高中物理专题复习 曲线运动

合集下载

高中物理有关曲线运动知识点总结_

高中物理有关曲线运动知识点总结_

高中物理有关曲线运动知识点总结_高中物理曲线运动这一章节主要包括:曲线运动特点、曲线运动中矢量的分解、平抛运动、圆周运动、生活中的应用等,下面是有关这一章节内容的知识点总结。

第一节曲线运动1、曲线运动的速度方向(1)在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线切线的方向.(2)曲线运动的速度方向时刻改变,无论速度的大小变或不变,运动的速度总是变化的,故曲线运动是一种变速运动2.物体做曲线运动的条件(1)当物体所受合力的方向跟它的速度方向不在同一直线上时,这个合力总能产生一个改变速度方向的效果,物体就一定做曲线运动.(2)当物体做曲线运动时,它的合力所产生的加速度的方向与速度方向也不在同一直线上(3)物体的运动状态是由其受力条件及初始运动状态共同确定的.物体运动的性质由加速度决定(加速度为零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。

物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。

两个互成角度的直线运动的合运动是直线运动还是曲线运动?决定于它们的合速度和合加速度方向是否共线(如图所示)。

常见的类型有:⑴a=0:匀速直线运动或静止。

⑵a恒定:性质为匀变速运动,分为:① v、a同向,匀加速直线运动;②v、a反向,匀减速直线运动;③v、a成角度,匀变速曲线运动(轨迹在v、a之间,和速度v的方向相切,方向逐渐向a的方向接近,但不可能达到。

)⑶a变化:性质为变加速运动。

如简谐运动,加速度大小、方向都随时间变化。

物体运动形式与其受力条件及初始运动状态的关系受力条件力与初速度方向在一直线(或初速度为零)力与初速度方向不在一直线恒力匀变速直线运动匀变速曲线运动匀加速直线运动特例:自由落体运动匀减速直线运动特例:竖直上抛运动平抛运动斜抛运动变力加速度改变的直线运动加速度改变的曲线运动简谐运动匀速圆周运动合力为零静止或匀速直线运动二、运动的合成和分解1、合运动和分运动当物体实际发生的运动较复杂时,我们可将其等效为同时参与几个简单的运动,前者实际发生的运动称作合运动,后者则称作物体实际运动的分运动.2、运动的合成和分解的概念已知分运动求合运动,叫做运动的合成;已知合运动求分运动,叫做运动的分解,这种双向的等效操作过程,是研究复杂运动的重要万法.3.运动的合成和分解的应用(1)进行运动的合成与分解,就是对描述运动的各物理量如位移、速度、加速度等矢量用平行四边形定则求和或求差.运动的合成与分解遵循如下原理:①独立性原理:构成一个合运动的几个分运动是彼此独立、互不相干的,物体的任意一个分运动,都按其自身规律进行,不会因有其他分运动的存在而发生改变.②等时性原理:合运动是同一物体在同一时间内同时完成几个分运动的结果,对同一物体同时参与的几个运动进行合成才有意义.③矢量性原理:描述运动状态的位移、速度、加速度等物理量都是矢量,对运动进行合成与分解时应按矢量法则,即平行四边形定则作上述物理量的运算.(2)合运动的性质可由分运动的性质决定:两个匀速直线运动的合成仍是匀速直线运动;匀速直线运动与匀变速直线运动的合运动为匀变速运动;两个匀变速直线运动的合运动是匀变速运动.(3).过河问题如右图所示,若用v1表示水速,v2表示船速,则:①过河时间仅由v2的垂直于岸的分量v 决定,即,与v1无关,所以当v2 岸时,过河所用时间最短,最短时间为也与v1无关。

