2020年山东省聊城市高唐县中考数学一模试题
2020-2021学年最新山东省聊城市中考数学一模试卷及答案
数学中考一模试卷一、单选题1.﹣2的倒数是()A.﹣B.C.﹣2D.2 【答案】A【考点】有理数的倒数【解析】【解答】解:﹣2的倒数是﹣.故答案为:A.【分析】根据乘积为1的两个数叫做互为倒数,即可得出答案。
2.如图,直线l1∥l2,等腰直角△ABC的两个顶点A,B 分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【答案】B【考点】平行线的性质【解析】【解答】如图,∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°-15°=30°,故答案为:B.【分析】根据二直线平行,内错角相等得出∠2=∠3,再根据角的和差即可得出答案。
3.将数据0.0000025用科学记数法表示为()A.25×10﹣7B.0.25×10﹣8C.2.5×10﹣7D.2.5×10﹣6【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.0000025=2.5×10﹣6.故答案为:D.【分析】用科学记数法表示一个绝对值较小的数,一般表示为a×10-n的形式,其中1≤|a|<10,n是原数从左边起第一个非零数字前面的所有0的个数,包括小数点前面的0.4.下面的几何体中,主视图为三角形的是()A. B.C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:A、主视图是长方形,故A选项错误;B、主视图是长方形,故B选项错误;C、主视图是三角形,故C选项正确;D、主视图是正方形,中间还有一条线,故D选项错误;故选:C.【分析】主视图是从几何体的正面看所得到的图形,根据主视图所看的方向,写出每个图形的主视图及可选出答案.5.在平面直角坐标系中,经过点(4sin45°,2cos30°)的直线,与以原点为圆心,2为半径的圆的位置关系是()A.相交B.相切C.相离D.以上三者都有可能【答案】D【考点】直线与圆的位置关系【解析】【解答】解:设直线经过的点为A.∵点A的坐标为(4sin45°,2cos30°),∴OA=.∵圆的半径为2,∴OA>2,∴点A在圆外,∴直线和圆相交,相切、相离都有可能.故答案为:D.【分析】过点A的直线有无数条,故圆心到这条直线的距离就不可能固定,根据直线与圆的位置关系,必须知道圆心到这条直线的距离,再与该圆的半径比大小,才能做出判断,故直线和圆相交,相切、相离都有可能.6.下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=-3x+2B.y=2x+1C.y=2x2+1D.y=【考点】反比例函数的性质,二次函数的性质,一次函数的性质【解析】【解答】根据一次函数、二次函数和反比例函数的性质可得:只有A选项为减函数,故答案为:A.【分析】根据题意可知:这个函数必须是y随x的增大而减小,根据一次函数、二次函数和反比例函数的性质可得。
2020年聊城市高唐县初三中考模拟考试初中数学
2020年聊城市高唐县初三中考模拟考试初中数学数学试卷本卷须知:1.本试卷分为试题和答卷两部分。
2.试题由第一卷和第二卷组成。
第一卷为选择题,48分;第二卷为非选择题,102分。
共150分。
考试时刻为120分钟。
3.答第一卷前,务必将自己的姓名、准考证号、考试科目涂写在答题卡上,每题选出答案后,都必须用2B 铅笔把答题卡上对应题目的答案标号(ABED)涂黑。
如需改动,必须先用橡皮擦洁净,再改涂其它答案。
4.第二卷试题的答案直截了当写在答卷上。
考试终止,将答题卡、答卷和试题一并收回。
第一卷(选择题,共48分)一、选择题(此题12个小题。
每题4分,在每题给出的四个选项中,只有一项符合题目要求)1.以下运算正确的选项是( )A .632x x x =•B .422x x x =+C . ()422284y x xy -=-D .()()532842x x x =--2.台湾是我国最大岛屿,总面积为35989.76平方千米,用科学记数法表示为(保留三个有效数字)( )A .3.59×106平方千米B .3.60×106平方千米C .3.59×104 平方千米D .3.60×104平方千米3.如图,在△ABC 中,∠B 和∠C 的平分线相交于点F ,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E 。
假设BD+CE=9,那么线段DE 的长为( )A .9B .8C .7D .64.以下图案是几种名车的标志,在这几个图案中,是中心对称图形的有( )A .1个B .2个C .3个D .4个5.5是一个无理数,那么2-5在哪两个整数之间( )A .-1与0B .0与1C .1与2D .2与36.以下四幅图片中,表示两棵小树在同一时刻阳光下的影子的图形可能是( )A B C D7.()()()333222111,,,y x P y x P y x P 、、是反比例函数xy 2-=的图象上的三点,且3210x x x <<<,那么321y y y 、、的大小关系是( ) A .123y y y << B .213y y y << C .312y y y << D .132y y y <<8.假设⊙A 和⊙B 相切,它们的半径分不为8cm 和2cm ,那么圆心距AB 为( )A .10cmB .6cmC .10cm 或6cmD .以上答案都不对9.以下讲法中,正确的选项是( )A .抛一枚硬币正面朝上的机会与抛一枚图钉钉尖着地的机会一样大B .为了了解聊城火车站某一天中通过的列车车辆数,可采纳普查的方式进行C .彩票中奖的机会是1%,买100张一定会中奖D .聊都市某小学学生小明,对他所在的住宅小区的家庭进行调查,发觉拥有空调的家庭占65%,因此他得出聊都市拥有空调家庭的百分比为65%的结论10.抛物线()02≠++=a c bx ax y 的对称轴是直线2=x ,且通过点()0,3P ,那么c b a ++的值为( )A .2B .1C .0D .一111.如图,在梯形ABCD 中,AD//BC ,AD=2,AB=3,BC=6,沿AE 翻折梯形ABCD ,使点B 落在AD 的延长线上,记为B ′,连接B ′E 交CD 于F ,那么FCDF 的值为( )A .31B .41C .51D .61 12.如图(单位:m),直角梯形ABCD 以2m/s 的速度沿着直线l 向正方形CEFG 方向移动,直到AB 与FE 重合,直角梯形ABCD 与正方形CEFG 重叠部分的面积S 关于移动时刻t 的函数图象可能是( )第二卷(非选择题 ,102分)二、填空题(此题共5个小题,每题4分,共20分。
2020届中考复习聊城市中考数学模拟试题(有配套答案)(word版)
山东省聊城市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)1.64的立方根是()A.4 B.8 C.±4 D.±82.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.3.下列计算错误的是()A. =4 B.32×3﹣1=3C.20÷2﹣2=D.(﹣3×102)3=﹣2.7×1074.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC5.纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2﹣13当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时6.如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()A.B.C.D.7.如果解关于x的分式方程﹣=1时出现增根,那么m的值为()A.﹣2 B.2 C.4 D.﹣48.计算(5﹣2)÷(﹣)的结果为()A.5 B.﹣5 C.7 D.﹣79.如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个10.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元 C.29元D.34.5元11.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′12.端午节前夕,在东昌湖举行第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是()A.乙队比甲队提前0.25min到达终点B.当乙队划行110m时,此时落后甲队15mC.0.5min后,乙队比甲队每分钟快40mD.自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min二、填空题(每小题3分,共15分)13.因式分解:2x2﹣32x4= .14.已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为.15.不等式组的解集是.16.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.17.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为.三、解答题(本题共8个小题,满分69分)18.先化简,再求值:2﹣÷,其中x=3,y=﹣4.19.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.20.为了绿化环境,育英中学八年级三班同学都积极参加植树活动,今年植树节时,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)八年级三班共有多少名同学?(2)条形统计图中,m= ,n= .(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.21.耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B两点的距离(精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)22.在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?23.如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.24.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.25.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.64的立方根是()A.4 B.8 C.±4 D.±8【考点】24:立方根.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵4的立方是64,∴64的立方根是4.故选A.2.在Rt△ABC中,cosA=,那么sinA的值是()A. B. C. D.【考点】T3:同角三角函数的关系;T5:特殊角的三角函数值.【分析】利用同角三角函数间的基本关系求出sinA的值即可.【解答】解:∵Rt△ABC中,cosA=,∴sinA==,故选B3.下列计算错误的是()A. =4 B.32×3﹣1=3C.20÷2﹣2=D.(﹣3×102)3=﹣2.7×107【考点】47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据幂的乘方和积的乘方以及零指数幂和负指数幂进行计算即可.【解答】解:A、=4,正确,故A不合题意;B、32×3﹣1=3,正确,故B不合题意;C、20÷2﹣2=4,不正确,故C合题意;D、(﹣3×102)3=﹣2.7×107,正确,故D不合题意;故选C.4.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC【考点】L9:菱形的判定.【分析】当BE平分∠ABE时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【解答】解:当BE平分∠ABE时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∵BD=DE,∴四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形,故选D.5.纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2﹣13当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时【考点】11:正数和负数.【分析】由统计表得出:悉尼时间比北京时间早2小时,悉尼比北京的时间要早2个小时,也就是6月16日1时.纽约比北京时间要晚13个小时,也就是6月15日10时.【解答】解:悉尼的时间是:6月15日23时+2小时=6月16日1时,纽约时间是:6月15日23时﹣13小时=6月15日10时.故选:A.6.如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()A.B.C.D.【考点】U3:由三视图判断几何体;U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有3个正方形,第二列有2个正方形,第三列有1个正方形..故选:C.7.如果解关于x的分式方程﹣=1时出现增根,那么m的值为()A.﹣2 B.2 C.4 D.﹣4【考点】B5:分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:m+2x=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,m+4=2﹣2,m=﹣4,故选D.8.计算(5﹣2)÷(﹣)的结果为()A.5 B.﹣5 C.7 D.﹣7【考点】79:二次根式的混合运算.【分析】先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:原式=(﹣6)÷(﹣)=(﹣5)÷(﹣)=5.故选A.9.如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P 是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个【考点】KW:等腰直角三角形.【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选B.10.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元 C.29元D.34.5元【考点】W2:加权平均数.【分析】先求出买5kg奶糖,3kg酥心糖和2kg水果糖的总钱数,再除以总的斤数,即可得出混合后什锦糖的售价.【解答】解:根据题意得:(40×5+20×3+15×2)÷(5+3+2)=29(元),答:混合后什锦糖的售价应为每千克29元.故选C.11.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′【考点】R2:旋转的性质.【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故D正确;故选C.12.端午节前夕,在东昌湖举行第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是()A.乙队比甲队提前0.25min到达终点B.当乙队划行110m时,此时落后甲队15mC.0.5min后,乙队比甲队每分钟快40mD.自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min【考点】E6:函数的图象.【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,根据图象上特殊点的意义即可求出答案.【解答】解:A、由横坐标看出乙队比甲队提前0.25min到达终点,故A不符合题意;B、乙AB段的解析式为y=240x﹣40,当y=110时,x=;甲的解析式为y=200x,当x=时,y=125,当乙队划行110m时,此时落后甲队15m,故B不符合题意;C、乙AB段的解析式为y=240x﹣40乙的速度是240m/min;甲的解析式为y=200x,甲的速度是200m/min,0.5min后,乙队比甲队每分钟快40m,故C不符合题意;D、甲的解析式为y=200x,当x=1.5时,y=300,甲乙同时到达÷(2.25﹣1.5)=266m/min,故D符合题意;故选:D.二、填空题(每小题3分,共15分)13.因式分解:2x2﹣32x4= 2x2(1+4x)(1﹣4x).【考点】55:提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:2x2﹣32x4=2x2(1﹣16x2)=2x2(1+4x)(1﹣4x).故答案为:2x2(1+4x)(1﹣4x).14.已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为240°.【考点】MP:圆锥的计算.【分析】设圆锥的侧面展开图的圆心角的度数为n°,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到40π=,然后解方程即可.【解答】解:设圆锥的侧面展开图的圆心角的度数为n°,根据题意得40π=,解得n=240.故答案为240°.15.不等式组的解集是4<x≤5 .【考点】CB:解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤5,解不等式②得:x>4,∴不等式组的解集为4<x≤5,故答案为:4<x≤5.16.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.【考点】X6:列表法与树状图法;AA:根的判别式.【分析】首先确定m、n的值,推出有序整数(m,n)共有:3×7=21(种),由方程x2+nx+m=0有两个相等实数根,则需:△=n2﹣4m=0,有(0,0),(1,2),(1,﹣2)三种可能,由此即可解决问题、【解答】解:m=0,±1,n=0,±1,±2,±3∴有序整数(m,n)共有:3×7=21(种),∵方程x2+nx+m=0有两个相等实数根,则需:△=n2﹣4m=0,有(0,0),(1,2),(1,﹣2)三种可能,∴关于x的方程x2+nx+m=0有两个相等实数根的概率是=,故答案为.17.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为22015π..【考点】MN :弧长的计算;F8:一次函数图象上点的坐标特征. 【分析】连接P 1O 1,P 2O 2,P 3O 3,易求得P n O n 垂直于x 轴,可得为圆的周长,再找出圆半径的规律即可解题.【解答】解:连接P 1O 1,P 2O 2,P 3O 3…∵P 1 是⊙O 2上的点, ∴P 1O 1=OO 1,∵直线l 解析式为y=x , ∴∠P 1OO 1=45°,∴△P 1OO 1为等腰直角三角形,即P 1O 1⊥x 轴, 同理,P n O n 垂直于x 轴, ∴为圆的周长,∵以O 1为圆心,O 1O 为半径画圆,交x 轴正半轴于点O 2,以O 2为圆心,O 2O 为半径画圆,交x 轴正半轴于点O 3,以此类推, ∴OO n =2n ﹣1, ∴=•2π•OO n =π•2n ﹣1=2n ﹣2π,当n=2017时, =22015π.故答案为 22015π.三、解答题(本题共8个小题,满分69分) 18.先化简,再求值:2﹣÷,其中x=3,y=﹣4.