C 3(﹣43,﹣92);综上所述,点C 的坐标为(﹣3,﹣2),(43,92),(﹣43,﹣92).【点睛】此题考查了反比例函数与一次函数的综合,涉及的知识有:坐标与图形性质,一次函数图像的交点与二元一次方程组的关系,反比例函数与一次函数的交点问题,利用函数图像解不等式,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.23. 如图,AB 是⊙O 的直径,PO AB ⊥,PE 是⊙O 的切线,交AB 的延长线于点C ,切点为E ,AE 交PO 于点F .(1)求证:V PEF 是等腰三角形;(2)在图中,作EH AB ⊥,垂足为H ,作弦BD PC ∥,交EH 于点G .若EG=5,sinC=35,求直径AB 的长.【答案】(1)见解析;(2)直径AB 的长为20m 【解析】【分析】(1)由切线性质得:OE PC ⊥,根据垂直定义和三角形定理可得:∠AEP=PFE ∠,根据等角对等边可得结论;(2)先根据sinC=35=OH OE ,设OH=3x ,OE=5x ,则EH=4x ,OA=OB=5x ,由平行线性质得:∠GBH=C ∠,列式为:452x x -=34,解方程可得结论.【详解】(1)证明:∵PE 为⊙O 的切线,∴OE PC ⊥,∴∠OEP=90°,∴∠OEA+AEP=90°∠,∵OP AC ⊥,∴∠AOF=90°,∴∠A+AFO=90°∠,∵∠AFO=PFE ∠,∴∠PFE+A=90°∠,∵OA=OE,∠,∴∠A=OEA∠,∴∠AEP=PFE∴PE=PF;∴△PEF是等腰三角形;∠,∠,∠COE+OEH=90°(2)解:∵∠C+COE=90°∠,∴∠C=OEH∵sin C=∠,∠=sin OEH=设OH=3x,OE=5x,则EH=4x,OA=OB=5x,﹣,∴BH=OB OH=2x﹣,GH=4x5∥,∵BG PC∠,∴∠GBH=C∠,∵sin C=∠=tan GBH∠,∴tan C=∴,x=2,∴AB=10x=20,答:直径AB的长为20m.【点睛】本题考查等腰三角形的判定与性质,垂径定理及其推论,圆周角定理及其推论,切线的性质,解题的关键是分析图形.24. 某工厂甲、乙两个部门各有员工200人,为了解这两个部门员工的生产技能情况,相关部门进行了抽样调查,过程如下.从甲、乙两个部门各随机抽取20名员工,进行了生产技能测试,测试成绩(百分制,单位:分)如下:甲:78 86 74 81 75 76 87 70 75 90 75 79 81 70 75 80 85 70 83 77乙:92 71 83 81 72 81 91 83 75 82 80 81 69 81 73 74 82 80 70 59整理、描述数据本数据:按如下分数段整理、描述这两组样(说明:成绩80分及以上为生产技能优秀,7079﹣﹣分为生产技能良好,6069﹣﹣分为生产技能合格)根据上述表格绘制甲、乙两部门员工成绩的频数分布图.分析数据两组样本数据的平均数、中位数、众数如下表所示:(1)请将上述不完整的统计表和统计图补充完整;(2)请根据以上统计过程进行下列推断;①估计乙部门生产技能优秀的员工人数是多少;②你认为甲、乙哪个部门员工的生产技能水平较高,说明理由.(至少从两个不同的角度说明推断的合理性)【答案】(1)见解析;(2)①120人;②甲或乙.【解析】【分析】(1)根据题干数据整理即可得;(2)①总人数乘以样本中优秀的人数所占比例;②根据中位数和众数等意义解答可得.【详解】解:(1)补全图表如下:=120人;(2)①估计乙部门生产技能优秀的员工人数是200×1220②甲或乙,1°、甲部门生产技能测试中,平均分较高,表示甲部门员工的生产技能水平较高;2°、甲部门生产技能测试中,没有技能不合格的员工,表示甲部门员工的生产技能水平较高;或1°、乙部门生产技能测试中,中位数较高,表示乙部门员工的生产技能水平较高;2°、乙部门生产技较高,表示乙部门员工的生产技能水平较高.【点睛】本题考查调查收集数据的过程与方法频数(率)分布表,频数(率)分布直方图,算术平均数,中位数,众数,利用频率估计概率,解题的关键是获取题文信息. 25. 问题情境:课堂上,同学们研究几何变量之间的函数关系问题:如图,菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=2.点P是AC上的一个动点,过点P作MN⊥AC,垂足为点P(点M在边AD、DC上,点N在边AB、BC上).设AP的长为x(0≤x≤4),△AMN的面积为y.建立模型:(1)y 与x 的函数关系式为:_(02)_(24)x y x --££ì=í--<£î,解决问题:(2)为进一步研究y 随x 变化的规律,小明想画出此函数的图象.请你补充列表,并在如图的坐标系中画出此函数的图象:(3)观察所画的图象,写出该函数的两条性质: .【答案】(1) ①y=212x ;②221(02)212(24)2x x y x x x 죣ïï=íï-+<£ïî;(2)见解析;(3)见解析【解析】【分析】(1)根据线段相似的关系得出函数关系式(2)代入①中函数表达式即可填表(3)画图像,分析即可.【详解】(1)设AP=x ①当0≤x≤2时∵MN BD ∥∴△APM AOD ∽△∴AP AO 2PM DO==∴MP=12x∵AC 垂直平分MN ∴PN=PM=12x∴MN=x ∴y=12AP•MN=212x ②当2<x≤4时,P 在线段OC 上,∴CP=4x ﹣∴△CPM COD ∽△∴CP CO 2PII DO==∴PM=1(4)2x -∴MN=2PM=4x﹣∴y=11AP MN x(4x)22×=-=﹣2122x x+∴y=221(02)212(24)2x x x x x 죣ïïíï+<£ïî(2)由(1)当x=1时,y=12当x=2时,y=2当x=3时,y=32(3)根据(1)画出函数图象示意图可知1、当0≤x≤2时,y 随x 的增大而增大2、当2<x≤4时,y 随x 的增大而减小【点睛】本题考查函数,解题的关键是数形结合思想.26. 已知抛物线212y x bx c =-++经过点()10,,302æöç÷èø,.1()求该抛物线的函数表达式;2()将抛物线212y x bx c =-++平移,使其顶点恰好落在原点,请写出一种平移的方法及平移后的函数表达式.【答案】(1)抛物线解析式为21322y x x =--+;(2)向右平移一个单位,向下平移2个单位(方法不唯一),212y x =-.【解析】【分析】(1)把已知点的坐标代入抛物线解析式求出b 与c 的值即可;(2)指出满足题意的平移方法,并写出平移后的解析式即可.【详解】(1)把()1,0,30,2æöç÷èø代入抛物线解析式得:10232b c c ì-++=ïïíï=ïî,解得:132b c =-ìïí=ïî,则抛物线解析式为21322y x x =--+;(2)抛物线解析式为22131(1)2222y x x x =--+=-++,将抛物线向右平移一个单位,向下平移2个单位,解析式变为212y x =-.【点睛】本题考查了二次函数图象与几何变换,二次函数的性质,二次函数图象上点的坐标特征,以及待定系数法求二次函数解析式,熟练掌握二次函数性质是解本题的关键.27. 如图,△ABC 中,∠ACB=90°,AC=BC ,在△ABC 外侧作直线CP ,点A 关于直线CP 的对称点为D ,连接AD ,BD ,其中BD 交直线CP 于点E .(1)如图1,∠ACP=15°.①依题意补全图形;②求∠CBD 的度数;(2)如图2,若45°<∠ACP <90°,直接用等式表示线段AC ,DE ,BE 之间的数量关系.【答案】(1)①见解析;②30°;(2)DE2+BE2=2AC2,理由见解析【解析】【分析】(1)根据题意作图,进而求∠CBD的度数(2)由45°<∠ACP<90°,根据题意和图形可得DE2+BE2=2AC2 .【详解】(1)如图1所示,(2)如图1,连接CD,∵点A关于直线CP的对称点为D,∴CP是AD的垂直平分线,∴CD=AC,∠DCP=ACP=15°∠,∵∠ACB=90°,∴∠BCD=90°+15°+15°=120°,∵AC=BC=CD,∠,∴∠CBD=CDB=30°(3)DE2+BE2=2AC2,理由是:如图2,连接CD、AE,∵DC=BC=AC,∠∠,∴∠CDB=CBD=CAE∠,∵∠CGA=EGB∠,∴∠GEB=ACB=90°∴AE2+BE2=AB2,∵CP是AD的垂直平分线,∴ED=AE,∴DE2+BE2=AB2,∵△ABC是等腰直角三角形,∴AB2=AC2+BC2,且AC=BC,∴DE2+BE2=2AC2.【点睛】本题考查图形应用题,解题的关键是利用题文信息.28. 如图1,在平面直角坐标系中,一次函数y=﹣2x+8的图象与x轴,y轴分别交于点A,点C,过点A作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段AB,BC,AC的长分别为AB= ,BC= ,AC= ;(2)折叠图1中的△ABC,使点A与点C重合,再将折叠后的图形展开,折痕DE交AB 于点D,交AC于点E,连接CD,如图2.请从下列A、B两题中任选一题作答,我选择 题.A:①求线段AD的长;②在y轴上,是否存在点P,使得△APD为等腰三角形?若存在,请直接写出符合条件的所有点P的坐标;若不存在,请说明理由.B:①求线段DE的长;②在坐标平面内,是否存在点P(除点B外),使得以点A,P,C为顶点的三角形与△ABC全等?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【答案】(1)8,4,45;(2)①AD=5;②P(0,2)或(0,8).【解析】【分析】(1)先确定出OA=4,OC=8,进而得出AB=8,BC=4,利用勾股定理即可得出AC;(2)A.①利用折叠的性质得出BD=8﹣AD,最后用勾股定理即可得出结论;②分三种情况利用方程的思想即可得出结论;B.①利用折叠的性质得出AE,利用勾股定理即可得出结论;②先判断出∠APC=90°,再分情况讨论计算即可.﹣x+8的图象与x轴,y轴分别交于点A,点C,【详解】解:(1)∵一次函数y=2∴A(4,0),C(0,8),∴OA=4,OC=8.∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4.在Rt△ABC中,根据勾股定理得,AC故答案为8,4,(2)选A.①由(1)知,BC=4,AB=8,由折叠知,CD=AD.在Rt△BCD中,BD=AB﹣AD=8﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=16+(8﹣AD)2,∴AD=5;②由①知,D(4,5),设P(0,y).∵A(4,0),﹣)2.∴AP2=16+y2,DP2=16+(y5∵△APD为等腰三角形,∴分三种情况讨论:Ⅰ、AP=AD,∴16+y2=25,∴y=±3,∴P(0,3)或(0,﹣3);Ⅱ、AP=DP,﹣)2,∴16+y2=16+(y5,∴y=52);∴P(0,52﹣)2,Ⅲ、AD=DP,25=16+(y5∴y=2或8,∴P(0,2)或(0,8).)或P(0,2)或(0,8).综上所述:P(0,3)或(0,﹣3)或P(0,52AC,DE⊥AC于E.选B.①由A①知,AD=5,由折叠知,AE=1在Rt△ADE中,DE②∵以点A,P,C为顶点的三角形与△ABC全等,∴△APC≌△ABC,或△CP A≌△ABC,∴∠APC=∠ABC=90°.∵四边形OABC是矩形,∴△ACO≌△CAB,此时,符合条件,点P和点O重合,即:P(0,0);如图3,过点O 作ON ⊥AC 于N ,易证,△AON ∽△ACO ,∴AN OA OA AC=,∴4AN =,∴AN =5,过点N 作NH ⊥OA ,∴NH ∥OA ,∴△ANH ∽△ACO ,∴AN NH AH AC OC OA==,∴84NH AH==,∴NH =85,AH =45,∴OH =165,∴N (16855,),而点P 2与点O 关于AC 对称,∴P 2(321655,),同理:点B 关于AC 的对称点P 1,同上的方法得,P 1(﹣122455,).综上所述:满足条件的点P 的坐标为:(0,0),(321655,),(﹣122455,).【点睛】本题是一次函数综合题,主要考查了矩形的性质和判定,相似三角形的判定和性质,勾股定理,折叠的性质,对称的性质,解(1)的关键是求出AC,解(2)的关键是利用分类讨论的思想解决问题.。
苏州市中考数学模拟试题及答案
苏州市中考数学模拟试题及答案2018年苏州市中考数学模拟试题及答案在中考的复习备考过程中,模拟试题的积累是十分重要的,我们平时就要充分利用好,才能真正有效提高。
以下是店铺给你带来的最新模拟试题,希望能帮到你哈。
2018年苏州市中考数学模拟试题一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.1.2的相反数是A.2B.C.-2D.-【难度】★【考点分析】本题考查相反数的概念,中考第一题的常考题型,难度很小。
【解析】给2 添上一个负号即可,故选C。
2.有一组数据:3,5,5,6,7,这组数据的众数为A.3B.5C.6D.7【难度】★【考点分析】考查众数的概念,是中考必考题型,难度很小。
【解析】众数是一组数据中出现次数最多的数值,5 出现了两次,其它数均只出现一次,故选B。
3.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×105【难度】★【考点分析】考查科学记数法,是中考必考题型,难度很小。
【解析】科学记数法的表示结果应满足:a⨯10n(1≤ a <10)的要求,C,D 形式不满足,排除,通过数值大小(移小数点位置)可得A 正确,故选A。
4.若,则有A.0【难度】★☆【考点分析】考察实数运算与估算大小,实数估算大小往年中考较少涉及,但难度并不大。
【解析】化简得:m = - 2 ,因为- 4 < - 2 < - 1(A+提示:注意负数比较大小不要弄错不等号方向),所以-2 < - 2 < -1。
故选C。
5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:通话时间x/min 0频数(通话次数) 20 16 9 5则通话时间不超过15min的频率为A.0.1B.0.4C.0.5D.0.9【难度】★【考点分析】考察概率,是中考必考题型,难度很小。
2018年河北省中考数学试题及参考答案案