高考必备物理曲线运动技巧全解及练习题(含答案)及解析

高考必备物理曲线运动技巧全解及练习题(含答案)及解析

高考必备物理曲线运动技巧全解及练习题(含答案)及解析一、高中物理精讲专题测试曲线运动1.一宇航员登上某星球表面,在高为2m 处,以水平初速度5m/s 抛出一物体,物体水平射程为5m ,且物体只受该星球引力作用求: (1)该星球表面重力加速度(2)已知该星球的半径为为地球半径的一半,那么该星球质量为地球质量的多少倍. 【答案】(1)4m/s 2;(2)110; 【解析】(1)根据平抛运动的规律:x=v 0t 得0515x t s s v === 由h =12gt 2 得:2222222/4/1h g m s m s t ⨯=== (2)根据星球表面物体重力等于万有引力:2G M mmg R 星星= 地球表面物体重力等于万有引力:2G M mmg R '地地=则222411=()10210M gR M g R '⨯=星星地地= 点睛:此题是平抛运动与万有引力定律的综合题,重力加速度是联系这两个问题的桥梁;知道平抛运动的研究方法和星球表面的物体的重力等于万有引力.2.如图所示,水平实验台A 端固定,B 端左右可调,将弹簧左端与实验平台固定,右端 有一可视为质点,质量为2kg 的滑块紧靠弹簧(未与弹黄连接),弹簧压缩量不同时, 将滑块弹出去的速度不同.圆弧轨道固定在地面并与一段动摩擦因素为0.4的粗糙水平地面相切D 点,AB 段最长时,BC 两点水平距离x BC =0.9m,实验平台距地面髙度h=0.53m ,圆弧半径R=0.4m ,θ=37°,已知 sin37° =0.6, cos37° =0.8.完成下列问題:(1)轨道末端AB 段不缩短,压缩弹黄后将滑块弹出,滑块经过点速度v B =3m/s ,求落到C 点时速度与水平方向夹角;(2)滑块沿着圆弧轨道运动后能在DE 上继续滑行2m,求滑块在圆弧轨道上对D 点的压力大小:(3)通过调整弹簧压缩量,并将AB 段缩短,滑块弹出后恰好无碰撞从C 点进入圆弧 轨道,求滑块从平台飞出的初速度以及AB 段缩短的距离. 【答案】(1)45°(2)100N (3)4m/s 、0.3m 【解析】(1)根据题意C 点到地面高度0cos370.08C h R R m =-=从B 点飞出后,滑块做平抛运动,根据平抛运动规律:212C h h gt -= 化简则0.3t s =根据 BC B x v t = 可知3/B v m s =飞到C 点时竖直方向的速度3/y v gt m s == 因此tan 1y Bv v θ==即落到圆弧C 点时,滑块速度与水平方向夹角为45° (2)滑块在DE 阶段做匀减速直线运动,加速度大小fa g mμ== 根据222E D DE v v ax -=联立两式则4/D v m s =在圆弧轨道最低处2DN v F mg m R-= 则100N F N = ,即对轨道压力为100N .(3)滑块弹出恰好无碰撞从C 点进入圆弧轨道,说明滑块落到C 点时的速度方向正好沿着轨迹该出的切线,即0tan yv v α''= 由于高度没变,所以3/y y v v m s '== ,037α=因此04/v m s '= 对应的水平位移为01.2AC x v t m ='= 所以缩短的AB 段应该是0.3AB AC BC x x x m ∆=-=【点睛】滑块经历了弹簧为变力的变加速运动、匀减速直线运动、平抛运动、变速圆周运动,匀减速直线运动;涉及恒力作用的直线运动可选择牛顿第二定律和运动学公式;而变力作用做曲线运动优先选择动能定理,对匀变速曲线运动还可用运动的分解利用分运动结合等时性研究.3.如图所示,光滑的水平平台上放有一质量M =2kg ,厚度d =0.2m 的木板,木板的左端放有一质量m =1kg 的滑块(视为质点),现给滑块以水平向右、的初速度,木板在滑块的带动下向右运动,木板滑到平台边缘时平台边缘的固定挡板发生弹性碰撞,当木板与挡板发生第二次碰撞时,滑块恰好滑到木板的右端,然后水平飞出,落到水平地面上的A点,已知木板的长度l=10m,A点到平台边缘的水平距离s=1.6m,平台距水平地面的高度h=3m,重力加速度,不计空气阻力和碰撞时间,求:(1)滑块飞离木板时的速度大小;(2)第一次与挡板碰撞时,木板的速度大小;(结果保留两位有效数字)(3)开始时木板右端到平台边缘的距离;(结果保留两位有效数字)【答案】(1) (2)v=0.67m/s (3)x=0.29m【解析】【分析】【详解】(1)滑块飞离木板后做平抛运动,则有:解得(2)木板第一次与挡板碰撞后,速度方向反向,速度大小不变,先向左做匀减速运动,再向右做匀加速运动,与挡板发生第二次碰撞,由匀变速直线运动的规律可知木板两次与挡板碰撞前瞬间速度相等.设木板第一次与挡板碰撞前瞬间,滑块的速度大小为,木板的速度大小为v由动量守恒定律有:,木板第一与挡板碰后:解得:v=0.67m/s(3)由匀变速直线运动的规律:,,由牛顿第二定律:解得:x=0.29m.【点睛】对于滑块在木板上滑动的类型,常常根据动量守恒定律和能量守恒定律结合进行研究.也可以根据牛顿第二定律和位移公式结合求出运动时间,再求木板的位移.4.