【考点】6D :分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x 、y 的值代入即可解答本题.【解答】解:2﹣÷=2﹣=2﹣===,当x=3,y=﹣4时,原式=.19.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【考点】KD:全等三角形的判定与性质.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵AB∥CD,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.20.为了绿化环境,育英中学八年级三班同学都积极参加植树活动,今年植树节时,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)八年级三班共有多少名同学?(2)条形统计图中,m= 7 ,n= 10 .(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)根据植4株的有11人,所占百分比为22%,求出总人数;(2)根据植树5棵人数所占的比例来求n的值;用总人数减去其它植树的人数,就是m的值,从而补全统计图;(3)根据植树2棵的人数所占比例,即可得出圆心角的比例相同,即可求出圆心角的度数.【解答】解:(1)由两图可知,植树4棵的人数是11人,占全班人数的22%,所以八年级三班共有人数为:11÷22%=50(人).(2)由扇形统计图可知,植树5棵人数占全班人数的14%,所以n=50×14%=7(人).m=50﹣(4+18+11+7)=10(人).故答案是:7;10;(3)所求扇形圆心角的度数为:360×=72°.21.耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B两点的距离(精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△PBC中,求出BC,在Rt△PAC中,求出AC,根据AB=AC﹣BC计算即可.【解答】解:根据题意,BC=142米,∠PBC=22°,∠PAC=17.9°,在Rt△PBC中,tan∠PBC=,∴PC=BCtan∠PBC=142•tan22°,在Rt△PAC中,tan∠PAC=,∴AC==≈≈177.5,∴AB=AC﹣BC=177.5﹣142≈36米.答:运河两岸上的A、B两点的距离为36米.22.在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,根据题意列出方程组,求出方程组的解得到x与y的值,即可得到结果;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m﹣90)台,根据“两种电脑的总费用不超过预算438万元”列出不等式,求出不等式的解集.【解答】解:(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,依题意得:,解得,经检验,方程组的解符合题意.答:该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m﹣90)台,依题意得:0.19m+0.3×(m﹣90)≤438,解得m≤1860.所以m﹣90=×1860﹣90=282(台).答:能购进的学生用电脑1860台,则能购进的教师用笔记本电脑为282台.23.如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.【考点】G7:待定系数法求反比例函数解析式;G5:反比例函数系数k的几何意义.【分析】(1)作AE、BF分别垂直于x轴,垂足为E、F,根据△AOE∽△BOF,则设A的横坐标是m,则可利用m表示出A和B的坐标,利用待定系数法求得k的值;(2)根据AC∥x轴,则可利用m表示出C的坐标,利用三角形的面积公式求解.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==, ==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.∴S=×8m×=8.△ABC24.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.【考点】S9:相似三角形的判定与性质;ME:切线的判定与性质.【分析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证;(3)由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD垂直平分BC,得到DB=DC,根据(2)的相似,得比例,求出所求即可.【解答】(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.25.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?【考点】HF:二次函数综合题.【分析】(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;(2)过P作PC⊥y轴于点C,由条件可求得∠PAC=60°,可设AC=m,在Rt△PAC中,可表示出PC的长,从而可用m表示出P点坐标,代入抛物线解析式可求得m的值,即可求得P点坐标;(3)用t可表示出P、M的坐标,过P作PE⊥x轴于点E,交AB于点F,则可表示出F的坐标,从而可用t表示出PF的长,从而可表示出△PAB的面积,利用S四边形PAMB =S△PAB+S△AMB,可得到S关于t的二次函数,利用二次函数的性质可求得其最大值.【解答】解:(1)根据题意,把A(0,6),B(6,0)代入抛物线解析式可得,解得,∴抛物线的表达式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴抛物线的顶点坐标为(2,8);(2)如图1,过P作PC⊥y轴于点C,∵OA=OB=6,∴∠OAB=45°,∴当∠PAB=75°时,∠PAC=60°,∴tan∠PAC=,即=,设AC=m,则PC=m,∴P(m,6+m),把P点坐标代入抛物线表达式可得6+m=﹣(m)2+2m+6,解得m=0或m=﹣,经检验,P(0,6)与点A重合,不合题意,舍去,∴所求的P点坐标为(4﹣, +);(3)当两个支点移动t秒时,则P(t,﹣ t2+2t+6),M(0,6﹣t),如图2,作PE⊥x轴于点E,交AB于点F,则EF=EB=6﹣t,∴F(t,6﹣t),∴FP=t2+2t+6﹣(6﹣t)=﹣t2+3t,∵点A到PE的距离竽OE,点B到PE的距离等于BE,∴S△PAB =FP•OE+FP•BE=FP•(OE+BE)=FP•OB=×(﹣t2+3t)×6=﹣t2+9t,且S△AMB=AM•OB=×t×6=3t,∴S=S四边形PAMB =S△PAB+S△AMB=﹣t2+12t=﹣(t﹣4)2+24,∴当t=4时,S有最大值,最大值为24.2017年7月4日。
山东省聊城市2019-2020学年中考数学一模考试卷含解析
山东省聊城市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是轴对称图形的是()A.B.C.D.2.不等式组1351xx-<⎧⎨-≤⎩的解集是()A.x>﹣1 B.x≤2C.﹣1<x<2 D.﹣1<x≤2 3.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D4.如果关于x的不等式组2030x ax b-≥⎧⎨-≤⎩的整数解仅有2x=、3x=,那么适合这个不等式组的整数a、b组成的有序数对(,)a b共有()A.3个B.4个C.5个D.6个5.如图,在△ABC中,DE∥BC,∠ADE=∠EFC,AD∶BD=5∶3,CF=6,则DE的长为( )A.6 B.8 C.10 D.126221)的结果是()A.221B.22C.12D.2+27.下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=28.《孙子算经》是中国古代重要的数学著作,成书于约一千五百年前,其中有首歌谣:今有竿不知其长,量得影长一丈五尺,立一标杆,长一尺五寸,影长五寸,问竿长几何?意即:有一根竹竿不知道有多长,量出它在太阳下的影子长一丈五尺,同时立一根一尺五寸的小标杆,它的影长五寸(提示:1丈=10尺,1尺=10寸),则竹竿的长为( )A .五丈B .四丈五尺C .一丈D .五尺9.如图直线y =mx 与双曲线y=k x交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .410.下列图形中,既是中心对称图形又是轴对称图形的是( )A .正五边形B .平行四边形C .矩形D .等边三角形11.如图,在矩形ABCD 中,P 、R 分别是BC 和DC 上的点,E 、F 分别是AP 和RP 的中点,当点P 在BC 上从点B 向点C 移动,而点R 不动时,下列结论正确的是( )A .线段EF 的长逐渐增长B .线段EF 的长逐渐减小C .线段EF 的长始终不变D .线段EF 的长与点P 的位置有关12.如图,在Rt △ABC 中,∠ACB=90°,CD ⊥AB ,垂足为D ,AB=c ,∠A=α,则CD 长为( )A .c•sin 2αB .c•cos 2αC .c•sinα•tanαD .c•sinα•cosα二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:2222444221(1)2a a a a a a a --+÷-+++- =____. 14.函数2y x +=﹣的图象不经过第__________象限.15.某市居民用电价格如表所示:用电量不超过a千瓦时超过a千瓦时的部分单价(元/千瓦时)0.5 0.6小芳家二月份用电200千瓦时,交电费105元,则a=______.16.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.17.化简:+3=_____.18.在某一时刻,测得一根长为1.5m的标杆的影长为3m,同时测得一根旗杆的影长为26m,那么这根旗杆的高度为_____m.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,抛物线与y轴交于A点,过点A的直线与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0).(1)求直线AB的函数关系式;(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点P作PN⊥x轴,交直线AB 于点M,交抛物线于点N. 设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并写出t的取值范围;(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由20.(6分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.商场要想在这种冰箱销售中每天盈利4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?21.(6分)在平面直角坐标系中,已知抛物线经过A(-3,0),B(0,-3),C(1,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.22.(8分)有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?23.(8分)用A4纸复印文件,在甲复印店不管一次复印多少页,每页收费0.1元.在乙复印店复印同样的文件,一次复印页数不超过20时,每页收费0.12元;一次复印页数超过20时,超过部分每页收费0.09元.设在同一家复印店一次复印文件的页数为x(x为非负整数).(1)根据题意,填写下表:一次复印页数(页) 5 10 20 30 …甲复印店收费(元) 0.5 2 …乙复印店收费(元) 0.6 2.4 …(2)设在甲复印店复印收费y1元,在乙复印店复印收费y2元,分别写出y1,y2关于x的函数关系式;(3)当x>70时,顾客在哪家复印店复印花费少?请说明理由.24.(10分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离3,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.25.(10分)如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形.(1)用a ,b ,x 表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.26.(12分)某食品厂生产一种半成品食材,产量p(百千克)与销售价格x(元/千克)满足函数关系式1p x 82=+,从市场反馈的信息发现,该半成品食材的市场需求量q(百千克)与销售价格x(元/千克)满足一次函数关系,如下表: 销售价格x(元/千克) 2 4 ⋯10 市场需求量q /(百千克) 12 10 ⋯ 4已知按物价部门规定销售价格x 不低于2元/千克且不高于10元/千克()1求q 与x 的函数关系式;()2当产量小于或等于市场需求量时,这种半成品食材能全部售出,求此时x 的取值范围;()3当产量大于市场需求量时,只能售出符合市场需求量的半成品食材,剩余的食材由于保质期短而只能废弃.若该半成品食材的成本是2元/千克.①求厂家获得的利润y(百元)与销售价格x 的函数关系式;②当厂家获得的利润y(百元)随销售价格x 的上涨而增加时,直接写出x 的取值范围.(利润=售价-成本)27.(12分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE V ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形>的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.ABCD AB BC()()1求证:ED FC=.()2若20∠的度数.ADE∠=o,求DMC参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】分析:根据轴对称图形的概念求解.详解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选B.点睛:本题考查了轴对称图形,轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.D【解析】由﹣x<1得,∴x>﹣1,由3x﹣5≤1得,3x≤6,∴x≤2,∴不等式组的解集为﹣1<x≤2,故选D3.B【解析】【分析】1.732≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【详解】1.732≈-,()1.7323 1.268---≈ ,()1.73220.268---≈,()1.73210.732---≈,因为0.268<0.732<1.268,所以表示的点与点B 最接近,故选B.4.D【解析】【分析】求出不等式组的解集,根据已知求出1<2a ≤2、3≤3b <4,求出2<a≤4、9≤b <12,即可得出答案. 【详解】 解不等式2x−a≥0,得:x≥2a , 解不等式3x−b≤0,得:x≤3b , ∵不等式组的整数解仅有x =2、x =3,则1<2a ≤2、3≤3b <4, 解得:2<a≤4、9≤b <12,则a =3时,b =9、10、11;当a =4时,b =9、10、11;所以适合这个不等式组的整数a 、b 组成的有序数对(a ,b )共有6个,故选:D .【点睛】本题考查了解一元一次不等式组,不等式组的整数解,有序实数对的应用,解此题的根据是求出a 、b 的值.5.C【解析】∵DE ∥BC ,∴∠ADE=∠B ,∠AED=∠C ,又∵∠ADE=∠EFC ,∴∠B=∠EFC ,△ADE ∽△EFC ,∴BD ∥EF ,DE AD FC EF=, ∴四边形BFED 是平行四边形,∴BD=EF , ∴563DE AD BD ==,解得:DE=10. 故选C.6.D【解析】【分析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式×+1). 故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.7.C【解析】分析:根据每个选项所涉及的数学知识进行分析判断即可.详解:A 选项中,“五边形的外角和为360°”是真命题,故不能选A ;B 选项中,“切线垂直于经过切点的半径”是真命题,故不能选B ;C 选项中,因为点(3,-2)关于y 轴的对称点的坐标是(-3,-2),所以该选项中的命题是假命题,所以可以选C ;D 选项中,“抛物线y=x 2﹣4x+2017对称轴为直线x=2”是真命题,所以不能选D.故选C.点睛:熟记:(1)凸多边形的外角和都是360°;(2)切线的性质;(3)点P (a ,b )关于y 轴的对称点为(-a ,b );(4)抛物线2 (0)y ax bx c a =++≠的对称轴是直线:2b x a=-等数学知识,是正确解答本题的关键.8.B【解析】【分析】根据同一时刻物高与影长成正比可得出结论.【详解】设竹竿的长度为x尺,∵竹竿的影长=一丈五尺=15尺,标杆长=一尺五寸=1.5尺,影长五寸=0.5尺,∴1.5 150.5x,解得x=45(尺),故选B.【点睛】本题考查了相似三角形的应用举例,熟知同一时刻物髙与影长成正比是解答此题的关键.9.B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=1S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=1S△AOM=1,S△AOM=12|k|=1,则k=±1.又由于反比例函数图象位于一三象限,k>0,所以k=1.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.10.C【解析】分析:根据中心对称图形和轴对称图形对各选项分析判断即可得解.详解:A. 正五边形,不是中心对称图形,是轴对称图形,故本选项错误.B. 平行四边形,是中心对称图形,不是轴对称图形,故本选项错误.C. 矩形,既是中心对称图形又是轴对称图形,故本选项正确.D. 等边三角形,不是中心对称图形,是轴对称图形,故本选项错误.故选C.点睛:本题考查了对中心对称图形和轴对称图形的判断,我们要熟练掌握一些常见图形属于哪一类图形,这样在实际解题时,可以加快解题速度,也可以提高正确率.11.C【解析】试题分析:连接AR ,根据勾股定理得出AR=22AD DR +的长不变,根据三角形的中位线定理得出EF=12AR ,即可得出线段EF 的长始终不变, 故选C .考点:1、矩形性质,2、勾股定理,3、三角形的中位线12.D 【解析】【分析】根据锐角三角函数的定义可得结论.【详解】在Rt △ABC 中,∠ACB=90°,AB=c ,∠A=a ,根据锐角三角函数的定义可得sinα=BC AB , ∴BC=c•sinα,∵∠A+∠B=90°,∠DCB+∠B=90°,∴∠DCB=∠A=α在Rt △DCB 中,∠CDB=90°,∴cos ∠DCB= CD BC, ∴CD=BC•cosα=c•sinα•cosα,故选D .二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.2a a - 【解析】【分析】先利用除法法则变形,约分后通分并利用同分母分式的减法法则计算即可.【详解】原式()()22222(1)222(1)(2)222a a a a a a a a a a +-++-=⋅-==+----, 故答案为2a a - 【点睛】本题考查了分式的混合运算,熟练掌握运算法则是解题的关键.14.