2018年河北省初中毕业生升学文化课考试数学试卷卷Ⅰ(选择题,共42分)一、选择题(本大题有16个小题,共42分,1-10小题各3分,11-16小题各2分.每小题给出的四个选项中,只有一项是符合题目要求的)1.(2018河北中考,1,3分,★☆☆)下列图形具有稳定性的是( )A.B.C.D.2.(2018河北中考,2,3分,★☆☆)一个整数815550…0用科学记数法表示为8.1555×1010,则原数中“0”的个数为( )A.4B.6C.7D.103.(2018河北中考,3,3分,★☆☆)图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线( )A.l1B.l2C.l3D.l44.(2018河北中考,4,3分,★☆☆)将9.52变形正确的是( )A.9.52=92+0.52B.9.52=(10+0.5)(10﹣0.5)C.9.52=102﹣2×10×0.5+0.52D.9.52=92+9×0.5+0.525.(2018河北中考,5,3分,★☆☆)图中三视图对应的几何体是( )A.B.C.D.6.(2018河北中考,6,3分,★☆☆)尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是( )A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ7.(2018河北中考,7,3分,★☆☆)有三种不同质量的物体“”“”“”,其中,同一种物体的质量都相等,现左右手中同样的盘子上都放着不同个数的物体,只有一组左右质量不相等,则该组是( )A.B.C.D.8.(2018河北中考,8,3分,★☆☆)已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C9.(2018河北中考,9,3分,★☆☆)为考察甲、乙、丙、丁四种小麦的长势,在同一时期分别从中随机抽取部分麦苗,获得苗高(单位:cm)的平均数与方差为:x甲=x丙=13,x 乙=x丁=15:s甲2=s丁2=3.6,s乙2=s丙2=6.3.则麦苗又高又整齐的是( )A.甲B.乙C.丙D.丁10.(2018河北中考,10,3分,★☆☆)图中的手机截屏内容是某同学完成的作业,他做对的题数是( )A.2个B.3个C.4个D.5个11.(2018河北中考,11,2分,★★☆)如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为( )A.北偏东30°B.北偏东80°C.北偏西30°D.北偏西50°12.(2018河北中考,12,2分,★★☆)用一根长为a(单位:cm)的铁丝,首尾相接围成一个正方形,要将它按如图的方式向外等距扩1(单位:cm)得到新的正方形,则这根铁丝需增加( )A.4cm B.8cm C.(a+4)cm D.(a+8)cm13.(2018河北中考,13,2分,★★☆)若2n+2n+2n+2n=2,则n=( )A.﹣1B.﹣2C.0D.1 414.(2018河北中考,14,2分,★★☆)老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A.只有乙B.甲和丁C.乙和丙D.乙和丁15.(2018河北中考,15,2分,★★★)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为( )A.4.5B.4C.3D.216.(2018河北中考,16,2分,★★★)对于题目“一段抛物线L:y=﹣x(x﹣3)+c(0≤x≤3)与直线l:y=x+2有唯一公共点,若c为整数,确定所有c的值.”甲的结果是c=1,乙的结果是c=3或4,则( )A.甲的结果正确B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确卷Ⅱ(非选择题,共78分)二、填空题(本大题有3个小题,共12分.17~18小题各3分:19小题有2个空,每空3分,把答案写在题中横线上)17.(2018河北中考,17,3分,★☆☆)计算:123--= .18.(2018河北中考,18,3分,★☆☆)若a,b互为相反数,则a2﹣b2= .19.(2018河北中考,19,4分,★★☆)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而902︒=45是360°(多边形外角和)的18,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.三、解答题(本大题有7个小题,共66分.解答应写出文字说明、证明过程或演算步骤) 20.(2018河北中考,20,8分,★☆☆)嘉淇准备完成题目:化简(x2+6x+8)-(6x+5x2+2).发现系数“”印刷不清楚.(1)他把“”猜成3,请你化简:(3x2+6x+8)﹣(6x+5x2+2);(2)他妈妈说:“你猜错了,我看到该题标准答案的结果是常数.”通过计算说明原题中“”是几?21.(2018河北中考,21,9分,★☆☆)老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.22.(2018河北中考,22,9分,★★☆)如图,阶梯图的每个台阶上都标着一个数,从下到上的第1个至第4个台阶上依次标着﹣5,﹣2,1,9,且任意相邻四个台阶上数的和都相等.尝试 (1)求前4个台阶上数的和是多少?(2)求第5个台阶上的数x是多少?应用求从下到上前31个台阶上数的和.发现试用含k(k为正整数)的式子表示出数“1”所在的台阶数.23.(2018河北中考,23,9分,★★☆)如图,∠A=∠B=50°,P为AB中点,点M为射线AC上(不与点A重合)的任意一点,连接MP,并使MP的延长线交射线BD于点N,设∠BPN=α.(1)求证:△APM≌△BPN;(2)当MN=2BN时,求α的度数;(3)若△BPN的外心在该三角形的内部,直接写出α的取值范围.24.(2018河北中考,24,10分,★★★) 如图,直角坐标系,xOy 中,一次函数y =-21x +5的图象l 1分别与x ,y 轴交于A ,B 两点,正比例函数的图象l 2与l 1交于点C (m ,4). (1)求m 的值及l 2的解析式; (2)求S △AO C -S △BOC 的值;(3)一次函数y =kx +1的图象为l 3,且l 1,l 2,l 3不能围成三角形,直接写出k 的值.25.(2018河北中考,25,10分,★★★)如图,点A 在数轴上对应的数为26,以原点O为圆心,OA 为半径作优弧AB ,使点B 在O 右下方,且tan ∠AOB =43,在优弧AB 上任取一点P ,且能过P 作直线l ∥OB 交数轴于点Q ,设Q 在数轴上对应的数为x ,连结OP .(1)若优弧AB 上一段AP 的长为13π,求∠AOP 的度数及x 的值; (2)求x 的最小值,并指出此时直线l 与AB 所在圆的位置关系; (3)若线段PQ 的长为12.5,直接写出这时x 的值.26.(2018河北中考,26,11分,★★★)如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于B,与滑道y=kx(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5;M,A的水平距离是vt米.(1)求k,并用t表示h;(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.2018年河北省初中毕业生升学文化课数学试卷试题答案全解全析1.答案:A解析:因为三角形具有稳定性,四边形和其他多边形具有不稳定性,故选A.考查内容:三角形的稳定性.命题意图:本题主要考查了学生对三角形具有稳定性和四边形具有不稳定性的识记,难度较低.2.答案:B解析:∵8.1555×1010=81 555 000 000,∴81 555 000 000中“0”的个数为6个.故选B.一题多解:10次幂相当于把8.1555的小数点向右移动10位,然后可以发现结果为6个0.考查内容:科学记数法.命题意图:本题考查了学生把用科学记数法表示的数还原成原数的能力,难度较低.3.答案:C解析:根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析可得,该图形的对称轴是直线l3,故选C.考查内容:轴对称图形对称轴的判断.命题意图:本题主要考查了学生对轴对称图形和其对称轴的理解,难度较低.4.答案:C解析:9.52=(10﹣0.5)2=102﹣2×10×0.5+0.52,故选C.考查内容:完全平方公式.命题意图:本题考查了学生应用完全平方公式进行计算的能力,难度较低.5.答案:C解析:首先可画出各个图形的三视图,然后对照给出的三视图,观察图形可知选项C符合三视图的要求,故选C.考查内容:由三视图判断几何体.命题意图:本题主要考查了学生由三视图判断几何体的能力,难度较低.6.答案:D解析:Ⅰ是过直线外一点作这条直线的垂线;Ⅱ是作线段的垂直平分线;Ⅲ是过直线上一点作这条直线的垂线;Ⅳ是作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是:①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ.故选D.考查内容:尺规作图—基本作图.命题意图:本题主要考查了学生对这四种基本尺规作图方法的掌握,难度较低.7.答案:A解析:设的质量为x,的质量为y,的质量为Z,假设A正确,则x=1.5y,此时B,C,D选项中都是x=2y,故A选项错误,符合题意.故选A.考查内容:等式的性质.命题意图:本题是代数式和方程的结合,考查学生对代数式和方程的实际应用能力,难度较低.8.答案:B解析:∵PA=PB,∴△APB是等腰三角形.在等腰三角形中,顶角的平分线、底边上的中线、底边上的高线重合(即“三线合一”),故作其中的任何一线均可使结论得到证明.A项中作的是顶角平分线,C项中作的是底边的中线,D项中作的是底边的高线,B项中的作法使点C同时满足两个条件:①是AB的中点;②PC⊥AB,不一定能实现,故B项错误.故选B.考查内容:等腰三角形性质的应用.命题意图:本题主要考查学生对等腰三角形的性质(三线合一)的掌握情况,同时考查运用全等三角形的判定来加以证明的能力,难度不大.9.答案:D解析:∵x乙=x丁>x甲=x丙,∴乙、丁的麦苗比甲、丙要高,∵s 甲2=s 丁2<s 乙2=s 丙2,∴甲、丁麦苗的长势比乙、丙的长势整齐, 综上,麦苗又高又整齐的是丁.故选D . 考查内容:算术平均数;方差.命题意图:本题主要考查了学生对方差的意义的理解和应用掌握,难度较小. 10.答案:B解析:①﹣1的倒数是﹣1,原题错误,该同学判断正确; ②|﹣3|=3,原题计算正确,该同学判断错误;③1、2、3、3的众数为3,原题错误,该同学判断错误; ④20=1,原题正确,该同学判断正确;⑤2m 2÷(﹣m )=﹣2m ,原题正确,该同学判断正确.故选B . 考查内容:绝对值;倒数;整式的除法;零指数幂;众数.命题意图:本题主要考查学生对倒数的定义、绝对值的性质、众数的定义、零指数幂的定义及单项式除以单项式的法则的掌握和运用,难度较小. 11.答案:A解析:如图.∵AP ∥BC ,∴∠EBF =∠DAB =50°.∴∠FBG =∠EBG ﹣∠EBF =80°﹣50°=30°,此时的航行方向为北偏东30°,故选A .考查内容:方位角的知识.命题意图:本题主要考查学生对方位角的辨识和运用,难度适中. 12.答案:B解析:∵原正方形的周长为acm , ∴原正方形的边长为4acm , ∵将它按图的方式向外等距扩1cm ,∴新正方形的边长为(4a+2)cm , 则新正方形的周长为4(4a+2)=a +8(cm ),因此需要增加的长度为a +8﹣a =8cm .一题多解:将小正方形的各边分别延长,交大正方形的各边于一点,在各个顶点处形成边长为1的正方形,原正方形周长为a cm ,所以新正方形的周长为(a +8)cm ,所以需增加8cm . 考查内容:正方形的周长; 列代数式.命题意图:本题主要考查学生根据图形的数量关系列代数式的能力,难度适中. 13.答案:A解析:∵2n +2n +2n +2n =2,∴4×2n =2,∴2×2n =1,∴21+n =1,∴1+n =0,∴n =﹣1.故选A . 考查内容:同底数幂的乘法.命题意图:本题考查了学生对同底数幂的乘法的理解和运用,难度适中. 14.答案:D解析::∵221x x x --÷21x x -=221x x x --•21xx - =221x x x --•()21x x-- =()21x x x --•()21x x --=()2x x--=2x x-, ∴出现错误是在乙和丁,故选D . 考查内容:分式的乘除法.命题意图:本题主要考查学生运用分式的乘除法法则进行运算,难度适中. 15.答案:B解析::如图,连接AI 、BI .∵点I 为△ABC 的内心,∴AI 平分∠CAB ,∴∠CAI =∠BAI ,由平移得:AC ∥DI ,∴∠CAI =∠AID ,∴∠BAI =∠AID ,∴AD =DI , 同理可得:BE =EI ,∴△DIE 的周长=DE +DI +EI =DE +AD +BE =AB =4, 即图中阴影部分的周长为4,故选B .考查内容:三角形的内切圆与内心、平移的性质.命题意图:本题主要考查了学生对三角形内心的定义、平移的性质及角平分线的定义等知识的掌握和运用,难度较大. 16.答案:D解析:对于抛物线L :y =-x (x -3)+c (0≤x ≤3),当x =0时,y =c ;当x =3时,y =c .如图(1),当L 与l 相切时,则关于x 的一元二次方程-x (x -3)+c =x +2,即x 2-2x +2-c =0有两个相等的实数根,即△=(-2)2-4×(2-c )=0,解得c =1.如图(2),当直线l 恰好经过点(0,c )时,则c =0+2=2;如图(3),当直线l 恰经过点(3,c )时,则c =3+2=5,故当2<c ≤5时,L 与l 相交,且有唯一公共点.综上可知,满足条件的c 的值为1,3,4,5,即甲、乙的结果合在一起也不正确.故选D .考查内容:一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.命题意图:本题主要考查了学生对二次函数图象上点的坐标特征和一次函数图象上点的坐标特征和一元二次方程的根的判别式等知识点的灵活运用,难度较大. 17.答案:2 123--4=2. 考查内容:算术平方根的求法.命题意图:本题主要考查学生对算术平方根的理解和掌握,难度较小.18.答案:0解析:∵a,b互为相反数,∴a+b=0,∴a2﹣b2=(a+b)(a﹣b)=0.考查内容:相反数;运用公式法进行因式分解.命题意图:本题主要考查了学生运用公式法分解因式的能力以及对相反数的定义的理解和运用,难度较低.19.答案:1421解析:图2中的图案外轮廓周长是:8﹣2+2+8﹣2=14;设∠BPC=2x,∴以∠BPC为内角的正多边形的边数为:3601802x-=18090x-,以∠APB为内角的正多边形的边数为:360x,∴图案外轮廓周长是=18090x-﹣2+360x﹣2+360x﹣2=18090x-+720x﹣6,根据题意可知:2x的值只能为60°,90°,120°,144°,当x越小时,周长越大,∴当x=30时,周长最大,此时的图案定为会标,∴会标的外轮廓周长是=1809030-+72030﹣6=21.考查内容:正多边形和圆.命题意图:本题主要考查了学生阅读理解问题的能力和对正多边形的边数与内角、外角的关系理解和运用,难度较大.20.解析:(1)(3x2+6x+8)﹣(6x+5x2+2)=3x2+6x+8﹣6x﹣5x2﹣2=﹣2x2+6.(2)设“”是a,则原式=(ax2+6x+8)﹣(6x+5x2+2)=ax2+6x+8﹣6x﹣5x2﹣2=(a﹣5)x2+6,∵标准答案的结果是常数,∴a﹣5=0,解得,a=5.考查内容:整式的加减运算.命题意图:本题主要考查学生对整式的加减运算的掌握,难度较低.21.解析:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率=1024=512;(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.故答案为3.考查内容:扇形统计图;条形统计图;中位数;概率公式.命题意图:本题主要考查了学生对统计与概率的掌握与运用,难度较低.22.解析:尝试:(1)由题意得前4个台阶上数的和是﹣5﹣2+1+9=3;(2)由题意得﹣2+1+9+x=3,解得:x=﹣5,则第5个台阶上的数x是﹣5;应用:由题意知台阶上的数字是每4个一循环,∵31÷4=7…3,∴7×3+1﹣2﹣5=15,即从下到上前31个台阶上数的和为15;发现:数“1”所在的台阶数为4k﹣1.