如图所示,ABCD是一个地面和轨道均光滑的过山车轨道模型,现对静止在A处的滑块施加一个水平向右的推力F,使它从A点开始做匀加速直线运动,当它水平滑行2.5 m时到达B点,此时撤去推力F、滑块滑入半径为0.5 m且内壁光滑的竖直固定圆轨道,并恰好通过最高点C,当滑块滑过水平BD部分后,又滑上静止在D处,且与ABD等高的长木板上,已知滑块与长木板的质量分别为0.2 kg、0.1 kg,滑块与长木板、长木板与水平地面间的动摩擦因数分别为0.3、,它们之间的最大静摩擦力均等于各自滑动摩擦力,取g=10 m/s2,求:(1)水平推力F的大小;(2)滑块到达D点的速度大小;(3)木板至少为多长时,滑块才能不从木板上掉下来?在该情况下,木板在水平地面上最终滑行的总位移为多少?【答案】(1)1N(2)(3)t=1 s ;【解析】【分析】【详解】(1)由于滑块恰好过C点,则有:m1g=m1从A到C由动能定理得:Fx-m1g·2R=m1v C2-0代入数据联立解得:F=1 N(2)从A到D由动能定理得:Fx=m1v D2代入数据解得:v D=5 m/s(3)滑块滑到木板上时,对滑块:μ1m1g=m1a1,解得:a1=μ1g=3 m/s2对木板有:μ1m1g-μ2(m1+m2)g=m2a2,代入数据解得:a2=2 m/s2滑块恰好不从木板上滑下,此时滑块滑到木板的右端时恰好与木板速度相同,有:v共=v D-a1tv共=a2t,代入数据解得:t =1 s此时滑块的位移为:x 1=v D t -a 1t 2,木板的位移为:x 2=a 2t 2,L =x 1-x 2,代入数据解得:L =2.5 m v 共=2 m/s x 2=1 m达到共同速度后木板又滑行x ′,则有:v 共2=2μ2gx ′,代入数据解得:x ′=1.5 m木板在水平地面上最终滑行的总位移为:x 木=x 2+x ′=2.5 m点睛:本题考查了动能定理和牛顿第二定律、运动学公式的综合运用,解决本题的关键理清滑块和木板在整个过程中的运动规律,选择合适的规律进行求解.5.地面上有一个半径为R 的圆形跑道,高为h 的平台边缘上的P 点在地面上P′点的正上方,P′与跑道圆心O 的距离为L (L >R ),如图所示,跑道上停有一辆小车,现从P 点水平抛出小沙袋,使其落入小车中(沙袋所受空气阻力不计).问:(1)当小车分别位于A 点和B 点时(∠AOB=90°),沙袋被抛出时的初速度各为多大? (2)要使沙袋落在跑道上,则沙袋被抛出时的初速度在什么范围内?(3)若小车沿跑道顺时针运动,当小车恰好经过A 点时,将沙袋抛出,为使沙袋能在B 处落入小车中,小车的速率v 应满足什么条件?【答案】(1)()2A gv L R h =-22()2B g L R v h+=(2)0((L R v L R -≤≤+(3)1(41)0,1,2,3...)2v n n π=+= 【解析】 【分析】 【详解】(1)沙袋从P 点被抛出后做平抛运动,设它的落地时间为t ,则h=12gt 2解得t =(1) 当小车位于A 点时,有x A =v A t=L-R (2)解(1)(2)得v A =(L-R当小车位于B 点时,有B B x v t ==3)解(1)(3)得Bv (2)若小车在跑道上运动,要使沙袋落入小车,最小的抛出速度为v 0min =v A =(L-R 4) 若当小车经过C 点时沙袋刚好落入,抛出时的初速度最大,有x c =v 0max t="L+R" (5)解(1)(5)得 v 0max =(L+R所以沙袋被抛出时的初速度范围为(L-R ≤v 0≤(L+R (3)要使沙袋能在B 处落入小车中,小车运动的时间应与沙袋下落时间相同 t AB =(n+14)2Rv π(n=0,1,2,3…)(6)所以t AB解得v=12(4n+1)n=0,1,2,3…). 【点睛】本题是对平抛运动规律的考查,在分析第三问的时候,要考虑到小车运动的周期性,小车并一定是经过14圆周,也可以是经过了多个圆周之后再经过14圆周后恰好到达B 点,这是同学在解题时经常忽略而出错的地方.6.如图所示,粗糙水平地面与半径 1.6m R =的光滑半圆轨道BCD 在B 点平滑连接, O 点是半圆轨道BCD 的圆心, B O D 、、三点在同一竖直线上,质量2kg m =的小物块(可视为质点)静止在水平地面上的A 点.某时刻用一压缩弹簧(未画出)将小物块沿AB 方向水平弹出,小物块经过B 点时速度大小为10m/s (不计空气阻力).已知10m AB x =,小物块与水平地面间的动摩擦因数=0.2μ,重力加速度大小210m/s g =.求:(1)压缩弹簧的弹性势能;(2)小物块运动到半圆轨道最高点时,小物块对轨道作用力的大小; (3)小物块离开最高点后落回到地面上的位置与B 点之间的距离. 【答案】(1)140J (2)25N (3)4.8m 【解析】(1)设压缩弹簧的弹性势能为P E ,从A 到B 根据能量守恒,有212P B AB E mv mgx μ=+ 代入数据得140J P E =(2)从B 到D ,根据机械能守恒定律有2211222B D mv mv mg R =+⋅ 在D 点,根据牛顿运动定律有2Dv F mg m R+=代入数据解得25N F =由牛顿第三定律知,小物块对轨道作用力大小为25N (3)由D 点到落地点物块做平抛运动竖直方向有2122R gt = 落地点与B 点之间的距离为D x v t = 代入数据解得 4.8m x =点睛:本题是动能定理、牛顿第二定律和圆周运动以及平抛运动规律的综合应用,关键是确定运动过程,分析运动规律,选择合适的物理规律列方程求解.7.如图所示,表面光滑的长方体平台固定于水平地面上,以平台外侧的一边为x 轴,在平台表面建有平面直角坐标系xoy ,其坐标原点O 与平台右侧距离为d=1.2m 。