三.【解析】【分析】先根据一次函数212y x k b +=﹣中=﹣,=判断出函数图象经过的象限,进而可得出结论. 【详解】解:∵一次函数2y x +=﹣中1020k b =﹣<,=>,∴此函数的图象经过一、二、四象限,不经过第三象限,故答案为:三.【点睛】本题考查的是一次函数的性质,即一次函数0y kx b k +≠=()中,当0k <,0b >时,函数图象经过一、二、四象限.15.150【解析】【分析】根据题意可得等量关系:不超过a 千瓦时的电费+超过a 千瓦时的电费=105元;根据等量关系列出方程,解出a 的值即可.【详解】∵0.5×200=100<105,∴a<200.由题意得:0.5a+0.6(200-a)=105,解得:a=150.故答案为:150【点睛】此题主要考查了一元一次方程的应用,关键是正确找出题目中的等量关系,列出方程.16.1【解析】【分析】本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C ,推出AD=DE ,于是得到结论.【详解】∵△BDE 是正三角形,∴∠DBE=60°;∵在△ABC中,∠C=∠ABC,BE⊥AC,∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,解得∠C=75°,∴∠ABC=75°,∴∠A=30°,∵∠AED=90°-∠DEB=30°,∴∠A=∠AED,∴DE=AD=1,∴BE=DE=1,故答案为:1.【点睛】本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.17.【解析】试题分析:先进行二次根式的化简,然后合并,可得原式=2+=3.18.13【解析】【分析】根据同时同地物高与影长成比列式计算即可得解.【详解】解:设旗杆高度为x米,由题意得,1.5x=326,解得x=13.故答案为13.【点睛】本题考查投影,解题的关键是应用相似三角形.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)112y x=+;(2)251544s t t=-+(0≤t≤3);(3)t=1或2时;四边形BCMN为平行四边形;t=1时,平行四边形BCMN是菱形,t=2时,平行四边形BCMN不是菱形,理由见解析.【解析】【分析】(1)由A 、B 在抛物线上,可求出A 、B 点的坐标,从而用待定系数法求出直线AB 的函数关系式. (2)用t 表示P 、M 、N 的坐标,由等式MN NP MP =-得到函数关系式.(3)由平行四边形对边相等的性质得到等式,求出t .再讨论邻边是否相等.【详解】解:(1)x=0时,y=1,∴点A 的坐标为:(0,1),∵BC ⊥x 轴,垂足为点C (3,0),∴点B 的横坐标为3,当x=3时,y=52, ∴点B 的坐标为(3,52), 设直线AB 的函数关系式为y=kx+b ,1532b k b =⎧⎪⎨+=⎪⎩, 解得,121k b ⎧=⎪⎨⎪=⎩,则直线AB 的函数关系式112y x =+ (2)当x=t 时,y=12t+1, ∴点M 的坐标为(t ,12t+1), 当x=t 时,2517144y t t =-++ ∴点N 的坐标为2517(,1)44t t t -++ 2251715151(1)44244s t t t t t =-++-+=-+ (0≤t≤3); (3)若四边形BCMN 为平行四边形,则有MN=BC , ∴25155=442t t -+, 解得t 1=1,t 2=2,∴当t=1或2时,四边形BCMN 为平行四边形,①当t=1时,MP=32,PC=2,∴MC=52=MN ,此时四边形BCMN 为菱形, ②当t=2时,MP=2,PC=1,∴,此时四边形BCMN 不是菱形.【点睛】本题考查的是二次函数的性质、待定系数法求函数解析式、菱形的判定,正确求出二次函数的解析式、利用配方法把一般式化为顶点式、求出函数的最值是解题的关键,注意菱形的判定定理的灵活运用. 20.100或200【解析】试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x 元,列方程解答即可.试题解析:设每台冰箱应降价x 元,每件冰箱的利润是:元,卖(8+x 50×4)件, 列方程得,(8+x 50×4)=4800, x 2﹣300x+20000=0,解得x 1=200,x 2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元.考点:一元二次方程的应用.21.(1)223y x x =+-32m =-时,S 最大为278(1)(-1,1)或332222⎛⎫-+- ⎪ ⎪⎝⎭,或332222⎛⎫--+ ⎪ ⎪⎝⎭,或(1,-1) 【解析】试题分析:(1)先假设出函数解析式,利用三点法求解函数解析式.(2)设出M 点的坐标,利用S=S △AOM +S △OBM ﹣S △AOB 即可进行解答;(1)当OB 是平行四边形的边时,表示出PQ 的长,再根据平行四边形的对边相等列出方程求解即可;当OB 是对角线时,由图可知点A 与P 应该重合,即可得出结论.试题解析:解:(1)设此抛物线的函数解析式为:y=ax 2+bx+c (a≠0),将A (-1,0),B (0,-1),C (1,0)三点代入函数解析式得:93030a b c c a b c -+=⎧⎪=-⎨⎪++=⎩解得123a b c =⎧⎪=⎨⎪=-⎩:,所以此函数解析式为:223y x x =+-.(2)∵M 点的横坐标为m ,且点M 在这条抛物线上,∴M 点的坐标为:(m ,223m m +-),∴S=S △AOM +S △OBM -S △AOB =12×1×(-223m m +-)+12×1×(-m )-12×1×1=-(m+32)2+278, 当m=-32时,S 有最大值为:S=278-. (1)设P (x ,223x x +-).分两种情况讨论:①当OB 为边时,根据平行四边形的性质知PB ∥OQ ,∴Q 的横坐标的绝对值等于P 的横坐标的绝对值,又∵直线的解析式为y=-x ,则Q (x ,-x ).由PQ=OB ,得:|-x-(223x x +-)|=1解得: x=0(不合题意,舍去),-1, 3332-±,∴Q 的坐标为(-1,1)或33333322⎛⎫-+- ⎪ ⎪⎝⎭,或33333322⎛⎫--+ ⎪ ⎪⎝⎭,; ②当BO 为对角线时,如图,知A 与P 应该重合,OP=1.四边形PBQO 为平行四边形则BQ=OP=1,Q 横坐标为1,代入y=﹣x 得出Q 为(1,﹣1).综上所述:Q 的坐标为:(-1,1)或33333322⎛⎫-+- ⎪ ⎪⎝⎭,或33333322⎛⎫--+ ⎪ ⎪⎝⎭,或(1,-1).点睛:本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,综合性较强,但难度不大,仔细分析便不难求解.22.规定日期是6天.【解析】【分析】本题的等量关系为:甲工作2天完成的工作量+乙规定日期完成的工作量=1,把相应数值代入即可求解.【详解】解:设工作总量为1,规定日期为x 天,则若单独做,甲队需x 天,乙队需x+3天,根据题意列方程得1122133x x x x -⎛⎫++= ⎪++⎝⎭解方程可得x=6,经检验x=6是分式方程的解.答:规定日期是6天.23.(1)1,3;1.2,3.3;(2)见解析;(3)顾客在乙复印店复印花费少.【解析】【分析】(1)根据收费标准,列代数式求得即可;(2)根据收费等于每页收费乘以页数即可求得y 1=0.1x (x≥0);当一次复印页数不超过20时,根据收费等于每页收费乘以页数即可求得y 2=0.12x ,当一次复印页数超过20时,根据题意求得y 2=0.09x+0.6; (3)设y=y 1-y 2,得到y 与x 的函数关系,根据y 与x 的函数关系式即可作出判断.【详解】解:(1)当x=10时,甲复印店收费为:0,1×10=1;乙复印店收费为:0.12×10=1.2; 当x=30时,甲复印店收费为:0,1×30=3;乙复印店收费为:0.12×20+0.09×10=3.3; 故答案为1,3;1.2,3.3;(2)y 1=0.1x (x≥0);y 2=0.12x 0x 200.09x+0.6x 20≤≤⎧⎨>⎩()(); (3)顾客在乙复印店复印花费少;当x >70时,y 1=0.1x ,y 2=0.09x+0.6,设y=y 1﹣y 2,∴y 1﹣y 2=0.1x ﹣(0.09x+0.6)=0.01x ﹣0.6,设y=0.01x ﹣0.6,由0.01>0,则y 随x 的增大而增大,当x=70时,y=0.1∴x >70时,y >0.1,∴y 1>y 2,∴当x >70时,顾客在乙复印店复印花费少.【点睛】本题考查了一次函数的应用,读懂题目信息,列出函数关系式是解题的关键.24. .【解析】【分析】利用∠ECA 的正切值可求得AE ;利用∠ECB 的正切值可求得BE ,由AB=AE+BE 可得答案.【详解】在Rt △EBC 中,有BE=EC×tan45°, 在Rt △AEC 中,有AE=EC×tan30°=8m ,∴(m ).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.25.(1)ab ﹣4x 1(1【解析】【分析】(1)边长为x 的正方形面积为x 1,矩形面积减去4个小正方形的面积即可.(1)依据剪去部分的面积等于剩余部分的面积,列方程求出x 的值即可.【详解】解:(1)ab ﹣4x 1.(1)依题意有:22ab 4x 4x -=,将a=6,b=4,代入上式,得x 1=2.解得x 1x 1=.26.(1) q x 14=-+;(2)2x 4≤≤;(3)213105y (x )24=--+①;②当134x 2<≤时,厂家获得的利润y 随销售价格x 的上涨而增加.【解析】【分析】(1)直接利用待定系数法求出一次函数解析式进而得出答案;(2)由题意可得:p≤q ,进而得出x 的取值范围;(3)①利用顶点式求出函数最值得出答案;②利用二次函数的增减性得出答案即可.【详解】(1)设q=kx+b (k ,b 为常数且k≠0),当x=2时,q=12,当x=4时,q=10,代入解析式得:212410k b k b +=⎧⎨+=⎩,解得:114k b =-⎧⎨=⎩,∴q 与x 的函数关系式为:q=﹣x+14; (2)当产量小于或等于市场需求量时,有p≤q ,∴12x+8≤﹣x+14,解得:x≤4,又2≤x≤10,∴2≤x≤4; (3)①当产量大于市场需求量时,可得4<x≤10,由题意得:厂家获得的利润是:y=qx ﹣2p=﹣x 2+13x ﹣16=﹣(x 132-)21054+; ②∵当x 132≤时,y 随x 的增加而增加. 又∵产量大于市场需求量时,有4<x≤10,∴当4<x 132≤时,厂家获得的利润y 随销售价格x 的上涨而增加.【点睛】本题考查了待定系数法求一次函数解析式以及二次函数最值求法等知识,正确得出二次函数解析式是解题的关键.27.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=o ,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE V ≌DFC △即可.()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,Q 四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=o ,ADE QV ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=o o o Q ,15DFC DCF ADE AED ∴∠=∠=∠=∠=o ,601575FDE ∴∠=+=o o o ,90MFD FDM ∴∠+∠=o ,90FMD ∴∠=o ,故答案为90o()1ABE QV 为等边三角形,60EAB ∴∠=o ,EA AB =.ADF QV 为等边三角形,60FDA ∴∠=o ,AD FD =.Q 四边形ABCD 为矩形,90BAD ADC ∴∠=∠=o ,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=o Q ,150CDF FDA ADC ∠=∠+∠=o ,EAD CDF ∴∠=∠.在EAD V 和CDF V中, AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴V ≌CDF V. ED FC ∴=;()2EAD QV ≌CDF V ,20ADE DFC ∴∠=∠=o ,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=o o o o .【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.。
【精选3份合集】山东省聊城市2020年中考一模数学试卷有答案含解析
中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题1.一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-解析:C【解析】【详解】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.2.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π【分析】作直径CG ,连接OD 、OE 、OF 、DG ,则根据圆周角定理求得DG 的长,证明DG=EF ,则S 扇形ODG =S 扇形OEF ,然后根据三角形的面积公式证明S △OCD =S △ACD ,S △OEF =S △AEF ,则S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆,即可求解.【详解】作直径CG ,连接OD 、OE 、OF 、DG .∵CG 是圆的直径,∴∠CDG=90°,则DG=2222106CG CD -=-=8,又∵EF=8,∴DG=EF,∴¼»DGEF =, ∴S 扇形ODG =S 扇形OEF ,∵AB∥CD∥EF,∴S △OCD =S △ACD ,S △OEF =S △AEF ,∴S 阴影=S 扇形OCD +S 扇形OEF =S 扇形OCD +S 扇形ODG =S 半圆=12π×52=252π, 故选A .【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.3.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--o解析:A分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 4.下列四个多项式,能因式分解的是( )A.a-1 B.a2+1C.x2-4y D.x2-6x+9解析:D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.5.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A.B.C.D.【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.6.如图,在△ABC中,以点B为圆心,以BA长为半径画弧交边BC于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的度数是()A.70°B.44°C.34°D.24°解析:C【解析】【分析】易得△ABD为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.7.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.96 解析:C【解析】【详解】解:根据图形,身高在169.5cm~174.5cm之间的人数的百分比为:12100%=24% 6+10+16+12+6,∴该校男生的身高在169.5cm~174.5cm之间的人数有300×24%=72(人).故选C.8.二次函数y=3(x﹣1)2+2,下列说法正确的是()A.图象的开口向下B.图象的顶点坐标是(1,2)C.当x>1时,y随x的增大而减小D.图象与y轴的交点坐标为(0,2)解析:B【解析】【分析】由抛物线解析式可求得其开口方向、顶点坐标、最值及增减性,则可判断四个选项,可求得答案.【详解】解:A、因为a=3>0,所以开口向上,错误;B、顶点坐标是(1,2),正确;C、当x>1时,y随x增大而增大,错误;D、图象与y轴的交点坐标为(0,5),错误;故选:B.【点睛】考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,对称轴为x=h,顶点坐标为(h,k).。
山东省聊城市2020年中考数学一模试卷(I)卷
山东省聊城市2020年中考数学一模试卷(I)卷姓名:________ 班级:________ 成绩:________一、填空题 (共10题;共11分)1. (1分) (2019七上·天台月考) 据中国科学院统计,到今年5月,我国已经成为世界第四风力发电大国,年发电量约为12000000千瓦,12000000用科学记数法表示为________千瓦;2. (1分)(2017·广元) 在函数y= 中,自变量x的取值范围是________.3. (1分) (2017八下·河东期中) 如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC 至点D,使CD= BD,连接DM、DN、MN.若AB=6,则DN=________.4. (1分)如图为一个电路图,在该电路图上有四个开关S1 , S2 , S3 , S4和一个灯泡⊗,闭合开关S1或同时闭合开关S2 , S3 , S4都能够使灯泡发光,现在任意闭合其中两个开关,灯泡能够发光的概率为________.5. (1分)使不等式成立的________叫做不等式的解; 要判断一个数是不是不等式的解,将这个数代入不等式,如果不等式成立,则它就是不等式的解,否则就不是.6. (1分)如图,∠A是⊙O的圆周角,若∠A=40°,则∠OBC=________ 度。