考查内容:图形的变化规律型问题.命题意图:本题主要考查了学生对图形的变化规律的探究能力,难度适中.23.解析:(1)证明:∵P是AB的中点,∴PA=PB,在△APM和△BPN中,∵,,,A BAPM BPNPA PB∠=∠⎧⎪∠=∠⎨⎪=⎩∴△APM≌△BPN(ASA);(2)解:由(1)得:△APM≌△BPN,∴PM=PN,∴MN=2PN,∵MN=2BN,∴BN=PN,∴α=∠B=50°;(3)解:∵△BPN的外心在该三角形的内部,∴△BPN是锐角三角形,∵∠B=50°,∴40°<∠BPN<90°,即40°<α<90°.考查内容:三角形全等的判定及性质;三角形外接圆.命题意图:本题主要考查学生解决三角形和圆的综合题的能力,难度适中.24.解析:(1)把C(m,4)代入一次函数y=﹣12x+5,可得4=﹣12m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,y=﹣12x+5,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∴S△AOC﹣S△BOC=12×10×4﹣12×5×2=20﹣5=15;(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=32;当l2,l3平行时,k=2;当11,l3平行时,k=﹣12;故k的值为32或2或﹣12.考查内容:三角形全等的判定及性质;三角形外接圆.命题意图:本题主要考查学生对一次函数的综合应用的掌握,难度较大.25.解析:(1)如图1中,由26180nπ⋅⋅=13π,解得n=90°,∴∠POQ=90°,∵PQ∥OB,∴∠PQO=∠BOQ,∴tan∠PQO=tan∠QOB=43=OPOQ,∴OQ=392,∴x=392.(2)如图当直线PQ与⊙O相切时时,x的值最小.在Rt△OPQ中,OQ=OP÷45=32.5,此时x的值为﹣32.5.(3)分三种情况:①如图2中,作OH⊥PQ于H,设OH=4k,QH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k2﹣3k﹣20.79=0,解得k=6.3或﹣3.3(舍弃),∴OQ=5k=31.5.此时x的值为31.5.②如图3中,作OH⊥PQ交PQ的延长线于H.设OH=4k,QH=3k.在Rt△在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5+3k)2,整理得:k2+3k﹣20.79=0,解得k=﹣6.3(舍弃)或3.3,∴OQ=5k=16.5,此时x的值为﹣16.5.③如图4中,作OH⊥PQ于H,设OH=4k,AH=3k.在Rt△OPH中,∵OP2=OH2+PH2,∴262=(4k)2+(12.5﹣3k)2,整理得:k 2﹣3k ﹣20.79=0, 解得k =6.3或﹣3.3(舍弃), ∴OQ =5k =31.5不合题意舍弃. 此时x 的值为﹣31.5.综上所述,满足条件的x 的值为﹣16.5或31.5或﹣31.5. 考查内容:几何综合.命题意图:本题主要考查学生对几何知识的综合应用能力,同时考查学生对分类讨论思想的应用,难度较大.26.解析:(1)由题意,点A (1,18)代入y =k x ,得18=1k,∴k =18. 设h =at 2,把t =1,h =5代入,得a =5,∴h =5t 2. (2)∵v =5,AB =1, ∴x =5t +1. ∵h =5t 2,OB =18, ∴y =﹣5t 2+18.由x =5t +1,则t =()115x -, ∴y =﹣2211289(1)185555x x x -+=-++.当y =13时,13=﹣21(1)185x -+,解得x =6或﹣4. ∵x ≥1, ∴x =6. 把x =6代入y =18x,得y =3, ∴运动员在与正下方滑道的竖直距离是13﹣3=10(米). (3)把y =1.8代入y =﹣5t 2+18,得t 2=8125, 解得t =1.8或﹣1.8(负值舍去), ∴x =10,∴甲坐标为(10,1.8)恰号落在滑道y =18x上, 此时,乙的坐标为(1+1.8v 乙,1.8).由题意:1+1.8v乙﹣(1+5×1.8)>4.5,∴v乙>7.5.考查内容:二次函数和反比例函数的综合.命题意图:本题主要考查二次函数和反比例函数的待定系数法以及函数图象上的临界点问题,难度较大.- 21 -。
2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析
2018---2019年新九年级中考数学模拟考试题含参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣2016的绝对值是()A.﹣2016 B.2016 C.﹣D.【考点】绝对值.【分析】直接利用绝对值的性质求出答案.【解答】解:﹣2016的绝对值是:2016.故选:B.【点评】此题主要考查了绝对值,正确把握绝对值的定义是解题关键.2.如图所示的几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形主视图.3.下列图案中,不是中心对称图形的是()A.B. C.D.【考点】中心对称图形.【分析】结合中心对称图形的概念进行求解即可.【解答】解:A、是中心对称图形,本选项错误;B、是中心对称图形,本选项错误;C、是中心对称图形,本选项错误;D、不是中心对称图形,本选项正确.故选D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.我区5月份连续五天的日最高气温(单位:℃)分别为:33,30,30,32,35.则这组数据的中位数和平均数分别是()A.32,32 B.32,33 C.30,31 D.30,32【考点】中位数;算术平均数.【分析】先把这组数据从小到大排列,找出最中间的数,即可得出这组数据的中位数,再根据平均数的计算公式进行计算即可.【解答】解:把这组数据从小到大排列为30,30,32,33,35,最中间的数是32,则中位数是32;平均数是:(33+30+30+32+35)÷5=32,故选:A.【点评】此题考查了中位数和平均数,掌握中位数的定义和平均数的计算公式是本题的关键;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.某科研小组,为了考查某水库野生鱼的数量,从中捕捞100条,作上标记后,放回水库,经过一段时间,再从中捕捞300条,发现有标记的鱼有15条,则估计该水库中有野生鱼()A.8000条B.4000条C.2000条D.1000条【考点】用样本估计总体.【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有100条,即可得出答案.【解答】解:根据题意,估计该水库中有野生鱼100÷=2000(条),故选:C.【点评】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想.6.下列多边形中,内角和是外角和的两倍的是()A.四边形B.五边形C.六边形D.八边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°以及多边形的外角和等于360°列方程求出边数,从而得解.【解答】解:设多边形边数为n,由题意得,(n﹣2)•180°=2×360°,解得n=6,所以,这个多边形是六边形.故选C.【点评】本题考查了多边形内角与外角,熟记公式并列方程求出多边形的边数是解题的关键.7.下列计算正确的是()A.a2•a3=a6B.(﹣m2)3=﹣m6C.b6÷b3=b2D.3a+3b=6ab【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、同底数幂的除法底数不变指数相减,故C错误;D、不是同类相不能合并,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.8.不等式组的解集是()A.x>﹣2 B.x<5 C.x<2 D.﹣2<x<5【考点】解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集,即可得出选项.【解答】解:∵解不等式①得:x>﹣2,解不等式②得:x<5,∴不等式组的解集为﹣2<x<5,故选D.【点评】本题考查了解一元一次不等式的应用,能灵活运用不等式的性质进行变形是解此题的关键.9.直线y=﹣x+2沿y轴向上平移2个单位后与x轴的交点坐标是()A.(4,0) B.(0,4) C.(2,0) D.(0,2)【考点】一次函数图象与几何变换.【分析】利用一次函数平移规律,上加下减进而得出答案.【解答】解:直线y=﹣x+2沿y轴向上平移2个单位,则平移后直线解析式为:y=﹣x+4,直线与x轴的交点坐标为:0=﹣x+4,解得:x=4.故选A【点评】此题主要考查了一次函数平移变换,正确记忆一次函数平移规律是解题关键.10.如图,在边长为1的正方形ABCD中,动点F,E分别以相同的速度从D,C两点同时出发向C和B运动(任何一个点到达即停止),过点P作PM∥CD交BC于M点,PN∥BC交CD 于N点,连接MN,在运动过程中,则下列结论:①△ABE≌△BCF;②AE=BF;③AE⊥BF;④CF2=PE•BF;⑤线段MN的最小值为.其中正确的结论有()A.2个B.3个C.4个D.5个【考点】四边形综合题.【分析】由正方形的性质及条件可判断出①△ABE≌△BCF,即可判断出②AE=BF,∠BAE=∠CBF,再根据∠BAE+∠BEA=90°,可得∠CBF+∠BEA=90°,可得出∠APB=90°,即可判断③,由△BPE∽△BCF,利用相似三角形的性质,结合CF=BE可判断④;然后根据点P在运动中保持∠APB=90°,可得点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,最后在Rt△BCG中,根据勾股定理,求出CG的长度,再求出PG的长度,即可求出线段CP的最小值,可判断⑤.【解答】解:如图,∵动点F,E的速度相同,∴DF=CE,又∵CD=BC,∴CF=BE,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),故①正确;∴∠BAE=∠CBF,AE=BF,故②正确;∵∠BAE+∠BEA=90°,∴∠CBF+∠BEA=90°,∴∠APB=90°,故③正确;在△BPE和△BCF中,∵∠BPE=∠BCF,∠PBE=∠CBF,∴△BPE∽△BCF,∴=,∴CF•BE=PE•BF,∵CF=BE,∴CF2=PE•BF,故④正确;∵点P在运动中保持∠APB=90°,∴点P的路径是一段以AB为直径的弧,设AB的中点为G,连接CG交弧于点P,此时CP的长度最小,在Rt△BCG中,CG===,∵PG=AB=,∴CP=CG﹣PG=﹣=,即线段CP的最小值为,故⑤正确;综上可知正确的有5个,故选D.【点评】本题为四边形的综合应用,涉及全等三角形、相似三角形的判定和性质、勾股定理、正方形的性质等知识点.在判定三角形全等时,关键是选择恰当的判定条件,证明△ABE≌△BCF是解题的关键.本题考查知识点较多,综合性较强,难度较大.二、填空题(本大题共6小题,每小题4分,共24分.请将答案填入答题卡的相应位置)11.写出一个第二象限内的点的坐标:(﹣1 , 1 ).【考点】点的坐标.【专题】开放型.【分析】根据第二象限的点的横坐标是负数,纵坐标是正数解答.【解答】解:(﹣1,1)为第二象限的点的坐标.故答案为:﹣1,1(答案不唯一).【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).12.想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查.(填“全面调查”或“抽样调查”)【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:想了解某电视台对正在播出的某电视节目收视率的情况,适合采用的调查方式是抽样调查,故答案为:抽样调查.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.13.计算: = x .【考点】分式的加减法.【专题】计算题.【分析】进行同分母分式加减运算,最后要注意将结果化为最简分式.【解答】解: ===x.故答案为x.【点评】本题考查了分式的加减运算,题目比较容易.14.分解因式:3a2﹣6a+3= 3(a﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为 4 .【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式得到•2π•3•l=15π,然后求出l后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得•2π•3•l=15π,解得l=5,所以圆锥的高==4.故答案为4.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.16.如图,已知点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为斜边做等腰直角△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=(k<0)上运动,则k的值是﹣2 .【考点】反比例函数图象上点的坐标特征;等腰直角三角形.【分析】连结OC,作CD⊥x轴于D,AE⊥x轴于E,设A点坐标为(a,),利用反比例函数的性质得到点A与点B关于原点对称,则OA=OB,再根据等腰直角三角形的性质得OC=OA,OC⊥OA,然后利用等角的余角相等可得到∠DCO=∠AOE,则根据“AAS”可判断△COD≌△OAE,所以OD=AE=,CD=OE=a,于是C点坐标为(,a),最后根据反比例函数图象上点的坐标特征确定C点所在的函数图象解析式.【解答】解:连结OC,作CD⊥x轴于D,AE⊥x轴于E,如图,设A点坐标为(a,),∵A点、B点是正比例函数图象与双曲线y=的交点,∴点A与点B关于原点对称,∴OA=OB∵△ABC为等腰直角三角形,∴OC=OA,OC⊥OA,∴∠DOC+∠AOE=90°,∵∠DOC+∠DC O=90°,∴∠DCO=∠AOE,在△COD和△OAE中,∵,∴△COD≌△OAE(AAS),∴OD=AE=,CD=OE=a,∴C点坐标为(,﹣a),∵﹣a•=﹣2,∴点C在反比例函数y=﹣图象上.故答案为﹣2.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.三、解答题(本大题共9小题,共86分.请在答题卡的相应位置作答)17.计算:×(﹣2)2﹣2tan45°+(﹣2016)0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【专题】计算题;实数.【分析】原式利用算术平方根定义,乘方的意义,特殊角的三角函数值,以及零指数幂法则计算即可得到结果.【解答】解:原式=2×4﹣2×1+1=8﹣2+1=7.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.先化简下列的代数式,再求值:[(2x+y)2+y(x﹣y)]÷x,其中x=1,y=1.【考点】整式的混合运算—化简求值.