高分子膜材料及其制备
高分子膜材料及其制备
![高分子膜材料及其制备](https://img.taocdn.com/s3/m/524331241fb91a37f111f18583d049649b660e18.png)
高分子膜材料及其制备一、高分子膜材料的种类:1.聚合物膜:聚合物膜是指以聚合物为基础的薄膜材料,如聚乙烯(PE)、聚丙烯(PP)、聚酰胺(PA)、聚氟乙烯(PTFE)等。
2.复合膜:复合膜是指由两种或多种材料通过复合工艺制备而成的薄膜材料,如聚乙烯醇(PVA)/聚乙烯(PE)复合膜、聚六氟乙烯(PVDF)/介孔石墨烯复合膜等。
3.功能膜:功能膜是指在高分子膜材料中添加特殊功能性材料,赋予其特殊的性能,如阻隔性膜、导电膜、光学膜等。
二、高分子膜材料的制备方法:1.拉伸法:将高分子材料加热至熔融状态后快速拉伸,形成薄膜状。
2.压制法:将高分子材料加热至熔融状态后压制,形成薄膜状。
3.溶液法:将高分子材料加入溶剂中,形成均匀的溶液后通过蒸发或者凝胶法制备薄膜。
4.浇铸法:在高分子材料融熔状态下,将其注入模具中,通过冷却固化成薄膜状。
5.混摩法:将高分子材料与其他相容的材料进行混摩,再经过热压或拉伸等工艺制备薄膜。
三、高分子膜材料的应用:1.包装领域:高分子膜材料具有良好的柔韧性和阻隔性能,被广泛应用于食品包装、医药包装等领域。
2.过滤领域:高分子膜材料具有良好的过滤性能,可用于水处理、液态分离等领域。
3.分离领域:高分子膜材料具有良好的选择性和分离性能,可用于气体分离、膜生物反应器等领域。
4.传感器领域:高分子膜材料具有灵敏度高、响应速度快等优点,可用于压力传感器、湿度传感器等领域。
5.电子器件领域:高分子膜材料具有柔性、可塑性等特点,可用于柔性显示器、柔性电池等领域。
总之,高分子膜材料由于其特殊的性能和制备方法,已经在各个领域得到广泛应用,并且随着科技不断发展,高分子膜材料将会在更多领域展现出巨大的潜力。
高分子膜材料的制备方法
![高分子膜材料的制备方法](https://img.taocdn.com/s3/m/614be98b6294dd88d0d26bfd.png)
高分子膜材料的制备方法xxx级xxx专业xxx班学号:xxxxxxxxxx高分子膜材料的制备方法xxx(xxxxxxxxxxx,xx)摘要:膜技术是多学科交叉的产物,亦是化学工程学科发展的新增长点,膜分离技术在工业中已得到广泛的应用。
本文主要介绍了高分子分离膜材料较成熟的制膜方法(相转变法、熔融拉伸法、热致相分离法),而且介绍了一些新的制膜方法(如高湿度诱导相分离法、超临界二氧化碳直接成膜法以及自组装制备分离膜法等)。
关键词:膜分离,膜材料,膜制备方法1.引言膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。
目前在膜分离过程中,对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域;随着膜过程的开发应用,人们越来越认识到研究膜材料及其膜技术的重要性,在此对膜材料的制备技术进行综述。
2.膜材料的制备方法2.1 浸没沉淀相转化法1963年,Loeb和Sourirajan首次发明相转化制膜法,从而使聚合物分离膜有了工业应用的价值,自此以后,相转化制膜被广泛的研究和采用,并逐渐成为聚合物分离膜的主流制备方法。
所谓相转化法制膜,就是配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终转变成一个三维大分子网络式的凝胶结构。
相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为一下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转化法。
2.1.1 浸没沉淀制膜工艺目前所使用的膜大部分均是采用浸没沉淀法制备的相转化膜。
在浸没沉淀相转化法制膜过程中,聚合物溶液先流延于增强材料上或从喷丝口挤出,而后迅速浸入非溶剂浴中,溶剂扩散进入凝固浴(J2),而非溶剂扩散到刮成的薄膜内(J1),经过一段时间后,溶剂和非溶剂之间的交换达到一定程度,聚合物溶液变成热力学不稳定溶液,发生聚合物溶液的液-液相分离或液-固相分离(结晶作用),成为两相,聚合物富相和聚合物贫相,聚合物富相在分相后不久就固化构成膜的主体,贫相则形成所谓的孔。
溶剂法成膜
![溶剂法成膜](https://img.taocdn.com/s3/m/55ad446b7275a417866fb84ae45c3b3567ecddb3.png)
溶剂法成膜
溶剂法成膜是一种常见的薄膜制备方法,通过将溶解了高分子材料的溶液涂布在基材上,然后通过溶剂的挥发使溶液中的高分子材料形成均匀的薄膜。
溶剂法成膜的步骤一般包括以下几个过程:
1. 选择适当的高分子材料和溶剂,并将高分子材料溶解在溶剂中。
溶剂的选择通常需要考虑高分子材料的溶解度、挥发性和安全性等因素。
2. 将溶液涂布在基材上,可以通过多种方法进行涂布,如刷涂、喷涂、浸涂等。
3. 溶剂开始挥发,使溶液中的高分子材料逐渐凝聚形成薄膜。
在这个过程中,溶剂的挥发速度和涂布的均匀性会影响薄膜的质量和厚度。
4. 当溶剂完全挥发后,薄膜形成并附着在基材上。
此时可以进行后续的处理,如烘干、烧结、交联等,以增强薄膜的性能。
溶剂法成膜具有简单、经济、适用范围广等优点,被广泛应用于膜材料、涂层和电子器件等领域。
但同时也存在溶剂挥发带来的环境污染和溶剂残留的问题,近年来研究者也在探索无溶剂或低溶剂的成膜方法。
高分子功能膜材料
![高分子功能膜材料](https://img.taocdn.com/s3/m/57842a00dd36a32d73758158.png)
11/15/2018
三、导电聚合物的结构特点及导电机理
• 所谓导电聚合物是由一些具有共扼二键的聚合物 经化学或电化学掺杂后形成的、导电率可从绝缘 体延伸到导体范围的一类高分子材料。 • 导电聚合物是完全不同于由金属或碳粉末与聚合 物共混而制成的导电塑料,它除了具有聚合物结构 外,还含有由掺杂入的一价对阴离子一型掺杂或对 阳离子一型掺杂,所 以通常导电聚合物的结构分为 聚合物链和与链非键合的一价对阴离子或对阳离 子两部分组成。导电聚合物除了具有高分子本身 特性之外,还兼具了因掺杂而带来的半导体或导体 的特性。