7. (1分)已知关于x的分式方程的解是非负数,则m的取值范围是________ .8. (1分)(2018·深圳模拟) 如图,中,∠C=90°,,则________.9. (1分) (2016七上·临海期末) 有一个数值转换器,其工作原理如图所示,若输入的数据是3,则输出的结果是________.10. (2分)(2018·河源模拟) 菱形的两条对角线分别是6 cm,8 cm,则菱形的边长为________cm,面积为________cm2 .二、选择题 (共10题;共20分)11. (2分)下列算式中正确的是()A .B .C .D .12. (2分) (2017九上·平桥期中) 如图,将△ABC绕点C(0,﹣1)旋转180°得到△A'B'C,设点A的坐标为(a,b),则点A'的坐标为()A . (﹣a,﹣b)B . (﹣a,﹣b﹣1)C . (﹣a,﹣b+1)D . (﹣a,﹣b﹣2)13. (2分)下列关于y与x的表达式中,表示y是x的反比例函数的是()A . y=4xB . =﹣2C . xy=4D . y=4x﹣314. (2分) (2019七上·郑州月考) 一个小立方块的六个面分别标有字母A,B,C,D,E,F,从三个不同的方向看形如图所示,则字母D的对面是()A . 字母AB . 字母FC . 字母ED . 字母B15. (2分)(2017·怀化模拟) 某中学九年级舞蹈兴趣小组8名学生的身高分别为(单位:cm):168,165,168,166,170,170,176,170,则下列说法错误的是()A . 这组数据的众数是170B . 这组数据的中位数是169C . 这组数据的平均数是169D . 若从8名学生中任选1名学生参加校文艺会演,则这名学生的身高不低于170的概率为16. (2分)某星期下午,小强和同学小明相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小明到了后两人一起乘公共汽车回到学校.图中折线表示小强离开家的路程y(公里)和所用的时间x(分)之间的函数关系.下列说法错误的是()A . 小强从家到公共汽车在步行了2公里B . 小强在公共汽车站等小明用了10分钟C . 公共汽车的平均速度是30公里/小时D . 小强乘公共汽车用了20分钟17. (2分)若|x﹣3|+(y+3)2=0,则yx=()A . -9B . 9C . ﹣27D . 2718. (2分)(2016·葫芦岛) 如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A . 4B . 8C . 2D . 419. (2分)某单位职工的平均年龄为40岁,其中男职工的平均年龄为50岁,女职工的平均年龄为35岁,那么男女职工人数之比为()A . 2:1B . 3:2C . 1:2D . 2:320. (2分)(2017·宁波) 如图,四边形ABCD是边长为6的正方形,点E在边AB上,BE=4,过点E作EF∥BC,分别交BD、CD于G、F两点.若M、N分别是DG、CE的中点,则MN的长为()A . 3B .C .D . 4三、解答题 (共8题;共98分)21. (5分)(2017·赤峰) (﹣)÷ ,其中a=2017°+(﹣)﹣1+ tan30°.22. (15分) (2016七下·宜昌期中) 平面内有三点A(2,2 ),B(5,2 ),C(5,).(1)请确定一个点D,使四边形ABCD为长方形,写出点D的坐标.(2)求这个四边形的面积(精确到0.01).(3)将这个四边形向右平移2个单位,再向下平移3 个单位,求平移后四个顶点的坐标.23. (15分) (2018九上·十堰期末) 如图,已知抛物线y=ax2+bx+c经过点A(﹣1,0),点B(3,0)和点C(0,3).(1)求抛物线的解析式和顶点E的坐标;(2)点C是否在以BE为直径的圆上?请说明理由;(3)点Q是抛物线对称轴上一动点,点R是抛物线上一动点,是否存在点Q、R,使以Q、R、C、B为顶点的四边形是平行四边形?若存在,直接写出点Q、R的坐标,若不存在,请说明理由.24. (14分) (2017八下·湖州期中) 为了解甲、乙两名运动员的体能训练情况,对他们进行了跟踪测试,并把连续十周的测试成绩绘制成如图所示的折线统计图.教练组规定:体能体能测试成绩70分以上(包括70分)为合适.(1)请根据图中所提供的信息填写下表:平均数中位数体能测试成绩合格次数甲________65________乙60________________(2)请从下面两个不同的角度对运动员体能测试结果进行判断:①依据平均数与成绩合格的次数比较甲和乙,谁的体能测试成绩较好?②依据平均数与中位数比较甲和乙,谁的体能测试成绩较好?(3)依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好.25. (11分)(2017·佳木斯) 在甲、乙两城市之间有一服务区,一辆客车从甲地驶往乙地,一辆货车从乙地驶往甲地.两车同时出发,匀速行驶,客车、货车离服务区的距离y1(千米),y2(千米)与行驶的时间x(小时)的函数关系图象如图1所示.(1)甲、乙两地相距________千米.(2)求出发3小时后,货车离服务区的路程y2(千米)与行驶时间x(小时)之间的函数关系式.(3)在客车和货车出发的同时,有一辆邮政车从服务区匀速去甲地取货后返回乙地(取货的时间忽略不计),邮政车离服务区的距离y3(千米)与行驶时间x(小时)之间的函数关系图线如图2中的虚线所示,直接写出在行驶的过程中,经过多长时间邮政车与客车和货车的距离相等?26. (10分) (2019八下·东莞月考) 如图,在菱形ABCD中,对角线AC、BD相交于点O ,过点D作对角线BD的垂线交BA的延长线于点E.(1)证明:四边形ACDE是平行四边形;(2)若AC=8,BD=6,求平行四边形ACDE的面积.27. (17分) (2019七下·萍乡期中) 为了迎接2022年北京冬奥会,萍乡外国语学校组织了一次大型长跑比赛。
2020年山东省聊城市中考数学一模试卷 (含解析)
2020年山东省聊城市中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.实数−π,−3.14,0,√2四个数中,最小的是()A. −πB. −3.14C. √2D. 02.如图中几何体的俯视图是()A.B.C.D.3.如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,MN过O,且MN//BC,分别交AB、AC于点M、N.若BM=5,MN=9,则线段CN的长是()A. 3B. 4C. 4.5D. 54.下列计算正确的是()A. x2x3=x6B. (m+3)2=m2+9C. a10÷a5=a5D. (xy2)3=xy65.某次数学趣味竞赛共有10道题目,每道题答对得10分,答错或不答得0分.人数25131073成绩(分)5060708090100全班40名同学的成绩的中位数和众数分别是()A. 75,70B. 70,70C. 80,80D. 75,806. 给出下列化简①(−√2)2=2:②√(−2)2=2;③√122+142=12√3;④√1−14=12,其中正确的是( ) A. ①②③④ B. ①②③ C. ①② D. ③④7. 如图所示,△ABC 的顶点是正方形网格的格点,则sin A 的值为( )A. 12B. √55C. √1010D. 2√55 8. 用配方法解方程2x 2−x −1=0时,配方结果正确的是( )A. (x −12)2=34B. (x −14)2=34C. (x −14)2=1716D. (x −14)2=916 9. 如图,CD 是⊙O 的直径,AB ,EF 是⊙O 的弦,且AB//CD//EF ,AB =16,CD =20,EF =12,则图中阴影部分的面积是( )A. 96+25πB. 88+50πC. 50πD. 25π10. 某同学用一扇形纸片为玩偶制作了一个圆锥形帽子(不考虑接缝),已知扇形的半径为13cm ,扇形的弧长为10π cm ,那么这个圆锥形帽子的高是( )A. 5cmB. 12cmC. 13cmD. 14cm11. 按照如图所示的方法排列黑色小正方形地砖,则第13个图案中黑色小正方形地砖的块数是( )A. 273B. 293C. 313D. 33312. 如图,在△ABC 中,∠BAC =108°,将△ABC 绕点A 按逆时针方向旋转得到△AB′C′.若点B′恰好落在BC 边上,且AB′=CB′,则∠C′的度数为( )A. 18°B. 20°C. 24°D. 28°二、填空题(本大题共5小题,共15.0分)13. 因式分解:x(x −3)−x +3=______.14. 如图,点A 、B 、C 、D 、E 在⊙O 上,且AB ⏜为50°,则∠E +∠C =______°.15. 化简:(1x−4+1x+4)÷2x 2−16=______.16. 某校举行唱歌比赛活动,每个班级唱两首歌曲,一首是必唱曲目校歌,另外一首是从A ,B ,C ,D 四首歌曲中随机抽取1首,则九年级(1)班和(2)班抽取到同一首歌曲的概率是______.17. 在平面直角坐标系中,已知A 、B 两点的坐标分别为A(−1,1)、B(3,2),若点M 为x 轴上一点,且MA +MB 最小,则点M 的坐标为______.三、解答题(本大题共8小题,共69.0分)18. 解不等式组{x −32(2x −1)≤41+3x 3>2x −1,并写出x 的所有整数解.19.某校开设武术、舞蹈、剪纸等三项活动课程,随机抽取了部分学生对这三项活动课程的兴趣情况进行了调查(每人从中只能选一项),并将调查结果绘制成下面两幅统计图,请你结合图中信息解答问题.(1)本次抽样调查的样本容量是____;(2)将条形统计图补充完整;(3)已知该校有1200名学生,请你根据样本估计全校学生中喜欢剪纸的人数.20.公历3月12日是植树节,为宣传保护树木,激发人们爱林造林的热情,政府投资13万元给某村民小组用于购买与种植A、B两种树苗共3000棵,完成这项种植后,剩余的款项作为村民小组的纯收入,已知用160元购买A树苗比购买B树苗多3棵.这两种树苗的单价、成活率及移栽费用见下表:树苗品种A树苗B树苗购买价格(元/棵)a a+12树苗成活率90%95%移栽费用(元/棵)35(1)求表中a的值;(2)设购买A树苗x棵,其它购买的是B树苗,把这些树苗种植完成后,村民小组获得的纯收入为y元,请你写出y与x之间的函数关系式;(3)若要求这批树苗种植后,成活率达到93%以上(包含93%),则最多种植A树苗多少棵?此时,村民小组在这项工作中,所得的纯收入最大值可以是多少元?21.如图,将▱ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:△ABD≌△BEC;(2)连接BD,若四边形BECD是矩形,求证:∠BOD=2∠A.22.如图,线段AB,CD表示甲、乙两幢居民楼的高,两楼间的距离BD是60米.某人站在A处测得C点的俯角为37°,D点的俯角为48°(人的身高忽略不计),求乙楼的高度CD.(参考数据:sin37°≈35,tan37°≈34,sin48°≈710,tan48°≈1110)23. 一次函数y =kx +b 的图象与反比例函数y =mx 的图象交于A(−2,1),B(1,n)两点.(1)试确定上述反比例函数和一次函数的表达式;(2)求△AOB 的面积.(3)当kx +b ≤mx 时,请直接写出x 的取值范围.24.如图,AB,CD为⊙O的直径,弦AE//CD,连接BE交CD于点F,过点E的直线EP与CD的延长线交于点P,并且使得∠PED=∠C.(1)求证:PE是⊙O的切线;(2)求证:ED平分∠BEP;(3)若⊙O的半径为6,CF=2EF,求PD的长.25.如图,抛物线y=−x2+bx+c经过A(−1,0),B(3,0)两点,且与y轴交于点C,点D是抛物线的顶点,抛物线的对称轴DE交x轴于点E,连接BD.(1)求经过A,B,C三点的抛物线的函数表达式;(2)点P是线段BD上一点,当PE=PC时,求点P的坐标;(3)在(2)的条件下,过点P作PF⊥x轴于点F,G为抛物线上一动点,M为x轴上一动点,N为直线PF上一动点,当以F、M、N、G为顶点的四边形是正方形时,请求出点M的坐标.【答案与解析】1.答案:A解析:本题考查了无理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.解:∵|−π|=π,|−3.14|=3.14,∴−π<−3.14,∴−π,−3.14,0,√2这四个数的大小关系为−π<−3.14<0<√2.故选A.2.答案:C解析:解:人站在几何体的正面,从上往下看,正方形个数依次为1,1,1,故选:C.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.答案:B解析:本题考查了等腰三角形的判定与性质和平行线性质的理解与掌握.此题证出∠MBO=∠MOB,∠NOC=∠NCO是解题的关键.解:∵MN//BC,∴∠OBC=∠MOB,∠OCB=∠NOC,∵OB是∠ABC的角平分线,OC是∠ACB的角平分线,∴∠MBO=∠OBC,∠NCO=∠OCB,∴∠MBO=∠MOB,∠NOC=∠NCO,∴OM=BM,ON=CN,∴MN=MO+ON=BM+CN,又∵BM=5,MN=9,∴CN=4,故选B.4.答案:C解析:解:A.x2⋅x3=x5,故选项A不合题意;B.(m+3)2=m2+6m+9,故选项B不合题意;C.a10÷a5=a5,故选项C符合题意;D.(xy2)3=x3y6,故选项D不合题意.故选:C.分别根据同底数幂的乘法法则,完全平方公式,同底数幂的除法法则以及积的乘方运算法则逐一判断即可.本题主要考查了同底数幂的乘除法以及幂的乘方与积的乘方,熟记幂的运算法则是解答本题的关键.5.答案:A解析:解:把这些数据从小到大排列,最中间的两个数是第20、21个数,分别为70和80,中位数是这两个数的平均数,=75;∴全班40名同学的成绩的中位数是:70+80270出现了13次,出现的次数最多,则众数是70;故选A.根据中位数和众数的定义分别进行解答即可.此题考查了中位数和众数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错;众数是一组数据中出现次数最多的数.6.答案:C解析:根据二次根式的运算法则即可求出答案.本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.解:①原式=2,故①正确;②原式=2,故②正确;③原式=√340=2√85,故③错误;④原式=√34=√32,故④错误;故选:C.7.答案:B解析:此题主要考查了锐角三角函数关系,正确构造直角三角形是解题关键.直接连接DC,得出CD⊥AB,再结合勾股定理以及锐角三角函数关系得出答案.解:连接DC,设每个正方形网格的边长为1,由网格可得:CD⊥AB,则DC=√2,AC=√10,故sinA=DCAC =√210=√55.故选:B.8.答案:D解析:本题考查了解一元二次方方程--配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.本题具体做法是把常数项−1移项后,再在左右两边同时除以2,最后在左右两边同时加上一次项系数−12的一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.解:把方程2x2−x−1=0的常熟项移到等号的右边,得2x2−x=1,在左右两边同时除以2,得x2−12x=12方程两边同时加上一次项系数一半的平方,得到x 2−12x +116=12+116,配方得(x −14)2=916. 故选D .9.答案:C解析:解:延长BO 交⊙O 于G ,则BG 是⊙O 的直径,连接AG ,则∠GAB =90°,∵AB =16,BG =CD =20,∴AG =√BG 2−AB 2=12,∴AG =EF ,∴AG⏜=EF ⏜, 连接OE ,OF ,则S 扇形AOG =S 扇形EOF ,∵CD//EF ,∴S △OEF =S △DEF ,∴S 阴影DEF =S 扇形EOF ,∴S 阴影DEF =S 扇形AOG ,∴图中阴影部分的面积=12S 圆O =12⋅π×102=50π,故选:C .延长BO 交⊙O 于G ,则BG 是⊙O 的直径,连接AG ,根据圆周角定理得到∠GAB =90°,根据勾股定理得到AG =√BG 2−AB 2=12,求得AG =EF ,推出S 扇形AOG =S 扇形EOF ,根据已知条件得到S △OEF =S △DEF ,于是得到结论.本题考查学生的观察能力及计算能力.本题中找出两个阴影部分面积之间的联系是解题的关系. 10.答案:B解析:解:先求底面圆的半径,即2πr=10π,r=5cm,∵扇形的半径13cm,∴圆锥的高=√132−52=12cm.故选:B.首先求得圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.此题主要考查圆锥的侧面展开图和勾股定理的应用,牢记有关公式是解答本题的关键,难度不大.11.答案:C解析:本题考查了图形的变化规律,通过从一些特殊的图形变化中发现不变的因素或按规律变化的因素,然后推广到一般规律,利用规律解决问题.由图形可知:第1个图案中黑色小正方形地砖的块数=1×1+0×0=12+02,第2个图案中黑色小正方形地砖的块数=2×2+1×1=22+12,第3个图案中黑色小正方形地砖的块数=3×3+ 2×2=32+22,…则第n个图案中黑色小正方形地砖的块数=n×n+(n−1)×(n−1)=n2+ (n−1)2,由此代入求得答案即可.解:∵第1个图案中黑色小正方形地砖的块数=1×1+0×0=12+02,第2个图案中黑色小正方形地砖的块数=2×2+1×1=22+12,第3个图案中黑色小正方形地砖的块数=3×3+2×2=32+22,…∴第n个图案中黑色小正方形地砖的块数=n×n+(n−1)×(n−1)=n2+(n−1)2,则第13个图案中黑色小正方形地砖的块数是132+122=313.故选C.12.答案:C解析:【试题解析】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.由旋转的性质可得∠C=∠C′,AB=AB′,由等腰三角形的性质可得∠C=∠CAB′,∠B=∠AB′B,由三角形的外角性质和三角形内角和定理可求解.解:∵AB′=CB′,∴∠C=∠CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°−108°,∴∠C=24°,∴∠C′=∠C=24°,故选:C.13.答案:(x−1)(x−3)解析:此题考查了因式分解−提公因式法,熟练掌握因式分解的方法是解本题的关键.原式变形后,提取公因式即可.解:原式=x(x−3)−(x−3)=(x−1)(x−3),故答案为:(x−1)(x−3).14.答案:155解析:解:连接EA,∵AB⏜为50°,∴∠BEA=25°,∵四边形DCAE为⊙O的内接四边形,∴∠DEA+∠C=180°,∴∠DEB+∠C=180°−25°=155°,故答案为:155.连接EA,根据圆周角定理求出∠BEA,根据圆内接四边形的性质得到∠DEA+∠C=180°,结合图形计算即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握圆内接四边形的对角互补是解题的关键.15.答案:x解析:解:(1x−4+1x+4)÷2x2−16=x+4+x−4(x+4)(x−4)⋅(x+4)(x−4)2=2x2=x,故答案为:x.根据分式的加法和除法可以解答本题.本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法.16.答案:14解析:本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.画树状图展示所有16种等可能的结果数,再找出九年级(1)班和(2)班抽取到同一首歌曲的结果数,然后根据概率公式求解.解:画树状图为:共有16种等可能的结果数,其中九年级(1)班和(2)班抽取到同一首歌曲的有4种情况,所以九年级(1)班和(2)班抽取到同一首歌曲的概率为416=14,故答案为:14.17.答案:(13,0)解析:解:如图,作点A 作关于x 轴的对称点A′,连接A′B 与x 轴的交于点M ,点M 即为所求.∵点B 的坐标(3,2)点A′的坐标(−1,−1),∴直线BA′的解析式为y =34x −14,令y =0,得到x =13∴点M(13,0)故答案为(13,0).可过点A 作关于x 轴的对称点A′,连接A′B 与轴的交点即为所求.此题考查轴对称问题,熟练掌握轴对称的性质,理解两点之间线段最短的涵义.18.答案:解:{x −32(2x −1)≤4①1+3x 3>2x −1② 解不等式①,得:x ≥−54,解不等式②,得:x <43,则不等式组的解集为−54≤x <43,∴不等式组的整数解为:−1、0、1.解析:分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19.答案:解:(1)100;(2)由(1)得女生总人数为50人,∴女生中喜欢舞蹈的人数为:50−10−16=24(人),如图所示:(3)∵样本中喜欢剪纸的人数为30人,样本容量为100,∴估计全校学生中喜欢剪纸的人数=1200×30100=360人.解析:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.(1)根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,即可求出女生总人数,进而求得样本容量;(2)由(1)得女生总人数,即可得出喜欢舞蹈的人数,进而补全条形统计图即可;(3)用全校学生数×喜欢剪纸的学生在样本中所占百分比即可求出.