【分析】先算括号内的乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:[(2x+y)2+y(x﹣y)]÷x=(4x2+4xy+y2+xy﹣y2)÷x=(4x2+5xy)÷x=4x2÷x+5xy÷x=4x+5y,当x=1,y=1时,原式=4×1+5×1=9.【点评】本题考查了整式的混合运算和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.19.解分式方程: =.【考点】解分式方程.【专题】计算题;分式方程及应用.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:方程两边同时乘以x(2x﹣1),得2(2x﹣1)=3x,解得:x=2,检验:当x=2时,x(2x﹣1)≠0,则原分式方程的解为x=2.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.【考点】全等三角形的判定与性质;垂线.【专题】证明题.【分析】首先根据垂直可得∠ABC=∠D=90°,再有条件∠ACB=∠DCE,CB=CD,可以用ASA 证明△ABC≌△EDC,再根据全等三角形对应边相等得到结论AB=DE.【解答】证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.【点评】此题主要考查了全等三角形的判定与性质,解决此题的关键是找出能使△ABC≌△EDC的条件.21.2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= 20 ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?【考点】概率公式;扇形统计图;条形统计图.【分析】(1)根据条形图B的人数,和扇形图B所占的百分比求出总人数,然后减去其他4组的人数,求出C的人数,用A的人数除以总人数可得m的值.(2)全市所以司机的人数×支持选项C的人数的百分比可求出结果.(3)根据(2)算出的支持C的人数,以及随机选择200名,给他们发放“请勿酒驾”的提醒标志,则可算出支持该选项的司机小李被选中的概率是多少【解答】解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.∴m=20,故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.【点评】本题考查认知条形统计图和扇形统计图的能力,条形统计图告诉每组里面的具体数据,扇形统计图告诉部分占整体的百分比以及概率等概念从而可求出解.22.如图,CD为⊙O的直径,点B在⊙O上,连接BC、BD,过点B的切线AE与CD的延长线交于点A,OE∥BD,交BC于点F,交AE于点E.(1)求证:△BEF∽△DBC.;(2)若⊙O的半径为3,∠C=32°,求BE的长.(精确到0.01)【考点】相似三角形的判定与性质;切线的性质.【分析】(1)连接OB,由切线的性质得出OB⊥AE,故可得出∠OBE=∠EBF+∠CBO=90°.再由圆周角定理得出∠CBD=∠CBO+∠OBD=90°,故∠EBF=∠OBD.根据等腰三角形的性质可知∠OBD=∠CDB,故∠EBF=∠CDB,进而可得出结论;(2)由(1)可知△BEF∽△DBC,所以∠OBE=90°,∠E=∠C.在Rt△BOE中,利用锐角三角函数的定义即可得出结论.【解答】(1)证明:连接OB.∵过点B的切线AE与CD的延长线交于点A,∴OB⊥AE,∴∠OBE=∠EBF+∠CBO=90°.∵CD为⊙O的直径∴∠CBD=∠CBO+∠OBD=90°,∴∠EBF=∠OBD.∵OB、OD是⊙O的半径,∴OB=OD,∴∠OBD=∠CDB,∴∠EBF=∠CDB.∵OE∥BD,∴∠EFB=∠CBD∴△BEF∽△DBC.(2)解:∵由(1)可知△BEF∽△DBC∴∠OBE=90°,∴∠E=∠C.∵∠C=32°,∴∠E=∠C=32°.∵⊙O的半径为3,∴OB=3.在Rt△BOE中,∠OBE=90°,∠E=32°,OB=3,∴tanE=,即tan32°=,∴BE=≈4.80.【点评】本题考查的是相似三角形的判定与性质,根据题意作出辅助线,构造出相似三角形是解答此题的关键.23. 2016年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.当x的值至少为多少时,该服装商店才不会亏本.【考点】一元一次不等式的应用;二元一次方程组的应用.【专题】应用题;一元一次不等式(组)及应用.【分析】(1)设第一、二次购进服装的数量分别为a件与b件,根据题意列出方程组,求出方程组的解得到a与b的值,即可得到结果;(2)根据题意列出不等式,求出不等式的解集即可得到结果.【解答】解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.【点评】此题考查了一元一次方程的应用,以及一元一次不等式的应用,弄清题意是解本题的关键.24.如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0),B(5,0)两点,直线y=﹣x+3与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x轴于点F,交直线CD于点E.设点P的横坐标为m.(1)求抛物线的解析式;(2)若PE=5EF,求m的值;(3)若点E′是点E关于直线PC的对称点,是否存在点P,使点E′落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由.【考点】二次函数综合题.【专题】代数几何综合题;压轴题.【分析】(1)利用待定系数法求出抛物线的解析式;(2)用含m的代数式分别表示出PE、EF,然后列方程求解;(3)解题关键是识别出当四边形PECE′是菱形,然后根据PE=CE的条件,列出方程求解;当四边形PECE′是菱形不存在时,P点y轴上,即可得到点P坐标.【解答】方法一:解:(1)将点A 、B 坐标代入抛物线解析式,得:,解得,∴抛物线的解析式为:y=﹣x 2+4x+5.(2)∵点P 的横坐标为m ,∴P (m ,﹣m 2+4m+5),E (m ,﹣ m+3),F (m ,0).∴PE=|y P ﹣y E |=|(﹣m 2+4m+5)﹣(﹣m+3)|=|﹣m 2+m+2|,EF=|y E ﹣y F |=|(﹣m+3)﹣0|=|﹣m+3|.由题意,PE=5EF ,即:|﹣m 2+m+2|=5|﹣m+3|=|m+15|①若﹣m 2+m+2=m+15,整理得:2m 2﹣17m+26=0,解得:m=2或m=;②若﹣m 2+m+2=﹣(m+15),整理得:m 2﹣m ﹣17=0,解得:m=或m=.由题意,m 的取值范围为:﹣1<m <5,故m=、m=这两个解均舍去. ∴m=2或m=.(3)假设存在.作出示意图如下:∵点E 、E′关于直线PC 对称,∴∠1=∠2,CE=CE′,PE=PE′.∵PE 平行于y 轴,∴∠1=∠3,∴∠2=∠3,∴PE=CE ,∴PE=CE=PE′=CE′,即四边形PECE′是菱形.当四边形PECE′是菱形存在时,由直线CD 解析式y=﹣x+3,可得OD=4,OC=3,由勾股定理得CD=5.过点E 作EM ∥x 轴,交y 轴于点M ,易得△CEM ∽△CDO ,∴,即,解得CE=|m|,∴PE=CE=|m|,又由(2)可知:PE=|﹣m 2+m+2|∴|﹣m 2+m+2|=|m|.①若﹣m 2+m+2=m ,整理得:2m 2﹣7m ﹣4=0,解得m=4或m=﹣;②若﹣m 2+m+2=﹣m ,整理得:m 2﹣6m ﹣2=0,解得m 1=3+,m 2=3﹣.由题意,m 的取值范围为:﹣1<m <5,故m=3+这个解舍去.当四边形PECE′是菱形这一条件不存在时, 此时P 点横坐标为0,E ,C ,E'三点重合与y 轴上,也符合题意,∴P (0,5)综上所述,存在满足条件的点P ,可求得点P 坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3) 方法二:(1)略.(2)略.(3)若E (不与C 重合时)关于直线PC 的对称点E′在y 轴上,则直线CD 与直线CE′关于PC 轴对称.∴点D 关于直线PC 的对称点D′也在y 轴上,∴DD′⊥CP ,∵y=﹣x+3,∴D (4,0),CD=5,∵OC=3,∴OD′=8或OD′=2,①当OD′=8时,D′(0,8),设P(t,﹣t2+4t+5),D(4,0),C(0,3),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴,∴2t2﹣7t﹣4=0,∴t1=4,t2=﹣,②当OD′=2时,D′(0,﹣2),设P(t,﹣t2+4t+5),∵PC⊥DD′,∴KPC ×KDD′=﹣1,∴=﹣1,∴t1=3+,t2=3﹣,∵点P是x轴上方的抛物线上一动点,∴﹣1<t<5,∴点P的坐标为(﹣,),(4,5),(3﹣,2﹣3).若点E与C重合时,P(0,5)也符合题意.综上所述,存在满足条件的点P,可求得点P坐标为(0,5),(﹣,),(4,5),(3﹣,2﹣3)【点评】本题是二次函数压轴题,综合考查了二次函数与一次函数的图象与性质、点的坐标、待定系数法、菱形、相似三角形等多个知识点,重点考查了分类讨论思想与方程思想的灵活运用.需要注意的是,为了避免漏解,表示线段长度的代数式均含有绝对值,解方程时需要分类讨论、分别计算.25.如图,在四边形ABCD中,∠D=∠BCD=90°,∠B=60°,AB=6,AD=9,点E是CD上的一个动点(E不与D重合),过点E作EF∥AC,交AD于点F(当E运动到C时,EF与AC重合),把△DEF沿着EF对折,点D的对应点是点G.设DE=x,△GEF与四边形ABCD重叠部分的面积为y.(1)求CD的长及∠1的度数;(2)若点G恰好在BC上,求此时x的值;(3)求y与x之间的函数关系式,并求x为何值时,y的值最大?最大值是多少?【考点】四边形综合题.【分析】(1)如图1,作辅助线AH⊥BC,AH的长就是CD的长,根据直角三角形中的特殊三角函数值可以求AH的长,即CD=AH=3,在直角△ACD中,求∠CAD=30°,由平行线的同位角相等可以得∠1=∠CAD=30°;(2)如图2,由对折得:Rt△FGE≌Rt△FDE,则GE=DE=x,∠FEG=∠FED=60°,从而求得直角△GEC中,EC=x,根据DE+EC=CD 列式可求得x的值;(3)分两种情形:第一种情形:当时,如图3,△GEF完全在四边形内部分,重叠部分面积就是△GEF的面积;第二种情形:当<x≤时,如图4,重叠部分是△GEF的面积﹣△MNG的面积,所以要根据特殊的三角函数值求MG、NG的长,代入面积公式即可.再根据两种情形的最大值作对比得出结果.【解答】解:(1)如图1,过点A作AH⊥BC于点H,∵在Rt △AHB 中,AB=6,∠B=60°,∴AH=AB •sinB=6×=,∵∠D=∠BCD=90°,∴四边形AHCD 为矩形,∴CD=AH=,∵, ∴∠CAD=30°,∵EF ∥AC ,∴∠1=∠CAD=30°;(2)若点G 恰好在BC 上,如图2,由对折的对称性可知Rt △FGE ≌Rt △FDE ,∴GE=DE=x ,∠FEG=∠FED=60°,∴∠GEC=60°,∵△CEG 是直角三角形,∴∠EGC=30°,∴在Rt △CEG 中,EC=EG=x ,由DE+EC=CD 得,∴x=; (3)分两种情形:第一种情形:当时,如图3,在Rt △DEF 中,tan ∠1=tan30°=,∴DF=x ÷=x ,∴y=S △EGF =S △EDF ===,∵>0,对称轴为y 轴,∴当,y 随x 的增大而增大,∴当x=时,y 最大值=×=;第二种情形:当<x ≤时,如图4,设FG ,EG 分别交BC 于点M 、N ,(法一)∵DE=x ,∴EC=,NE=2,∴NG=GE ﹣NE==,又∵∠MNG=∠ENC=30°,∠G=90°,∴MG=NG •tan30°=,∴=∴y=S △EGF ﹣S △MNG ==∵,对称轴为直线,∴当<x ≤时,y 有最大值,且y 随x 的增大而增大,∴当时, =,综合两种情形:由于<;∴当时,y 的值最大,y 的最大值为.【点评】本题是四边形的综合题,考查了折叠的性质、二次函数的最值、特殊的三角函数值及直角三角形中30°角的性质,对于求重叠部分的面积,要先把特殊位置对应的x的值求出来,再分情况进行讨论,本题难度适中.。
临沂中考数学模拟试题含答案
临沂中考数学模拟试题含答案Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#临沂市2018年中考数学模拟试题一.选择题(每小题3分,共42分)1.223-的倒数是()A.223B.132- C.38-D.382.下列运算正确的是()A.222(2)4x y x y+=+B.326(2)4a a-= C.252366a b ab ab-+=-D.236236a a a= 3.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°4.从正面观察如图的两个立体图形,得到的平面图形是()A.B.C.D.5.不等式组103412xxx-⎧⎪⎨-≤-⎪⎩的解集在数轴上应表示为()A.B.C.D.6.定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为()A.12B.25C.35D.7187.把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A.9 B.10 C.11 D.以上都有可能8.某汽车生产商新推出一款新型电动低能耗汽车,由于该型号汽车经济适用性强,销量快速增长,1月份该型号汽车的销量为2000辆,3月份该型号汽车的销量达4500辆.设该型号汽车销量的月平均增长率为x,则根据题意可列方程为()A.22000(1)4500x+=B.2000(12)4500x+= C.22000(1)4500x-=D.220004500x=9.若数据12,,,n x x x 的众数为a ,方差为b ,则数据1x +2,2x +2,…,n x +2的众数,方差分别是( ) A .a ,bB .a ,b+2C .a+2,bD .a+2,b+210.如图,在半径为3,圆心角为90°的扇形ACB 内,以BC 为直径作半圆交AB 于点D ,连接CD ,则阴影部分的面积是( ) A .5392π- B .9944π- C .9944π+ D .9984π-第10题 第11题 第12题 11.将一些半径相同的小圆按如图所示的方式摆放,图①中有8个小圆,图②中有13个小圆,图③中有19个小圆,图④中有26个小圆,照此规律,图⑨中小圆的个数为( ) A .64 B .76 C .89 D .9312.如图,在任意四边形ABCD 中,AC ,BD 是对角线,E 、F 、G 、H 分别是线段BD 、BC 、AC 、AD 上的点,对于四边形EFGH 的形状,某班的学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是A .当E ,F ,G ,H 是各条线段的中点时,四边形EFGH 为平行四边形B .当E ,F ,G ,H 是各条线段的中点,且AC ⊥BD 时,四边形EFGH 为矩形 C .当E ,F ,G ,H 是各条线段的中点,且AB=CD 时,四边形EFGH 为菱形 D .当E ,F ,G ,H 不是各条线段的中点时,四边形EFGH 可以为平行四边形 13.