电路仿真实验报告.pdf

合集下载

电子电路仿真实验报告

电子电路仿真实验报告

电子电路仿真实验报告
本次实验是一次电子电路的仿真实验,旨在通过使用电路仿真软件进行电路实验的模拟,通过对模拟的数据和仿真结果进行分析和总结,进一步掌握电子电路的实验知识和技能,在理论和实践中加深对电子电路的理解和掌握。

实验一:开关电源
1.实验目的
掌握开关电源基本工作原理,理解电源的稳压和稳流的基本原理,掌握开关电源的设
计和布局方法。

2.实验步骤
(1)根据实验手册,搭建开关电源电路,包括开关电源 IC、滤波电感、电容、稳流
二极管和稳压二极管。

(2)进行仿真实验,记录各个参数数据。

(3)分析实验结果,了解电源电路的工作原理和性能。

3.实验结果分析
(1)开关频率:在实验中,我们通过改变开关频率,观察电路的输出。

结果表明,当开关频率增加时,电路的效果也增强。

(2)输出电压:在实验中,我们对电路的输出电压进行了测量,结果表明,当输入电压较高时,输出电压也较高;当输入电压较低时,输出电压也较低。

4.实验总结
开关电源是一种高效率、小体积、轻量化的电源,广泛应用于电子产品中,是电子领
域不可或缺的核心器件之一。

掌握开关电源的设计和布局方法,对于我们理解和掌握电子
电路的原理和技术具有重要的意义。

通过本次实验,我们加深了对开关电源的理解和掌握,为日后的学习和实践打下了基础。

两级放大电路分析仿真实验报告

两级放大电路分析仿真实验报告

两级放大电路分析仿真实验报告器件参数器件参数 RB1=47.5K RBW=2M RB21=16K RB22=10K RC1=6K RC2=2K RE11=107 RE12=2K RE21=51 RE22=2K RL=3K C5=100 uF C1=10uFC2=10 uF C3=100 uF C4=10 uF T1三极管放大倍数ß1=200T21三极管放大倍数ß2=200电路图如下:电路图如下:电路设计指标分析:电压放大倍数大于等于500; 输入电阻大于等于20K Ώ; 电源电压12V ;最大输出不失真电压:5VP-P; 带宽100HZ~1M ;参数测量:输入电阻的测量:输入电阻的测量: RS=0 V o1=1.630 RS=10 K Ώ V o2=1.603V计算计算Ri=593.7 K Ώ输出电阻的测量:输出电阻的测量:RL 为开路为开路 V oo=1.643vRL=3K Ώ V ol=989.720mv计算计算 R0=1.99k Ώ电压放大倍数的测量:电压放大倍数的测量: 测试条件测试条件第一级放大输出第一级放大输出 第二级放大输出第二级放大输出 RL 为开路,为开路, RS=0,VI=3mVppV o1pp=48.427mV V o21pp=1.383V RL=3 K Ώ V o1pp=5.237 mVV o2=1.708Vp波形如下:波形如下:未加入负载RL 时仿真波形时仿真波形加入负载RL 时仿真波形时仿真波形带宽测量带宽测量静态工作点的测量:静态工作点的测量: VB1=4.013V VC1=4.378V VE1=3.228V VRE1=162.927 V VB2=4.743 V VC2=8.164 V VE2=3.953V VRE2=98.285 m V T1三极管放大倍数ß1=200T21三极管放大倍数ß2=200连接万用表电路如下:连接万用表电路如下:。

电路仿真实验报告

电路仿真实验报告

Multisim模拟电路仿真实验1.实验目的(1)学习用Multisim实现电路仿真分析的主要步骤。

(2)用仿真手段对电路性能作较深入的研究。

2.实验内容实验19-1 基本单管放大电路的仿真研究(2)静态工作点理论上,由V E=1.2V得:I E=V E/(R E1+R E2)=1mA,I B=I E/(β+1)=16.39uA,I C=βI B=0.9836mA;U CE=Vcc- I C*Rc-V E=7.554V。

实测值I B =13.995uA,Ic=0.9916mA,U CE=7.521V;相对误差分别为14.63%,0.817%,0.438%(3)电压放大倍数理论值r be=1.886kΩ,Au=-14.0565实测值Au=-13.8476,相对误差1.486%(4)波特图观察电压放大倍数为Au=-13.8530,下限截止频率为17.6938Hz,上限截止频率为18.07MHz,带宽为18.07MHz。

(5)用交流分析功能测量幅频和相频特性。

(6)加大输入信号强度,观测波形失真情况。

失真度为31.514%(7)测量输入电阻、输出电阻。

测输入电阻:U rms=1.00mV,I rms=148nA,则输入电阻R i= U rms/I rms=6.757kΩ;测输出电阻:空载时U oO=14.0mV,带载时U oL=10.6mV,R L=10kΩ,则输出电阻R o=(U oO/U oL-1)* R L =3.208kΩ(8) 将R E1去掉,R E2=1.2kΩ,重测电压放大倍数,上下限截止频率及输入电阻,对比说明R E1对这三个参数的影响。

测得放大倍数Au=-95.2477,下限截止频率为105.7752Hz,上限截止频率为18.9111MHz,带宽为18.9110MHz,输入电阻R i=1.859kΩ。

由表易知,去掉R E1后电压放大倍数变大;上下截止频率都略有增加,通频带变宽;输入电阻变小。

模拟电路仿真实验报告——仿真探究负反馈对放大电路的影响

模拟电路仿真实验报告——仿真探究负反馈对放大电路的影响
北京邮电大学
实 验
报 告
实验名称:仿真探究负反馈对多级放大电路的影响
学 班 姓 学
院:____信息与通信工程学院 ____ 级:__________________________ 名:__________________________ 号:__________________________
任课教师 :__________________________ 实验日期 :_______2009 年 12 月________
第2页
电子电路仿真实验报告
3.负反馈对电路增益的影响分析
如图 8,采用电压串联负反馈,根据反馈基本方程式 Ȧv = Ȧ ̇̇ 1 + AF
可知引入负反馈之后闭环增益将减小。 当深度负反馈时, Ȧv = 1/Ḟ 。 深度负反馈时, 由电路图得: Rv = 反馈深度: D = AF ≈ 220 × 0.1k ≫1 R13 + 0.1k R9 R 9 + R13
引入负反馈后电路电压增益稳定性有所改善,具体为:
dAv 1 dA = Av 1 + AF A
可见,稳定性提高了 |1 + AF|倍。
第3页
电子电路仿真实验报告
五、仿真测试 第一部分测试:未接入反馈时电路性能测试
1、电路增益: 如图 3 所示,实测电路中频(1kHz)电压增益 Av = 225.56; 2、频带宽度: 如图 4 所示,频带宽度为 BW = 858.50 kHz; 3、输入输出电阻: 如图 5、 图 6, 中频(1kHz)输入电阻为 R i = 20.00k Ohm, 输出电阻 R o = 4.60k Ohm。 (注: 为与后续带反馈测试形成对比,此处测试的 R i 是从三极管 Q1 看过去的输入电阻。 ) 4、动态范围: 由图 7 估计知动态范围大约为 -10mV ~ +10mV 。 5、稳定性: 由图 8,输入 5mV 变化 20%(即 1mV)时增益变化 1.41 × 10−2 % 。 (注:出于仿真图视 图精度考虑,便于直接观察变化,以输出电压代替增益进行打印。 )