◆ 一般通过溶液浇铸法制备平板或管状超滤膜,以 纺丝法制备中空纤维超滤膜。 ◆ L-S相转化法是一种较为简单的制膜方法, 其工艺简单,操作方便,且用途广泛,可用来制备 各种形态的膜.目前大多数的工业用膜的制备工艺
(1)称取一定量预先干燥的聚合物溶入DMF中,加入 一定量的添加剂,通过搅拌使聚合物及其添加剂充 分溶解,制成均匀的铸膜液。 ◆ (2)过滤铸膜液,去除未溶解的杂质。 ◆ (3)静置24 h以上,以使铸膜液完全脱泡。 ◆ (4)用刮刀将铸膜液匀速涂在洁净、干燥的制膜板 上,于空气中放置一定时间,以挥发部分溶剂,然后, 将制膜板置于水凝结浴中。 ◆ (5)将基膜在水凝结浴中浸泡一定时间后,取出基 膜进行系列表征。
11/15/2018
二、高分子功能膜分类
混合物分离膜 使用功能划分 药物释放缓释膜 分隔作用保护膜 气体分离膜 液体分离膜 根据被分离物质性质 固体分离膜 离子分离膜 微生物分离膜 被分离物质粒度大小 超细滤膜、超滤膜、微滤膜
熔融拉伸膜
高 分 子 功 能 膜
膜形成过程
根据膜性质
11/15/2018
被截留的溶质分子的分子尺寸。这是由于亲水性的多孔膜表面吸附有 活动性、相对较小的水分子层而使有效孔径相应变小,这种效应孔径 愈小愈显著。 表面荷电的多孔膜可以在表面吸附一层以上的对离子,因而荷点膜 的有效孔径比一般多孔膜更小。
高分子功能膜材料
![高分子功能膜材料](https://img.taocdn.com/s3/m/faa0389909a1284ac850ad02de80d4d8d15a0187.png)
2024/10/12
多孔膜
按膜旳材料分类
表6—1 膜材料旳分类
类别
膜材料
纤维素酯类 纤维素衍生物类
聚砜类
聚酰(亚)胺类
非纤维素酯类 聚酯、烯烃类
含氟(硅)类
其他
举例 醋酸纤维素,硝酸纤维素,乙基纤维素等 聚砜,聚醚砜,聚芳醚砜,磺化聚砜等 聚砜酰胺,芳香族聚酰胺,含氟聚酰亚胺等 涤纶,聚碳酸酯,聚乙烯,聚丙烯腈等 聚四氟乙烯,聚偏氟乙烯,聚二甲基硅氧烷等 壳聚糖,聚电解质等
H2O,H(He),H2S,CO2,O2,Ar(CO),N2(CH4),C2H6,C3H8
易
难
聚酰亚胺溶解性差,制膜困难,所以开发了可 溶性聚酰亚胺,其构造为:
2024/10/12
O
O
C N
C
CH2 CH2 CH CH
C N
C
O
O
R n
(v)乙烯基聚合物 用作膜材料旳乙烯基聚合物涉及聚乙烯醇、聚 乙烯吡咯烷酮、聚丙烯酸、聚丙烯腈、聚偏氯乙 烯、聚丙烯酰胺等。共聚物涉及:聚丙烯醇/苯 乙烯磺酸、聚乙烯醇/磺化聚苯醚、聚丙烯腈/甲 基丙烯酸酯、聚乙烯/乙烯醇等。聚乙烯醇/丙烯 腈接枝共聚物也可用作膜材料。
2024/10/12
电渗析技术在食品工业、化工及工业废水旳 处理方面也发挥着主要旳作用。尤其是与反渗 透、纳滤等精过滤技术旳结合,在电子、制药 等行业旳高纯水制备中扮演主要角色。
另外,离子互换膜还大量应用于氯碱工业。 全氟磺酸膜(Nafion)以化学稳定性著称, 是目前为止唯一能同步耐40%NaOH和 100℃温度旳离子互换膜,因而被广泛应用作 食盐电解制备氯碱旳电解池隔膜。
三、分离膜制备措施
相转换法
粉末烧结
生物高分子膜材料的研发和应用
![生物高分子膜材料的研发和应用](https://img.taocdn.com/s3/m/b4b9375b49d7c1c708a1284ac850ad02df80074a.png)
生物高分子膜材料的研发和应用随着社会的进步和科技的不断发展,生物高分子膜材料的研发和应用越来越受到人们的关注。
生物高分子膜材料具有优良的物理化学性能和多种功能,逐渐成为一种具有广泛应用前景的新型材料。
一、生物高分子膜材料的定义和分类生物高分子膜材料是由生物高分子组成的一种薄片状材料,具有良好的渗透性和选择性。
主要包括蜂窝状膜、石墨烯膜、离子通道膜等。
蜂窝状膜是一种微孔过滤膜,具有良好的渗透性和选择性,适用于生物制药、生物化学、微生物学等领域。
石墨烯膜是一种新型的膜材料,具有高导电性、高强度和高渗透性等特点。
离子通道膜是一种重要的传质材料,在生物分离、催化反应等方面有广泛的应用。
二、生物高分子膜材料的研发生物高分子膜材料的研发是一个多学科交叉的领域,需要涵盖材料科学、化学、生物学等多个方面的知识。
在材料的设计、合成和表征等方面需要精细的实验技术和理论分析。
材料的设计是生物高分子膜材料研发的核心,需要结合不同领域的知识,考虑到材料的性能、构造和制备等方面的要求。
合成技术是生物高分子膜材料研发的关键,需要考虑到材料的可控性、产率和纯度等方面。
表征技术是生物高分子膜材料研发的基础,需要对材料的物理化学性质、结构和形貌等方面进行综合分析。
三、生物高分子膜材料的应用生物高分子膜材料具有广泛的应用前景,在医学、生物制药、环保和能源等领域都有重要的应用。
在医学方面,生物高分子膜材料可以用于人造血管、人造心脏瓣膜等医疗器械的制造。
在生物制药方面,生物高分子膜材料可以用于纯化蛋白质、生产抗体、制备酶等领域。
在环保方面,生物高分子膜材料可以用于水处理、污水处理等。
在能源方面,生物高分子膜材料可以用于电池、燃料电池等领域。
四、生物高分子膜材料的未来发展随着科学技术的不断发展和人们对生物高分子膜材料的认识不断加深,生物高分子膜材料的应用范围和市场前景将会越来越广阔。
未来,生物高分子膜材料将会在更多领域发挥更重要的作用,成为一种具有广泛应用前景的新型材料。
高分子膜材料
![高分子膜材料](https://img.taocdn.com/s3/m/220c5634f68a6529647d27284b73f242326c3167.png)
高分子膜材料高分子膜材料是一种应用广泛的功能性材料。
它由大分子化合物聚合物构成,具有独特的化学、物理和机械性质。
高分子膜材料在多个领域有广泛的应用,如电子产品、能源、水处理和医疗等。
首先,高分子膜材料在电子产品中有重要的应用。