抛物线2y x bx c =-++上部分点的横坐标x ,纵坐标y 的对应值如下表所示:x… ﹣2 ﹣1 0 1 2 … y…4664…从上表可知,下列说法中,错误的是( )A .抛物线于x 轴的一个交点坐标为(﹣2,0)B .抛物线与y 轴的交点坐标为(0,6)C .抛物线的对称轴是直线x =0D .抛物线在对称轴左侧部分是上升的 14.已知点A (﹣2,0),B 为直线x =﹣1上一个动点,P 为直线AB 与双曲线1y x=的交点,且AP=2AB ,则满足条件的点P 的个数是( )A .0个B .1个C .2个D .3个二.填空题(每小题3分,共15分)15.分解因式:2114x x -+= .16.化简211()(1)x x x x--÷-的结果是 .17.如下图,在平行四边形ABCD 中,E 为边BC 上一点,AC 与DE 相交于点F ,若CE=2EB ,9AFDS=,则EFCS= .18.如右上图,在Rt △ABC 中,∠ACB=90°,AB=5,AC=4,E 、F 分别为AB 、AC 上的点,沿直线EF 将B ∠折叠,使点恰好落在AC 上的D 处,当△ADE 恰好为直角三角形时,BE 的长为 .19.对于任意实数a 、b 、c 、d ,定义有序实数对(a ,b )与(c ,d )之间的运算“△”为:(a ,b )△(c ,d )=(ac+bd ,ad+bc ).如果对于任意实数u 、v ,都有(u ,v )△(x ,y )=(u ,v ),那么(x ,y )为 . 三.解答题(本大题共7小题,共63分)20.计算: 011(4)()32tan 602π--+-++︒21.某中学现有在校学生2150人,为了解本校学生的课余活动情况,采取随机抽样的方法从阅读、运动、娱乐、其它四个方面调查了若干名学生,并将调查的结果绘制了如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查共抽取了多少名学生(2)通过计算补全条形图,并求出扇形统计图中阅读部分圆心角的度数; (3)请你估计该中学在课余时间参加阅读和其它活动的学生一共有多少名22.如图,一居民楼底部B 与山脚P 位于同一水平线上,小李在P 处测得居民楼顶A 的仰角为60°,然后他从P 处沿坡脚为45°的上坡向上走到C 处,这时,202PC m =,点C 与点A 在同一水平线上,A 、B 、P 、C 在同一平面内. (1)求居民楼AB 的高度;(2)求C 、A 之间的距离.(结果保留根号)23.如图,△ABC 中,AB=AC ,点D 为BC 上一点,且AD=DC ,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,连结DE .(1)求证:AC 是⊙O 的切线; (2)若4sin 5C =,AC=6,求⊙O 的直径.24.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP 会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP 会员的收费方式是:缴纳VIP 会员费50元,所购商品给予8折优惠,并免除30元的快递费.⑴请分别写出按普通会员、VIP 会员购买商品应付的金额y (元) 与所购商品x (元)之间的函数关系式;⑵某网民是该网店的VIP 会员,计划“双十一”期间在该网店购买x (x >300)元的商品,则他应该选择哪种购买方式比较合算25.【感知】如图①,四边形ABCD 、CEFG 均为正方形.可知BE=DG . 【拓展】如图②,四边形ABCD 、CEFG 均为菱形,且∠A=∠F .求证:BE=DG .【应用】如图③,四边形ABCD 、CEFG 均为菱形,点E 在边AD 上,点G 在AD 延长线上.若AE=2ED ,∠A=∠F ,△EBC 的面积为8,则菱形CEFG 的面积为 .26.如图,抛物线2y x bx c =-++与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为B (3,0).C (0,3),点M 是抛物线的顶点. (1)求二次函数的关系式;(2)点P为线段MB上一个动点,过点P作PD⊥x轴于点D.若OD m,△PCD的面积为S,试判断S有最大值或最小值并说明理由;(3)在MB上是否存在点P,使△PCD为直角三角形如果存在,请直接写出点P的坐标;如果不存在,请说明理由.参考答案与试题解析一.选择题(共14小题)1.﹣2的倒数是()A.2B.﹣3C.﹣D.【分析】根据倒数的定义即可求解.【解答】解:﹣2的倒数是﹣.故选:C.【点评】考查了倒数、关键是熟悉正数的倒数是正数,负数的倒数是负数,而0 没有倒数,这与相反数不同.2.下列运算正确的是()A.(x+2y)2=x2+4y2B.(﹣2a3)2=4a6C.﹣6a2b5+ab2=﹣6ab3D.2a23a3=6a6【分析】直接利用完全平方公式和单项式乘以单项式的性质、积的乘方运算法则,分别化简得出答案.【解答】解:A、(x+2y)2=x2+4xy+4y2,故此选项错误;B、(﹣2a3)2=4a6,正确;C、﹣6a2b5+ab2,无法计算,故此选项错误,D、2a23a3=6a5,故此选项错误;故选:B.【点评】此题主要考查了完全平方公式和单项式乘以单项式的性质、积的乘方运算,正确掌握运算法则是解题关键.3.一副三角板按如图所示的方式摆放,且∠1比∠2大50°,则∠2的度数为()A.20°B.50°C.70°D.30°【分析】根据图形得出∠1+∠2=90°,然后根据∠1的度数比∠2的度数大50°列出方程求解即可.【解答】解:由图可知∠1+∠2=180°﹣90°=90°,所以∠2=90°﹣∠1,又因为∠1﹣∠2=∠1﹣(90°﹣∠1)=50°,解得∠1=70°.故选:A.【点评】本题考查了余角和补角,准确识图,用∠1表示出∠2,然后列出方程是解题的关键.4.从正面观察如图的两个立体图形,得到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看左边是一个矩形,右边是一个正方形,故选:A.【点评】本题考查了认识立体图形,从正面看得到的图形是主视图.5.不等式组的解集在数轴上应表示为()A.B.C.D.【分析】根据不等式的性质求出每个不等式的解集,根据找不等式组解集的规律找出不等式组的解集,再在数轴上吧不等式组的解集表示出来,即可选项答案.【解答】解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示不等式组的解集为故选:C.【点评】本题考查了不等式的性质,解一元一次不等式(组),在数轴上表示不等式组的解集等知识点,注意:在数轴上表示不等式组的解集时,包括该点时用黑点,不包括该点时用圆圈.6.定义:一个自然数,右边的数字总比左边的数字小,我们称它为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为()A.B.C.D.【分析】根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.【解答】解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为=.故选:A.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.把一个多边形割去一个角后,得到的多边形内角和为1440°,请问这个多边形原来的边数为()A.9 B.10 C.11 D.以上都有可能【分析】先根据多边形的内角和公式(n﹣2)180°求出截去一个角后的多边形的边数,再根据截去一个角后边数增加1,不变,减少1讨论得解.【解答】解:设多边形截去一个角的边数为n,则(n﹣2)180°=1440°,解得n=10,∵截去一个角后边上可以增加1,不变,减少1, ∴原多边形的边数是9或10或11. 故选:D .【点评】本题考查了多边形的内角和公式,关键是理解多边形截去一个角后边数有增加1,不变,减少1三种情况.8.某汽车生产商新推出一款新型电动低能耗汽车,由于该型号汽车经济适用性强,销量快速增长,1月份该型号汽车的销量为2000辆,3月份该型号汽车的销量达4500辆.设该型号汽车销量的月平均增长率为x ,则根据题意可列方程为( ) A .2000(1+x )2=4500 B .2000(1+2x )=4500 C .2000(1﹣x )2=4500D .2000x 2=4500【分析】一般用增长后的量=增长前的量×(1+增长率),如果设商场利润的月平均增长率为x ,然后根据已知条件可得出方程.【解答】解:依题意得3月份该型号汽车的销量为:2000(1+x )2, 则2000(1+x )2=4500. 故选:A .【点评】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.9.若数据x 1,x 2,…,x n 的众数为a ,方差为b ,则数据x 1+2,x 2+2,…,x n +2的众数,方差分别是( ) A .a ,bB .a ,b+2C .a+2,bD .a+2,b+2【分析】根据数据x 1,x 2,…,x n 的众数为a ,方差为b ,可知数据x 1+2,x 2+2,…,x n +2与原来数据相比都增加2,则众数相应的加2,平均数都加2,则方差不变. 【解答】解:∵数据x 1,x 2,…,x n 的众数为a ,方差为b , ∴数据x 1+2,x 2+2,…,x n +2的众数为a+2,这组数据的方差是b , 故选:C .【点评】本题考查方差和众数,解答本题的关键是明确题意,利用众数和方差的定义解答.10.如图,在半径为3,圆心角为90°的扇形ACB 内,以BC 为直径作半圆交AB 于点D ,连接CD ,则阴影部分的面积是( )A.B.C.D.【分析】首先根据圆周角定理以及等腰直角三角形的性质得出S阴影=S弓形ACB+S△BCD=S扇形ACB﹣S△ACD =S扇形ACB﹣S△ABC进而得出即可.【解答】解:∵∠ACB=90°,AC=CB,∴∠CBD=45°,又∵BC是直径,∴∠CDB=90°,∴∠DCB=45°,∴DC=DB,∴S弓形CD =S弓形BD,∴S阴影=S弓形ACB+S△BCD=S扇形ACB ﹣S△ACD=S扇形ACB ﹣S△ABC=π×32﹣××3×3=π﹣.故选:B.【点评】此题主要考查了扇形面积公式以及阴影部分面积求法,正确转化阴影图形的形状是解题关键.11.将一些半径相同的小圆按如图所示的方式摆放,图①中有8个小圆,图②中有13个小圆,图③中有19个小圆,图④中有26个小圆,照此规律,图⑨中小圆的个数为()A.64 B.76 C.89 D.93【分析】图①中有1+2+3+2=8个小圆,图②中有1+2+3+4+3=13个小圆,图③中有1+2+3+4+5+4=19个小圆,按此规律第9个图形中小圆的个数为1+2+3+4+5+6+7+8+9+10+11+10=76个小圆.【解答】解:图①中有1+2+3+2=8个小圆,图②中有1+2+3+4+3=13个小圆,图③中有1+2+3+4+5+4=19个小圆,…第9个图形中小圆的个数为1+2+3+4+5+6+7+8+9+10+11+10=76个.故选:B.【点评】此题考查图形的变化规律,是一道关于数字猜想的问题,关键是通过归纳与总结,得到其中的规律,利用穷举法解答此题是一种很好的方法.12.如图,在任意四边形ABCD中,AC,BD是对角线,E、F、G、H分别是线段BD、BC、AC、AD上的点,对于四边形EFGH的形状,某班的学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A.当E,F,G,H是各条线段的中点时,四边形EFGH为平行四边形B.当E,F,G,H是各条线段的中点,且AC⊥BD时,四边形EFGH为矩形C.当E,F,G,H是各条线段的中点,且AB=CD时,四边形EFGH为菱形D.当E,F,G,H不是各条线段的中点时,四边形EFGH可以为平行四边形【分析】根据平行四边形、矩形、菱形的判定判断即可.【解答】解:∵E,F,G,H是BD,BC,AC,AD的中点,∴EF=CD,FG=AB,GH=CD,HE=AB,∴EF=GH,FG=HE,∴四边形EFGH为平行四边形,故A正确;∵AB=CD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故C正确;当AC⊥BD时,∠BOC=90°,∵∠BOC>∠EHG,∴四边形EHGF不可能是矩形,故B错误;当E,F,G,H是相应线段的三等分点时,四边形EFGH是平行四边形,∵E,F,G,H是相应线段的三等分点,∴△EHD∽△BAD,△CFG∽△CBA,∴,∴EH=FG,∵EH∥AB,FG∥AB,∴EH∥FG,∴四边形EFGH是平行四边形,故D正确;故选:B.【点评】此题考查矩形的判定和性质,关键是根据平行四边形、矩形、菱形的判定判断.13.抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:x …﹣2 ﹣1 0 1 2 …y …0 4 6 6 4 …从上表可知,下列说法中,错误的是()A.抛物线于x轴的一个交点坐标为(﹣2,0)B.抛物线与y轴的交点坐标为(0,6)C.抛物线的对称轴是直线x=0D.抛物线在对称轴左侧部分是上升的【分析】由表可知抛物线过点(﹣2,0)、(0,6)可判断A、B;当x=0或x=1时,y=6可求得其对称轴,可判断C;由表中所给函数值可判断D.【解答】解:当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x轴的一个交点坐标为(﹣2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=,故C错误;当x<时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选:C.【点评】本题主要考查二次函数的性质,掌握二次函数的图象与坐标轴的交点及对称轴的求法是解题的关键.14.已知点A(﹣2,0),B为直线x=﹣1上一个动点,P为直线AB与双曲线y=的交点,且AP=2AB,则满足条件的点P的个数是()A.0个B.1个C.2个D.3个【分析】如图,设P(m,),B(﹣1,n),直线x=﹣1与x轴交于C,有A(﹣2,0),得到OA=2,OC=1,AC=1,BC∥y轴,推出,于是得到这样的点P不存在,点P4在AB之间,不满足AP=2AB,过P2作P2Q⊥x轴于Q,求得满足条件的点P(﹣4,﹣),于是得到满足条件的点P的个数是1,【解答】解:如图,设P(m,),B(﹣1,n),直线x=﹣1与x轴交于C,∵A(﹣2,0),∴OA=2,OC=1,∴AC=1,BC∥y轴,∴,∴P1,P3在y轴上,这样的点P不存在,点P4在AB之间,不满足AP=2AB,过P2作P2Q⊥x轴于Q,∴P2Q∥B1C,∴=,∴=,∴m=﹣4,∴P(﹣4,﹣),∴满足条件的点P的个数是1,故选:B.【点评】本题考查了一次函数与反比例函数的焦点问题,平行线分线段成比例,注意数形结合思想的应用.二.填空题(共5小题)15.分解因式:x2﹣x+1= =(x﹣1)2.【分析】直接利用完全平方公式a2﹣2ab+b2=(a﹣b)2把多项式分解即可.【解答】解:原式=(x﹣1)2.故答案为:(x﹣1)2.【点评】此题主要考查了公式法分解因式,关键是掌握完全平方公式a2﹣2ab+b2=(a﹣b)2.16.化简(x﹣)÷(1﹣)的结果是x﹣1 .【分析】首先把括号内的分式进行通分相减,然后把除法转化为乘法,最后进行分式的乘法运算即可.【解答】解:原式=(﹣)÷==x﹣1.