电路实验仿真实验报告

电路实验仿真实验报告

电路实验仿真实验报告电路实验仿真实验报告摘要:本实验通过电路仿真软件进行了一系列电路实验的仿真,包括电路基本定律验证、电路元件特性研究以及电路参数计算等。

通过仿真实验,我们深入理解了电路的工作原理和性能特点,并通过仿真结果验证了理论计算的准确性。

引言:电路实验是电子工程专业学生必修的一门重要课程,通过实际操作和观察电路的实际运行情况,加深对电路理论知识的理解。

然而,传统的电路实验需要大量的实验设备和实验器材,并且操作过程复杂,存在一定的安全风险。

因此,电路仿真技术的出现为电路实验提供了一种新的解决方案。

方法:本实验采用了电路仿真软件进行电路实验的仿真。

通过在软件中搭建电路原理图,设置电路元件参数,并进行仿真运行,观察电路的电压、电流等参数变化,以及元件的特性曲线等。

实验一:欧姆定律验证在仿真软件中搭建一个简单的电路,包括一个电源、一个电阻和一个电流表。

设置电源电压为10V,电阻阻值为100Ω。

通过测量电路中的电流和电压,验证欧姆定律的准确性。

仿真结果显示,电路中的电流为0.1A,电压为10V,符合欧姆定律的要求。

实验二:二极管特性研究在仿真软件中搭建一个二极管电路,包括一个二极管、一个电阻和一个电压表。

通过改变电阻阻值和电压源电压,观察二极管的正向导通和反向截止特性。

仿真结果显示,当电压源电压大于二极管的正向压降时,二极管正向导通,电压表显示有电压输出;当电压源电压小于二极管的正向压降时,二极管反向截止,电压表显示无电压输出。

实验三:RC电路响应特性研究在仿真软件中搭建一个RC电路,包括一个电阻、一个电容和一个电压源。

通过改变电阻阻值和电容容值,观察RC电路的充放电过程和响应特性。

仿真结果显示,当电压源施加一个方波信号时,RC电路会出现充放电过程,电压信号会经过RC电路的滤波作用,输出信号呈现出不同的响应特性。

实验四:电路参数计算在仿真软件中搭建一个复杂的电路,包括多个电阻、电容、电感和电压源。

电路实验仿真实验报告

电路实验仿真实验报告

1. 理解电路基本理论,掌握电路分析方法。

2. 掌握电路仿真软件(如Multisim)的使用方法。

3. 分析电路参数对电路性能的影响。

二、实验内容本次实验主要针对一阶RC电路进行仿真分析,包括零输入响应、零状态响应和全响应的规律和特点。

三、实验原理一阶RC电路由一个电阻R和一个电容C串联而成,其电路符号如下:```+----[ R ]----[ C ]----+| |+---------------------+```一阶RC电路的传递函数为:H(s) = 1 / (1 + sRC)其中,s为复频域变量,R为电阻,C为电容,RC为电路的时间常数。

根据传递函数,可以得到以下结论:1. 当s = -1/RC时,电路发生谐振。

2. 当s = 0时,电路发生零输入响应。

3. 当s = jω时,电路发生零状态响应。

四、实验仪器与设备1. 电脑:用于运行电路仿真软件。

2. Multisim软件:用于搭建电路模型和进行仿真实验。

1. 打开Multisim软件,创建一个新的仿真项目。

2. 在项目中选择“基本电路库”,搭建一阶RC电路模型。

3. 设置电路参数,如电阻R、电容C等。

4. 选择合适的激励信号,如正弦波、方波等。

5. 运行仿真实验,观察电路的响应波形。

6. 分析仿真结果,验证实验原理。

六、实验结果与分析1. 零输入响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个初始电压源,电路开始工作。