作为电子器件的重要组成部分,高分子膜材料可以用作电子屏幕的保护膜、电池的隔膜以及半导体器件的薄膜。
例如,在OLED显示器中,使用高分子膜材料作为保护层,可以提高显示屏的耐磨性和耐化学腐蚀性,延长使用寿命。
此外,高分子膜材料还可以用于光学薄膜、光学波导和传感器等光电子器件的制备。
其次,高分子膜材料在能源领域有重要的应用。
高分子膜材料可以用于制备各种类型的能源储存和转换器件。
例如,聚酰亚胺薄膜在锂离子电池中作为隔膜,可以实现电池的高能量密度和长寿命。
聚二甲基硅氧烷膜材料在太阳能电池中作为透明电极薄膜,可以提高电池的光吸收效率和光电转换效率。
此外,高分子膜材料还可以用于制备燃料电池、超级电容器和热电转换材料等。
此外,高分子膜材料在水处理领域也有广泛的应用。
高分子膜材料可以用于制备反渗透膜、超滤膜和离子交换膜等,用于水的过滤、海水淡化和废水处理。
例如,聚丙烯膜材料在反渗透膜中具有高的溶剂阻隔性能,可以对水中的盐、有机物和微生物进行有效分离。
同时,高分子膜材料还可以用于水净化、饮用水消毒和污水处理等。
最后,高分子膜材料在医疗领域也有重要的应用。
高分子膜材料可以用于制备人工器官、组织工程材料和药物传递系统等。
例如,聚己内酯膜材料在医用敷料中具有透气性和可吸收性,可以促进伤口的愈合和模拟真皮的形成。
聚乳酸膜材料在组织工程中作为支架,可以为细胞生长和再生提供合适的环境。
此外,高分子膜材料还可以用于制备植入式药物输送系统,实现药物的缓慢释放和持续性疗效。
综上所述,高分子膜材料具有广泛的应用前景和重要的科学价值。
随着技术的进步和需求的增长,高分子膜材料将在各个领域发挥更加重要的作用,为人们的生活和产业的发展带来更多的创新和便利。
高分子薄膜的制备和性能研究
![高分子薄膜的制备和性能研究](https://img.taocdn.com/s3/m/25258dae18e8b8f67c1cfad6195f312b3169ebb9.png)
高分子薄膜的制备和性能研究高分子薄膜是一种在工业和科学研究领域中广泛应用的材料,具有广泛的应用前景。
本文将重点探讨高分子薄膜的制备方法和其性能研究。
一、高分子薄膜的制备方法高分子薄膜的制备方法多种多样,常见的有溶液浇注法、拉伸法、喷涂法和溶液扩散法等。
1. 溶液浇注法溶液浇注法是制备高分子薄膜最常用的方法之一。
首先,将高分子溶解在适合的溶剂中,形成高分子溶液。
然后,将溶液浇注到平整的表面上,使其均匀分布并参与溶剂挥发的过程。
最后,形成薄膜结构。
2. 拉伸法拉伸法是通过拉伸高分子材料,使其在拉伸方向上形成薄膜的方法。
该方法适用于一些高分子材料具有较好可拉伸性的情况。
在拉伸过程中,高分子材料分子链会发生排列,形成有序的结构,使薄膜具有较好的力学性能。
3. 喷涂法喷涂法是将高分子溶解在适合的溶剂中,然后通过喷涂技术将溶液均匀地喷射到基底上形成高分子薄膜。
喷涂法具有简单、高效、经济的特点,适用于大面积制备。
4. 溶液扩散法溶液扩散法通过控制溶液在基底上的扩散速度来制备高分子薄膜。
通常,将高分子溶液滴于基底上,然后通过控制扩散速度来控制薄膜的厚度和均匀性。
此方法适用于制备较薄且均匀的高分子薄膜。
二、高分子薄膜的性能研究高分子薄膜的性能研究对于深入理解其物理化学特性和应用潜力具有重要意义。
性能研究主要包括力学性能、光学性能、热学性能和表面性质等方面。
1. 力学性能力学性能是评价高分子薄膜应力应变行为的重要指标。
通常使用压痕法、拉伸法和扩张法等测试方法来研究高分子薄膜的刚度、强度和延展性等力学性能。
2. 光学性能光学性能是评估高分子薄膜在可见光和红外光波段下的透明度、折射率和吸光度等特性。
常见的测量技术包括紫外可见分光光度计、透射电子显微镜和拉曼光谱等。
3. 热学性能热学性能是研究高分子薄膜在热工作条件下的热传导、热膨胀和玻璃化转变等性质。
热重分析、差示扫描量热法和热导率测试是常用的测试方法。
4. 表面性质表面性质是研究高分子薄膜在界面上的黏附性、润湿性和抗污染性等特性的重要指标。
膜材料的简介制备
![膜材料的简介制备](https://img.taocdn.com/s3/m/f458a1f24693daef5ef73df6.png)
分离膜材料和膜制备技术的研究进展摘要:膜分离技术是当代新型高效的分离技术, 也是二十一世纪最有发展前途的高新技术之一,目前在膜分离过程中, 对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域; 随着膜过程的开发应用, 人们越来越认识到研究膜材料及其膜技术的重要性。
关键词:分离膜制备发展1.膜分离技术的发展简史膜在自然中,特别是在生物体内是广泛而永恒存在的。
可人类对它的认识、利用、模拟以至人工合成的过程却是及其漫长而曲折的。
人们对膜进行科学的研究则是近几十年来的事。
是在1748 年,诺来特(Nollet ) 就注意到水自发通过猪膀胱而扩散到酒精中。
在1864 年, 特劳贝( Traube) 才成功制成人类历史上第一片人造膜—亚铁氰化酮膜。
但直到1960 年洛布(Loeb) 和索利拉金(Souriraja) 研究出具有商业价值的醋酸纤维素非对称(L - S) 膜,确定了L - S 制膜工业,才开创了膜技术的新纪元。
随后的20 年是“膜技术的黄金时代”。
以石油危机和人类环境意识增强为契机。
伴随相关学科的发展,国内外学者对高分子膜的形成、膜结构、物性、性能、过程及应用等开展研究,取得了很大的进展,为以后膜科学的发展、膜技术的产业化奠定了基础。
[1]与传统的分离操作相比,膜分离具有以下特点:(1)膜分离是一个高效分离过程,可以实现高纯度的分离;(2)大多数膜分离过程不发生相变化,因此能耗较低;(3)膜分离通常在常温下进行,特别适合处理热敏性物料;(4)膜分离设备本身没有运动的部件,可靠性高,操作、维护都十分方便。
2.分离膜分类按膜的材料分类,可分为有机膜、无机膜、液膜;按膜的结构分类,可分为对称膜和不对称膜;按作用机理分类,可分为多孔膜和致密膜;按应用范围分类,可分为微滤膜(MF 膜)、超过滤膜(UF 膜)、反渗透膜(RO 膜)、气体分离膜(GS膜)、离子交换膜等。