高中物理必修二曲线运动公式

高中物理必修二曲线运动公式

高中物理必修二曲线运动公式一、曲线运动的基本概念曲线运动是指物体在空间中沿着曲线轨迹运动的过程。

在高中物理必修二中,我们主要学习的是匀速圆周运动和抛体运动这两种曲线运动。

1. 匀速圆周运动匀速圆周运动是指物体在圆周轨道上以恒定的速度做曲线运动。

在这种运动中,物体的速度大小保持不变,但速度方向不断改变,因此物体始终受到向心力的作用。

2. 抛体运动抛体运动是指物体在水平方向上受到初速度,而在竖直方向上受到重力作用,从而形成的曲线运动。

抛体运动可以分为竖直上抛、竖直下抛、水平抛和斜上抛四种情况。

二、曲线运动的基本公式1. 匀速圆周运动公式(1)线速度公式:v = rω其中,v表示线速度,r表示圆周半径,ω表示角速度。

(2)向心力公式:F = mv^2/r其中,F表示向心力,m表示物体质量,v表示线速度,r表示圆周半径。

2. 抛体运动公式(1)竖直上抛公式:h = v0t 1/2gt^2其中,h表示物体上升的高度,v0表示初速度,g表示重力加速度,t表示时间。

(2)竖直下抛公式:h = 1/2gt^2其中,h表示物体下落的高度,g表示重力加速度,t表示时间。

(3)水平抛公式:x = v0t,y = 1/2gt^2其中,x表示物体水平位移,y表示物体竖直位移,v0表示初速度,g表示重力加速度,t表示时间。

(4)斜上抛公式:x = v0cosθt,y = v0sinθt 1/2gt^2其中,x表示物体水平位移,y表示物体竖直位移,v0表示初速度,θ表示抛射角,g表示重力加速度,t表示时间。

三、曲线运动的应用曲线运动在生活中有着广泛的应用,如:1. 匀速圆周运动:汽车转弯、地球绕太阳公转等。

2. 抛体运动:投篮、投掷标枪等。

通过对曲线运动公式的学习,我们可以更好地理解生活中的各种曲线运动现象,为解决实际问题提供理论依据。

高中物理必修二曲线运动公式一、曲线运动的分类及特点在高中物理必修二中,我们学习到的曲线运动主要分为两大类:匀速圆周运动和抛体运动。

高考物理全国卷专题04 曲线运动常考模型(原卷版)