故答案是:x﹣1.【点评】本题主要考查分式的混合运算,通分、因式分解和约分是解答的关键.17.如图,在平行四边形ABCD中,E为边BC上一点,AC与DE相交于点F,若CE=2EB,S△AFD =9,则S△EFC等于 4 .【分析】由于四边形ABCD是平行四边形,所以得到BC∥AD、BC=AD,而CE=2EB,由此即可得到△AFD∽△CFE,它们的相似比为3:2,最后利用相似三角形的性质即可求解.【解答】解:∵四边形ABCD是平行四边形,∴BC∥AD、BC=AD,而CE=2EB,∴△AFD∽△CFE,且它们的相似比为2:1,∴S△AFD :S△EFC=()2,而S△AFD=9,∴S△EFC=4.故答案为:4.【点评】此题主要考查了相似三角形的判定与性质,解题首先利用平行四边形的构造相似三角形的相似条件,然后利用其性质即可求解.18.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,E、F分别为AB、AC上的点,沿直线EF将∠B折叠,使点恰好落在AC上的D处,当△ADE恰好为直角三角形时,BE的长为或.【分析】先在Rt△ABC中利用勾股定理求出AC=6cm,再根据折叠的性质得到BE=DE,直线EF 将∠B折叠,使点B恰好落在BC上的D处,△ADE恰好为直角三角形,有两种可能:①∠ADE=90°,②∠AED=90°,设BE=x,运用三角形相似列比例式解方程即可得解.【解答】解:在Rt△ABC中,∵∠C=90°,AB=5,AC=4,∴BC=3.直线EF将∠B折叠,使点B恰好落在BC上的D处,当△ADE恰好为直角三角形时,根据折叠的性质:BE=DE设BE=x,则DE=x,AE=10﹣x①当∠ADE=90°时,则DE∥BC,∴=∴=解得:x=②当∠AED=90°时,则△AED∽△ACB∴=∴=解得:x=故所求BE的长度为:或.故答案为:或.【点评】本题考查了折叠的性质,勾股定理以及相似三角形的判定与性质,能够全面的思考问题进行分类讨论是本题的关键.19.对于任意实数a、b、c、d,定义有序实数对(a,b)与(c,d)之间的运算“△”为:(a,b)△(c,d)=(ac+bd,ad+bc).如果对于任意实数u、v,都有(u,v)△(x,y)=(u,v),那么(x,y)为x=1,y=0 .【分析】首先由(a,b)△(c,d)=(ac+bd,ad+bc)类似得到uvxy之间的等量关系式,再根据对于任意实数u、v,方程组都成立,据此得到x和y的值.【解答】解:∵(a,b)△(c,d)=(ac+bd,ad+bc),∴(u,v)△(x,y)=(ux+vy,uy+vx),∵(u,v)△(x,y)=(u,v),∴,∵对于任意实数u、v,该方程组都成立,∴x=1,y=0,故答案为x=1,y=0.【点评】本题主要考查了有理数无理数的概念与运算的知识,解答本题的关键是熟练理解题干,此题难度较大.三.解答题(共9小题)20.计算:(π﹣4)0+(﹣)﹣1+|﹣2|+tan60°【分析】直接利用特殊角的三角函数值和绝对值的性质以及负指数幂的性质分别化简得出答案.【解答】解:原式=1﹣2+2﹣+=1.【点评】此题主要考查了实数运算,正确化简各数是解题关键.21.某中学现有在校学生2150人,为了解本校学生的课余活动情况,采取随机抽样的方法从阅读、运动、娱乐、其它四个方面调查了若干名学生,并将调查的结果绘制了如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调查共抽取了多少名学生(2)通过计算补全条形图,并求出扇形统计图中阅读部分圆心角的度数;(3)请你估计该中学在课余时间参加阅读和其它活动的学生一共有多少名【分析】(1)根据运动的人数和所占的百分比即可求出调查的总人数;(2)用调查的总人数减去阅读、运动和其它的人数,求出娱乐的人数,从而补全统计图;用360°乘以阅读部分所占的百分比,即可求出阅读部分的扇形圆心角的度数;(3)用全校的总人数乘以阅读和其它活动的学生所占的百分比即可得出答案.【解答】解:(1)根据题意得:20÷20%=100(名),答:一共调查的学生数是100人;(2)娱乐的人数是:100﹣30﹣20﹣10=40(名),补图如下:阅读部分的扇形圆心角的度数是360°×=108°;(3)根据题意得:2150×=860(名),答:该中学在课余时间参加阅读和其它活动的学生一共有860名.【点评】本题主要考查了条形统计图和扇形统计图,正确读图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.如图,一居民楼底部B与山脚P位于同一水平线上,小李在P处测得居民楼顶A的仰角为60°,然后他从P处沿坡脚为45°的上坡向上走到C处,这时,PC=20m,点C与点A 在同一水平线上,A、B、P、C在同一平面内.(1)求居民楼AB的高度;(2)求C、A之间的距离.(结果保留根号)【分析】(1)首先分析图形:根据题意构造直角三角形,利用在Rt△CPE中,由sin45°=,得出EC的长度,进而可求出答案;(2)在Rt△CPE中,tan60°=,得出BP的长,进而得出PE的长,即可得出答案.【解答】解:(1)过点C作CE⊥BP于点E,在Rt△CPE中,∵PC=20m,∠CPE=45°,∴sin45°=,∴CE=PCsin45°=20×=20m,∵点C与点A在同一水平线上,∴AB=CE=20m,答:居民楼AB的高度约为20m;(2)在Rt△ABP中,∵∠APB=60°,∴tan60°=,∴BP==m,∵PE=CE=20m,∴AC=BE=(+20)m,答:C、A之间的距离为(+20)m.【点评】此题主要考查了解直角三角形的应用﹣仰角俯角问题,要求学生借助仰角、坡角关系构造直角三角形,并结合图形利用三角函数求解.23.如图,△ABC中,AB=AC,点D为BC上一点,且AD=DC,过A,B,D三点作⊙O,AE是⊙O的直径,连结DE.(1)求证:AC是⊙O的切线;(2)若sinC=,AC=6,求⊙O的直径.【分析】(1)根据等腰三角形的性质,由AB=AC,AD=DC得∠C=∠B,∠1=∠C,则∠1=∠B,根据圆周角定理得∠E=∠B,∠ADE=90°,所以∠1+∠EAD=90°,然后根据切线的判定定理即可得到AC是⊙O的切线;(2)过点D作DF⊥AC于点F,如图,根据等腰三角形的性质得CF=AC=3,在Rt△CDF中,利用正弦定义得sinC==,则设DF=4x,DC=5x,利用勾股定理得CF=3x,所以3x=3,解得x=1,于是得到DC=AD=5,然后证明△ADE∽△DFC,再利用相似比可计算AE即可.【解答】(1)证明:∵AB=AC,AD=DC,∴∠C=∠B,∠1=∠C,∴∠1=∠B,又∵∠E=∠B,∴∠1=∠E,∵AE是⊙O的直径,∴∠ADE=90°,∴∠E+∠EAD=90°,∴∠1+∠EAD=90°,即∠EAC=90°,∴AE⊥AC,∴AC是⊙O的切线;(2)解:过点D作DF⊥AC于点F,如图,∵DA=DC,∴CF=AC=3,在Rt△CDF中,∵sinC==,设DF=4x,DC=5x,∴CF==3x,∴3x=3,解得x=1,∴DC=5,∴AD=5,∵∠ADE=∠DFC=90°,∠E=∠C,∴△ADE∽△DFC,∴=,即=,解得AE=,即⊙O的直径为.【点评】本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰三角形的性质和相似三角形的判定与性质.24.随着网络电商与快递行业的飞速发展,越来越多的人选择网络购物.“双十一”期间,某网店为了促销,推出了普通会员与VIP会员两种销售方式,普通会员的收费方式是:所购商品的金额不超过300元,客户还需支付快递费30元;如果所购商品的金额超过300元,则所购商品给予9折优惠,并免除30元的快递费.VIP会员的收费方式是:缴纳VIP会员费50元,所购商品给予8折优惠,并免除30元的快递费.(1)请分别写出按普通会员、VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式;(2)某网民是该网店的VIP会员,计划“双十一”期间在该网店购买x(x>300)元的商品,则他应该选择哪种购买方式比较合算【分析】(1)根据题意列出普通会员、VIP会员购买商品应付的金额y(元)与所购商品x (元)之间的函数关系式即可;(2)根据题意列出不等式,进而解答即可.【解答】解:(1)普通会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:当0<x≤300时,y=x+30;当x>300时,y=;VIP会员购买商品应付的金额y(元)与所购商品x(元)之间的函数关系式为:y=+50;(2)当<+50时,解得:x<500;当=+50时,x=500;当>+50时,x>500;∴当购买的商品金额300<x<500时,按普通会员购买合算;当购买的商品金额x>500时,按VIP会员购买合算;当购买商品金额x=500时,两种方式购买一样合算.【点评】本题考查了一次函数的运用,运用一元一次不等式解实际问题的运用,解答时求出函数的解析式是关键.25.【感知】如图①,四边形ABCD、CEFG均为正方形.可知BE=DG.【拓展】如图②,四边形ABCD、CEFG均为菱形,且∠A=∠F.求证:BE=DG.【应用】如图③,四边形ABCD、CEFG均为菱形,点E在边AD上,点G在AD延长线上.若AE=2ED,∠A=∠F,△EBC的面积为8,则菱形CEFG的面积为.【分析】拓展:由四边形ABCD、四边形CEFG均为菱形,利用SAS易证得△BCE≌△DCG,则可得BE=DG;应用:由AD ∥BC ,BE=DG ,可得S △ABE +S △CDE =S △BEC =S △CDG =8,又由AE=2ED ,可求得△CDE 的面积,继而求得答案.【解答】解:拓展:∵四边形ABCD 、四边形CEFG 均为菱形,∴BC=CD ,CE=CG ,∠BCD=∠A ,∠ECG=∠F .∵∠A=∠F ,∴∠BCD=∠ECG .∴∠BCD ﹣∠ECD=∠ECG ﹣∠ECD ,即∠BCE=∠DCG .在△BCE 和△DCG 中, ,∴△BCE ≌△DCG (SAS ),∴BE=DG .(6分)应用:∵四边形ABCD 为菱形,∴AD ∥BC ,∵BE=DG ,∴S △ABE +S △CDE =S △BEC =S △CDG =8,∵AE=2ED ,∴S △CDE =×8=,∴S △ECG =S △CDE +S △CDG =, ∴S 菱形CEFG =2S △ECG =. 故答案为:.(9分)【点评】此题考查了菱形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.26.如图,抛物线y=﹣x 2+bx+c 与x 轴相交于A 、B 两点,与y 轴相交于点C ,且点B 与点C 的坐标分别为B (3,0).C (0,3),点M 是抛物线的顶点.(1)求二次函数的关系式;(2)点P 为线段MB 上一个动点,过点P 作PD ⊥x 轴于点D .若OD=m ,△PCD 的面积为S ,试判断S 有最大值或最小值并说明理由;(3)在MB上是否存在点P,使△PCD为直角三角形如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【分析】(1)把B点和C点坐标代入y=﹣x2+bx+c得到关于b、c的方程组,然后解方程组求出b、c即可得到抛物线解析式;(2)把(1)中的一般式配成顶点式可得到M(1,4),设直线BM的解析式为y=kx+n,再利用待定系数法求出直线BM的解析式,则P(m,﹣2m+6)(1≤m<3),于是根据三角形面积公式得到S=﹣m2+3m,然后根据二次函数的性质解决问题;(3)讨论:∠PDC不可能为90°;当∠DPC=90°时,易得﹣2m+6=3,解方程求出m即可得到此时P点坐标;当∠PCD=90°时,利用勾股定理得到和两点间的距离公式得到m2+(﹣2m+3)2+32+m2=(﹣2m+6)2,然后解方程求出满足条件的m的值即可得到此时P点坐标.【解答】解:(1)把B(3,0),C(0,3)代入y=﹣x2+bx+c得,解得,所以抛物线解析式为y=﹣x2+2x+3;(2)S有最大值.理由如下:∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4),设直线BM的解析式为y=kx+n,把B(3,0),M(1,4)代入得,解得,∴直线BM的解析式为y=﹣2x+6,∵OD=m,∴P(m,﹣2m+6)(1≤m<3),∴S=m(﹣2m+6)=﹣m2+3m=﹣(m﹣)2+,∵1≤m<3,∴当m=时,S有最大值,最大值为;(3)存在.∠PDC不可能为90°;当∠DPC=90°时,则PD=OC=3,即﹣2m+6=3,解得m=,此时P点坐标为(,3),当∠PCD=90°时,则PC2+CD2=PD2,即m2+(﹣2m+3)2+32+m2=(﹣2m+6)2,整理得m2+6m﹣9=0,解得m1=﹣3﹣3(舍去),m2=﹣3+3,当m=﹣3+3时,y=﹣2m+6=6﹣6+6=12﹣6,此时P点坐标为(﹣3+3,12﹣6),综上所述,当P点坐标为(,3)或(﹣3+3,12﹣6)时,△PCD为直角三角形.【点评】本题考查了二次函数的综合题:熟练掌握二次函数的性质和一次函数图象上点的坐标特征;会利用待定系数法求函数解析式;理解坐标与图形性质,记住两点间的距离公式和三角形面积公式;会运用分类讨论的思想解决数学问题.。
江苏省南通市2018届九年级中考模拟考试三数学试题(解析版)