解:(1)∵根据扇形统计图可得出女生喜欢武术的占20%,利用条形图中喜欢武术的女生有10人,∴女生总人数为:10÷20%=50(人),∴本次抽样调查的样本容量是:30+6+14+50=100,故答案为100;(2)见答案;(3)见答案.20.答案:解:(1)根据题意,得:160a −160a+12=3,解得:a1=20,a2=−32,经检验,它们都是原方程的解,但a2=−32不合题意,舍去,所以a=20;(2)由(1)可知:A树苗购买价格:20元/棵;B树苗购买价格:32元/棵,根据题意,得:y=130000−[20x+(3000−x)⋅32+3x+5(3000−x)]=14x+19000,即:y与x之间的函数关系式是:y=14x+19000;(3)设种植A树苗b棵,则有:90%b+(3000−b)×95%≥93%×3000,解得:b≤1200,由(2)可知:y=14x+19000,其中14>0,对于此一次函数,当x取最大值时,纯收入y的值最大.所以有:y最大值=14×1200+19000=35800(元),因此:最多种植A树苗1200棵,纯收入最大值是35800元.解析:(1)根据题意列出方程解答即可;(2)根据题意列出函数解析式即可;(3)设种植A树苗b棵,列出解析式根据增函数解答即可.此题考查一次函数的应用,关键是根据题意列出分式方程和函数解析式进行解答.21.答案:证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB//CD,则BE//CD.又∵AB=BE,∴BE=DC,∴四边形BECD为平行四边形,∴BD=EC.∴在△ABD与△BEC中,{AB=BE BD=EC AD=BC,∴△ABD≌△BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∵四边形ABCD为平行四边形,∴∠A=∠BCD,即∠A=∠OCD.又∵平行四边形BECD为矩形,∴OC=OD,∴∠OCD=∠ODC,∴∠BOD=∠OCD+∠ODC=2∠A,∴∠BOD=2∠A.解析:本题考查了平行四边形的性质和判定,矩形的判定,平行线的性质,全等三角形的性质和判定,三角形的外角性质等知识点的综合运用,难度较大.(1)根据平行四边形的判定与性质得到四边形BECD为平行四边形,然后由SSS推出两三角形全等即可;(2)由四边形ABCD为平行四边形可知∠A=∠BCD,即∠A=∠OCD,由四边形BECD是矩形,推知OC=OD,由等腰三角形的性质得到∠OCD=∠ODC.22.答案:解:过点C作CE⊥AB交AB于点E,则四边形EBDC为矩形,∴BE=CD CE=BD=60(米),如图,根据题意可得,∠ADB=48°,∠ACE=37°,∵tan48°=AB,BD在Rt△ADB中,×60=66(米),则AB=tan48°⋅BD≈1110∵tan37°=AE,CE在Rt△ACE中,×60=45(米),则AE=tan37°⋅CE≈34∴CD=BE=AB−AE=66−45=21(米),∴乙楼的高度CD为21米.解析:过点C作CE⊥AB交AB于点E,在直角△ADB中利用三角函数求得AB的长,然后在直角△AEC 中求得AE的长,即可求解.本题考查了解直角三角形的应用−仰角俯角问题,本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.23.答案:解:(1)∵把A(−2,1)代入y=mx得:m=−2,∴反比例函数的解析式是y=−2x,∵B(1,n)代入反比例函数y=−2x,得:n=−2,∴B的坐标是(1,−2),把A、B的坐标代入一次函数y=kx+b得:{1=−2k+b−2=k+b,解得:k=−1,b=−1,∴一次函数的解析式是y=−x−1;(2)设直线AB交x轴于点C,∵把y=0代入一次函数的解析式y=−x−1得:0=−x−1,即x=−1,∴C(−1,0),△AOB的面积S=S AOC+S△BOC=12×|−1|×1+12×|−1|×|−2|=1.5;(3)从图象可知:当kx+b≤mx时,x的取值范围x≥1或−2≤x<0.解析:本题考查了反比例函数、一次函数图象上点的坐标特征,用待定系数法求一次函数的解析式,三角形的面积等知识点的综合运用,主要考查学生的计算能力和观察图形的能力.(1)把A的坐标代入反比例函数的解析式即可求出反比例函数的解析式,把B的坐标代入求出B的坐标,把A、B的坐标代入一次函数y=kx+b即可求出函数的解析式;(2)求出直线AB交x轴于点C的坐标,求出△AOC和△BOC的面积,即可求出答案;(3)根据函数的图象和A、B的坐标即可得出答案.24.答案:(1)证明:如图,连接OE.∵CD是圆O的直径,∴∠CED=90°.∵OC=OE,∴∠1=∠2.又∵∠PED=∠C,即∠PED=∠1,∴∠PED=∠2,∴∠PED+∠OED=∠2+∠OED=90°,即∠OEP=90°,∴OE⊥EP,又∵点E在圆上,∴PE是⊙O的切线;(2)证明:∵AB、CD为⊙O的直径,∴∠AEB=∠CED=90°,∴∠3=∠4(同角的余角相等).又∵∠PED=∠1,∴∠PED=∠4,即ED平分∠BEP;(3)解:设EF=x,则CF=2x,∵⊙O的半径为6,∴OF=2x−6,在Rt△OEF中,OE2=OF2+EF2,即62=x2+(2x−6)2,解得x=4.8,∴EF=4.8,∴BE=2EF=9.6,CF=2EF=9.6,∴DF=CD−CF=12−9.6=2.4,∵AB为⊙O的直径,∴∠AEB=90°,∵AB=12,BE=9.6,∴AE=365,∵∠BEP=∠A,∠EFP=∠AEB=90°,∴△AEB∽△EFP,∴PFBE =EFAE,即PF9.6=4.8365,∴PF=325,∴PD=PF−DF=4.解析:本题考查了切线的判定和性质,圆周角定理的应用,勾股定理的应用,三角形相似的判定和性质,熟练掌握性质定理是解题的关键.(1)如图,连接OE.欲证明PE是⊙O的切线,只需推知OE⊥PE即可;(2)由圆周角定理得到∠AEB=∠CED=90°,根据“同角的余角相等”推知∠3=∠4,结合已知条件证得结论;(3)设EF=x,则CF=2x,在Rt△OEF中,根据勾股定理得出62=x2+(2x−6)2,求得EF,进而求得BE和CF,在Rt△AEB中,根据勾股定理求得,然后根据△AEB∽△EFP,求得PF的长,继而求出PD=PF−DF的长.25.答案:解:(1)∵抛物线y=−x2+bx+c经过A(−1,0),B(3,0)两点,∴{−1−b+c=0−9+3b+c=0,解得,{b =2c =3, ∴经过A ,B ,C 三点的抛物线的函数表达式为y =−x 2+2x +3;(2)如图1,连接PC 、PE ,x =−b 2a =−22×(−1)=1,当x =1时,y =4,∴点D 的坐标为(1,4),设直线BD 的解析式为:y =mx +n ,则{m +n =43m +n =0, 解得,{m =−2n =6, ∴直线BD 的解析式为y =−2x +6,设点P 的坐标为(x,−2x +6),则PC 2=x 2+(3+2x −6)2,PE 2=(x −1)2+(−2x +6)2,∵PC =PE ,∴x 2+(3+2x −6)2=(x −1)2+(−2x +6)2,解得,x =2,则y =−2×2+6=2,∴点P 的坐标为(2,2);(3)设点M 的坐标为(a,0),则点G 的坐标为(a,−a 2+2a +3),∵以F、M、N、G为顶点的四边形是正方形,∴FM=MG,即|2−a|=|−a2+2a+3|,当2−a=−a2+2a+3时,整理得,a2−3a−1=0,解得,a=3±√132;当2−a=−(−a2+2a+3)时,整理得,a2−a−5=0,解得,a=1±√212,∴当以F、M、N、G为顶点的四边形是正方形时,点M的坐标为(3+√132,0),(3−√132,0),(1+√212,0),(1−√212,0).解析:本题考查的是二次函数的图象和性质、待定系数法求函数解析式以及正方形的性质,掌握二次函数的图象和性质、灵活运用待定系数法是解题的关键.(1)利用待定系数法求出过A,B,C三点的抛物线的函数表达式;(2)连接PC、PE,利用公式求出顶点D的坐标,利用待定系数法求出直线BD的解析式,设出点P 的坐标为(x,−2x+6),利用两点间距离公式表示出PC2和PE2,根据题意列出方程,解方程求出x 的值,计算求出点P的坐标;(3)设点M的坐标为(a,0),表示出点G的坐标,根据正方形的性质列出方程,解方程即可.。
2020年聊城市中考数学第一次模拟试卷带答案
解析:B 【解析】 【分析】 根据题意可知 DE 是 AC 的垂直平分线,CD=DA.即可得到∠DCE=∠A,而∠A 和∠B 互 余可求出∠A,由三角形外角性质即可求出∠CDA 的度数. 【详解】 解:∵DE 是 AC 的垂直平分线, ∴DA=DC, ∴∠DCE=∠A, ∵∠ACB=90°,∠B=34°, ∴∠A=56°, ∴∠CDA=∠DCE+∠A=112°, 故选 B. 【点睛】 本题考查作图-基本作图、线段的垂直平分线的性质、等腰三角形的性质,三角形有关角的 性质等知识,解题的关键是熟练运用这些知识解决问题,属于中考常考题型.
8.C
解析:C 【解析】 解:设小路的宽度为 xm,那么草坪的总长度和总宽度应该为(16-2x)m,(9-x)m;根据 题意即可得出方程为:(16-2x)(9-x)=112,整理得:x2-17x+16=0.故选 C. 点睛:本题考查了一元二次方程的运用,弄清“草坪的总长度和总宽度”是解决本题的关 键.
3.A
解析:A 【解析】 【分析】易得 BC 长为 EF 长的 2 倍,那么菱形 ABCD 的周长=4BC 问题得解. 【详解】∵E 是 AC 中点, ∵EF∥BC,交 AB 于点 F, ∴EF 是△ABC 的中位线, ∴BC=2EF=2×3=6, ∴菱形 ABCD 的周长是 4×6=24, 故选 A. 【点睛】本题考查了三角形中位线的性质及菱形的周长公式,熟练掌握相关知识是解题的 关键.
请根据图中提供的信息,解答下列问题:
(1)在这次抽样调查中,共调查了________名学生;
(2)补全条形统计图,并在扇形统计图中计算 C 类所对应扇形的圆心角的度数;
(3)根据抽样调查结果,估计该校 2000 名学生中“家长和学生都未参与”的人数.
山东省聊城市2020年中考数学一模试卷B卷
山东省聊城市2020年中考数学一模试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2017八上·高州月考) 估计的大小应在()A . 7~8之间B . 8.0~8.5之间C . 8.5~9.0之间D . 9.0~9.5之间2. (2分)(2020·长沙) 为了将“新冠疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展,据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中632400000000用科学记数法表示为()A .B .C .D .3. (2分)(2017·路南模拟) 下列计算正确的是()A . (3xy2)3=9x3y6B . B、(x+y)2=x2+y2C . x6÷x2=x3D . 2x2y﹣ yx2= x2y4. (2分)点(1,-2)关于原点的对称点的坐标是()A . (1,2)B . (-1,2)C . (-1,-2)D . (1,-2)5. (2分)(2018·重庆模拟) 下列四个图案中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .6. (2分)(2011·绍兴) 李老师从“淋浴龙头”受到启发.编了一个题目:在数轴上截取从0到3的对应线段AB,实数m对应AB上的点M,如图1;将AB折成正三角形,使点A,B重合于点P,如图2;建立平面直角坐标系,平移此三角形,使它关于y轴对称,且点P的坐标为(0,2),PM与x轴交于点N(n,0),如图3.当m= 时,求n的值.你解答这个题目得到的n值为()A . 4﹣2B . 2 ﹣4C .D .二、填空题 (共6题;共7分)7. (1分) (2017八下·西华期末) 式子有意义的条件是________.8. (1分)(2012·桂林) 分解因式:4x2﹣2x=________.9. (1分)(2013·衢州) 小芳同学有两根长度为4cm、10cm的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是________.10. (1分) (2016八下·万州期末) 已知,如图在▱ABCD中,AD=13,AB=10,DE平分∠ADC交BC于点E,则BE=________.11. (2分) (2016九上·平凉期中) 已知y= (x+1)2﹣2,图象的顶点坐标为________,当x________时,函数值随x的增大而减小.12. (1分)(2020·江阴模拟) 在△ABC中,∠A=60°,∠C=75°,AB=8,D、E、F分别在AB、BC、CA上,则△DEF的周长最小值是________.三、三.解答题 (共11题;共103分)13. (5分)(2020·永州) 计算:.14. (5分) (2017八下·长泰期中) 如图,▱ABCD中,对角线AC与BD相交于O,EF是过点O的任一直线交AD于点E,交BC于点F,猜想OE和OF的数量关系,并说明理由.15. (7分)如图,线段AB上的点数与线段的总数有如下关系:如果线段AB上有1个点时,线段总共有3条,如果线段AB上有2个点时,线段总数有6条,如果线段AB上有3个点时,线段总数共有10条,…(1)当线段AB上有6个点时,线段总数共有________条.(2)当线段AB上有n个点时,线段总数共有________条.(3)如果从一个多边形的一个顶点出发,分别连接这个顶点与其余各顶点,可将这个多边形分割成2016个三角形,那么此多边形的边数为多少?16. (15分) (2020七下·西湖期末) 为了了解学生最喜欢的趣味运动项目类型:A:跳长绳,B:踢毽子,C:打篮球,D:拔河,共四类,随机抽查了部分学生,并将统计结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)在图①中,求D部分所占扇形的圆心角的度数.(2)将图②补充完整.(3)若全校共有学生1200名,估计该校最喜欢踢毽子的学生有多少.17. (10分)(2017·德惠模拟) 经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转,如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树状图或列表法中的一种列举出这辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.18. (5分)(2020·梁子湖模拟) 如图是某地下停车库入口的设计示意图,已知AB⊥BD,坡道AD的坡度i=1:2.4(指坡面的铅直高度BD与水平宽度AB的比),AB=7.2 m,点C在BD上,BC=0.4 m,CE⊥AD.按规定,地下停车库坡道口上方要张贴限高标志,以便告知停车人车辆能否安全驶入,请根据以上数据,求出该地下停车库限高CE 的长.19. (10分)如图,一次函数y=kx+b(k<0)的图象经过点C(3,0),且与两坐标轴围成的三角形的面积为3.(1)求该一次函数的解析式;(2)若反比例函数y=的图象与该一次函数的图象交于二、四象限内的A、B两点,且AC=2BC,求m的值.20. (10分) (2019九上·昭阳开学考) 已知关于x的一元二次方程x2+2x+k﹣2=0有两个不相等的实数根.(1)求k的取值范围;(2)若k为大于1的整数,求方程的根.21. (10分)(2017·东丽模拟) 某饮料厂开发了A,B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A,B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题:原料名称饮料名称甲乙A20克40克B30克20克(1)有几种符合题意的生产方案写出解析过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?22. (11分)(2017·南关模拟) 综合题(1)【阅读发现】如图①,在△ABC中,∠ACB=45°,AD⊥BC于点D,E为AD上一点,且DE=BD,可知AB=CE.(2)【类比探究】如图②,在正方形ABCD中,对角线AC与BD交于点O,E是OC上任意一点,AG⊥BE于点G,交BD于点F.判断AF与BE的数量关系,并加以证明.(3)【推广应用】在图②中,若AB=4,BF= ,则△AGE的面积为________.23. (15分) (2018八上·黑龙江期中) 如图,△ABC是等腰直角三角形,BC=AC,直角顶点C在x轴上,一锐角顶点B在y轴上(1)如图1,若点C的坐标是(2,0),点A的坐标是(-2,-2),求B点的坐标;(2)如图2,若y轴恰好平分∠ABC,AC与y轴交与点D,过点A作AE⊥y轴于E,问BD与AE有怎样的数量关系,并说明理由(3)如图3,直角边BC在两坐标轴上滑动,使点A在第四象限内,过A点作AF⊥y轴于F,在滑动的过程中,猜想OC、AF、OB之间的关系,并证明你的结论.参考答案一、选择题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共7分)7-1、8-1、9-1、10-1、11-1、12-1、三、三.解答题 (共11题;共103分)13-1、14-1、15-1、15-2、15-3、16-1、16-2、16-3、17-1、17-2、18-1、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、22-3、23-1、23-2、23-3、。
【附5套中考模拟试卷】山东省聊城市2019-2020学年中考数学一模试卷含解析
山东省聊城市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为A .60°B .120°C .60°或120°D .30°或120°2.如图,A,B 是半径为1的⊙O 上两点,且OA ⊥OB .点P 从A 出发,在⊙O 上以每秒一个单位长度的速度匀速运动,回到点A 运动结束. 设运动时间为x ,弦BP 的长度为y ,那么下面图象中可能表示y 与x 的函数关系的是A .①B .④C .②或④D .①或③3.不等式4-2x >0的解集在数轴上表示为( )A .B .C .D . 4.如图,AB 是半圆圆O 的直径,ABC ∆的两边,AC BC 分别交半圆于,DE ,则E 为BC 的中点,已知50BAC ∠=o ,则C ∠=( )A .55oB .60oC .65oD .70o5.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )A .主视图B .俯视图C .左视图D .一样大6.关于x 的不等式x-b>0恰有两个负整数解,则b 的取值范围是A .32b -≤<-B .32b -<≤-C .32b -≤≤-D .-3<b<-27.学校小组5名同学的身高(单位:cm )分别为:147,156,151,152,159,则这组数据的中位数是().A.147B.151C.152D.156 8.如图是一个放置在水平桌面的锥形瓶,它的俯视图是()A.B.C.D.9.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.5 10.三个等边三角形的摆放位置如图,若∠3=60°,则∠1+∠2的度数为()A.90°B.120°C.270°D.360°11.计算25()77-+-的正确结果是()A.37B.-37C.1 D.﹣112.一个正多边形的内角和为900°,那么从一点引对角线的条数是()A.3 B.4 C.5 D.6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知圆锥的母线SA 的长为4,底面半径OA 的长为2,则圆锥的侧面积等于.14.如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接_____. (写出一个答案即可)15.某商场将一款品牌时装按标价打九折出售,可获利80%,这款商品的标价为1000元,则进价为 ________元。