高考物理全国卷专题04 曲线运动常考模型(原卷版)

2020年高考物理二轮复习热点题型与提分秘籍专题04 曲线运动常考模型题型一曲线运动和运动的合成与分解【题型解码】1.曲线运动的理解(1)曲线运动是变速运动,速度方向沿切线方向;(2)合力方向与轨迹的关系:物体做曲线运动的轨迹一定夹在速度方向与合力方向之间,合力的方向指向曲线的“凹”侧.2.曲线运动的分析(1)物体的实际运动是合运动,明确是在哪两个方向上的分运动的合成.(2)根据合外力与合初速度的方向关系判断合运动的性质.(3)运动的合成与分解就是速度、位移、加速度等的合成与分解,遵守平行四边形定则.【典例分析1】(多选)如图所示,质量为m的物块A和质量为M的重物B由跨过定滑轮O的轻绳连接,A 可在竖直杆上自由滑动。

当A从与定滑轮O等高的位置无初速释放,下落至最低点时,轻绳与杆夹角为37°。

已知sin37°=0.6,cos37°=0.8,不计一切摩擦,下列说法正确的是()A.物块A下落过程中,A与B速率始终相同B.物块A释放时的加速度为gC.M=2m D.A下落过程中,轻绳上的拉力大小始终等于Mg【典例分析2】(2019·江西宜春市第一学期期末)如图所示是物体在相互垂直的x方向和y方向运动的v-t 图象.以下判断正确的是()A.在0~1 s内,物体做匀速直线运动B.在0~1 s内,物体做匀变速直线运动C.在1~2 s内,物体做匀变速直线运动D.在1~2 s内,物体做匀变速曲线运动【提分秘籍】1.解决运动的合成和分解的一般思路(1)明确合运动和分运动的运动性质。

(2)明确是在哪两个方向上的合成或分解。

(3)找出各个方向上已知的物理量(速度、位移、加速度)。

(4)运用力与速度的方向关系或矢量的运算法则进行分析求解。

2.关联速度问题的解题方法把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相等求解。

常见的模型如图所示。

高中物理曲线运动题20套(带答案)

高中物理曲线运动题20套(带答案)

高中物理曲线运动题20套(带答案)一、高中物理精讲专题测试曲线运动1.如图所示,粗糙水平地面与半径为R =0.4m 的粗糙半圆轨道BCD 相连接,且在同一竖直平面内,O 是BCD 的圆心,BOD 在同一竖直线上.质量为m =1kg 的小物块在水平恒力F =15N 的作用下,从A 点由静止开始做匀加速直线运动,当小物块运动到B 点时撤去F ,小物块沿半圆轨道运动恰好能通过D 点,已知A 、B 间的距离为3m ,小物块与地面间的动摩擦因数为0.5,重力加速度g 取10m/s 2.求: (1)小物块运动到B 点时对圆轨道B 点的压力大小. (2)小物块离开D 点后落到地面上的点与D 点之间的距离【答案】(1)160N (2)2 【解析】 【详解】(1)小物块在水平面上从A 运动到B 过程中,根据动能定理,有: (F -μmg )x AB =12mv B 2-0 在B 点,以物块为研究对象,根据牛顿第二定律得:2Bv N mg m R-=联立解得小物块运动到B 点时轨道对物块的支持力为:N =160N由牛顿第三定律可得,小物块运动到B 点时对圆轨道B 点的压力大小为:N ′=N =160N (2)因为小物块恰能通过D 点,所以在D 点小物块所受的重力等于向心力,即:2Dv mg m R=可得:v D =2m/s设小物块落地点距B 点之间的距离为x ,下落时间为t ,根据平抛运动的规律有: x =v D t ,2R =12gt 2解得:x =0.8m则小物块离开D 点后落到地面上的点与D 点之间的距离20.82m l x ==2.如图所示,质量为4kg M =的平板车P 的上表面离地面高0.2m h =,质量为1kg m =的小物块Q (大小不计,可视为质点)位于平板车的左端,系统原来静止在光滑水平地面上,一不可伸长的轻质细绳长为0.9m R =,一端悬于Q 正上方高为R 处,另一端系一质量也为m 的小球(大小不计,可视为质点)。