九年级数学模拟试卷一、选择题(每小题3分,共30分)1.)A.±B. C. ±2 D. 2【答案】D【解析】分析:根据立方根的定义求解即可,如果一个数x 的立方等于a ,即x 3=a ,那么x 叫做a 的立方根,即x故选D. 点睛:本题考查了立方根的求法,熟练掌握立方根的定义是解答本题的关键.2. 太阳半径约为696 000 km ,将696 000用科学记数法表示为( )A. 6.96×105B. 69.6×104C. 6.96×103D. 0.696×108【答案】A【解析】 试题解析:696000=6.96×105. 故选A3. 下列计算,正确的是( )A. a 2-a =aB. a 2·a 3=5aC. a 9÷a 3=a 3D. (a 3)2=5a【答案】B【解析】 分析:根据合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方运算法则逐项及计算即可得到答案. 详解:A. ∵ a 2与a 不是同类项,不能合并,故不正确;B. ∵ a 2·a 3=5a ,故正确;C. ∵ a 9÷a 3=a 6 ,故不正确;D. (a 3)2=6a ,故不正确;故选B.点睛:本题考查了整式的运算,熟练掌握合并同类项、同底数幂的乘法、同底数幂的除法、积的乘方运算法则是解答本题的关键.4. 下列图形中既是轴对称图形又是中心对称图形的是()A. 正五角星B. 等腰梯形C. 平行四边形D. 矩形【答案】A【解析】分析:根据轴对称图形和中心对称图形的定义逐项分析即可.详解:A. 正五角星既是轴对称图形又是中心对称图形,故正确;B. 等腰梯形是轴对称图形,不是中心对称图形,故不正确;C. 平行四边形不是轴对称图形,是中心对称图形,故不正确;D. 矩形是轴对称图形,不是中心对称图形,故不正确;故选A.点睛:本题考查了轴对称图形和中心对称图形的识别.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形.一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.5. 一个几何体的三视图如图所示,则这个几何体是()A. 球体B. 圆锥C. 棱柱D. 圆柱【答案】D【解析】试题分析:观察可知,这个几何体的俯视图为圆,主视图与左视图都是矩形,所以这个几何体是圆柱,故答案选D.考点:几何体的三视图.6. 如图,圆锥的底面半径为3,母线长为6,则侧面积为()A. 8πB. 6πC. 12πD. 18π【答案】D【解析】分析:把圆锥的底面半径为3,母线长为6,代入圆锥的侧面积公式S=πrl计算即可.详解:由题意得,S=π×3×6=18π.故选D.点睛:本题考查了圆锥的侧面积计算公式,熟练掌握圆锥的侧面积公式S=πrl是解答本题的关键.7. 如图,用尺规作出∠OBF=∠AOB,所画痕迹MN是()A. 以点B为圆心,OD为半径的弧B. 以点C为圆心,DC为半径的弧C. 以点E为圆心,OD为半径的弧D. 以点E为圆心,DC为半径的弧【答案】D【解析】分析:根据题意,所作出的是∠OBF=∠AOB,,根据作一个角等于已知角的作法,MN是以点E为圆心,DC为半径的弧.故选D.8. 在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】试题解析:在两人出发后0.5小时之前,甲的速度小于乙的速度,0.5小时到1小时之间,甲的速度大于乙的速度,故①错误;由图可得,两人在1小时时相遇,行程均为10km,故②正确;甲的图象的解析式为y=10x,乙AB段图象的解析式为y=4x+6,因此出发1.5小时后,甲的路程为15千米,乙的路程为12千米,甲的行程比乙多3千米,故③正确;甲到达终点所用的时间较少,因此甲比乙先到达终点,故④正确.故选C.9. 如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.53B.35C.222D.23【答案】B【解析】【分析】先根据翻折变换的性质得到△DEF≌△AEF,再根据等腰三角形的性质及三角形外角的性质可得到∠BED=CDF,设CD=1,CF=x,则CA=CB=2,再根据勾股定理即可求解.【详解】∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2-x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2-x)2,解得:x=34,∴sin∠BED=sin∠CDF=35 CFDF.故选B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.10. 如图,点C为线段AB的中点,E为直线AB上方的一点,且满足CE=CB,连接AE,以AE为腰,A为顶角顶点作等腰Rt△ADE,连接CD,当CD最大时,∠DEC的度数为()A. 60°B. 75°C. 90°D. 67.5°【答案】D【解析】分析:由题意知,当CD⊥CE时,CD取得最大值,此时A、C、E、D共圆,由AC=C E可得∠ADC=∠CDE,从而可求出∠CDE的度数,再根据直角三角形两直角互余求出∠DEC的度数.详解::由题意知,当CD⊥CE时,CD取得最大值,此时A、C、E、D共圆.∵点C为线段AB的中点,∴AC=BC.∵CE=CB,∴AC=CE,∴∠ADC=∠CDE,∵∠ADE=45º,∴∠DEC=45º÷2=22.5º,∴∠DEC =90º-22.5º=67.5º.故选D.点睛:本题考查了共圆的条件,圆周角定理的推论,直角三角形两锐角互余,判断出A 、C 、E 、D 共圆是解答本题的关键.二、填空题(每小题3分,共24分)11. 单项式3x 2y 的次数为 _____.【答案】3【解析】单项式.【分析】根据单项式的概念,把原题单项式变为数字因式与字母因式的积,其中数字因式即为单项式的系数,所以单项式3x 2y 的系数为3.12. 分解因式:3m (2x ―y )2―3mn 2=______.【答案】()()322m x y n x y n -+--.【解析】先提取公因式3m ,再根据平方差公式进行二次分解.平方差公式:a 2-b 2=(a-b )(a+b ).解:3m (2x-y )2-3mn 2=3m[(2x-y )2-n 2]=3m (2x-y-n )(2x-y+n ).故答案为3m (2x-y-n )(2x-y+n ).本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.13. 如图,△ABC 中,D 是BC 上一点,AC =AD =DB ,∠BAC =102°,则∠ADC =________度.【答案】52【解析】分析:因为AC =AD =DB ,所以可设∠B =x °,即可表示∠BAD =x °,∠ADC =∠ACD =2x °; 根据三角形的内角和等于180°,列方程求得x 的值,便可得到∠ADC 的度数.详解:∵AC =AD =DB ,∴∠B =∠BAD ,∠ADC =∠C .∵∠ADC =∠B +∠BAD ,∴∠ADC =∠C =2∠B .设∠B =x °,则∠C =2x °.∵在△ABC 中,∠BAC +∠B +∠C =180°,∴x +2x +102=180.解得:x =26.∴∠ADC =2x =52°.故答案为52.点睛:本题考查了等腰三角形的性质,三角形外角的性质及三角形内角和的问题,解答本题的关键是熟练掌握等腰三角形的性质和三角形外角的性质.14. 设一元二次方程x 2-3x -1=0的两根分别为x 1,x 2,则x 1+x 2(x 22-3x 2)=____.【答案】3【解析】试题解析:有题意可知,222310,x x --=2223 1.x x ∴-= 由韦达定理可得,12123, 1.b c x x x x a a+=-=⋅==-2122212(3)x x x x x x --=-===故答案为 点睛:一元二次方程20(a 0)++=≠ax bx c 根与系数的关系满足: 1212,.b c x x x x a a+=-⋅= 15. 如图,在矩形纸片ABCD 中,AB =2cm ,点E 在BC 上,且AE =CE .若将纸片沿AE 折叠,点B 恰好与AC 上的点B 1重合,则AC =_____cm .【答案】4【解析】【分析】【详解】∵AB=2cm ,AB=AB 1,∴AB 1=2cm ,∵四边形ABCD 是矩形,AE=CE,∴∠ABE=∠AB 1E=90°∵AE=CE∴AB 1=B 1C∴AC=4cm .16. 如图,已知⊙C 的半径为3,圆外一点O 满足5OC =,点P 为⊙C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA OB =,90APB ∠=°,l 不经过点C ,则AB 的最小值为_____.【答案】4【解析】分析:连接OP 、OC 、PC ,如图所示,则有OP ≥OC -PC ,当O 、P 、C 三点共线时,OP =OC -PC ; 由∠APB =90°可知点P 在以AB 为直径的圆上,则⊙O 与⊙C 相切时,OP 取得最小值,据此求解即可. 详解:连接OP 、OC 、PC ,如图所示,则有OP ≥OC -PC ,当O 、P 、C 三点共线时,OP =OC -PC . ∵∠APB =90°,OA =OB ,∴点P 在以AB 为直径的圆上,∴⊙O 与⊙C 相切时,OP 取得最小值,则OP ′=OC -CP ′=2,∴AB =2OP ′=4.故答案为4.点睛:本题考查了圆与圆的位置关系,两点之间线段最短,判断出当⊙O与⊙C相切时,OP取得最小值是解答本题的关键.17. 已知实数m,n满足m-n2=2,则代数式m2+2n2+4m-1的最小值等于______.【答案】11【解析】分析:已知等式变形后代入原式,利用完全平方公式变形,根据完全平方式恒大于等于0,即可确定出最小值.详解:∵m-n2=2,即n2=m-2≥0,m≥2,∴原式=m2+2m-4+4m-1=m2+6m+9-14=(m+3)2-14,∴代数式m2+2n2+4m-1的最小值等于(2+3)2-14=11.故答案为11.点睛:此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.18. 当实数b0=_______,对于给定的两个实数m和n,使得对任意的实数b,有(m-b0)²+(n-b0)²≤(m-b)²+(n-b)².【答案】m n 2【解析】分析:由于b是任意的,所以可令b=x,把(m-b)²+(n-b)²整理配方,根据二次函数的性质即可求得答案. 详解:令b=x,则(m-b)²+(n-b)²=(m-x)²+(n-x)²=2x2-2mx-2nx+m2+n2=2x2-2mx-2nx+m2+n2=2[x2-(m+n)x] +m2+n2=2(x -2m n +)2 +m 2+n 2-2()2m n + =2(x -2m n +)2 + 2()2m n -, ∴当x =2m n +时,2(x -2m n +) + 2()2m n -取得最小值, ∴当b 0=2m n +时,有(m -b 0)²+(n -b 0)²≤ (m -b )²+(n -b )²总成立. 故答案为2m n +. 点睛:本题考查了配方法的应用和利用二次函数求最值,熟练掌握配方的方法和二次函数的性质是解答本题的关键.三、解答题(本大题共10小题,共96分)19. (1)计算(-2)2-tan45°+(-3)0-21()3-; (2)先化简,再求值:(4ab 3-8a 2b 2)÷4ab +(2a +b )(2a -b ),其中a =2,b =1.【答案】(1)5;(2)12. 【解析】分析:(1)根据乘方的意义、特殊角的三角函数值、零指数幂和负整数幂的意义计算即可;(2)按照先算乘除,后算加减的顺序计算,根据多项式除以单项式的法则结算(4ab 3-8a 2b 2)÷4ab ,根据平方差公式计算(2a +b )(2a -b ),合并同类项后把a =2,b =1代入求值.详解:(1).原式=4-1+1-9=-5( 2).原式=b 2-2ab+4a 2-b2=4a 2-2ab ,当a=2,b=1时,原式=4×22-2×2×1=12点睛:本题考查了实数的运算和整式的混合运算,熟练掌握实数的运算法则是解(1)的关键,熟练掌握整式的运算法则是解(2)的关键. 20. 若关于x 的不等式组()x x 10{233x 544x 13a a++>++>++恰有三个整数解,求实数a 的取值范围. 【答案】312a <≤【解析】【分析】根据不等式组恰有三个整数解,即可确定不等式组的解集,从而即可得到一个关于a 不等式组,解之即可.【详解】解:解x x 1023++>得:2x 5>-; 解()3x 544x 13a a ++>++得:x 2a <.∴不等式组的解为2x 25a -<<. ∵关于x 的不等式组()x x 10233x 544x 13a a +⎧+>⎪⎨⎪++>++⎩恰有三个整数解,∴223a <≤,解得312a <≤. ∴实数a 的取值范围为312a <≤. 21. 为增强学生环保意识,某中学组织全校3000名学生参加环保知识大赛,比赛成绩均为整数.从中抽取部分同学的成绩进行统计,并绘制成如下统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第二组(69.5~79.5)”的扇形的圆心角 度;(2)若成绩在90分以上(含90分)的同学可获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为多少?【答案】(1)72°;(2)960名;(3)23.【解析】 试题分析:(1)由第三组(79.5~89.5)的人数即可求出其扇形的圆心角;(2)首先求出50人中成绩在90分以上(含90分)的同学可以获奖的百分比,进而可估计该校约有多少名同学获奖;(3)列表得出所有等可能的情况数,找出选出的两名主持人“恰好为一男一女”的情况数,即可求出所求的概率.试题解析:(1)由直方图可知第三组(79.5~89.5)所占的人数为20人,所以“第三组(79.5~89.5)”的扇形的圆心角=2050×360°=144°, (2)估计该校获奖的学生数=16100%50×2000=640(人); (3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P (选出的两名主持人“恰好为一男一女”)=812=23.故答案为23. 22. 如图,某测量船位于海岛P 的北偏西60°方向,距离海岛200海里的A 处,它沿正南方向航行一段时间后,到达位于海岛P 的西南方向上的B 处.求测量船从A 处航行到B 处的路程(结果保留根号). 【答案】3)海里.【解析】解直角三角形的应用(方向角问题),锐角三角函数定义,特殊角的三角函数值.【分析】构造直角三角形,将AB 分为AE 和BE 两部分,分别在Rt△BEP 和Rt△BEP 中求解.23. 从三角形一个顶点引出一条射线于对边相交,顶点与交点之间的线段把这个三角形分割成两个小三角形,如果分得的两个小三角形中一个为等腰三角形,另一个与原三角形相似,我们把这条线段叫做这个三角形的优美线.(1)如图,在△ABC 中,AD 为角平分线,∠B=50°,∠C=30°,求证:AD 为△ABC 的优美线;(2)在△ABC 中,∠B=46°,AD 是△ABC 的优美线,且△ABD 是以AB 为腰的等腰三角形,求∠BAC 的度数;(3)在△ABC 中,AB=4,AC=2,AD 是△A B C 的优美线,且△ABD 是等腰三角形,直接写出优美线AD 的长.【答案】(1)证明见解析;(2)113°.(3)优美线AD 433或2-4 【解析】 试题分析:(1)根据三角形的优美线的定义,只要证明△ABD 是等腰三角形,△CAD ∽△CBA 即可解决问题,(2)如图2中,分两种情形讨论求解①若AB =AD ,△CAD ∽△CBA ,则∠B =∠ADB =∠CAD ,则AC ∥BC ,这与△ABC 这个条件矛盾, ②若AB =BD , △CAD ∽△CBA ,(3)如图3中,分三种情形讨论①若AD =BD , △CAD ∽△CBA ,则,AD CD AC AB AC BC==设BD =AD =x ,CD =y ,可得242x y x y ==+,解方程即可, ②若AB =AD =4,由AD CD AC AB AC BC==,设BD =AD =x ,CD =y ,可得2424x y y ==+,解方程即可, ③若AB =AD ,显然不可能.(1)证明:∵∠B=50°,∠C=30°,∴∠BAC=100°, ∵AD 平分∠BAC ,∴∠BAD=∠DAC=50°, ∴∠B=∠BAD=50°,∴DB=DA , ∴△ABD 是等腰三角形,∵∠C=∠C ,∠DAC=∠B=50°, ∴△CAD ∽△CBA ,∴线段AD 是△ABC 的优美线.(2)若AB=AD ,舍去,(理由若△CAD ∽△CBA ,则∠B=∠ADB=∠CAD ,则AC ∥BC ,)若AB=BD,∠B=46°,∴∠BAD=∠BDA=67°,∵△CAD∽△CBA,∴∠CAD=∠B=46°,∴∠BAC=67°+46°=113°.(3)43AD=或42-4AD=.24. 如图1,已知抛物线2y ax bx c=++与y轴交于点A(0,﹣4),与x轴相交于B(﹣2,0)、C(4,0)两点,O为坐标原点.(1)求抛物线的解析式;(2)设点E在x轴上,∠OEA+∠OAB=∠ACB,求BE的长;(3)如图2,将抛物线y=ax2+bx+c向右平移n(n>0)个单位得到的新抛物线与x轴交于M、N(M在N左侧),P为x轴下方的新抛物线上任意一点,连PM、PN,过P作PQ⊥MN于Q,PQ PQMQ NQ+是否为定值?请说明理由.图1 图2【答案】(1)y=12x2-x-4;(2)14或10;(3)是定值,理由见解析.【解析】分析:(1)由题意设抛物线解析式为y=a(x+2)(x-4),把(0,-4)代入求出a即可.(2)由tan∠ACB=OAOC=1,tan∠OAB=OBOA=12,可得tan∠OEA=13,即OAOE=13,从而根据正切函数的定义求出OE的值,进而可求BE的值;(3)设平移后的解析式为y=12(x+2-n)(x-4-n) ,点P的坐标为P(t,12(t+2-n)(t-4-n)),表示出PQ、MQ、NQ后,代入PQMQ+PQNQ化简即可.详解:设(1)y=a(x+2)(x-4),将(0,-4)代入,得-8a=-4a,∴a=12,∴y=12(x+2)(x-4),即y=12x2-x-4;(2). Rt△AOC中,tan∠ACB=OAOC=1;Rt△AOC中,tan∠OAB=OBOA=12,∵∠OEA=∠ACB-∠OAB,∴tan∠OEA=112111x2-+=13,即OAOE=13,∵OA=4,∴OE=12,∴BE=12+2=14或BE=12-2=10,答:BE的长为14或10;(3)平移后:y=12(x+2-n)(x-4-n) ,∴ M(-2+n,0), N(4+n,0),设P(t,12(t+2-n)(t-4-n)),则PQ=-12(t+2-n)(t-4-n),MQ=t-(-2-n)=t+2-n, NQ=4+n-t,∴PQMQ+PQNQ=()()1t2n t4n2t2n-+---+-+()()1t2n t4n24n t-+---+-=-12(t-4-n)+12(t+2-n)=3为定值.点睛:本题是二次函数综合题,考查了待定系数法求函数解析式,锐角三角函数的定义及性质,二次函数的平移变换,题目比较难,属于中考压轴题.。