[2]2.1 无机膜材料无机膜材料通常具有非常好的化学和热稳定性,但无机材料用于制膜还很有限, 目前无机膜的应用大都局限于微滤和超滤领域[3]。
1.5mm反应粘结合型高分子膜基
![1.5mm反应粘结合型高分子膜基](https://img.taocdn.com/s3/m/fe74593fa36925c52cc58bd63186bceb18e8ed5f.png)
1.5mm反应粘结合型高分子膜基一、引言高分子膜基材料是一种在材料科学领域中被广泛应用的重要材料,其具有很高的强度、温度稳定性和耐腐蚀性能。
其中,1.5mm反应粘结合型高分子膜基材料以其优异的性能在许多领域展现出巨大潜力。
本文将对1.5m m反应粘结合型高分子膜基进行详细介绍,包括其制备方法、特性以及应用领域。
二、制备方法1.5m m反应粘结合型高分子膜基的制备方法主要包括以下几个步骤:1.材料准备制备1.5m m反应粘结合型高分子膜基的首要步骤是选取合适的高分子材料和反应粘结剂。
高分子材料应具有较高的强度和耐候性能,反应粘结剂应具有良好的粘结性能和低粘结温度。
2.材料配比将选取的高分子材料和反应粘结剂按照一定的配比混合均匀,确保两者充分混合,以获得高分子膜基的均匀性和稳定性。
3.薄膜制备将混合好的材料倒入薄膜模具中,通过挤压或压延的方法制备出1.5m m厚度的高分子膜基。
4.反应粘结将制备好的高分子膜基置于特定的条件下进行反应粘结。
此步骤中,根据材料的特性和实际需求,可以进行一定的温度和压力控制,以保证粘结过程的顺利进行。
三、特性与性能1.5m m反应粘结合型高分子膜基具有以下几个特性与性能:1.强度由于制备过程中充分混合的高分子材料和反应粘结剂,1.5m m反应粘结合型高分子膜基具有较高的强度,能够承受一定的力学载荷。
2.耐腐蚀性由于使用了具有良好耐腐蚀性能的高分子材料和反应粘结剂,1.5m m反应粘结合型高分子膜基具有良好的耐腐蚀性,能够在恶劣的环境中长时间稳定运行。
3.温度稳定性1.5m m反应粘结合型高分子膜基具有较高的温度稳定性,能够在高温环境下保持结构的稳定性和性能。
4.粘结性由于使用了具有良好粘结性能的反应粘结剂,1.5m m反应粘结合型高分子膜基能够与其他材料良好地粘结在一起,形成稳定的复合结构。
四、应用领域1.5m m反应粘结合型高分子膜基具有广泛的应用领域,包括但不限于以下几个方面:1.膜分离技术1.5m m反应粘结合型高分子膜基可应用于膜分离技术,如超滤、微滤和纳滤等过程中的膜基材料,用于分离和过滤混合物中的溶质和溶剂。
高分子分离膜材料
![高分子分离膜材料](https://img.taocdn.com/s3/m/a022fd6ebc64783e0912a21614791711cc797999.png)
高分子分离膜材料高分子分离膜材料是一种基于高分子化合物制备的薄膜材料,用于在液体或气体中分离不同组分的一种技术。
这种膜材料具有多孔性和选择性渗透性,能够根据溶质的大小、形状和化学性质,通过膜的孔隙大小与溶质分子大小之间的相对排斥作用,实现对不同溶质物质的分离和纯化。
首先,高分子分离膜材料具有以下特性:1.多孔性:高分子膜具有丰富的孔隙结构,可以根据需要调控孔径和孔隙分布,以实现对溶质分子的排斥和选择性渗透。
2.溶质选择性:由于高分子材料中的孔隙大小和形状可以调控,使其对不同大小和化学性质的溶质具有不同的渗透性能。
这种选择性使得高分子分离膜可以实现溶质的高效分离和纯化。
3.物理化学稳定性:高分子分离膜具有良好的物理化学稳定性,可以在不同的工艺条件下使用,耐受高温、酸碱环境以及极端的操作条件。
4.可控性:通过改变高分子材料的组成和结构,可以调控膜的性能和分离效果,满足不同分离要求。
其次,高分子分离膜的制备方法:1.相间共混法:通过溶液浸渍、溶剂蒸发、热压等方法,将两种或多种高分子材料在非溶剂条件下混合制备成膜。
2.拉伸法:将高分子材料在溶剂处理下抽拉成膜,通过拉伸过程中的分子排列和取向来改善膜的性能。
3.相转移法:通过介于溶液和固体界面处的相转移过程,将高分子材料从液相转移到固相形成膜。
4.合成法:通过聚合反应或交联反应,将高分子制备成膜。
再次,高分子分离膜材料的应用领域:1.饮用水净化:高分子分离膜可以用于去除水中的悬浮物、微生物、重金属和有机物质等,提高水质。
2.污水处理:高分子分离膜可用于工业和城市污水的过滤、浓缩、脱盐和回用,实现水资源的循环利用。
3.海水淡化:高分子分离膜用于海水淡化可以去除盐分和杂质,将海水转化为可用于灌溉和饮用的淡水。
4.气体分离:高分子分离膜可以用于气体的分离纯化,例如二氧化碳的捕集和聚焦。
5.生物分离:高分子分离膜可用于分离纯化蛋白质、细胞和其他生物分子,广泛应用于生物科技领域。
高分子功能膜资料
![高分子功能膜资料](https://img.taocdn.com/s3/m/93d9265052ea551811a68720.png)
2020/10/14
主要内容
一 高分子功能膜材料概述 二 高分子功能膜的制备方法 三 高分子分离膜的分离机理与应用
2020/10/14
一、高分子功能膜定义
高分子功能膜是一种具有选择性透过能力 的膜型材料,也是具有特殊传质功能的高分子 材料,通常称为分离膜,也称功能膜。用膜分 离物质一般不发生相变、不耗费相变能,同时 具有较好的选择性,且膜把产物分在两侧,很 容易收集,是一种能耗低,效率高的分离材料, 从功能上来说,高分子分离膜具有物质分离、 识别物质,能量转化和物质转化等功能。利用 其在不同条件下显出的特殊性质,已经在许多 领域获得应用。
④ 无介质脱落。微孔膜为均一的高分子材料, 过滤时没有纤维或碎屑脱落,因此能得到高纯度的 滤液。
微孔膜的缺点: ① 颗粒容量较小,易被堵塞; ② 使用时必须有前道过滤的配合,否则无法正 常工作。
2020/10/14
微孔过滤技术应用领域 微孔过滤技术目前主要在以下方面得到应用:
(1)微粒和细菌的过滤。可用于水的高度净化、 食品和饮料的除菌、药液的过滤、发酵工业的空气 净化和除菌等。 (2)微粒和细菌的检测。微孔膜可作为微粒和细 菌的富集器,从而进行微粒和细菌含量的测定。
2020/10/14
二、高分子功能膜的制备方法
相转换法