此时,电路的响应为电容的充电过程。

通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐增大,趋于稳态值。

(2)电容电流Ic先减小后增大,在t = 0时达到最大值。

(3)电路的时间常数τ = RC,表示电路响应的快慢。

2. 零状态响应当电路处于初始状态,即电容电压Uc(0-) = 0V时,给电路施加一个激励信号,电路开始工作。

此时,电路的响应为电容的放电过程。

通过仿真实验,可以得到以下结论:(1)随着时间t的增加,电容电压Uc逐渐减小,趋于0V。

电路仿真实验报告

电路仿真实验报告

电路仿真实验报告一、实验目的通过电路仿真实验,了解和掌握电路设计和分析的基本原理和方法,培养学生解决实际电路问题的能力。

二、实验器材1.计算机2.电路仿真软件3.电路设计平台4.万用表三、实验内容1.选择一个电路仿真软件,并了解其基本操作方法。

2.使用电路仿真软件进行简单电路的仿真设计。

3.基于仿真结果,根据实验内容进行电路设计和分析。

四、实验步骤1.打开电路仿真软件,并了解其基本操作方法。

2.根据实验要求,选择一个简单电路进行设计,例如二阶低通滤波器。

3.使用电路设计平台进行电路的搭建,包括选择合适的电阻、电容和运放等器件。

4.在电路设计平台上进行参数设置,例如频率范围和截止频率等。

5.运行仿真,观察电路的响应曲线和频率特性。

6.根据仿真结果,分析电路的性能和特点,并进行相关讨论。

7.如果仿真结果不符合预期,可以调整电路参数或者改变电路结构,重新运行仿真并分析结果。

8.根据实验要求,记录仿真结果并撰写实验报告。

五、实验结果与分析在本次实验中,我们选择了一个二阶低通滤波器进行仿真设计。

根据实验要求,我们选择了合适的电阻、电容和运放等器件进行电路搭建。

通过仿真软件运行仿真,我们得到了电路的频率响应曲线和频率特性的结果。

根据图表分析,我们可以看到,在低频时,滤波器具有较好的通过性能,而在高频时,滤波器开始出现截止的现象。

我们还可以通过改变电路参数来观察电路的变化。

例如,增大电容值可以降低截止频率,使滤波器具有较好的低频通过特性。

而增大电阻值则可以增加滤波器的阻带特性。

通过实验结果的分析,我们可以得到滤波器的性能和特点,并根据实际应用的需求来调整电路参数和结构。

六、实验总结与心得体会通过电路仿真实验,我们学习到了电路设计和分析的基本原理和方法。

通过选择合适的电路仿真软件,并根据实验要求进行电路搭建和参数设置,运行仿真并分析结果,我们可以对电路的性能和特点有更深入的了解。

通过本次实验,我还发现了电路设计和分析的一些问题和挑战。

电工实验报告-基本电路的仿真实验

电工实验报告-基本电路的仿真实验

xxxx大学信控学院实验报告课程名称:电工技术与电子技术实验成绩:实验名称:基本电路的仿真实验班级: 3 姓名:学号:实验日期:教师签字:实验二十九基本电路的仿真实验——仿真实验一一、实验目的1.熟悉EWB仿真软件的使用2.学会用EWB仿真软件分析交流电路,并利用仿真仪器观察RLC电路的频率特性3.通过EWB仿真,观察RC电路的暂态过程及微分电路和积分电路的工作波形二、实验内容与步骤1.RC暂态电路观察并记录电路的充电、放电波形,测量充电时间常数和放电时间常数(1)Timebase=0.5s/div, ChannelA=5V/Div, ChannelB=5V/Div放电常数=200ms,充电常数=1.17s改变电路参数,观察时间常数对电容充放电波形的影响。

(2)Timebase=1.00s/ds, ChannelA=5V/Div, ChannelB=5V/Div(增大Timebase)放电常数=200ms,充电常数=1.15s(3)Timebase=0.2s/dv, ChannelA=5V/Div, ChannelB=5V/Div(减小Timebase)放电常数=205ms,充电常数=1.27s(4)Timebase=0.5s/dv, ChannelA=10V/Div, ChannelB=5V/Div(增大ChannelA)放电常数=220ms,充电常数=1.27s(5)Timebase=0.5s/dv, ChannelA=2V/Div, ChannelB=5V/Div(减小ChannelA)放电常数=220ms,充电常数=1.27s2. 微分电路观察并记录微分电路的输入、输出电压波形,标出输出脉冲的周期和幅值。

输出脉冲的周期=1.0000.ms幅值V1=10.0000V,V2=7.0765V3.积分电路观察并记录积分电路的输入、输出电压波形,标出输出波形的最大值和最小值。

波形VB最大值=6.1940V,周期1.0000ms4.单相交流RLC串联电路电路截图:(输出频率3kHz—6kHz)(1)在谐振曲线上读出谐振频率f0,下限截止频率f L和上限截止频率f H,并计算谐振电路的通频带F0=4.260kHz fl=4.116kHz f2=4.391kHz通频带f=0.131kHz谐振曲线:(2) 改变电阻R=100 ,观察幅频特性的变化,再读出谐振频率f0、下限截止频率f L和上限截止频率f H,计算通频带。

大连理工大学实验报告 电路仿真实验报告 (1)

大连理工大学实验报告  电路仿真实验报告 (1)

大连理工大学实验报告学院(系):材料科学与工程学院专业:材料类班级:材料1105姓名:学号:2实验时间:第7周星期一第3/4节实验室:综合楼116实验台:005指导教师签字:成绩:电路仿真试验报告一、实验目的1、通过实验了解并掌握Pspice软件的运用方法,以及电路仿真的基本方法。

2、学会用电路仿真的方法分析各种电路。

3、通过电路仿真的方法验证所学的各种电路基础定律,并了解各种电路的特性。

二、软件简介Pspice是主要用于集成电路的分析程序,Pspice起初用在大规模电子计算机上进行仿真分析,后来推出了能在 PC上运行的Pspice软件。

Pspice5.0以上版本是基于windows 操作环境。

Pspice软件的主要用途是用于于仿真设计:在实际制作电路之前,先进行计算机模拟,可根据模拟运行结果修改和优化电路设计,测试各种性能,不必涉及实际元器件及测试设备。

改和优化电路设计,测试各种性能,不必涉及实际元器件及测试设备。

三、预习要求及思考题对于简单的电阻电路,用PSpice软件进行电路的仿真分析时,先要在capture环境(即Schematics程序)下画出电路图,然后调用分析模块、选择分析模型,就可以“自动“进行电路分析了。

PSpice软件是采用节点电压法求电压的,因此,在绘制电路图时,一定要有零点(即接地点)。

同时,要用电路基础理论中的方法列电路方程,求解电路中各个电压和电流。

与仿真结果进行对比分析。

四、主要仪器设备五、实验步骤与操作方法1、原理说明:对于简单的电阻电路,用Pspice软件进行电路的仿真分析时,现在要在capture环境(即Schematics程序)下画出电路图。

然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。

Pspice软件是采用节点电压法求电压的,因此,在绘制电路图时,一定要有零点(即接地点)。

同时,要可以用电路基础理论中的方法列电路方程,求解电路中各个电压和电流。

电路仿真实验报告

电路仿真实验报告

电路仿真MATLAB实验报告班级:学号:姓名:学院:实验一直流电路(1)一、实验目的1、加深对直流电路的节点电压法和网孔电流法的理解2、学习使用MATLAB的矩阵运算的方法二、实验示例1、节点分析电路如图所示(见书本12页),求节点电压V1,V2,V3.根据电路图得到矩阵方程,根据矩阵方程使用matlab命令为Y =0.1500 -0.1000 -0.0500-0.1000 0.1450 -0.0250-0.0500 -0.0250 0.0750节点v1,v2和v3:v =404.2857350.0000412.85712、回路分析电路如图所示(见书本13页),使用解析分析得到同过电阻RB的电流,另外求10V电压源的输出功率。