2020年中考数学第一次模拟考试(山东)-数学(全解全析)
2020年中考数学第一次模拟考试【山东卷】数学·全解全析1.【答案】A【解析】–8的相反数是8,故选A . 2.【答案】D【解析】将数0.0002用科学记数法表示为4210-⨯.故选D . 3.【答案】C【解析】从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选C . 4.【答案】B【解析】A .不是轴对称图形,故本选项不符合题意,B .是轴对称图形,故本选项符合题意,C .不是轴对称图形,故本选项不符合题意,D .是不轴对称图形,故本选项不符合题意.故选B . 5.【答案】B【解析】∵点D 、E 、F 分别是AB 、AC 、BC 的中点,∴DE //BC ,EF //AB ,∴∠ADE =∠B ,∠B =∠CFE ,∵∠ADE =65°,∴∠CFE =∠ADE =65°,故选B . 6.【答案】D 【解析】∵代数式12x +在实数范围内有意义,∴x +2≠0,解得:x ≠﹣2,故选D . 7.【答案】D【解析】这组数据中42出现了两次,出现次数最多,所以这组数据的众数是42,将这组数据从小到大排序为:37,38,40,42,42,所以这组数据的中位数为40,故选D . 8.【答案】B【解析】∵∠ACB =90°,∴∠B =90°−∠A =90°−40°=50°,故答案为50°,所以选B . 9.【答案】A【解析】求出根的判别式△,然后选择答案即可:∵△=()2542125817--⨯⨯=-=>0, ∴方程有有两个不相等的实数根.故选A . 10.【答案】C【解析】如图,作AP ⊥BC 于P ,延长AH 交BC 于Q ,延长EF 交AQ 于T .由题意:PAPB=2,AQ =AH +FG +DE ,CQ =CD +EF +GH ,∠AQP =45°,∵∠APB =90°,AB =9005,∴PB =900,PA =1800,∵∠PQA =∠PAQ =45°,∴PA =PQ =1800,AQ =2PA =18002,∵∠C =30°,∴PC =3PA =18003,∴CQ =18003﹣1800,∴小伟从C 出发到坡顶A 的时间=1800318001800265.742.3-+≈80(分钟),故选C . 11.【答案】A【解析】AB AC =Q ,AG BC ⊥,122BG GC BC ∴===,DEC QV 与DEF V 关于DE 对称,FD CD x ∴==.当点F 与G 重合时,FC GC =,即22x =,1x ∴=,当点F 与点B 重合时,FC BC =,即24=x ,2x ∴=,如图1,当01x ≤≤时,0y =,∴B 选项错误;如图2,当12x <≤时,()()22211222122y FG x x ==-=-,∴选项D 错误;如图3,当24x <≤时,()2211422y BD x ==-,∴选项C 错误.故选A . 12.【答案】A【解析】∵抛物线开口向上,∴a >0,∵抛物线对称轴为直线x =﹣2ba=﹣1,∴b =2a >0,则2a ﹣b =0,所以②正确;∵抛物线与y 轴的交点在x 轴下方,∴c <0,∴abc <0,所以①正确;∵x =2时,y >0,∴4a +2b +c >0,所以③错误;∵点(﹣5,y 1)离对称轴的距离与点(3,y 2)离对称轴的距离相等,∴y 1=y 2,所以④不正确.故选A . 13.【答案】ab (a –1)2【解析】322a b a b ab -+=2(21)ab a a -+=2(1)ab a -.14.【答案】34【解析】由题意可得,出现的所有可能性是:(正,正)、(正,反)、(反,正)、(反,反),∴至少一次正面向上的概率为:34.故答案为:34. 15.【答案】54.【解析】设多边形的边数是n ,则(n –2)•180°=1800°,解得n =12, ∴多边形的对角线的条数是:()()3121215422n n --==.16.【答案】0.4或2.8【解析】设直线1l 的解析式为1y kx b =+, 将点()()1.6,4.8,2.8,0代入16 4.82.80k b k b +=⎧⎨+=⎩,解得411.2k b =-⎧⎨=⎩,则直线1l 的解析式为1411.2y x =-+,设直线2l 的解析式为2y nx =,将点()1.6,4.8代入得4.8 1.6n =,解得3n =, 则直线2l 的解析式为23y x =.Q 小敏、小聪两人相距8.4km ,128.4y y ∴-=,411.238.4x x ∴-+-=,11.278.4x ∴-=或11.278.4x -=-,解得:0.4x =或 2.8x =.17.【答案】8233π- 【解析】连接AA ′,∵将△ABC 绕点B 顺时针旋转60°,AB =4,∴A ′B =AB =4,∠ABA ′=60°,∴△ABA ′是等边三角形,∵点D 是A ′B 的中点,∴AD ⊥A ′B ,∴BD =AB cos ∠ABD =2,AD =AB sin ∠ABD =23,∴S 阴影=S 扇形BAA ′=S △ABD =2604360π⋅⨯–12×2×23=8233π-.故答案为:8233π- 18.【答案】522-.【解析】如图,连接DO ,将线段DO 绕点D 逆时针旋转90°得DM ,连接OF ,FM ,OM ,∵∠EDF =∠ODM =90°,∴∠EDO =∠FDM ,∵DE =DF ,DO =DM ,∴△EDO ≌△FDM (SAS ),∴FM =OE =2,∵正方形ABCD 中,AB =25,O 是BC 边的中点,∴OC =5,∴OD =22(25)(5)+=5,∴OM =2255+=52,∵OF +MF ≥OM ,∴OF ≥522-,∴线段OF 长的最小值为522-. 故答案为:522-.19.【答案】3.【解析】原式=4×3+1–23+2=23+1–23+2=3.20.【答案】5443x-≤<;1,0,1-【解析】解不等式①,得:54x≥-.解不等式②,得:43x<.则不等式组的解集为5443x-≤<.∴不等式组的整数解为:1,0,1-.21.【解析】四边形AECF为菱形.证明如下:∵AD∥BC,∴∠1=∠2,∵O是AC中点,∴AO=CO,在△AOE和△COF中12AOE COFAO CO∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE≌△COF(AAS),∴AE=CF,∵EF⊥AC,OA=OC,∴AF=CF,AE=CE,∴AF=CF=AE=CE,∴平行四边形AECF为菱形.22.【解析】(1)设商品每件进价x元,乙商品每件进价y元,得32402130x yx y+=⎧⎨+=⎩解得:3070xy=⎧⎨=⎩,答:甲商品每件进价30元,乙商品每件进价70元;(2)设甲商品进a件,乙商品(100﹣a)件,由题意得,a≥4(100﹣a),解得a≥80,设利润为y元,则y=10a+20(100﹣a)=﹣10a+2000,∵y随a的增大而减小,∴要使利润最大,则a取最小值,∴a=80,∴y=2000﹣10×80=1200,答:甲商品进80件,乙商品进20件,最大利润是1200元.23.【解析】(1)∵C 是»BD的中点,∴»»CD BC =, ∵AB 是O e 的直径,且CF AB ⊥,∴»»BC BF =, ∴»»CDBF =,∴CD BF =, 在BFG ∆和CDG ∆中,∵F CDGFGB DGC BF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BFG CDG AAS ∆≅∆;(2)如图,过C 作CH AD ⊥交AD 延长线于点H ,连接AC 、BC ,∵»»CDBC =,∴HAC BAC ∠=∠,∵CE AB ⊥,∴CH CE =, ∵AC AC =,∴Rt AHC Rt AEC ∆≅∆,∴AE AH =, ∵CH CE =,CD CB =,∴()Rt CDH Rt CBE HL ∆≅∆, ∴2DH BE ==,∴224AE AH ==+=,∴426AB =+=, ∵AB 是O e 的直径,∴90ACB ∠=o ,∴90ACB BEC ∠=∠=o , ∵EBC ABC ∠=∠,∴BEC BCA ∆∆:, ∴BCBEAB BC=,∴26212BC AB BE =⋅=⨯=, ∴23BF BC ==.24.【解析】(1)10÷20%=50,16=32%50,故m =32. (Ⅱ)捐30元的人数为:50-(4+16+12+10)=8451610151210208301650x ⨯+⨯+⨯+⨯+⨯==Q∴这组样本数据的平均数为16∵在这组样本数据中,10出现了16次,出现次数最多,∴这组样本数据的众数为10∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15,有1515152+=∴这组样本数据的中位数为15(III)∵捐款20元以上的学生占16 %∴捐款20元以上的学生人数是:200016%320⨯=答:估计该校捐款20元以上的学生约有320人. 25.【解析】(1)将x=4代入y=12x得,y=2.∴A(4,2).把A(4,2)代入y=kx,得k=xy=8.∴反比例函数的解析式为y=8x.(2)解:根据题意可知:l解析式为y=12x+3.由13,28.y xyx⎧=+⎪⎪⎨⎪=⎪⎩得112,4.xy=⎧⎨=⎩228,1.xy=⎧⎨=⎩--(舍去)∴C(2,4).(3)如图:4个.故答案为4.26.【解析】(1)问题发现:①如图1,∵∠AOB =∠COD =40°,∴∠COA =∠DOB ,∵OC =OD ,OA =OB ,∴△COA ≌△DOB (SAS ),∴AC =BD ,∴1ACBD,= ②∵△COA ≌△DOB ,∴∠CAO =∠DBO , ∵∠AOB =40°,∴∠OAB +∠ABO =140°,在△AMB 中,∠AMB =180°–(∠CAO +∠OAB +∠ABD )=180°–(∠DBO +∠OAB +∠ABD )=180°–140°=40°, (2)类比探究: 如图2,3ACBD=,∠AMB =90°,理由是: Rt △COD 中,∠DCO =30°,∠DOC =90°,∴303OD tan OC ︒==, 同理得:3033OB tan OA ︒==,∴OD OB OC OA =, ∵∠AOB =∠COD =90°,∴∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴3AC OCBD OD==,∠CAO =∠DBO ,在△AMB 中,∠AMB =180°–(∠MAB +∠ABM )=180°–(∠OAB +∠ABM +∠DBO )=90°; (3)拓展延伸:①点C 与点M 重合时,如图3,同理得:△AOC ∽△BOD ,∴∠AMB =90°,3ACBD=,设BD =x ,则AC =3x ,Rt △COD 中,∠OCD =30°,OD =1,∴CD =2,BC =x –2, Rt △AOB 中,∠OAB =30°,OB =7,∴AB =2OB =27, 在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2, (3x )2+(x −2)2=(27)2,整理得x 2–x –6=0,解得x 1=3,x 2=–2,∴AC =33; ②点C 与点M 重合时,如图4,同理得:∠AMB =90°,3ACBD= 设BD =x ,则AC 3,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 23x )2+(x +2)2=(7)2, 整理得x 2+x –6=0,解得x 1=–3,x 2=2,∴AC 3. 综上所述,AC 的长为3或327.【解析】(1)抛物线2y ax bx c =++经过点A (–2,0),B (4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为233642y x x =-++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F ,∵点A 的坐标为(–2,0),∴OA =2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC =6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S△BCD =34S △AOC ,∴S △BCD =39642⨯=,设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+,∵点B 的坐标为(4,0),∴OB =4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=,解得11m =(舍),23m =,∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况, ∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154,当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍),∴215(1,)4N -,∴2(0,0)M ;数学 第11页(共11页)当点N 的纵坐标为154-时,如点N 3,N 4, 此时233156424x x -++=-,解得:12114,114x x =-=+ ∴315(114,)4N +-,415(114,)4N --,∴3(14,0)M ,4(14,0)M -; 以BD 为对角线时,有1种情况,此时N 1点与N 2点重合, ∵115(1,)4N -,D (3,154),∴N 1D =4, ∴BM 1=N 1D =4,∴OM 1=OB +BM 1=8,∴M 1(8,0), 综上,点M 的坐标为:1234(80)(00)(140)(140)M M M M -,,,,,,,.。
2020年中考数学第一次模拟考试(山东)-数学(参考答案)
2020年中考数学第一次模拟考试【山东卷】数学·参考答案1 2 3 4 5 6 7 8 9 10 1112A D CB B D D B AC A A13.ab(a–1)2 14.415.54.16.0.4或2.8 17.8233π-18.522-.19.【解析】原式=4×3+1–23+2=23+1–23+2=3.20.【解析】解不等式①,得:54x≥-.解不等式②,得:43x<.则不等式组的解集为5443x-≤<.∴不等式组的整数解为:1,0,1-.21.【解析】四边形AECF为菱形.证明如下:∵AD∥BC,∴∠1=∠2,∵O是AC中点,∴AO=CO,在△AOE和△COF中12AOE COF AO CO∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE≌△COF(AAS),∴AE=CF,∵EF⊥AC,OA=OC,∴AF=CF,AE=CE,∴AF=CF=AE=CE,∴平行四边形AECF为菱形.22.【解析】(1)设商品每件进价x元,乙商品每件进价y元,得3240 2130 x yx y+=⎧⎨+=⎩解得:3070 xy=⎧⎨=⎩,答:甲商品每件进价30元,乙商品每件进价70元; (2)设甲商品进a 件,乙商品(100﹣a )件, 由题意得,a ≥4(100﹣a ),解得a ≥80,设利润为y 元,则y =10a +20(100﹣a )=﹣10a +2000, ∵y 随a 的增大而减小,∴要使利润最大,则a 取最小值, ∴a =80,∴y =2000﹣10×80=1200, 答:甲商品进80件,乙商品进20件,最大利润是1200元.23.【解析】(1)∵C 是»BD的中点,∴»»CD BC =, ∵AB 是O e 的直径,且CF AB ⊥,∴»»BC BF =, ∴»»CDBF =,∴CD BF =, 在BFG ∆和CDG ∆中,∵F CDG FGB DGC BF CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()BFG CDG AAS ∆≅∆;(2)如图,过C 作CH AD ⊥交AD 延长线于点H ,连接AC 、BC ,∵»»CDBC =,∴HAC BAC ∠=∠,∵CE AB ⊥,∴CH CE =, ∵AC AC =,∴Rt AHC Rt AEC ∆≅∆,∴AE AH =, ∵CH CE =,CD CB =,∴()Rt CDH Rt CBE HL ∆≅∆, ∴2DH BE ==,∴224AE AH ==+=,∴426AB =+=, ∵AB 是O e 的直径,∴90ACB ∠=o ,∴90ACB BEC ∠=∠=o , ∵EBC ABC ∠=∠,∴BEC BCA ∆∆:, ∴BC BEAB BC=,∴26212BC AB BE =⋅=⨯=,∴BF BC ==24.【解析】(1)10÷20%=50,16=32%50,故m =32. (Ⅱ)捐30元的人数为:50-(4+16+12+10)=8451610151210208301650x ⨯+⨯+⨯+⨯+⨯==Q∴这组样本数据的平均数为16∵在这组样本数据中,10出现了16次,出现次数最多, ∴这组样本数据的众数为10∵将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是15, 有1515152+= ∴这组样本数据的中位数为15 (III )∵捐款20元以上的学生占16 %∴捐款20元以上的学生人数是:200016%320⨯= 答:估计该校捐款20元以上的学生约有320人. 25.【解析】(1)将x =4代入y =12x 得,y =2. ∴A (4,2).把A (4,2)代入y =kx,得k =xy =8. ∴反比例函数的解析式为y =8x.(2)解:根据题意可知:l 解析式为y =12x +3. 由13,28.y x y x⎧=+⎪⎪⎨⎪=⎪⎩得11 2, 4.x y =⎧⎨=⎩228, 1.x y =⎧⎨=⎩--(舍去) ∴C (2,4). (3)如图:4个.故答案为4.26.【解析】(1)问题发现:①如图1,∵∠AOB =∠COD =40°,∴∠COA =∠DOB ,∵OC =OD ,OA =OB ,∴△COA ≌△DOB (SAS ),∴AC =BD ,∴1ACBD,= ②∵△COA ≌△DOB ,∴∠CAO =∠DBO , ∵∠AOB =40°,∴∠OAB +∠ABO =140°,在△AMB 中,∠AMB =180°–(∠CAO +∠OAB +∠ABD )=180°–(∠DBO +∠OAB +∠ABD )=180°–140°=40°, (2)类比探究: 如图2,3ACBD=AMB =90°,理由是: Rt △COD 中,∠DCO =30°,∠DOC =90°,∴303OD tan OC ︒==同理得:303OB tan OA ︒=OD OB OC OA =, ∵∠AOB =∠COD =90°,∴∠AOC =∠BOD ,∴△AOC ∽△BOD ,∴3AC OCBD OD==,∠CAO =∠DBO , 在△AMB 中,∠AMB =180°–(∠MAB +∠ABM )=180°–(∠OAB +∠ABM +∠DBO )=90°; (3)拓展延伸:①点C 与点M 重合时,如图3,同理得:△AOC ∽△BOD , ∴∠AMB =90°,3ACBD=, 设BD =x ,则AC =3x ,Rt △COD 中,∠OCD =30°,OD =1,∴CD =2,BC =x –2, Rt △AOB 中,∠OAB =30°,OB =7,∴AB =2OB =27, 在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 2, (3x )2+(x −2)2=(27)2,整理得x 2–x –6=0,解得x 1=3,x 2=–2,∴AC =33; ②点C 与点M 重合时,如图4,同理得:∠AMB =90°,3ACBD= 设BD =x ,则AC 3,在Rt △AMB 中,由勾股定理得:AC 2+BC 2=AB 23x )2+(x +2)2=(7)2, 整理得x 2+x –6=0,解得x 1=–3,x 2=2,∴AC 3. 综上所述,AC 的长为3或327.【解析】(1)抛物线2y ax bx c =++经过点A (–2,0),B (4,0),∴426016460a b a b -+=⎧⎨++=⎩,解得3432a b ⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线的函数表达式为233642y x x =-++; (2)作直线DE ⊥x 轴于点E ,交BC 于点G ,作CF ⊥DE ,垂足为F , ∵点A 的坐标为(–2,0),∴OA =2,由0x =,得6y =,∴点C 的坐标为(0,6),∴OC =6,∴S △OAC =1126622OA OC ⋅⋅=⨯⨯=, ∵S △BCD =34S △AOC ,∴S △BCD =39642⨯=,设直线BC 的函数表达式为y kx n =+,由B ,C 两点的坐标得406k n n +=⎧⎨=⎩,解得326k n ⎧=-⎪⎨⎪=⎩,∴直线BC 的函数表达式为362y x =-+, ∴点G 的坐标为3(,6)2m m -+, ∴2233336(6)34224DG m m m m m =-++--+=-+,∵点B 的坐标为(4,0),∴OB =4,∵S △BCD =S △CDG +S △BDG =1111()2222DG CF DG BE DG CF BE DG BO ⋅⋅+⋅⋅=⋅+=⋅⋅, ∴S △BCD =22133346242m m m m -+⨯=-+(), ∴239622m m -+=,解得11m =(舍),23m =,∴m 的值为3;(3)存在,如下图所示,以BD 为边或者以BD 为对角线进行平行四边形的构图, 以BD 为边时,有3种情况, ∵D 点坐标为15(3,)4,∴点N 点纵坐标为±154,当点N 的纵坐标为154时,如点N 2, 此时233156424x x -++=,解得:121,3x x =-=(舍),∴215(1,)4N -,∴2(0,0)M ; 当点N 的纵坐标为154-时,如点N 3,N 4,此时233156424x x -++=-,解得:12114,114x x =-=+∴315(114,)4N +-,415(114,)4N --,∴3(14,0)M ,4(14,0)M -;以BD 为对角线时,有1种情况,此时N 1点与N 2点重合, ∵115(1,)4N -,D (3,154),∴N 1D =4,∴BM 1=N 1D =4,∴OM 1=OB +BM 1=8,∴M 1(8,0),综上,点M 的坐标为:1234(80)(00)(140)(140)M M M M -,,,,,,,.。