粉末烧结
多孔膜制备 拉伸致孔法
热致相分离法
核径迹法
铝阳极氧化多孔氧化铝膜
制备方法
溶剂涂层挥发法
致密膜的制备
水面扩展挥发法
支撑膜加涂层
复合膜的制备 支撑膜加水面扩展连续超薄膜
界面缩聚法在位制备复合膜
2020/10/14
膜的制备工艺对分离膜的性能十分重要。同样 的材料,由于不同的制作工艺和控制条件,其能 差别很大。合理的、先进的制膜工艺是制造优性 能分离膜的重要保证。
高分子膜材料
![高分子膜材料](https://img.taocdn.com/s3/m/842a2f69182e453610661ed9ad51f01dc2815709.png)
高分子膜材料高分子膜材料是一种应用广泛的材料,它具有轻质、柔韧、耐磨、耐腐蚀等特点,因此在包装、建筑、医疗、电子等领域都有着重要的应用。
高分子膜材料的种类繁多,每种材料都有着独特的性能和应用特点。
首先,我们来介绍一下高分子膜材料的分类。
根据其结构和性能特点,高分子膜材料可以分为聚乙烯膜、聚丙烯膜、聚氯乙烯膜、聚酯膜等多种类型。
其中,聚乙烯膜具有良好的柔韧性和耐磨性,常用于食品包装和农业覆盖;聚丙烯膜具有优异的耐高温性能,适用于工业包装和建筑防水;聚氯乙烯膜具有良好的耐腐蚀性能,常用于化工容器和防水材料;聚酯膜则具有较好的机械性能和透明性,广泛应用于电子产品保护和广告标识。
其次,我们来探讨一下高分子膜材料的制备工艺。
高分子膜材料的制备通常采用挤出、吹膜、压延等方法。
其中,挤出是将高分子树脂加热熔融后,通过挤出机的螺杆挤压成薄膜;吹膜是将高分子树脂经过挤出后,经过模头吹膨成薄膜;压延则是将高分子树脂加热后,通过压延机辊压制成薄膜。
这些制备工艺各有优缺点,可以根据具体需求选择合适的工艺进行生产。
再者,我们来讨论一下高分子膜材料的应用领域。
高分子膜材料在包装行业中被广泛应用,如食品包装、药品包装、日用品包装等;在建筑行业中,高分子膜材料常用于防水、隔热、隔音等方面;在医疗行业中,高分子膜材料被用于制备医用敷料、手术衣等;在电子行业中,高分子膜材料常用于制备电子产品的保护膜和屏幕膜。
最后,我们来总结一下高分子膜材料的发展趋势。
随着科技的不断进步和人们对材料性能要求的提高,高分子膜材料的发展方向主要集中在绿色环保、功能性、高性能化和智能化等方面。
未来,高分子膜材料有望在新能源、新材料、生物医药等领域发挥更加重要的作用。
综上所述,高分子膜材料作为一种重要的功能性材料,具有广阔的应用前景和发展空间。
我们相信,在不断的创新和发展中,高分子膜材料将会为人类的生产生活带来更多的便利和惊喜。
高分子导电膜
![高分子导电膜](https://img.taocdn.com/s3/m/f6b1c4d4fbb069dc5022aaea998fcc22bdd1435c.png)
高分子导电膜高分子导电膜是近年来被广泛研究的一种新型材料,因其良好的导电性能以及可塑性强,已被广泛应用于电子器件领域。
本文将从高分子导电膜的基本性质、制备方法以及应用领域等多方面进行探究。
一、高分子导电膜的基本性质高分子导电膜是一种由高分子材料与导电填料混合制成的复合材料。
通常情况下,高分子导电膜具有以下几个基本性质:1.导电性能优良:高分子导电膜通常由导电填料(例如碳纤维、银粉、金属氧化物等)与高分子材料混合制成,具有很好的导电性能。
其中,导电填料的种类和用量是影响高分子导电膜导电性能的关键因素之一。
2.可塑性强:高分子材料的可塑性使得高分子导电膜的弯曲性和抗拉性大大优于传统的金属导电膜。
因此,在一些需要柔性和可弯曲电子器件中,高分子导电膜的应用前景很大。
3.化学稳定性:高分子导电膜通常具有较好的耐化学腐蚀性能,可以在各种环境条件下使用。
4.透明性:在不同的导电填料和高分子材料的组合下,高分子导电膜得到的透明性各异,有的非常透明,有的稍显暗淡。
二、高分子导电膜的制备方法高分子导电膜的制备通常采用混合法、拉伸法、涂覆法等多种方法。
其中最为广泛应用的是混合法。
以下是一些常见的制备方法:1.混合法:将高分子材料与导电填料按一定比例混合,加入溶剂,进行溶液混合和搅拌,制备成层状膜。
2.拉伸法:将高分子材料和导电填料按照一定比例混合后,通过拉伸的方式把层状高分子导电膜拉成细线,在对其进行固化处理。
3.涂覆法:将高分子材料和导电填料混合后,采用涂覆的方式将混合溶液均匀地涂布在基板上,经过一定的烘干和固化处理后,制备成高分子导电膜。
三、高分子导电膜的应用领域由于高分子导电膜具有一系列优良的性能,并与现有的电子器件结构高度兼容,因此高分子导电膜已被广泛应用于许多领域,如:1. 柔性显示器件:高分子导电膜的可塑性和透明性使其很适用于柔性显示器件的制造。
2. 电子皮肤:高分子导电膜的柔性和易于加工的性质使其在电子皮肤的制作中得到广泛应用。
ptfe膜的制备
![ptfe膜的制备](https://img.taocdn.com/s3/m/f98eb26c4a35eefdc8d376eeaeaad1f3469311f9.png)
ptfe膜的制备PTFE膜(聚四氟乙烯膜)是一种具有优异性能的高分子材料,广泛应用于电子、化工、医药等领域。
本文将介绍PTFE膜的制备方法以及其特点和应用。
一、PTFE膜的制备方法PTFE膜的制备方法主要包括压延法和浸渍法两种。
1. 压延法:首先将PTFE树脂加热熔化,然后通过挤出机将熔融的PTFE挤出成片状,再通过辊压和拉伸的方式将其压延成薄膜。
该方法制备的PTFE膜具有较高的机械强度和耐热性,适用于制备较厚的膜材。
2. 浸渍法:将PTFE树脂分散在有机溶剂中,形成PTFE悬浮液。
然后将基材浸入悬浮液中,使PTFE颗粒附着在基材表面形成薄膜。
最后通过干燥和烧结等工艺将有机溶剂去除,得到PTFE膜。
该方法制备的PTFE膜具有较高的孔隙度和吸附性能,适用于制备微孔膜。
二、PTFE膜的特点PTFE膜具有以下特点:1. 耐高温性:PTFE膜具有良好的耐高温性能,可在高达260℃的温度下长期使用。
2. 抗粘附性:PTFE膜表面具有极低的表面张力和非常低的摩擦系数,不易附着杂质和污染物。
3. 良好的化学稳定性:PTFE膜具有优异的耐酸碱性能,对大多数化学物质具有良好的稳定性。