2018中考数学专题05 化简求值题(解答题重难点题型)(解析版)
1中考指导:代数式的化简求值是初中数学的一个重点和难点,既考查学生的计算能力,又考查代数式的化简技巧,其中涉及的知识点包括整式、分式的混合运算、实数的计算、因式分解,另外还可能涉及解方程(组)、解不等式(组)等.考查的类型主要有两大类型:整式的化简求值和分式的化简求值,整式的化简求值应先去括号合并同类项,然后把未知数对应的值代入求出整式的值;分式的化简求值应先把分式化简后,再把分式中未知数对应的值代 入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.中考试题中分值一般占5-8分.典型例题解析:【例1】先化简,再求值:(x-y )2-(x-y )(x+y )+(x+y )2,其中x=3,y=-31. 解:原式=-2xy+y 2+x 2+y 2-x 2+x 2+2xy+y 2=x 2+3y 2, 当x=3,y=-31时,原式=931.点睛:此题是一般的整式的化简求值题,解答时先去括号,然后合并同类项,最后把x 、y 的值代入计算即可. 【例2】已知a ﹣2b=﹣1,求代数式 (a ﹣1)2﹣4b (a ﹣b )+2a 的值. 【答案】2.点睛:此题是整式的化简求值题,解答时先去括号,然后合并同类项,最后整体代人计算即可,此题考查的整体思想的应用.【例3】先化简,再求值:(﹣x ﹣1)÷,其中x 是不等式组的一个整数解.解:原式====﹣(x+2)(x﹣1)=﹣x2﹣x+2,由得,﹣1<x≤2.∵x﹣1≠0,x﹣2≠0,∴x≠1,x≠2.∵x是不等式组的一个整数解,∴x=0.[:网]当x=0时,原式=﹣02﹣0+2=2.[点睛:此题考查了分式的化简求值题和不等式组的解法,解答时应先把分式化简后,再把不等式组中未知数对应的值代入计算即可.强化训练1.已知:a、b互为相反数,c、d互为倒数,|x|=2,y=1,且x<y.求(a+b﹣1)x﹣cdy+4x+3y的值.【答案】﹣4.2点睛: 本题考查了代数式求值,解题的关键是熟练掌握相反数、绝对值、倒数的概念,并注意整体代入.2.已知a+b=6,ab=3,求a2+b2和(a-b)2的值.【答案】a2+b2=30,(a-b)2=24【解析】试题分析:(1)根据a2+b2=(a+b)2-2ab代入即可求解;(2)根据)(a-b)2=(a+b)2-4ab代入即可求解.试题解析:(1)a2+b2=(a+b)2−2ab=36-6=30;(2)原式=(a+b)2−4ab=36-12=243.(江苏省盐城市明达中学2017届九年级下学期第三次模拟)已知,求代数式3的值;【答案】原式==4【解析】化简得整体代入计算结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018中考数学模拟试题及答案解析(5)班级:_______姓名:_______考号:________得分:_______第I卷(选择题)一、单选题1.5的相反数是()A. 5B. ﹣5C. 15D. ﹣152.2016年,铁岭市橡胶行业实现销售收入约601000000元,将数据601000000用科学记数法表示为()A. 6.01×108B. 6.1×108C. 6.01×109D. 6.01×1073.下列几何体中,主视图为三角形的是()A. B. C. D.4.如图,在同一平面内,直线l1∥l2,将含有60°角的三角尺ABC的直角顶点C放在直线l1上,另一个顶点A恰好落在直线l2上,若∠2=40°,则∠1的度数是()A. 20°B. 30°C. 40°D. 50°5.在某市举办的垂钓比赛上,5名垂钓爱好者参加了比赛,比赛结束后,统计了他们各自的钓鱼条数,成绩如下:4,5,10,6,10.则这组数据的中位数是()A. 5B. 6C. 7D. 106.下列事件中,不可能事件是()A. 抛掷一枚骰子,出现4点向上B. 五边形的内角和为540°C. 实数的绝对值小于0D. 明天会下雨7.关于x 的一元二次方程2430x x m -+=有两个相等的实数根,那么m 的值是( )A.98 B. 916 C. ﹣98 D. ﹣9168.某校管乐队购进一批小号和长笛,小号的单价比长笛的单价多100元,用6000元购买小号的数量与用5000元购买长笛的数量恰好相同,设小号的单价为x 元,则下列方程正确的是( ) A.60005000100x x =- B. 60005000100x x =- C.60005000100x x =+ D. 60005000100x x=+ 9.如图,在△ABC 中,AB =5,AC =4,BC =3,分别以点A ,点B 为圆心,大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交AB 于点O ,连接CO ,则CO 的长是( )A. 1.5B. 2C. 2.4D. 2.510.如图,在射线AB 上顺次取两点C ,D ,使AC =CD =1,以CD 为边作矩形CDEF ,DE =2,将射线AB 绕点A 沿逆时针方向旋转,旋转角记为α(其中0°<α<45°),旋转后记作射线AB ′,射线AB ′分别交矩形CDEF 的边CF ,DE 于点G ,H .若CG =x ,EH =y ,则下列函数图象中,能反映y 与x 之间关系的是( )A. B. C. D.第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题11.11.在函数y =x 的取值范围是______.12.分解因式: 269x y xy y -+=______.13.从数﹣2,1,2,5,8中任取一个数记作k ,则正比例函数y =kx 的图象经过第二、四象限的概率是______.14.学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛,四名同学平时成绩的平均数(单位:分)及方差s 2如下表所示:如果要选出一个成绩好且状态稳定的同学参赛,那么应该选择的同学是______.15.如图,菱形ABCD 的面积为6,边AD 在x 轴上,边BC 的中点E 在y 轴上,反比例函数ky x=的图象经过顶点B ,则k 的值为______.16.在▱ABCD 中,∠DAB 的平分线交直线CD 于点E ,且DE =5,CE =3,则▱ABCD 的周长为______.17.如图,在圆心角为135°的扇形OAB 中,半径OA =2cm ,点C ,D 为AB u u u r的三等分点,连接OC ,OD ,AC ,CD ,BD ,则图中阴影部分的面积为______cm 2.18.如图,△ABC 的面积为S ,点P 1,P 2,P 3,...,P n -1是边BC 的n 等分点(n ≥3,且n 为整数),点M 、N 分别在边AB ,AC 上,且1AM AN AB AC n==,连接MP 1,MP 2,MP 3,...,MP n -1,连接NB ,NP 1,NP 2,...,NP n -1,线段MP 1与NB 相交于点D 1,线段MP 2与NP 1相交于点D 2, 线段MP 3与NP 2相交于点D 3,..., 线段MP n -1与NP n -2相交于点D n -1,则△ND 1P 1,△ND 2P 2,△ND 3P 3,..., △ND n -1P n -1的面积和是______.(用含S 与n 的式子表示)三、解答题19.先化简,再求值: 221x y x y x y⎛⎫-÷ ⎪--⎝⎭,其中x 2,y =112-⎛⎫⎪⎝⎭. 20.某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.(1)求本次调查共抽取了多少名学生的征文; (2)将上面的条形统计图和扇形统计图补充完整;(3)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名;(4)本次抽取的3份以“诚信”为主题的征文分别是小义、小玉和大力的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求小义和小玉同学的征文同时被选中的概率.21.某大型快递公司使用机器人进行包裹分拣,若甲机器人工作2h ,乙机器人工作4h ,一共可以分拣700件包裹;若甲机器人工作3h ,乙机器人工作2h ,一共可以分拣650件包裹. (1)求甲、乙两机器人每小时各分拣多少件包裹;(2)“双十一”期间,快递公司的业务量猛增,要让甲、乙两机器人每天分拣包裹的总数量不低于2250件,它们每天至少要一起工作多少小时?22.如图,某市文化节期间,在景观湖中央搭建了一个舞台C ,在岸边搭建了三个看台A ,B ,D ,其中A ,C ,D 三点在同一条直线上,看台A ,B 到舞台C 的距离相等,测得∠A =30°,∠D =45°,AB =60m ,小明、小丽分别在B ,D 看台观看演出,请分别求出小明、小丽与舞台C 的距离.(结果保留根号)23.如图,AB 是半圆O 的直径,点C 是半圆上一点,连接OC ,BC ,以点C 为顶点,CB 为边作∠BCF =12∠BOC ,延长AB 交CF 于点D . (1)求证:直线CF 是半圆O 的切线;(2)若BD =5,CD =BC uuu r的长.24.铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食,每盒售价为50元,由于食材需要冷藏保存,导致成本逐日增加,第x 天(1≤x≤15且x 为整数)时每盒成本为p 元,已知p 与x 之间满足一次函数关系;第3天时,每盒成本为21元;第7天时,每盒成本为25元,每天的销售量为y 盒,y 与x 之间的关系如下表所示:(1)求p 与x 的函数关系式;(2)若每天的销售利润为w 元,求w 与x 的函数关系式,并求出第几天时当天的销售利润最大,最大销售利润是多少元?(3)在“荷花美食”厨艺秀期间,共有多少天小张每天的销售利润不低于325元?请直接写出结果.25.如图,△ABC 中,∠BAC 为钝角,∠B =45°,点P 是边BC 延长线上一点,以点C 为顶点,CP 为边,在射线BP 下方作∠PCF =∠B .(1)在射线CF 上取点E ,连接AE 交线段BC 于点D .①如图1,若AD =DE ,请直接写出线段AB 与CE 的数量关系和位置关系;②如图2,若AD DE ,判断线段AB 与CE 的数量关系和位置关系,并说明理由; (2)如图3,反向延长射线CF ,交射线BA 于点C ′,将∠PCF 沿CC ′方向平移,使顶点C 落在点C ′处,记平移后的∠PCF 为∠P ′C ′F ′,将∠P ′C ′F ′绕点C ′顺时针旋转角α(0°<α<45°),C ′F ′交线段BC 于点M ,C ′P ′交射线BP 于点N ,请直接写出线段BM ,MN 与CN 之间的数量关系.26.如图,抛物线2y x bx c =-++与x 轴的两个交点分别为A (3,0),D (﹣1,0),与y 轴交于点C ,点B 在y 轴正半轴上,且OB =OD . (1)求抛物线的解析式;(2)如图1,抛物线的顶点为点E ,对称轴交x 轴于点M ,连接BE ,AB ,请在抛物线的对称轴上找一点Q ,使∠QBA =∠BEM ,求出点Q 的坐标;(3)如图2,过点C 作CF ∥x 轴,交抛物线于点F ,连接BF ,点G 是x 轴上一点,在抛物线上是否存在点N ,使以点B ,F ,G ,N 为顶点的四边形是平行四边形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.参考答案1.B【解析】只有符号不同的两个数互为相反数,所以5的相反数是-5, 故选B.【点睛】本题考查相反数的概念——只有符号不同的两个数互为相反数,正确理解概念是解题的关键. 2.A【解析】科学记数法是指将一个数字表示成 a×10n 的形式,其中1≤|a|<10,n 为整数,且不等于0,601000000=6.01×108, 故选A . 3.C【解析】试题解析:A 、主视图是矩形,故此选项错误; B 、主视图是矩形,故此选项错误; C 、主视图是三角形,故此选项正确; D 、主视图是正方形,故此选项错误. 故选C . 4.A【解析】∵l 1∥l 2,∴∠1+30°+∠2+90°=180°,∵∠2=40°, ∴∠1+30°+40°+90°=180°,解得∠1=20°, 故选A . 5.B【解析】把这数从小到大排列为:4,5,6,10,10,最中间的数是6,则这组数据的中位数是6, 故选B . 6.C【解析】A .抛掷一枚骰子,出现4点向上是随机事件,故A 错误;B .五边形的内角和为540° 是必然事件,故B 错误;C .实数的绝对值小于0是不可能事件,故C 正确;D .明天会下雨是实际事件,故D 错误, 故选C. 7.B【解析】∵关于x 的一元二次方程2430x x m -+=有两个相等的实数根,∴△=(﹣3)2﹣4×4m=9﹣16m=0,解得:m=9 16,故选B.8.A【解析】设小号的单价为x元,则长笛的单价为(x﹣100)元,由题意得:60005000100x x=-,故选A.9.D【解析】∵AB=5,AC=4,BC=3,∴AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°,由作法得MN垂直平分AB,∴AO=OB,∴OC=12AB=2.5,故选D.10.D【解析】∵四边形CDEF是矩形,∴CF∥DE,∴△ACG∽△ADH,∴CG AC DH AD=,∵AC=CD=1,∴AD=2,∴12xDH=,∴DH=2x,∵DE=2,∴y=2﹣2x,∵0°<α<45°,∴0<x<1,故选D.【点睛】本题主要考查了旋转、相似等知识,解题的关键是根据已知得出△ACG∽△ADH. 11.x≥4【解析】试题分析:二次根式有意义的条件:二次根号下的数为非负数,二次根式才有意义.由题意得,.考点:二次根式有意义的条件点评:本题属于基础应用题,只需学生熟练掌握二次根式有意义的条件,即可完成. 12.()23y x-【解析】本题考查因式分解。