分析电路得到节点方程,根据节点方程得到矩阵方程,根据矩阵方程,使用matlab的命令为z=[40,-10,-30;-10,30,-5;-30,-5,65];v=[10,0,0]';I=inv(z)*v;IRB=I(3)-I(2);fprintf('the current through R is %8.3f Amps \n',IRB)ps=I(1)*10;fprintf('the power supplied by 10v source is %8.4f watts\n',ps)结果为:the current through R is 0.037 Ampsthe power supplied by 10V source is 4.7531 watts三、实验内容1 根据书本15页电路图,求解电阻电路,已知:R1=2Ω,R2=6Ω,R3=12Ω,R4=8Ω,R5=12Ω,R6=4Ω,R7=2Ω如果Us=10V,求i3,u4,u7如果U4=4V,求Us,i3,i7使用matlab命令为clear% 初始化阻抗矩阵Z=[20 -12 0;-12 32 -12;0 -12 18];% 初始化电压矩阵V=[10 0 0]';% 解答回路电流I=inv(Z)*V;% I3的计算I3=I(1)-I(2);fprintf('the current I3 is %8.2f Amps\n',I3) % U4的计算U4=8*I(2);fprintf('the voltage U4 is %8.2f Vmps\n',U4) % U7的计算U7=2*I(3);fprintf('the voltage U7 is %8.2f Vmps\n',U7)结果the current I3 is 0.36 Ampsthe voltage U4 is 2.86 Vmpsthe voltage U7 is 0.48 Vmpsclear% 初始化矩阵XX=[20 -1 0;-12 0 -12;0 0 18];% 初始化矩阵YY=[6 -16 6]';% 进行解答A=inv(X)*Y;% 计算各要求量Us=A(2)I3=A(1)-0.5I7=A(3)结果Us = 14.0000I3 = 0.5000I7 =0.33332 求解电路里的电压如图1-4(书本16页),求解V1,V2,V3,V4,V5使用matlab命令为clear% 初始化节点电压方程矩阵Z=[0.725 -0.125 -0.1 -5 -1.25;-0.1 -0.2 0.55 0 0;-0.125 0.325 -0.2 0 1.25;1 0 -1 -1 0;0 0.2 -0.2 0 1];I=[0 6 5 0 0]';% 解答节点电压U1,U3,U4与Vb,IaA=inv(Z)*I;% 最终各电压计算V1=A(1)V2=A(1)-10*A(5)V3=A(2)V4=A(3)V5=24结果V1 =117.4792V2 = 299.7708V3 =193.9375V4 =102.7917V5 = 243、如图1-5(书本16页),已知R1=R2=R3=4Ω,R4=2Ω,控制常数k1=0.5,k2=4,is=2A,求i1和i2.使用matlab命令为clear% 初始化节点电压方程矩阵Z=[0.5 -0.25 0 -0.5;-0.25 1 -1 0.5;0 0.5 0 -1;1 -1 -4 0];I=[2 0 0 0]';% 解答节点电压V1,V2及电流I1,I2A=inv(Z)*I;% 计算未知数V1=A(1)V2=A(2)I1=A(3)I2=A(4)结果如下:V1 =6V2 =2I1 = 1I2 =1实验二直流电路(2)一、实验目的1、加深多戴维南定律,等效变换等的了解2、进一步了解matlab在直流电路中的作用二、实验示例如图所示(图见书本17页2-1),分析并使用matlab命令求解为clear,format compactR1=4;R2=2;R3=4;R4=8;is1=2;is2=0.5;a11=1/R1+1/R4;a12=-1/R1;a13=-1/R4;a21=-1/R1;a22=1/R1+1/R2+1/R3;a23=-1/R3;a31=-1/R4;a32=-1/R3;a33=1/R3+1/R4;A=[a11,a12,a13;a21,a22,a23;a31,a32,a33];B=[1,1,0;0,0,0;0,-1,1];X1=A\B*[is1;is2;0];uoc=X1(3);X2=A\B*[0;0;1];Req=X2(3);RL=Req;P=uoc^2*RL/(Req+RL)^2;RL=0:10,p=(RL*uoc./(Req+RL)).*uoc./(Req+RL),figure(1),plot(RL,p),gridfor k=1:21ia(k)=(k-1)*0.1;X=A\B*[is1;is2;ia(k)];u(k)=X(3);endfigure(2),plot(ia,u,'x'),gridc=polyfit(ia,u,1);%ua=c(2)*ia=c(1) , 用拟合函数术,c(1),c(2)uoc=c(1),Req=c(2) RL =0 1 2 3 4 5 6 7 8 9 10 p =Columns 1 through 70 0.6944 1.0204 1.1719 1.2346 1.2500 1.2397Columns 8 through 111.2153 1.1834 1.1480 1.1111A 、功率随负载变化曲线 B.电路对负载的输出特性0123456789100.20.40.60.811.21.400.20.40.60.81 1.2 1.4 1.6 1.82三、实验内容1、图见书本19页2-3,当RL从0改变到50kΩ,校验RL为10kΩ的时候的最大功率损耗使用matlab命令为clear% 定义电压源和电阻值Us=10;Rs=10000;RL=0:20000;p=(Us^2.*RL)./(RL+Rs).^2;plot(RL,p);输出结果为Maximum power occur at 10000.00hmsMaximum power dissipation is 0.0025Watts2、在图示电路里(书本20页2-4),当R1取0,2,4,6,10,18,24,42,90和186Ω时,求RL 的电压UL,电流IL 和RL 消耗的功率。

电路仿真实验报告

电路仿真实验报告

电路仿真实验报告本次实验旨在通过电路仿真软件进行电路实验,以加深对电路原理的理解,掌握电路仿真软件的使用方法,以及提高实验操作能力。

1. 实验目的。

通过电路仿真软件进行电路实验,掌握电路原理,加深对电路知识的理解。

2. 实验仪器与设备。

电脑、电路仿真软件。

3. 实验原理。

电路仿真软件是一种利用计算机进行电路仿真的工具,可以模拟各种电路的性能,包括直流电路、交流电路、数字电路等。

通过电路仿真软件,可以方便地进行电路实验,观察电路中各种参数的变化,从而加深对电路原理的理解。

4. 实验步骤。

(1)打开电路仿真软件,创建新的电路实验项目。

(2)按照实验要求,设计电路图并进行仿真。

(3)观察电路中各种参数的变化,并记录实验数据。

(4)分析实验数据,总结实验结果。

5. 实验结果与分析。

通过电路仿真软件进行实验,我们可以方便地观察电路中各种参数的变化,比如电压、电流、功率等。

通过对实验数据的分析,我们可以得出一些结论,加深对电路原理的理解。

6. 实验总结。

通过本次实验,我们掌握了电路仿真软件的使用方法,加深了对电路原理的理解,提高了实验操作能力。

电路仿真软件为我们进行电路实验提供了便利,让我们可以更直观地观察电路中各种参数的变化,从而更好地理解电路知识。

7. 实验心得。

通过本次实验,我深刻体会到了电路仿真软件的重要性,它为我们进行电路实验提供了极大的便利。

通过电路仿真软件,我们可以更直观地观察电路中各种参数的变化,从而更好地理解电路原理。

我相信,在今后的学习和工作中,我会继续利用电路仿真软件进行电路实验,不断提高自己的实验操作能力和电路知识水平。

8. 参考文献。

[1] 《电路原理》,XXX,XXX出版社,200X年。

电路仿真实验实验报告

电路仿真实验实验报告

电路仿真实验实验报告电路仿真实验实验报告一、引言电路仿真实验是电子工程领域中重要的实践环节,通过计算机软件模拟电路的运行情况,可以帮助学生深入理解电路原理和设计方法。