2020年山东省聊城市高唐县中考数学一模试卷
中考数学一模试卷题号一二三总分得分一、选择题(本大题共12小题,共36.0分)1.下列各式中正确的是()A. =±3B. =-3C. =3D. -=2.2019年我国经济运行总体平稳,发展水平迈上新台阶,发展质量稳步提升,初步核算,全年国内生产总值990865亿元,比上年增长6.1%.其中,第一产业增加值70467亿元,则数据70467亿用科学记数法表示为()A. 7.0467×104B. 7.0467×105C. 7.0467×1012D. 7.0467×10133.如图是由5个大小相同的立方体组成的几何体,在这个几何体的三视图中,是轴对称图形的是()A. 主视图B. 左视图C. 俯视图D. 主视图和左视图4.如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边可以自由滑动上.当∠1=l5°时,∠2的度数是()A. 15°B. 25°C. 25°D. 45°5.下列运算正确的是()A. (-a2)3=-a5B. a3•a5=a15C. (-a2b3)2=a4b6D. 3a2-2a2=16.如图,▱ABCD的周长为32,对角线AC、BD相交于点O,点E是CD的中点,BD=14,则△DOE的周长为()A. 14B. 15C. 18D. 217.小明收集了某快餐店今年5月1日至5月5日每天的用水量(单位:吨),整理并绘制成如图折线统计图,下列结论正确的是()A. 平均数是7B. 众数是7C. 中位数是5D. 方差是78.如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=3,则CE的长为()A. 6B. 5C. 4D. 39.下列命题是真命题的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 菱形一定有外接圆C. 三角形的重心是三条边的垂直平分线的交点D. 六边形的内角和是外角和的2倍10.如图,点A,B,C,D都在半径为4的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()A. 4B. 4C. 2D. 411.正方形ABCD的边长为4,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()A. B. C. D.12.如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()A. B. C. D.二、填空题(本大题共5小题,共15.0分)13.已知关于x的一元二次方程mx2+5x+m2-2m=0有一个根为0,则m=____.14.用一个半径为6cm,圆心角为120°的扇形铁皮,围成一个圆锥形工件,则围成的圆锥形工件的高为______.15.不等式组的整数解的和是______.16.如图,正方形ABCD的边长为1,点A与原点重合,点B在y轴的正半轴上,点D在x轴的负半轴上,将正方形ABCD绕点A逆时针旋转30°至正方形AB'C′D′的位置,B'C′与CD相交于点M,则点M的坐标为______.17.如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,-1),A3(0,0),则依图中所示规律,A2019的坐标为______.三、解答题(本大题共8小题,共69.0分)18.先化简,再求值:(a-9+)÷(a-1-),其中a=2.19.由于新冠肺炎影响,全国开展了“停课不停学”线上教学,为了解学生在家学习情况,五月7日开学后,某中学1200名学生参加了入学摸底测试,为了了解本次测试成绩情况,王老师从中抽取了部分学生的数学成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<6080.1670≤x<80■0.580≤x<9030.0690≤x≤100b c合计■1(2)请估计这1200名学生中有多少人的成绩不低于70分;(3)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取两名同学参加学习经验分享活动,求所抽取的2名同学来自同一组的概率.20.如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.(1)证明:四边形CDEF是平行四边形;(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长度.21.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价-进价-销售成本).22.如图1为放置在水平桌面l上的台灯,底座的高AB为5cm,长度均为20cm的连杆BC,CD与AB始终在同一平面上.(1)转动连杆BC,CD,使∠BCD成平角,∠ABC=150°,如图2,求连杆端点D 离桌面l的高度DE.(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问此时连杆端点D离桌面l的高度是增加还是减少?增加或减少了多少?(精确到0.1cm,参考数据:≈1.41,≈1.73)23.如图所示,一次函数y=-x+b与反比例函数y=(x>0)的图象交于点A(1,3)和点B(3,m).(1)填空:一次函数的表达式为______,反比例函数的表达式为______;(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.24.如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为2,∠EAC=60°,求AD的长.25.如图,直线y=-x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y 轴交BC于点D,求△DMH周长的最大值.答案和解析1.【答案】D【解析】解:A、原式=3,不符合题意;B、原式=|-3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2-=,符合题意,故选:D.原式利用平方根、立方根定义计算即可求出值.此题考查了立方根,以及算术平方根,熟练掌握各自的性质是解本题的关键.2.【答案】C【解析】解:70467亿=7046700000000=7.0467×1012.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于70467亿=7046700000000有13位,所以可以确定n=13-1=12.此题考查科学记数法表示较大的数的方法,准确确定n值是关键.3.【答案】B【解析】解:该几何体的主视图有两层,底层是3个正方形,上层右边是1个正方形,不是轴对称图形;该几何体的左视图有两层,底层是2个正方形,上层左边1个正方形,是轴对称图形;该几何体的俯视图有两层,底层左边1个正方形,上层是3个正方形,不是轴对称图形;故选:B.根据主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形判断即可.此题主要考查了画几何体的三视图;用到的知识点为:主视图,左视图与俯视图分别是从物体的正面,左面,上面看得到的图形.4.【答案】D【解析】解:如图,∵BE∥CD,∴∠EBC=∠1=15°,∵∠ABC=60°,∴∠2=45°.故选:D.根据BE∥CD得到∠EBC=15°,依据∠ABC=60°,∠EBC=15°,由角的和差关系可求∠2=45°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.5.【答案】C【解析】解:A、(-a2)3=-a6,故此选项错误;B、a3•a5=a8,故此选项错误;C、(-a2b3)2=a4b6,正确;D、3a2-2a2=a2,故此选项错误;故选:C.直接利用积的乘方运算法则以及同底数幂的乘法运算法则、合并同类项法则分别计算得此题主要考查了积的乘方运算以及同底数幂的乘法运算、合并同类项,正确掌握相关运算法则是解题关键.6.【答案】B【解析】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD=BD=7,∵▱ABCD的周长为32,∴CD+BC=16,∵点E是CD的中点,∴DE=CD,OE是△BCD的中位线,∴OE=BC,∴DE+OE=(CD+BC)=8,∴△DOE的周长=OD+DE+OE=7+8=15;故选:B.由平行四边形的性质和已知条件得出OD=7,CD+BC=16,再证明OE是△BCD的中位线,得出DE+OE=8,即可得出结果.本题考查了平行四边形的性质、三角形中位线定理;熟练掌握平行四边形的性质,运用三角形中位线定理是解决问题的关键.7.【答案】A【解析】解:由折线图知:1日用水5吨,二日用水7吨,三日用水11吨,四日用水3吨,5日用水9吨,数据5、7、11、3、9的平均数是=7,中位数是7,由于各数据都出现了一次,故其众数为5、7、11、3、9.方差是S2=[(5-7)2+(7-7)2+(11-7)2+(3-72)+(9-7)2]=8.综上只有选项A正确.故选:A.由折线图得到相关五天的用水数据,计算这组数据的平均数、中位数、众数、方差,然后判断得结论.本题考查了折线图、平均数、中位数、众数及方差等知识,读折线图得到用水量数据是解决本题的关键.8.【答案】D【解析】【分析】本题考查的是线段垂直平分线的性质、直角三角形的性质和勾股定理等知识,掌握线段垂直平分线上的点到线段两端点的距离相等是解题的关键.根据线段垂直平分线的性质得到DB=DC,根据角平分线的定义、三角形内角和定理求出∠C=∠DBC=∠ABD=30°,根据含30°的直角三角形的性质和勾股定理解答.解:∵ED是BC的垂直平分线,∴DB=DC,∠DEC=90°,∴∠C=∠DBC,∵BD是△ABC的角平分线,∴∠ABD=∠DBC,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,即CD=BD=6,ED==3,∴CE==,故选:D.9.【答案】D【解析】解:A、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,本选项说法是假命题;B、菱形一定有内切圆,但不一定有外接圆,本选项说法是假命题;C、三角形的重心是三条边的中线的交点,本选项说法是假命题;D、六边形的内角和是(6-2)×180°=720°,外角和是360°,∴六边形的内角和是外角和的2倍,本选项说法是真命题;故选:D.根据平行四边形的判定定理、菱形的性质、三角形的重心的概念、多边形的内角和与外角和判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.【答案】A【解析】解:∵OA⊥BC,∴CH=BH,=,∴∠AOB=2∠CDA=60°,∴BH=OB•sin∠AOB=2,∴BC=2BH=4,故选:A.根据垂径定理得到CH=BH,=,根据圆周角定理求出∠AOB,根据正弦的定义求出BH,计算即可.本题考查的是垂径定理、圆周角定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.11.【答案】A【解析】解:如图,连接PA、PB、OP;则S半圆O==,S△ABP=×2×1=1,由题意得:图中阴影部分的面积=4(S半圆O-S△ABP)=4(-1)=2π-4,故选:A.求得阴影部分的面积后除以正方形的面积即可求得概率.本题考查了几何概率的知识,解题的关键是求得阴影部分的面积.12.【答案】D【解析】解:当0≤t<2时,S=×2t××(4-t)=-t2+2t;当2≤t<4时,S=×4××(4-t)=-t+4;只有选项D的图形符合.故选:D.应根据0≤t<2和2≤t<4两种情况进行讨论.把t当作已知数值,就可以求出S,从而得到函数的解析式,进一步即可求解.本题主要考查了动点问题的函数图象,利用图形的关系求函数的解析式,注意数形结合是解决本题的关键.13.【答案】2【解析】【分析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的解的定义.解答该题时需注意二次项系数a≠0这一条件.根据一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可.【解答】解:∵关于x的一元二次方程mx2+5x+m2-2m=0有一个根为0,∴m2-2m=0且m≠0,解得m=2.故答案是2.14.【答案】4cm【解析】解:设这个圆锥的底面半径为r,根据题意得2πr=,解得r=2.所以这个圆锥形小帽子的高==4.答:这个圆锥形小帽子的高为4cm.故答案为:4cm.设这个圆锥的底面半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,解方程求出r,然后利用勾股定理计算圆锥的高.本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.【答案】-3【解析】解:,由不等式①,得x≤,由不等式②,得x>-3,故原不等式组的解集是-3<x≤,∴不等式组的整数解的和是:-2+(-1)+0=-3,故答案为:-3.根据解不等式组的方法,先求得不等式组的解集,然后即可得到不等式组的整数解的和.本题考查一元一次不等式组的整数解,解答本题的关键是明确解一元一次不等式组的方法.16.【答案】(-1,)【解析】解:如图,连接AM,∵将边长为1的正方形ABCD绕点A逆时针旋转30°得到正方形AB'C′D′,∴AD=AB′=1,∠BAB′=30°,∴∠B′AD=60°,在Rt△ADM和Rt△AB′M中,∵,∴Rt△ADM≌Rt△AB′M(HL),∴∠DAM=∠B′AM=∠B′AD=30°,∴DM=AD tan∠DAM=1×=,∴点M的坐标为(-1,),故答案为:(-1,).连接AM,由旋转性质知AD=AB′=1、∠BAB′=30°、∠B′AD=60°,证Rt△ADM≌Rt△AB′M得∠DAM=∠B′AD=30°,由DM=AD tan∠DAM可得答案.本题主要考查旋转的性质、正方形的性质,解题的关键是掌握旋转变换的不变性与正方形的性质、全等三角形的判定与性质及三角函数的应用.17.【答案】(-1008,0)【解析】解:∵各三角形都是等腰直角三角形,∴直角顶点的纵坐标的长度为斜边的一半,A1(2,0),A2(1,-1),A3(0,0),A4(2,2),A5(4,0),A6(1,-3),A7(-2,0),A8(2,4),A9(6,-1),A10(1,-5),A11(-4,0),A12(2,6),…,由上可知,当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.∵2019÷4=504……3,∴点A2019在x轴负半轴上,横坐标是-(2019-3)÷2=-1008,纵坐标是0,∴A2019的坐标为(-1008,0).故答案为:(-1008,0).根据图形得到规律:当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.然后确定出第2019个点的坐标即可.本题是对点的坐标变化规律的考查,找出“当脚码是1、5、19…时,横坐标是脚码加3和的一半,纵坐标为0;当脚码是2、6、10…时,横坐标为1,纵坐标为脚码的一半的相反数;当脚码是3、7、11…时,横坐标是脚码减3差的一半的相反数,纵坐标为0;当脚码是4、8、12…时,横坐标是2,纵坐标为脚码的一半.”这一变化规律是解题的关键.18.【答案】解:原式=[+]÷[-]=÷=•=,当a=2时,原式==1-.【解析】原式括号中两项通分并利用同分母分式的加减法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.19.【答案】解:(1)抽取的总人数是:8÷0.16=50(名),a=12÷50=0.04,70≤x<80的人数是:50×0.5=25(名),b=50-8-12-25-3=2(名),c=2÷50=0.04;(2)根据题意得:1200×(0.5+0.06+0.04)=720(人),答:这1200名学生中有多少人的成绩不低于70分的有720人;(3)成绩是80分以上(含80分)的同学有5人,其中第4组有3人,分别用A、B、C表示,第5组有2人,分别用D、E表示,画树状图如下:共有20种等情况数,其中抽取的2名同学来自同一组的有8种,则抽取的2名同学来自同一组的概率是:=.【解析】(1)根据50≤x<60的频数和频率求出总人数,再用60≤x<70的频数除以总人数求出a,再用总人数减去其它组的频数求出b,再用b的值除以总数即可求出c;(2)用1200名学生乘以成绩不低于70分的学生所占的百分比即可;(3)根据题意画出树状图得出所有等情况数,找出抽取的2名同学来自同一组的情况数,然后根据概率公式即可得出答案.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.20.