人教版高中物理必修2总复习课件3

人教版高中物理必修2总复习课件3

故可得
W
=
ma
×v22-v
2 2
2a
=
1 2
mv
2-
2
1 2
mv12


结论
定 1.内容: 合外力所做的功等于物体动能的变化。
理 2.表达式: W合=Ek2-Ek1
※ Ek2表示末动能,Ek1表示初动能
※ w:合外力所做的总功
方法一: w F合s cos
方法二: w w1 w2 w3 ...
vd v水

v
例 垂直于绳方向的旋转运动
2:

θ?

v⊥
滑 轮
?
θ
v
?
v∥
θ
v
沿绳方向的伸长或收缩运动
注意:沿绳的方向上各点
的速度大小相等
v
?


1、条件:

①具有一定的初速度;

②只受重力。
2、性质:
匀变速运动
3、处理方法:
分解为水平方向的匀速直线运动和 竖直方向的匀变速直线运动。


1、条件:

速 度
3、向心加速度的大小:
an=
v2 r
=

=
rω2 =
r4Tπ22


1、方向:始终指向圆心
力 向 2、向心力的大小:
心 力
3、Fr向n=心m力vr的2来= 源m:v沿ω半=径m方rω向的2 =协4Tmπ力22
匀速圆周运动:协力充当向心力

O圆


常 FT θ


的 匀
F合 O'

高中物理必修二曲线运动知识点归纳

高中物理必修二曲线运动知识点归纳

必修二知识点第一章曲线运动(一)曲线运动的位移研究物体的运动时,坐标系的选取十分重要.在这里选择平面直角坐标系.以抛出点为坐标原点,以抛出时物体的初速度v0方向为x轴的正方向,以竖直方向向下为y轴的正方向,如下图所示.当物体运动到A点时,它相对于抛出点O的位移是OA,用l表示. 由于这类问题中位移矢量的方向在不断变化,运算起来很不方便,因此要尽量用它在坐标轴方向的分矢量来表示它. 由于两个分矢量的方向是确定的,所以只用A点的坐标(x A、y A)就能表示它,于是使问题简化.(二)曲线运动的速度1、曲线运动速度方向:做曲线运动的物体,在某点的速度方向,沿曲线在这一点的切线方向.2.对曲线运动速度方向的理解如图所示, AB割线的长度跟质点由A运动到B的时间之比,即v=ΔxAB,等于AB过程中平均速度的大小,其平均速度的方向由A指向B.当B Δt非常非常接近A时,AB割线变成了过A点的切线,同时Δt变为极短的时间,故AB间的平均速度近似等于A点的瞬时速度,因此质点在A点的瞬时速度方向与过A点的切线方向一致.(三)曲线运动的特点1、曲线运动是变速运动:做曲线运动的物体速度方向时刻在发生变化,所以曲线运动是变速运动.(曲线运动是变速运动,但变速运动不一定是曲线运动)2、做曲线运动的物体一定具有加速度曲线运动中速度的方向(轨迹上各点的切线方向)时刻在发生变化,即物体的运动状态时刻在发生变化,而力是改变物体运动状态的原因,因此,做曲线运动的物体所受合力一定不为零,也就一定具有加速度.(说明:曲线运动是变速运动,只是说明物体具有加速度,但加速度不一定是变化的,例如,抛物运动都是匀变速曲线运动.)(四)物体做曲线运动的条件:物体所受的合外力的方向与速度方向不在同一直线上,也就是加速度方向与速度方向不在同一直线上.(只要物体的合外力是恒力,它一定做匀变速运动,可能是直线运动,也可能是曲线运动)当物体受到的合外力方向与速度方向的夹角为锐角时,物体做曲线运动的速率将增大;当物体受到的合外力方向与速度方向的夹角为钝角时,物体做曲线运动的速率将减小;当物体受到的合外力方向与速度的方向垂直时,该力只改变速度方向,不改变速度的大小.(五)曲线运动的轨迹做曲线运动的物体,其轨迹向合外力所指一方弯曲,若已知物体的运动轨迹,可判断出物体所受合力的大致方向.速度和加速度在轨迹两侧,轨迹向力的方向弯曲,但不会达到力的方向.(六)运动的合成与分解的方法1、合运动与分运动的定义如果物体同时参与了几个运动,那么物体实际发生的运动就是合运动,那几个运动就是分运动.物体的实际运动一定是合运动,实际运动的位移、速度、加速度就是它的合位移、合速度、合加速度,而分运动的位移、速度、加速度是它的分位移、分速度、分加速度.2、合运动与分运动的关系3、合运动与分运动的求法运动的合成与分解的方法:运动的合成与分解是指描述运动的各物理量,即位移、速度、加速度的合成与分解,由于它们都是矢量,遵循平行四边形定则(或进行正交分解).(1)如果两个分运动都在同一条直线上,需选取正方向,与正方向同向的量取“+”,与正方向反向的量取“-”,则矢量运算简化为代数运算.(2)如果两个分运动互成角度,则遵循平行四边形定则(如图所示).(3)两个相互垂直的分运动的合成:如果两个分运动都是直线运动,且互成角度为90°,其分位移为s1、s2,分速度为v1、v2,分加速度为a1、a2,则其合位移s、合速度v和合加速度a,可以运用解直角三角形的方法求得,如图所示.合位移大小和方向为s=s21+s22,tanθ=s 1 s 2 .合速度大小和方向为v=v21+v22,tanφ=v 1 v 2 .合加速度的大小和方向为:a=a21+a22,tanα=a 1 a 2 .(4)运动的分解方法:理论上讲一个合运动可以分解成无数组分运动,但在解决实际问题时不可以随心所欲地随便分解.实际进行运动的分解时,需注意以下几个问题:①确认合运动,就是物体实际表现出来的运动.②明确实际运动是同时参与了哪两个分运动的结果,找到两个参与的分运动.③正交分解法是运动分解最常用的方法,选择哪两个互相垂直的方向进行分解是求解问题的关键.特别提醒a合运动一定是物体的实际运动(一般是相对于地面的).b不是同一时间内发生的运动、不是同一物体参与的运动不能进行合成.c对速度进行分解时,不能随意分解,应该建立在对物体的运动效果进行分析的基础上.d合速度与分速度的关系当两个分速度v1、v2大小一定时,合速度的大小可能为:|v1-v2|≤v≤v1+v2,故合速度可能比分速度大,也可能比分速度小,还有可能跟分速度大小相等.4、运动的合成与分解是研究曲线运动规律最基本的方法,它的指导思想就是化曲为直,化变化为不变,化复杂为简单的等效处理观点.在实际问题中应注意对合运动与分运动的判断.合运动就是物体相对于观察者所做的实际运动,只有深刻挖掘物体运动的实际效果,才能正确分解物体的运动.(七)如图所示,用v1表示船速,v2表示水速.我们讨论几个关于渡河的问题.当v 1垂直河岸时(即船头垂直河岸),渡河时间最短1v d t =,船渡河的位移θsin d s =。