本次实验旨在通过使用电路仿真软件,验证并分析不同电路的性能和特点。

二、实验目的1. 掌握电路仿真软件的基本操作方法;2. 理解并验证基本电路的性能和特点;3. 分析电路中各元件的作用和参数对电路性能的影响。

三、实验内容1. 简单电路的仿真通过电路仿真软件,搭建并仿真简单电路,如电阻、电容、电感等基本元件的串并联组合电路。

观察电路中电流、电压的变化情况,分析电路中各元件的作用。

2. 放大电路的仿真搭建并仿真放大电路,如共射放大电路、共集放大电路等。

通过改变输入信号的幅值和频率,观察输出信号的变化情况,分析放大电路的增益和频率响应。

3. 滤波电路的仿真搭建并仿真滤波电路,如低通滤波器、高通滤波器等。

通过改变输入信号的频率,观察输出信号的变化情况,分析滤波电路的截止频率和滤波特性。

四、实验步骤1. 下载并安装电路仿真软件,如Multisim、PSPICE等;2. 学习软件的基本操作方法,包括搭建电路、设置元件参数、设置输入信号等;3. 根据实验要求,搭建并仿真所需的电路;4. 运行仿真,观察电路中各元件的电流、电压变化情况;5. 改变输入信号的参数,如幅值、频率等,观察输出信号的变化情况;6. 记录实验数据和观察结果。

五、实验结果与分析1. 简单电路的仿真结果通过搭建并仿真电路,观察到电路中电流、电压的变化情况。

例如,在串联电路中,电压随着电阻值的增大而增大,电流保持不变;在并联电路中,电流随着电阻值的增大而减小,电压保持不变。

这说明了电阻对电流和电压的影响。

2. 放大电路的仿真结果通过搭建并仿真放大电路,观察到输入信号的幅值和频率对输出信号的影响。

例如,在共射放大电路中,输入信号的幅值增大时,输出信号的幅值也相应增大,但频率不变;在共集放大电路中,输入信号的频率增大时,输出信号的幅值减小,但频率不变。

动态电路仿真实验报告

动态电路仿真实验报告

一、实验目的1. 掌握使用Multisim软件进行动态电路仿真的基本方法。

2. 理解并验证一阶、二阶动态电路的基本特性。

3. 分析电路参数对动态电路响应的影响。

4. 通过仿真实验,加深对动态电路理论知识的理解。

二、实验原理动态电路是指电路中元件的参数(如电阻、电容、电感等)随时间变化的电路。

动态电路的特性主要取决于电路的结构和元件参数。

本实验主要研究一阶和二阶动态电路的响应特性。

三、实验仪器1. PC机一台2. Multisim软件四、实验内容1. 一阶动态电路仿真(1)搭建RC电路使用Multisim软件搭建一个RC电路,电路参数如下:R=1kΩ,C=1μF。

将电路连接到函数信号发生器上,输出一个5V的方波信号。

(2)仿真分析① 零输入响应:将电容C的初始电压设为5V,观察电容电压uc随时间的变化情况,并记录时间常数τ。

② 零状态响应:将电容C的初始电压设为0V,观察电容电压uc随时间的变化情况,并记录时间常数τ。

③ 完全响应:将电容C的初始电压设为5V,观察电容电压uc随时间的变化情况,并记录时间常数τ。

2. 二阶动态电路仿真(1)搭建RLC电路使用Multisim软件搭建一个RLC电路,电路参数如下:R=1kΩ,L=1mH,C=1μF。

将电路连接到函数信号发生器上,输出一个5V的方波信号。

(2)仿真分析① 零输入响应:将电感L的初始电流设为5A,观察电感电流iL随时间的变化情况,并记录时间常数τ。

② 零状态响应:将电感L的初始电流设为0A,观察电感电流iL随时间的变化情况,并记录时间常数τ。

③ 完全响应:将电感L的初始电流设为5A,观察电感电流iL随时间的变化情况,并记录时间常数τ。

五、实验结果与分析1. 一阶动态电路(1)零输入响应:电容电压uc随时间呈指数衰减,时间常数τ=1s。

(2)零状态响应:电容电压uc随时间呈指数增长,时间常数τ=1s。

(3)完全响应:电容电压uc随时间呈指数衰减和增长,时间常数τ=1s。

电路仿真实验报告

电路仿真实验报告

电路仿真实验报告电路仿真实验报告本科实验报告实验名称:电路仿真实验1 叠加定理的验证1. 原理图编辑:分别调出接地符、电阻R1、R2、R3、R4,直流电压源、直流电流源,电流表电压表(Group:Indicators,Family:VOLTMETER 或AMMETER )注意电流表和电压表的参考⽅向),并按上图连接; 2. 设置电路参数:电阻R1=R2=R3=R4=1Ω,直流电压源V1为12V ,直流电流源 I1为10A 。

3.实验步骤:R11ΩV112 VR21ΩR31ΩR41ΩU1DC 1e-009Ohm0.000A+-U2DC 10MOhm0.000V+-1)、点击运⾏按钮记录电压表电流表的值U1和I1;2)、点击停⽌按钮记录,将直流电压源的电压值设置为0V ,再次点击运⾏按钮记录电压表电流表的值U2和I2;3)、点击停⽌按钮记录,将直流电压源的电压值设置为12V ,将直流电流源的电流值设置为0A ,再次点击运⾏按钮记录电压表电流表的值U3和I3;4.根据叠加电路分析原理,每⼀元件的电流或电压可以看成是每⼀个独⽴源单独作⽤于电路时,在该元件上产⽣的电流或电压的代数和。

所以,正常情况下应有U1=U2+U3,I1=I2+I3; 经实验仿真:当电压源和电流源共同作⽤时,U1=-1.6V I1=6.8A.当电压源短路即设为0V,电流源作⽤时,U2=-4V I2=2AR11ΩR21ΩR31ΩR41ΩV112 VU1DC 10MOhm -1.600V+-U2DC 1e-009Ohm6.800A+-当电压源作⽤,电流源断路即设为0A 时,U3=2.4V I3=4.8A所以有U1=U2+U3=-4+2.4=-1.6V I1=I2+I3=2+4.8=6.8A 验证了原理实验2 并联谐振电路仿真R11ΩR21ΩR31ΩR41ΩV112 VU1DC 10MOhm 2.400V+-U2DC 1e-009Ohm4.800A+ -。