4. 优异的电绝缘性:PTFE膜是一种优秀的电绝缘材料,可用于电子元件的绝缘保护。
5. 超低温韧性:PTFE膜在低温下仍保持较好的柔韧性和耐寒性能。
三、PTFE膜的应用PTFE膜由于其独特的性能,在多个领域得到广泛应用。
1. 电子领域:PTFE膜可用于制备电子元件的绝缘层、介质膜和隔离膜,具有良好的电绝缘性和耐高温性能。
2. 化工领域:PTFE膜可用于制备化工设备的密封垫片、填料、膜片和过滤材料,具有优异的耐腐蚀性和抗粘附性能。
3. 医药领域:PTFE膜可用于制备药物过滤器、医用导管和人工血管等医疗器械,具有良好的生物相容性和耐高温性能。
4. 环保领域:PTFE膜可用于制备空气过滤器、水处理膜和污水处理设备等,具有良好的过滤性能和耐腐蚀性能。
高分子膜材料的制备方法
![高分子膜材料的制备方法](https://img.taocdn.com/s3/m/614be98b6294dd88d0d26bfd.png)
高分子膜材料的制备方法xxx级xxx专业xxx班学号:xxxxxxxxxx高分子膜材料的制备方法xxx(xxxxxxxxxxx,xx)摘要:膜技术是多学科交叉的产物,亦是化学工程学科发展的新增长点,膜分离技术在工业中已得到广泛的应用。
本文主要介绍了高分子分离膜材料较成熟的制膜方法(相转变法、熔融拉伸法、热致相分离法),而且介绍了一些新的制膜方法(如高湿度诱导相分离法、超临界二氧化碳直接成膜法以及自组装制备分离膜法等)。
关键词:膜分离,膜材料,膜制备方法1.引言膜分离技术是当代新型高效的分离技术,也是二十一世纪最有发展前途的高新技术之一,目前在海水淡化、环境保护、石油化工、节能技术、清洁生产、医药、食品、电子领域等得到广泛应用,并将成为解决人类能源、资源和环境危机的重要手段。
目前在膜分离过程中,对膜的研究主要集中在膜材料、膜的制备及膜过程的强化等三大领域;随着膜过程的开发应用,人们越来越认识到研究膜材料及其膜技术的重要性,在此对膜材料的制备技术进行综述。
2.膜材料的制备方法2.1 浸没沉淀相转化法1963年,Loeb和Sourirajan首次发明相转化制膜法,从而使聚合物分离膜有了工业应用的价值,自此以后,相转化制膜被广泛的研究和采用,并逐渐成为聚合物分离膜的主流制备方法。
所谓相转化法制膜,就是配置一定组成的均相聚合物溶液,通过一定的物理方法改变溶液的热力学状态,使其从均相的聚合物溶液发生相分离,最终转变成一个三维大分子网络式的凝胶结构。
相转化制膜法根据改变溶液热力学状态的物理方法的不同,可以分为一下几种:溶剂蒸发相转化法、热诱导相转化法、气相沉淀相转变法和浸没沉淀相转化法。
2.1.1 浸没沉淀制膜工艺目前所使用的膜大部分均是采用浸没沉淀法制备的相转化膜。
在浸没沉淀相转化法制膜过程中,聚合物溶液先流延于增强材料上或从喷丝口挤出,而后迅速浸入非溶剂浴中,溶剂扩散进入凝固浴(J2),而非溶剂扩散到刮成的薄膜内(J1),经过一段时间后,溶剂和非溶剂之间的交换达到一定程度,聚合物溶液变成热力学不稳定溶液,发生聚合物溶液的液-液相分离或液-固相分离(结晶作用),成为两相,聚合物富相和聚合物贫相,聚合物富相在分相后不久就固化构成膜的主体,贫相则形成所谓的孔。
高分子膜材料
![高分子膜材料](https://img.taocdn.com/s3/m/39847e43eef9aef8941ea76e58fafab069dc44a9.png)
高分子膜材料高分子膜材料是一种应用广泛的材料,它具有轻质、柔韧、耐磨、隔热、隔音等特点,因此在包装、建筑、医疗、电子等领域有着广泛的应用。
高分子膜材料是一种由高分子化合物经加工而成的薄膜材料,它的种类繁多,包括聚乙烯膜、聚氯乙烯膜、聚丙烯膜、聚酯膜等,每种材料都有着不同的特性和用途。
首先,聚乙烯膜是一种常见的高分子膜材料,它具有优异的耐热性和耐化学腐蚀性,因此在包装行业得到广泛应用。
聚乙烯膜可以用于食品包装、医药包装、工业品包装等领域,其优良的气密性和保鲜性能,保障了包装物品的质量和安全。
此外,聚乙烯膜还可以用于农业覆膜,起到保温、保湿、抗风雨等作用,提高作物产量和质量。
其次,聚氯乙烯膜是一种常用的建筑材料,它具有良好的耐候性和耐老化性,可以用于屋面防水、隔热隔音、地下室防潮等方面。
聚氯乙烯膜还可以制成地膜、水池膜、防水卷材等,广泛应用于建筑工程中,保障了建筑物的耐久性和安全性。
另外,聚丙烯膜是一种常见的工业包装材料,它具有优异的耐撕裂性和耐磨性,可以用于包装机械设备、化工产品、电子产品等。
聚丙烯膜还可以用于制作编织袋、集装袋、防尘布等,为物流运输和产品保护提供了重要保障。
最后,聚酯膜是一种常用的医疗材料,它具有良好的透气性和生物相容性,可以用于制作手术衣、口罩、一次性医疗用品等。
聚酯膜还可以用于制作薄膜电容器、绝缘材料、光学膜等,在电子领域有着重要的应用价值。
总的来说,高分子膜材料具有广泛的应用前景和市场需求,随着科技的不断进步和创新,高分子膜材料的性能和品种将会不断提升和丰富,为各行各业带来更多的便利和发展机遇。
希望在未来的发展中,高分子膜材料能够发挥更大的作用,为人类社会的可持续发展做出更大的贡献。
高分子膜原料及生产工艺原理
![高分子膜原料及生产工艺原理](https://img.taocdn.com/s3/m/1a62c7fc4693daef5ef73dd2.png)
一 项目原辅材料聚偏氟乙烯PVDF 年用量13.8吨;二甲基乙酰胺DMAC 年用量69吨;聚乙烯吡咯烷酮PVP 年用量3.2吨;环氧树脂年用量15.6吨,主要原辅材料理化性质见表1-1 。
表1-1 主要原辅材料理化性质序号 名称 分子式 性状物理属性 毒理属性 1 聚偏氯乙烯 (PVDF ) [-CH2-C F2-]- 白色粉末状结晶性聚合物。
具有良好的化学稳定性,二甲基乙酰胺等强极性有机溶剂能使其溶解成胶体状溶液。
熔点170℃ 密度1.76g/m 3 —— 2 二甲基乙酰胺 (DMAC ) C 4H 9NO 无色带有弱胺味的液体。
溶于苯、醇、丙酮、醚等有机溶剂中,与水互溶。
沸点163~165℃ 熔点-18.59℃ 闪点70℃ 自燃点490℃ 低毒性。