(物理)高考物理曲线运动试题(有答案和解析)

(物理)高考物理曲线运动试题(有答案和解析)

(物理)高考物理曲线运动试题( 有答案和解析 )一、高中物理精讲专题测试曲线运动1.以下列图,在风洞实验室中,从 A 点以水平速度 v0向左抛出一个质最为m 的小球,小球抛出后所受空气作用力沿水平方向,其大小为F,经过一段时间小球运动到 A 点正下方的 B 点处,重力加速度为 g,在此过程中求(1)小球离线的最远距离;(2) A、 B 两点间的距离;(3)小球的最大速率 v max.【答案】(1)mv22m2 gv2( 3)v0F24m2g2 0(2)0F2F F 2【解析】【解析】(1)依照水平方向的运动规律,结合速度位移公式和牛顿第二定律求出小球水平方向的速度为零时距墙面的距离;(2)依照水平方向向左和向右运动的对称性,求出运动的时间,抓住等时性求出竖直方向A、 B 两点间的距离;(3)小球到达 B 点时水平方向的速度最大,竖直方向的速度最大,则 B 点的速度最大,依照运动学公式结合平行四边形定则求出最大速度的大小;【详解】(1)将小球的运动沿水平方向沿水平方向和竖直方向分解水平方向: F=ma x2v0= 2a x x m解得:x m=mv2 2F(2)水平方向速度减小为零所需时间t1=v 0a x总时间 t= 2t1竖直方向上:y= 1 gt2= 2m2 gv022 F 2(3)小球运动到 B 点速度最大v x=v0V y=gtv max= v x2v y2=vF 24m2g 2 F【点睛】解决此题的要点将小球的运动的运动分解,搞清分运动的规律,结合等时性,运用牛顿第二定律和运动学公式进行求解.2.以下列图,在竖直平面内有一倾角θ=37°的传达带BC.已知传达带沿顺时针方向运行的速度 v=4 m/s , B、 C两点的距离 L=6 m。