电路仿真模拟实验报告

电路仿真模拟实验报告

综合设计设计1:设计二极管整流电路。

条件:输入正弦电压,有效值 220v ,频率50Hz ;要求:输出直流电压 20V+/-2V 电路图:结果:通过电路,将 220V 的交流电转化成了大约 20V 的直流电。

先用变压器将220V 的交流电转化为20V 的交流电,再用二极管将20V 交流 电的负值滤掉,电容充当电源放电而且电压保持不变,因为一直有来自二极管的电流充电,而且周期为0.02秒,即电容两端电压能维持不变的放电到输 出端。

将电容的C 调的小一点可以使充放电的速度加快,就可以使得输出电压变化幅度很小。

设计2:设计风扇无损调速器。

波形图如下:结论分析:条件:风扇转速与风扇电机的端电压成正比;风扇电机的电感线圈的内阻为200欧姆,线圈的电感系为500mH风扇工作电源为市电,即有效值220V,频率50Hz的交流电。

要求:无损调速器,将风扇转速由最高至停止分为4档,即0,1,2,3档,其中0档停止,3档最高。

电路图:(开关从下至上依次为0,1,2,3档)开关置0档,风扇停止,其两端电压波形如下图:开关置1档,风扇转速最慢,其两端电压波形如下图:开关置2档,风扇转速适中,其两端电压波形如下图:开关置3档,风扇转速最快,其两端电压波形如下图:结果:由图可知,当开关分别置0, 1, 2,3时,风扇两端的电压依次增大,其中当风扇置0档时,电压为零,满足风扇转速与风扇电机的端电压成正比的条件。

结论分析:设计3 :设计1阶RC 滤波器。

条件:一数字电路的工作时钟为5MHz 工作电压5V 。

但是该数字电路的+5v 电源上存在一个 100MHz 的高频干扰。

要求:设计一个简单的 RC 电路,将高频干扰滤除。

电路图:结果:由图知,滤过的波形的频率与 5MHz 基本一致,将高频 100MHz 滤去,符合题意要求。

结论分析:通过简单的 RC 电路,用低通函数 H (jw )=HWc/(jw+Wc),计 算出了电路中所需的电阻大小及电容大小。

电子电路仿真实验报告

电子电路仿真实验报告

电子电路仿真实验报告一、实验目的1. 学习电子电路仿真实验的基本操作和方法。

2. 熟悉电子元器件如何实现电路中的各种功能。

3. 掌握几种基本电路的设计和仿真方法。

二、实验仪器和材料1. 电脑2. 软件:Multisim仿真软件3. 元器件:电阻、电容、二极管、三极管等。

三、实验原理在电子电路中,各种元器件按照一定的连接方式组成各种电路,实现信号的放大、变换、滤波等功能。

而在实验中,我们可以通过仿真软件来进行计算分析、虚拟实验等操作,为电路的设计和实现提供帮助。

本次实验将重点介绍三种基本电路的仿真方法和设计思路,包括放大电路、滤波电路和振荡电路。

每种电路都有自己的设计方法和指标,需要结合实际情况进行仿真和测试。

四、实验内容1. 放大电路仿真实验(1)单管共射放大电路单管共射放大电路是一种常见的放大器电路,可以实现信号放大和变换的功能。

在该电路中,输入信号经过电容和限流电阻进入基极,当输入信号变化时,导致基极电位的变化,进而影响集电极电位的变化,使得输出信号的幅值发生变化。

为了使单管工作稳定,需要额外加上一个偏置电路,保证输入信号不会进入截止区或饱和区。

该偏置电路通常由一个电阻和电源构成,根据实际需要可以调整电阻的取值来改变工作点。

如图所示,是一个单管共射放大电路的仿真电路图:其中Q1为NPN型三极管,Rb1为偏置电阻,Rb2为信号电阻,Re为发射极电阻,Rc为集电极电阻,C1为输入信号电容,C2为输出信号电容。

在仿真软件中,可以通过正弦信号源模拟输入信号,通过示波器实时监测输入信号和输出信号的变化。

为了得到高质量的输出信号,需要考虑以下几个因素:1)偏置电阻的取值应该适当,可以通过调整偏置电源来达到调节偏置电压的目的。

2)输入信号的电容取值应该适当,可以通过调节电容的容值来改变输入信号频率的响应情况。

3)集电极电阻和发射极电阻的取值应该适当,以达到适当的放大倍数和输出功率。

如图所示,是仿真软件中单管共射放大电路的实验效果:通过设置输入信号的频率,可以在示波器上观察到输出信号的变化,同时可以计算出输出信号的功率和放大倍数等重要指标。

武汉大学 电路仿真实验报告

武汉大学 电路仿真实验报告

Matlab程序: Z1=3j;Z2=5;Z3=-2j;Uc=10*exp(30j*pi/180); Z23=Z2*Z3/(Z2+Z3);Z=Z1+Z23; Ic=Uc/Z3,Ir=Uc/Z2,I=Ic+Ir,U1=I*Z1,Us=I*Z; disp('Uc Ir Ic I u1 Us') disp('·ùÖµ'),disp(abs([Uc,Ir,Ic,I,U1,Us])) disp('Ïà½Ç'),disp(angle([Uc,Ir,Ic,I,U1,Us])*180/pi) ha=compass([Uc,Ir,Ic,I,Us,Uc]); set(ha,'linewidth',3) 仿真结果: Ic = -2.5000 + 4.3301i Ir = 1.7321 + 1.0000i I= -0.7679 + 5.3301i U1 = -15.9904 - 2.3038i Uc Ir Ic I u1 Us 幅值 10.0000 2.0000 5.0000 5.3852 16.1555 7.8102 相角 30.0000 30.0000 120.0000 98.1986 -171.8014 159.8056 2、如图所示电路,已知C1=0.5F,R2=R3=2Ω, L4=1H;Us(t)=10+10cost,Is(t)=5+5cos2t,求b,d两点时间的电压 U(t)。 MATLAB仿真: clear,format compact w=[eps,1,2];Us=[10,10,0];Is=[5,0,5]; Z1=1./(0.5*w*j);Z4=1*w*j; Z2=[2,2,2];Z3=[2,2,2]; Uoc=(Z2./(Z1+Z2)-Z4./(Z3+Z4)).*Us; Zeq=Z3.*Z4./(Z3+Z4)+Z1.*Z2./(Z1+Z2);