【答案】(1)证明:∵D、E分别是AB、AC的中点,F是BC延长线上的一点,∴ED是Rt△ABC的中位线,∴ED∥FC,BC=2DE,又EF∥DC,∴四边形CDEF是平行四边形;(2)解:∵四边形CDEF是平行四边形;∴DC=EF,∵DC是Rt△ABC斜边AB上的中线,∴AB=2DC,∴四边形DCFE的周长=AB+BC,∵四边形DCFE的周长为25cm,AC的长5cm,∴BC=25-AB,∵在Rt△ABC中,∠ACB=90°,∴AB2=BC2+AC2,即AB2=(25-AB)2+52,解得,AB=13cm,【解析】本题考查了三角形的中位线定理,直角三角形斜边中线的性质,平行四边形的判定和性质,勾股定理的应用等,熟练掌握性质定理是解题的关键.(1)由三角形中位线定理推知ED∥FC,2DE=BC,然后结合已知条件“EF∥DC”,利用两组对边相互平行得到四边形DCFE为平行四边形;(2)根据在直角三角形中,斜边上的中线等于斜边的一半得到AB=2DC,即可得出四边形DCFE的周长=AB+BC,故BC=25-AB,然后根据勾股定理即可求得;21.【答案】解:(1)设B型丝绸的进价为x元,则A型丝绸的进价为(x+100)元根据题意得:解得x=400经检验,x=400为原方程的解∴x+100=500答:一件A型、B型丝绸的进价分别为500元,400元.(2)①根据题意得:∴m的取值范围为:16≤m≤25②设销售这批丝绸的利润为y根据题意得:y=(800-500-2n)m+(600-400-n)•(50-m)=(100-n)m+10000-50n∵50≤n≤150∴(Ⅰ)当50≤n<100时,100-n>0m=25时,销售这批丝绸的最大利润w=25(100-n)+10000-50n=-75n+12500(Ⅱ)当n=100时,100-n=0,销售这批丝绸的最大利润w=5000(Ⅲ)当100<n≤150时,100-n<0当m=16时,销售这批丝绸的最大利润w=-66n+11600.综上所述:w=.【解析】(1)根据题意应用分式方程即可;(2)①根据条件中可以列出关于m的不等式组,求m的取值范围;②本问中,首先根据题意,可以先列出销售利润y与m的函数关系,通过讨论所含字母n的取值范围,得到w与n的函数关系.本题综合考察了分式方程、不等式组以及一次函数的相关知识.在第(2)问②中,进一步考查了,如何解决含有字母系数的一次函数最值问题.22.【答案】解:(1)如图2中,作BO⊥DE于O.∵∠OEA=∠BOE=∠BAE=90°,∴四边形ABOE是矩形,∴∠OBA=90°,∴∠DBO=150°-90°=60°,∴OD=BD•sin60°=20(cm),∴DE=OD+OE=OD+AB=20+5≈39.6(cm).(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,∵∠CBH=60°,∠CHB=90°,∴∠BCH=30°,∵∠BCD=165°,°∠DCP=45°,∴CH=BC sin60°=10(cm),DP=CD sin45°=10(cm),∴DF=DP+PG+GF=DP+CH+AB=(10+10+5)(cm),∴下降高度:DE-DF=20+5-10-10-5=10-10≈3.2(cm).【解析】(1)如图2中,作BO⊥DE于O.解直角三角形求出OD即可解决问题.(2)作DF⊥l于F,CP⊥DF于P,BG⊥DF于G,CH⊥BG于H.则四边形PCHG是矩形,求出DF,再求出DE-DF即可解决问题.本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.【答案】y=-x+4 y=【解析】解:(1)将点A的坐标分别代入一次函数y=-x+b与反比例函数y=(x>0)并解得:b=4,k=3,故一次函数与反比例函数的表达式分别为:y=-x+4,y=,故答案为:y=-x+4,y=;(2)将点B的坐标代入反比例函数表达式并解得:m=1,即点B(3,1),设点P(n,-n+4)(1≤n≤3),S=×OD×PD=×n×(-n+4)=-(n-2)2+2,∵<0且1≤n≤3,∴当n=2时,S取得最大值为2;当n=1或3时,S取得最小值为,故S的取值范围为:≤S≤2.(1)将点A的坐标分别代入一次函数y=-x+b与反比例函数y=(x>0),即可求解;(2)S=×OD×PD=×n×(-n+4)=-(n-2)2+2,根据1≤n≤3,即可求解.本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.24.【答案】(1)证明:连接CE,如图所示:∵AC为⊙O的直径,∴∠AEC=90°.∴∠BEC=90°.∵点F为BC的中点,∴EF=BF=CF.∴∠FEC=∠FCE.∵OE=OC,∴∠OEC=∠OCE.∵∠FCE+∠OCE=∠ACB=90°,∴∠FEC+∠OEC=∠OEF=90°.∴EF是⊙O的切线.(2)解:∵OA=OE,∠EAC=60°,∴△AOE是等边三角形.∴∠AOE=60°.∴∠COD=∠AOE=60°.∵⊙O的半径为2,∴OA=OC=2在Rt△OCD中,∵∠OCD=90°,∠COD=60°,∴∠ODC=30°.∴OD=2OC=4,∴CD=.在Rt△ACD中,∵∠ACD=90°,AC=4,CD=.∴AD==.【解析】(1)连接FO,由F为BC的中点,AO=CO,得到OF∥AB,由于AC是⊙O的直径,得出CE⊥AE,根据OF∥AB,得出OF⊥CE,于是得到OF所在直线垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到结论.(2)证出△AOE是等边三角形,得到∠EOA=60°,再由直角三角形的性质即可得到结果.本题考查了切线的判定和性质,三角形的中位线的性质,勾股定理,线段垂直平分线的性质,直角三角形的性质,熟练掌握定理是解题的关键.25.【答案】解:(1)∵直线y=-x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(-1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=-x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,-t2+t+),则D(t,-t+),∴DM=-t2+t+-(-t+)=-t2+t=-(t-)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.【解析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、二次函数的性质、方程思想等知识.在(1)中注意函数图象与坐标的交点的求法,在(2)中注意待定系数法的应用,在(3)中找到DH、MH与DM的关系是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
2020年山东省聊城市高唐县中考数学一模试卷 (含解析)
2020年山东省聊城市高唐县中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1. 下列各式中,正确的是( )A. √−53=−√53B. √16=±4C. √(−13)2=−13D. √3.6=0.6 2. 2018年,在以习近平总书记为核心的党中央坚强领导下,各地区各部门认真贯彻;实党中央、国务院各项决策部署,经济社会发展的主要预期目标较好完成,朝着实现全面建成小康社会的日标继续迈进2019年1月21日国家统计局初步核算,全年国内生产总值900309亿元,比上年增长6.6%.数据900309亿元用科学记数法表示为( )A. 9.00309×1013元B. 900309×108元C. 9.00309×105元D. 900309×1014元3. 如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是( )A. 俯视图B. 主视图C. 俯视图和左视图D. 主视图和俯视图4. 如图,直线m//n ,将含有45°角的三角板ABC 的直角顶点C 放在直线n 上,若∠1=25°,则∠2的度数是( )A. 35°B. 30°C. 25°D. 20°5. 下列运算中,计算结果正确的是( )A. a 2⋅a 3=a 6B. (a 2)3=a 5C. a 3+a 3=2a 3D. (a 2b)2=a 2b 26.如图所示,平行四边形ABCD的对角线AC,BD相交于点O,AE=EB,OE=3,AB=5,平行四边形ABCD的周长()A. 11B. 13C. 16D. 227.2016年,某市发生了严重干旱,该市政府号召居民节约用水.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.则关于这10户家庭的月用水量,下列说法错误的是()A. 众数是6B. 中位数是6C. 平均数是6D. 方差是48.如图,在△ABC中,∠B=30°,ED垂直平分BC,ED=5.则CE的长为()A. 20B. 12C. 10D. 89.下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 平行四边形是轴对称图形C. 有一个角是直角的四边形是矩形D. 矩形的对角线相等且互相平分10.如图,⊙O的半径为2,点A为⊙O上一点,半径OD⊥弦BC于D,如果∠BAC=60°,那么BC的长是()A. 2√3B. √3C. 1D. √3211.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A. 14B. 12C. π8D. π412.如图,正方形ABCD的边长为5,动点P沿A→B→C运动,运动到点C时停止,动点Q从B点出发,在线段BD上运动,运动到点D时停止,两点同时出发,以相同的速度运动。
山东省聊城市2020年中考数学试卷(I)卷
山东省聊城市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2019·南岸模拟) 的绝对值是A .B .C .D . 12. (2分)(2017·曲靖模拟) 一个数用科学记数法表示为2.37×105 ,则这个数是()A . 237B . 2370C . 23700D . 2370003. (2分) (2018七下·花都期末) 如图,已知AB∥CD,点E、F分别在直线AB、CD上,∠EPF=90°,∠BEP=∠G EP,则∠1与∠2的数量关系为()A . ∠1=∠2B . ∠1=2∠2C . ∠1=3∠2D . ∠1=4∠24. (2分)下列运算正确的是()A . 3x2+4x2=7x4B . (﹣x)﹣9÷(﹣x)﹣3=x﹣6C . x2﹣x2=1D . ﹣x(x2﹣x+1)=﹣x3﹣x2﹣x5. (2分) (2020七下·西乡期末) 下列手机软件图标中,是轴对称图形的是()A .B .C .D .6. (2分)要使有意义,则字母x应满足的条件是().A . x=2B . x<2C . x≤2D . x>27. (2分) (2019九上·洛阳期中) 在平面直角坐标系中,点A的坐标是(1,3),将点A绕原点O顺时针旋转90°得到点A′,则点A′的坐标是()A . (﹣3,1)B . (3,﹣1)C . (﹣1,3)D . (1,﹣3)8. (2分)某商品经过连续两次降价,销售单价由原来100元降到81元.设平均每次降价的百分率为x,根据题意可列方程为()A . 81(1﹣x)2=100B . 100(1+x)2=81C . 81(1+x)2=100D . 100(1﹣x)2=819. (2分)(2012·绍兴) 如图,扇形DOE的半径为3,边长为的菱形OABC的顶点A,C,B分别在OD,OE,上,若把扇形DOE围成一个圆锥,则此圆锥的高为()A .B .C .D .10. (2分)某时刻海上点P处有一客轮,测得灯塔A位于客轮P的北偏东30°方向,且相距20海里.客轮以60海里/小时的速度沿北偏听偏西60°方向航行小时到达B处,那么tan∠ABP=()A .B . 2C .D .11. (2分) (2019八上·东平月考) 如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF,②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△CEF=2S△ABE ,其中正确结论有()个.A . 2B . 3C . 4D . 512. (2分)观察如下数阵,请问位于第9行第10列的数是()1﹣29﹣1025…﹣43﹣811﹣24…5﹣67﹣1223…﹣1615﹣1413﹣22…17﹣1819﹣2021…………………A . ﹣74B . 90C . ﹣90D . 74二、填空题 (共6题;共6分)13. (1分)(2017·绥化) 因式分解:x2﹣9=________.14. (1分) (2017七下·单县期末) 点P(-5,1),到x轴距离为________.15. (1分)(2017·濮阳模拟) 一只昆虫在如图所示的树枝上寻觅食物,假定昆虫在每个岔路口都会随机选择一条路径,则它获取食物的概率是________.16. (1分) (2017八下·南通期末) 如图,在平面直角坐标系中,有一宽度为1的长方形纸带,平行于y轴,在x轴的正半轴上移动,交x轴的正半轴于点A、D ,两边分别交函数y1=(x>0)与y2=(x>0)的图像于B、F和E、C ,若四边形ABCD是矩形,则A点的坐标为________.17. (1分) (2016九上·温州期末) 如图,已知二次函数y= x2﹣ x﹣3的图象与x轴交于A,B两点(点A在点B的左侧),与y轴的负半轴交于点C,顶点为D,作直线CD,点P是抛物线对称轴上的一点,若以P 为圆心的圆经过A,B两点,并且和直线CD相切,则点P的坐标为________18. (1分)(2018·绵阳) 右图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加________m。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山东省聊城市高唐县中考数学一模试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 下列各式中正确的是
A.B.
C.D.
2. 2019年我国经济运行总体平稳,发展水平迈上新台阶,发展质量稳步提升,初步核算,全年国内生产总值990865亿元,比上年增长6.1%.其中,第一产业增加值70467亿元,则数据70467亿用科学记数法表示为()A.7.0467×104B.7.0467×105C.7.0467×1012D.7.0467×1013
3. 如图是由5个大小相同的立方体组成的几何体,在这个几何体的三视图中,是轴对称图形的是()
A.主视图B.左视图C.俯视图D.主视图和左视图
4. 如图,有一块含有30°角的直角三角板的两个顶点放在直尺的对边可以自由滑动上.当∠1=l5°时,∠2的度数是()
A.15°B.25°C.35°D.45°
5. 下列运算正确的是()
A.(﹣a2)3=﹣a5B.a3?a5=a15C.(﹣a2b3)2=a4b6 D.3a2﹣2a2=1
6. 如图,?ABCD的周长为32,对角线AC、BD相交于点O,点E是CD的中点,BD=14,则△DOE的周长为()
A.14 B.15 C.18 D.21
7. 小明收集了某快餐店今年5月1日至5月5日每天的用水量(单位:吨),整理并绘制成如图折线统计图,下列结论正确的是()
A.平均数是7 B.众数是7 C.中位数是5 D.方差是7
8. 如图,已知是的角平分线,是的垂直平分线,
,,则的长为()
A.6 B.5 C.4 D.
9. 下列命题是真命题的是()
A.一组对边平行,另一组对边相等的四边形是平行四边形
B.菱形一定有外接圆
C.三角形的重心是三条边的垂直平分线的交点
D.六边形的内角和是外角和的2倍
10. 如图,点A,B,C,D都在半径为4的⊙O上,若OA⊥BC,∠CDA=30°,则弦BC的长为()
A.4B.4C.2D.4
11. 正方形ABCD的边长为4,以各边为直径在正方形内画半圆,得到如图所示阴影部分,若随机向正方形ABCD内投一粒米,则米粒落在阴影部分的概率为()
A.B.C.D.
12. 如图,菱形ABCD的边长是4厘米,∠B=60°,动点P以1厘米/秒的速度自A点出发沿AB方向运动至B点停止,动点Q以2厘米/秒的速度自B点出发沿折线BCD运动至D点停止.若点P、Q同时出发运动了t秒,记△BPQ的面积为S厘米2,下面图象中能表示S与t之间的函数关系的是()
A.B.C.D.
二、填空题
13. 已知关于x的一元二次方程mx2+5x+m2﹣2m=0有一个根为0,则m=_____.
14. 用一个半径为6cm,圆心角为120°的扇形铁皮,围成一个圆锥形工件,则围成的圆锥形工件的高为_____.
15. 不等式组的解集为__________.
16. 如图,正方形的边长为1,点与原点重合,点在轴的正半轴上,点在轴的负半轴上将正方形绕点逆时针旋转至正方形
的位置,与相交于点,则的坐标为
____________.
17. 如图,在一单位为1的方格纸上,△A1A2A3,△A3A4A5,△A5A6A7,…,都是斜边在x轴上、斜边长分别为2,4,6,…的等腰直角三角形.若△A1A2A3的顶点坐标分别为A1(2,0),A2(1,﹣1),A3(0,0),则依图中所示规律,A
的坐标为_____.
2019
三、解答题
18. 先化简,再求值:(a﹣9+)÷(a﹣1﹣),其中a=2.
19. 由于新冠肺炎影响,全国开展了“停课不停学”线上教学,为了解学生在家学习情况,五月7日开学后,某中学1200名学生参加了入学摸底测试,为了了解本次测试成绩情况,王老师从中抽取了部分学生的数学成绩(得分取整
数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问
成绩分组频数频率
50≤x<60 8 0.16
60≤x<70 12 a
70≤x<80 ■0.5
80≤x<90 3 0.06
90≤x≤100 b c
合计■ 1
(1)写出a,b,c的值;
(2)请估计这1200名学生中有多少人的成绩不低于70分;
(3)在选取的样本中,从成绩是80分以上(含80分)的同学中随机抽取两名同学参加学习经验分享活动,求所抽取的2名同学来自同一组的概率.
20. 如图,在Rt△ABC中,∠ACB=90°,D、E分别是AB、AC的中点,连接CD,过E作EF∥DC交BC的延长线于F.
(1)证明:四边形CDEF是平行四边形;
(2)若四边形CDEF的周长是25cm,AC的长为5cm,求线段AB的长
度.
21. 某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.
(1)求一件A型、B型丝绸的进价分别为多少元?
(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.
①求m的取值范围.
②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w (元)与n(元)的函数关系式.
22. 如图1,为放置在水平桌面上的台灯,底座的高为.长度均为
的连杆,与始终在同一水平面上.
(1)旋转连杆,,使成平角,,如图2,求连杆端点离桌面的高度.
(2)将(1)中的连杆绕点逆时针旋转,使,如图3,问此时连杆端点离桌面的高度是增加了还是减少?增加或减少了多少?(精确到,参考数据:,)
四、填空题
23. 如图所示,一次函数y=﹣x+b与反比例函数y=(x>0)的图象交于点A(1,3)和点B(3,m).
(1)填空:一次函数的表达式为,反比例函数的表达式为;
(2)点P是线段AB上一点,过点P作PD⊥x轴于点D,连接OP,若△POD的面积为S,求S的取值范围.
五、解答题
24. 如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF和AD.
(1)求证:EF是⊙O的切线;
(2)若⊙O的半径为2,∠EAC=60°,求AD的长.
25. 如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴
上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y 轴交BC于点D,求△DMH周长的最大值.。