3 聚乙烯吡咯烷酮 (PVP) (C6H9NO )n 白色至淡棕黄色易流动无定形粉末。
无异臭。
可溶于水及含水氯类溶剂、乙醇、胺及低分子脂肪酸等,能与多数无机酸盐、多种树脂相容。
熔点225℃ 密度1.23~1.29g/m 3—— 二 产生污染的环节1.项目工艺流程注:N:噪声,S:固废,W:废水,G:废气2.具体工艺流程配料:在密闭的环境中,加入PVP、PVDF和DMAC。
在50度条件下保温搅拌10小时以上,待PVDF完全溶解后静置10小时以上,进入下一流程;消泡:纺丝前为了防止产生的气泡影响最终成膜的性能,利用真空泵产生的真空将气泡从纺丝罐内吸出;纺丝:静置后的溶液在一定程度的纯水中固化成型,然后将固化成型的丝状成品收集,进入下一流程;泡丝:将收集后的成品丝用一定纯度的清水35度条件下浸泡100小时,然后进入下一流程;组器:将浸泡后的成品丝在一定温度和湿度条件下晾干,按照标准尺寸剪切后,通过自动化设备放置在壳体中,进入下一流程;浇注:把配置好的壳体与成品丝放置在专用模具内,将事先准备好的环氧树脂胶注入壳体内,在一定温度下干燥3小时,进入下一流程;切头:将胶水凝固后的组件放置在专用切削工具上,把两端切平,且保证标准尺寸,进入下一流程;切割过程中,有噪声产生。
水净化用高分子膜材料配方和制备工艺流程设计
![水净化用高分子膜材料配方和制备工艺流程设计](https://img.taocdn.com/s3/m/1ebdc8f90408763231126edb6f1aff00bed57010.png)
水净化用高分子膜材料配方和制备工艺流程设计
水净化用高分子膜材料一般采用反渗透膜、纳滤膜、超滤膜等,具有高效、高选择性、稳定性高的优点。
以下是其中一种高分子膜材料的配方和制备工艺流程:
材料配方:
1.聚酰胺(PA);
2.聚亚醯胺(PES);
3.聚乙烯亚胺(PEI);
4.二甲酰胺(DMAc);
5.甲醇(MeOH);
6.异丙醇(iPrOH)。
制备工艺流程:
1.将聚酰胺、聚亚醯胺和聚乙烯亚胺按照质量比2:1:1混合,加入石油醚中搅拌3h,获得高分子膜材料前驱体;
2.将前驱体溶解于二甲酰胺中,获得高分子膜溶液;
3.将高分子膜溶液倾倒在聚酯膜基材上进行旋涂,使其均匀涂覆在基材上;
4.经过烘干后,将膜转移到反渗透膜生产设备上,先进行表面活化处理,再进行干燥,获得一个完整的反渗透膜;
5.对反渗透膜进行过滤性能测试,使其达到国家标准。
以上是一种高分子膜材料的制备流程,不同的材料配方和制备工艺流程可能会有所不同。
在实际应用中,需要根据不同的水源和水质,选用适合的高分子膜材料来进行水净化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CH3 C C CH3 n H3C Si CH3
气体膜材料--高分子血卟啉钴
这种高分子络合物在特定的条件下可成膜且固化 迅速, 用于分离O2/N2混合物独具特色。它最突出的 特点是能在数月的连续操作中维持与氧的结合能力, 因此具有很大的实用价值。这种膜对气体分子的选择 性可以通过改变络合物的化学结构来调整。
膜分离基础与材料
高分子膜及其制备
膜材料
膜是膜技术的核心,膜的功能是由膜材料的化学性质
膜技术中待解决的问题
尽管膜分离技术在工业中获得了广泛的应用,但是人们对膜
膜材料分类
构成膜的元素 无机膜材料 :多孔石英玻璃、多孔陶瓷、多孔钨(金属薄膜 有机高分子膜材料 应用领域: 液体分离膜材料:MF\UF\NF\RO 气体分离膜材料:GS\PV 荷电膜材料 :\ED\BPED
气体分离膜材料
①聚酰亚胺 ②聚芳香醚 ③聚三甲基硅-1-丙炔 ④高分子血卟啉钴
气体分离膜材料—聚酰亚胺
聚酰亚胺(PI)是具有优异的耐热性、耐溶剂性和机械性能的玻 璃态聚合物,同时有优良的气体分离性能。 PI的高气体选择性是由它特有的化学结构所决定的。由于聚酰 亚胺链间柱形结构 的存在,能按照气体分子动力学直径即“分子 筛分”机理来对气体混合物进行分离。
液体分离膜材料- 聚砜类
这种聚合物的一般结构为R1-SO2-R2,若其中R1和 R2至少有一个带有苯环则称芳香聚砜,否则为脂肪 族聚砜。其中芳香聚砜是RO和UF的重要的一类膜 材料,有足够大的分子量,又能和DMF、DMAc和 NMP等有良好的相溶性,同时由于其性能稳定、机 械强度好,也是许多复合膜的支撑材料。
膜材料的物化指标 -抗氧化性
为了阻止氧化反应的进行,希望高分子材料中各个共 价键有足够的强度,即希望有高的键能。 在选择高分子材料时,应尽量避免键能很低的O-O、 N-N等键,而希望在高分子材料的主链中引入键能高 的三键或双键以及芳香族的C-C键。
膜材料的物化指标 -抗氧化性
当高分子材料因氧化而产生链的断裂时,首先发生在键能 低的键上。
液体分离膜材料--芳香杂环类
聚哌嗪酰胺(PIP)
O
聚醚醚酮(PEEK)
O
O
C
O n
聚醚酮PEK
C
O n
聚苯并咪唑(PBI)
液体分离膜材料—其它
①用于液体分离过程的的膜材料还有聚烯烃类:
如PVA,PE,PP,PAN,聚四甲基戊烯[P(4MP)]; ②含氟高分子: 如聚全氟磺酸,PVDF,PTFE等。 ③通过上述两种或两种以上类别的单体进行共聚或缩聚 也是很好的液体分离膜材料,如:聚乙烯醇缩甲醛 (PVF)、聚乙烯醇缩丁醛(PVB),聚乙基甲基丙烯酸 酯(PEM)、聚联丙烯邻苯二甲酸酯(PDP)、聚醚亚胺 砜氨基甲酸乙酯(PEIS-U)等。
气体膜材料--高分子血卟啉钴
高分子血卟啉钴的化学结构
荷电膜材料
对普通高分子膜(材料)进行功能基化,包括磺化、羧 化、氯甲基-季胺化等,用这种方法合成的材料有:磺化 聚砜,聚醚酮,聚醚砜,羧化芳香聚酰,羧化聚哌腈酰 胺等。
几种商品荷电纳滤膜
USA FilmTec 公司NF50、NF70商品膜就是羧化芳香聚酰胺制得; USA FilmTec公司NF40,NF40-HF,日本东丽公司的UTC-20HF,UTC60,USA AMT公司的ATF-30,ATF-50纳滤膜就是由羧化聚哌腈酰胺制 得 日本日东电工公司开发的NTR-7400系列复合纳滤膜,其超薄层是由磺化 聚(醚)砜制得,结构为
膜材料的选择原则
膜材料的物化指标
玻璃化温度Tg 抗氧化性 抗水解性 耐热性 机械强度 表面性能