仿真电路实验报告

仿真电路实验报告

仿真电路实验报告一、仿真电路实验报告的目的哎呀,这仿真电路实验报告啊,目的就是让咱把在仿真电路实验里的各种情况都给说清楚呢。

就像是把自己在这个实验里的所见所闻、所做所想都分享出来。

这可不光是为了给老师交差,更是为了自己能把这个实验里学到的东西好好总结一下。

二、实验过程1. 实验准备我当时啊,就跟要去打仗一样准备这个实验。

先得把要用的软件啥的都准备好,比如说Multisim这个软件,可不能到时候手忙脚乱的。

还得把理论知识再复习复习,像那些电路的基本原理啊,什么欧姆定律之类的,不然在实验里就跟没头的苍蝇似的。

2. 电路搭建然后就开始搭建电路啦。

我在软件里找那些元件的时候,眼睛都快花了。

电阻、电容、电感啥的,一个都不能少。

而且连接线路的时候可得小心,要是接错了,那结果可就完全不对啦。

就像搭积木一样,一块搭错了,整个建筑都不稳。

3. 数据测量电路搭好后就开始测量数据了。

这时候就盯着那些测量仪器,看电压表、电流表的读数。

哎呀,有时候那读数跳来跳去的,我都怀疑是不是电路又出问题了。

每次记录数据的时候都小心翼翼的,就怕写错了。

三、实验结果1. 结果呈现最后得到的数据结果啊,有的符合我的预期,有的就有点奇怪。

比如说电压的值,有些地方比我算出来的稍微高一点或者低一点。

我就又重新检查了一遍电路,看是不是哪里有问题。

2. 结果分析分析结果的时候我就在想,为啥会出现那些和预期不一样的情况呢。

可能是元件的参数设置有点偏差,也可能是在电路连接的时候有一些小的误差。

这就告诉我们在做实验的时候一定要非常细心才行啊。

四、实验心得这个实验做下来啊,我可真是收获满满。

我明白了理论和实践之间的差距可真不小。

虽然理论知识都懂,但是一到实际操作就会出现各种各样的问题。

而且在遇到问题的时候,不能慌,要一步一步去排查。

就像解决一个谜题一样,慢慢找到答案的那种感觉还挺好玩的。

以后要是再做类似的实验,我肯定会做得更好的,因为我已经从这次实验里吸取教训啦。

仿真电路实验报告

仿真电路实验报告

仿真电路实验报告仿真电路实验报告引言仿真电路实验是电子工程领域的重要实践环节,通过模拟电路的工作原理和性能,可以帮助学生更好地理解电子元器件的特性和电路设计的原理。

本文将对一次仿真电路实验进行报告,包括实验目的、实验过程、实验结果和分析等内容。

实验目的本次实验的目的是设计一个简单的放大电路,通过仿真分析电路的工作性能,并对电路的增益、频率响应等参数进行评估。

通过实验,我们希望能够掌握放大电路的设计原理和仿真分析方法,并了解电路中各个元器件的作用和特性。

实验过程1. 电路设计首先,我们根据实验要求,设计了一个基本的放大电路。

电路包括一个放大器和一个负载电阻。

在设计电路时,我们需要考虑放大器的增益、输入阻抗和输出阻抗,以及负载电阻的大小。

2. 电路仿真接下来,我们使用仿真软件进行电路仿真。

仿真软件可以帮助我们模拟电路的工作情况,并分析电路的性能。

在仿真过程中,我们需要设置电路的输入信号和参数,并观察电路的输出波形和频率响应。

3. 仿真结果分析通过仿真软件,我们得到了电路的输出波形和频率响应。

根据输出波形,我们可以判断电路是否正常工作,并评估电路的增益和失真情况。

而根据频率响应,我们可以了解电路在不同频率下的放大性能。

实验结果和分析根据仿真结果,我们得到了电路的增益和频率响应曲线。

通过分析曲线,我们可以得出以下结论:1. 增益:根据增益曲线,我们可以看到电路在特定频率下的放大倍数。

通过比较不同频率下的增益,我们可以评估电路的放大性能。

如果增益随频率变化较大,可能表示电路存在失真或不稳定的问题。

2. 频率响应:频率响应曲线可以帮助我们了解电路在不同频率下的放大情况。

如果频率响应曲线在所需频率范围内较为平坦,表示电路能够稳定地放大输入信号。

而如果频率响应曲线在某些频率点出现明显的变化,可能表示电路的频率特性有问题。

结论通过本次仿真电路实验,我们成功设计并仿真了一个放大电路,并对电路的增益和频率响应进行了分析。

电路仿真实验报告

电路仿真实验报告
= 同理推导出
Y11= Y21= Y12= Y22=
T= 称为传输参数矩阵。 = 同理推导出
A= C= B= D=
以Z参数为例:
如图,求双口网络的Z参数。
解:
= 4 + 2( + )+1
=2 +(2+3+2)
可得:Z11=7Ω,Z12=2Ω,Z21=2Ω,Z22=7Ω
三、仿真实验测试
1、验证Z11是否为10Ω:
具体步骤:
利用仿真电路观察微分和积分电路的波形,微分仿真电路如图2-8所示。
图2-8微分仿真电路图
通过示波器观察微分电路的图形如图2-9所示
图2-9微分电路波形图
积分仿真电路图如图2-10所示,
图2-10积分仿真电路图
通过用示波器观察积分电路的波形,如图2-11所示。
图2-11积分电路波形
通过观察波形图我们很容易发现微分电路与积分电路的特性。
四、结论
理论计算结果与仿真测量结果有一定的误差。主要原因是:
理论计算是理想状态的分析结果,仿真电路比较接近实际测量情况。比如,电压表和电流表都有内阻存在,会对测量产生一定的影响。通过开关观察电流值是由于开关的打开或者闭合中存在一定的时间因此误差在所难免。只要我们只要认证准备仿真试验,调整好电压电流表的内阻尽力去减小各种因素的影响,就可以得到较好的仿真结果。
p1,2 = -
uc= A1e + A2e uc(0+)=A1+A2 iL(0+)=-C(A1p1+A2p2)求出A1和A2
(2)p1和p2为相等的负实根(R=2 ,临界阻尼)
p1,2 = -
uc=(A1+A2t)e uc(0+)=A1 iL(0+)=-C(A1p+A2)求出A1和A2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五、实验结论: 由电路分析叠加原理知:由线性电路、线性受控源及独立源组成
的电路中,每一元件的电流或电压可以看成是每一个独立源单独作用
-2-
时,在该元件上产生的的电流或电压的代数和。 本次实验中,第一组各数据等于第二组与第三组各对应实验数据
之和,与叠加原理吻合,验证了叠加原理的正确性,即每一元件的电 流或电压可以看成是每一个独立源单独作用时,在该元上产生的的 电流或电压的代数和。
-5-
④记录结果 在所得图形上点击右键,将图片复制并粘贴在新建 word 文 档中。之后单击“工具”菜单,选择“导出到 Excel”选项, 将实验数据以 excel 的形式保存。
4.实验结果: 要求将实验分析的数据保存 (包括图形和数据),并验证结果是否 正确,最后提交实验报告时需要将实验结果附在实验报告后。
由瞬态分析结果计算可知,时域波形的频率为 500Hz,幅值约为 7.09,与理论值基本吻合。
综上所述,结果与理论值相符,正确。
-7-
实验 3 含运算放大器的比例器仿真
一、电路图:
二、实验步骤 1.原理图编辑:
分别调出电阻 R1、R2,虚拟运算放大器 OPAMP_3T_VIRTUA(在 ANALOG 库中的 ANALOG_VIRTUAL 中,放置时注意同相和方向引脚的方向); 调用虚拟仪器函数发生器 Function Generator 与虚拟示波器 Oscilloscope。 2.设置电路参数: 电阻 R1=1KΩ,电阻 R2=5KΩ。信号源 V1 设置为 Voltage=1v。 函数发生器分别为正弦波信号、方波信号与三角波信号。频率均为 1khz,电压值均为 1。其中方波信号和三角波信号占空比均为 50%。 3.分析示波器测量结果: 实验结果:只记录数据(并考虑 B 通道输入波形和信号发生器的设 置什么关系)
①类型设置 仿真→分析→交流分析。
②参数设置
-4-
起始频率设为 1Hz,停止频率设为 100MHz,扫描类型 为十倍频程,每十倍频程点数设为 10,垂直刻度设为线性, 其他保持默认,单击“确定”。然后选择对话框菜单栏的“输 出”按钮,在左侧的“所有变量”中选择“V(out)”(双击)。 ③仿真 在交流分析参数都设置好以后,单击对话框中的“仿真” 按钮,开始仿真。 ④记录结果 在所得图形上点击右键,将图片复制并粘贴在新建 word 文 档中。之后单击“工具”菜单,选择“导出到 Excel”选 项,将实验数据以 excel 的形式保存。 (2)瞬态分析 ①类型设置 仿真→分析→瞬态分析。 ②参数设置 由信号源 f=500Hz,可得周期为 0.002s,五个周期即 0.01s。 参数设置起始时间设为 0s,结束时间设为 0.01s,其他参 数保持默认,单击“确定”。然后选择对话框菜单栏的“输 出”按钮,在左侧的“所有变量”中选择“V(out)”。 ③仿真 在瞬态分析参数都设置好以后,单击对话框中的“仿真” 按钮,开始仿真。
由仿真结果可知,输出信号与输入信号反相,且被放大 R2/R1=5 倍, 与理论一致。故测量结果得以验证。
--1100--
实验 4 二阶电路瞬态仿真
一、电路图:
二、实验步骤 1.初步设置
C1 的电容值分别取 1000u、500u、100u、10u,并设置初始值为 5V, 电感 L1=1mH,使用瞬态分析求出上图中各节点的 V(out)节点的时 域响应,并能通过数据计算出对应电路谐振频率(零输入响应)。 2.分析电路 (1)参数扫描分析
-8-
将测量结果保存,并利用电路分析理论计算结果验证。 三、仿真结果:
按照上述步骤操作完成之后,可在示波器上观察到如下波形:
-9-
四、实验结果分析
对与节点 2 可列节点方程:
(G1 + G 2)U 2 − G1US − G 2 U 0 = 0
由理想运放特点可知: u2=0(虚断)
U 0 = − R2 US R1
-3-
实验 2 并联谐振电路仿真
一、电路图:
二、实验步骤: 1.原理图编辑:
分别调出接地符、电阻 R1、R2,电容 C1,电感 L1,信号源 V1,并 按上图连接; 2.设置电路参数: 将交流分析量值设置为 5V,电压源 V1 设置为 5V,频率设为 500Hz, 设置电阻 R1=10Ω,电阻 R2=2KΩ,电感 L1=2.5mH,电容 C1=40uF。 并如图所示对电容上方的线名称改为“out”。 3.分析参数设置: (1)AC 分析
根据电路分析原理,解释三者是什么关系?并在实验报告中验证 原理。
三、实验数据:
电压
第一组
12V
第二组
0V
第三组
12V
电流 10A 10A 0A
U/V 6.800 2.000 4.800
I/A -1.600 -4.000 2.400
四、实验数据处理: U2 + U3 = 2.000V + 4.800V = 6.800V = U3 I2 + I3 = (-4.000A) + 2.400A= -1.600A = I1
三、仿真结果: 按上述步骤进行完毕后,得到仿真结果如下图所示:
1.交流分析仿真结果:
2.瞬态分析仿真结果:
-6-
四、实验结果分析 将电路化作等效向量模型,计算其阻抗得电路谐振条件:L=1/C,
f0 = 1
其谐振频率为 2π LC 。 本实验中的电路满足谐振条件,并联谐振电路呈电阻性,当 f=f0
时,电路为纯电阻电路,其阻抗模最小,电路中电流最大,此时,R2 两端电压最大。由仿真结果可知,当 f=510.03Hz 时,其输出达到最 大值,与理论结果相接近,得以验证。
-1-
1)、点击运行按钮记录电压表电流表的值 U1 和 I1; 2)、点击停止按钮记录,将直流电压源的电压值设置为 0V,再次点 击运行按钮记录电压表电流表的值 U2 和 I2; 3)、点击停止按钮记录,将直流电压源的电压值设置为 12V,将直流 电流源的电流值设置为 0A,再次点击运行按钮记录电压表电流表的 值 U3 和 I3;
实验 1 叠加定理的验证
一、电路图
二、实验步骤 1.原理图编辑:
分别调出接地符、电阻 R1、R2、R3、R4,直流电压源、直流电流 源,电流表电压表(注意电流表和电压表的参考方向),并按上图 连接; 2.设置电路参数: 电阻 R1=R2=R3=R4=1Ω,直流电压源 V1 为 12V,直流电流源 I1 为 10A。 3.实验步骤:
相关文档
最新文档