如何根据Tg选择膜材料
一般来讲:气体在橡胶态聚合物膜中的渗透 性好,而玻璃态聚合物膜的渗透性差。 对于多孔膜,玻璃化温度影响膜本身的机械 稳定性和柔韧性,对于不同的过程有不同的要求, 目前还没有定量的规律可循。
膜的水解作用与高分子材料化学结构紧密相关。当高分子链中具有 易水解的化学基团-CONH-,-COOR,-CN,-CH2-O-等时,这些基团在酸或 碱的作用下会发生水解降解反应,如常用的醋酸纤维素膜,分子链 中的-COOR在碱作用下很容易水解,而且水解速率随温度的升高而增 大。随pH的增加,水解速率先下降然后升高,在pH4.5附近有最低值。 所以对醋酸纤维素膜要避免在碱性条件下使用,而且温度不宜大于 35C。 为了提高膜的抗水解性能,应尽量减少高分子材料中易水解的基团。 因此,聚砜、聚苯乙烯、聚丙烯、聚碳酸酯、聚苯醚等高分子材料 抗水解性能是优越的。但是若用这些材料制备反渗透膜,由于缺乏 亲水性的化学基团,膜的透水性能肯定不尽人意,为此通常用这些 材料或其改性物制备超滤或微滤膜。
H N O C H H O N N C O C
芳香聚酰胺酰肼膜,尽管有良好的脱盐与透水性能,但
它的抗氧化性能还不如醋酸纤维素,在氧化剂含量较高 时,主链中的N-N键会发生断裂。因此,在反渗透脱盐的 给水中,芳香聚酰胺酰肼膜对游离氯的允许含量要比醋 酸纤维素膜低得多。
膜材料的物化指标-抗水解性
聚酰亚胺链间柱形结构
气体膜材料--聚苯醚
聚苯醚(PPO)具有优良的热稳定性和化学稳定性。 和其它玻璃态聚合物,如聚碳酸酯(PC)、聚砜(PS)等相 比,聚(2,6-二甲基-1,4-苯撑氧)(PPO)具有较高的气 体渗透性,但选择性低于PC和PS等。
R O R n
气体膜材料--聚三甲基硅-1-丙炔(PTMSP)
常见材料的最高允许使用温度
名称 CA 聚酰胺 聚苯并咪唑 聚苯并咪唑酮 磺化聚苯醚 磺化聚砜 聚醚砜酮
温度 35 35 90 70 70 120 160
膜材料的物化指标-机械强度
膜的机械强度是高分子材料力学性质的体现。膜属于 粘弹性体,在压力作用下,膜发生压缩和剪切蠕变, 并表现为膜的压密现象,结果导致膜透过速度的下降。 优良的膜材料除应具备物化稳定性外,还应有很小的 蠕变,聚砜由于具有很小的蠕变,所以被作为分离膜 的材料。 增加膜机械强度的另一个方法,是将膜直接制作在高 强度的支撑材料上。目前用作膜支撑材料的有无纺布、 玻璃纤维、涤纶、氯纶、锦纶等。
液体分离膜材料-纤维素类
结构
纤维素中的脱水葡萄糖是一个椅状的环形结构, SEM和XRD研究表明植物细胞壁内的纤维素呈线状结 构。天然纤维素具有相当硬的线性棒状结构。
纤维素特性
很好的亲水性 ------最早的反渗透和超滤膜材料 天然纤维素结晶度高、难加工、抗氧化能力差、易水解、压密, 抗微生物侵蚀能力也较弱,因此对其进行一系列的改性和接枝形 成纤维素系膜材料,如三醋酸纤维素(CTA)、醋酸丙酸纤维素 (CAP)、再生纤维素(RCE)、硝酸纤维素(CN) 、醋酸丁酸纤维素, 乙基纤维素等 。
液体分离膜材料
纤维素类 聚酰胺类 聚砜类 芳香杂环类 其他
液体分离膜材料-纤维素类
纤维素指植物细胞材料中的高分子,这些高分子 含有几百至几千个脱水葡萄糖。习惯上常用纤维素这 个词指植物材料,其主要成分见下表
种类 木纤维a 俗名 组成%(干重量) 纤维 半纤维 木质 果胶 脂肪和 水溶物或灰 素 素 素 质 蜡 份 ~28 ~38 18.6 13.3 17.9 14.6 13.3 21.8 0 25-35 15-20 2.2 13.1 3.7 1.7 14.0 5.7 0 4.3 1.2 2.3 6.1 1.4 1.5 2.9 〈0.1
三醋酸纤维素
纤维素特性
在纤维素分子中引进一个或几个酯基,可改变其亲水性 之比及反应官能团的数目,这两种改变极大地影响材料 的特性。改性的和未改性的广泛的应用各种液体分离膜 过程中。
液体分离膜材料-聚酰胺类
聚酰胺类是含酰胺链段-CONH-的一系列聚合物,这是一 很大族聚合物,如芳香聚酰胺(PI),尼龙-66(NY66),芳香聚酰胺肼(PPP),聚苯砜,பைடு நூலகம்苯二甲酰 (PSA)等。
几种商品化聚砜结构
双酚A聚砜
CH3
O O S O O n
C
CH3
O
O O
O
聚芳砜Astrel
S O
S O
S O O
n
聚醚砜(PES)
n
O
聚苯砜Radel
O
S O
O n
液体分离膜材料--芳香杂环类
近年来开发出了一系列芳香杂环高分子材料, 如 聚 苯 并 咪 唑 酮 ( PBIP ) 、 聚 苯 并 咪 唑 (PBI)、聚芳醚酮(PEK)、聚醚醚酮(PEEK) 等,它们近年来广泛地用来制备超滤膜,并 通过改性制备纳滤膜。
其实施步骤是将各种表面活性剂用去离子水配成一定浓度的水溶液,聚 合物膜膜面朝下,在表面活性剂溶液中浸泡一定时间后,取出排除水分。
方法II--紫外辐照方法
方法简洁:膜浸入一定浓度的改性液中,膜截留控制面朝上, 用波长为253.7nm的20W紫外灯辐照一定时间,然后用去离子水 漂洗尽改性剂后待用。 示例:聚砜超滤膜经紫外辐照后,膜表面的亲水性增强,通量 增加,但截留率下降,膜强度也略有降低 。改性剂为:乙醇, 葡萄糖(MW为40000),牛血清白蛋白(BSA)等。
方法III--辐照气相接枝方法
方法简介: 将PVDF湿膜在30℃度恒温干燥箱内烘干,将干燥的PVDF 超滤膜包绕在一个铝板框架上,经一定剂量的Co-60γ源辐照,使聚 偏氟乙烯活化。剪取一定面积的经预辐照的PVDF超滤膜,放在硅胶干 燥器中干燥2h,称得干膜质量。将干膜放入气相接枝反应器,并在 气相接枝反应器中加入定量的经脱水的苯乙烯单体,气相接枝反应保 持真空状态,并在80℃恒温。反应结束后,取出膜放入干燥器内,待 冷却后,浸入9.8mol/l的浓硫酸中进行磺化。 效果:经过辐照,在PVDF分子链上产生自由基,苯乙烯基单体通过自 由基聚合接枝到PVDF膜上,并形成一定长度的支链,再通过磺化反应, 将已接枝到PVDF膜上的苯乙烯基转化成具有磺酸基团的苯环。随交换 容量的提高,膜污染度下降,交换容量越高,膜污染度越小,抗污染 性增强。