一质量 m=0.2kg 的滑块(可视为质点)从传达带上端 B 点的右上方比 B 点高 h=0. 45 m 处的 A 点水平抛出,恰好从 B 点沿 BC方向滑人传达带,滑块与传达带间的动摩擦因数μ,取重力加速度g=10m/s 2, sin37 = °,cos37°。

物理曲线运动专题练习(及答案)含解析

物理曲线运动专题练习(及答案)含解析

物理曲线运动专题练习(及答案)含解析一、高中物理精讲专题测试曲线运动1.一质量M =0.8kg 的小物块,用长l =0.8m 的细绳悬挂在天花板上,处于静止状态.一质量m =0.2kg 的粘性小球以速度v 0=10m/s 水平射向小物块,并与物块粘在一起,小球与小物块相互作用时间极短可以忽略.不计空气阻力,重力加速度g 取10m/s 2.求:(1)小球粘在物块上的瞬间,小球和小物块共同速度的大小; (2)小球和小物块摆动过程中,细绳拉力的最大值; (3)小球和小物块摆动过程中所能达到的最大高度. 【答案】(1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 【解析】(1)因为小球与物块相互作用时间极短,所以小球和物块组成的系统动量守恒.0)(mv M m v =+共得:=2.0/v m s 共(2)小球和物块将以v 共 开始运动时,轻绳受到的拉力最大,设最大拉力为F ,2()()v F M m g M m L-+=+共 得:15F N =(3)小球和物块将以v 共为初速度向右摆动,摆动过程中只有重力做功,所以机械能守恒,设它们所能达到的最大高度为h ,根据机械能守恒:21+)()2m M gh m M v =+共(解得:0.2h m =综上所述本题答案是: (1)=2.0/v m s 共 (2)F=15N (3)h=0.2m 点睛:(1)小球粘在物块上,动量守恒.由动量守恒,得小球和物块共同速度的大小. (2)对小球和物块合力提供向心力,可求得轻绳受到的拉力(3)小球和物块上摆机械能守恒.由机械能守恒可得小球和物块能达到的最大高度.2.如图所示,水平桌面上有一轻弹簧,左端固定在A 点,自然状态时其右端位于B 点.D 点位于水平桌面最右端,水平桌面右侧有一竖直放置的光滑轨道MNP ,其形状为半径R =0.45m 的圆环剪去左上角127°的圆弧,MN 为其竖直直径,P 点到桌面的竖直距离为R ,P 点到桌面右侧边缘的水平距离为1.5R .若用质量m 1=0.4kg 的物块将弹簧缓慢压缩到C点,释放后弹簧恢复原长时物块恰停止在B 点,用同种材料、质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点后其位移与时间的关系为x =4t ﹣2t 2,物块从D 点飞离桌面后恰好由P 点沿切线落入圆轨道.g =10m/s 2,求:(1)质量为m 2的物块在D 点的速度;(2)判断质量为m 2=0.2kg 的物块能否沿圆轨道到达M 点:(3)质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中克服摩擦力做的功. 【答案】(1)2.25m/s (2)不能沿圆轨道到达M 点 (3)2.7J 【解析】 【详解】(1)设物块由D 点以初速度v D 做平抛运动,落到P 点时其竖直方向分速度为:v y 22100.45gR =⨯⨯m/s =3m/sy Dv v =tan53°43=所以:v D =2.25m/s(2)物块在内轨道做圆周运动,在最高点有临界速度,则mg =m 2v R,解得:v 322gR ==m/s 物块到达P 的速度:22223 2.25P D y v v v =+=+=3.75m/s若物块能沿圆弧轨道到达M 点,其速度为v M ,由D 到M 的机械能守恒定律得:()22222111cos5322M P m v m v m g R =-⋅+︒ 可得:20.3375M v =-,这显然是不可能的,所以物块不能到达M 点(3)由题意知x =4t -2t 2,物块在桌面上过B 点后初速度v B =4m/s ,加速度为:24m/s a =则物块和桌面的摩擦力:22m g m a μ= 可得物块和桌面的摩擦系数: 0.4μ=质量m 1=0.4kg 的物块将弹簧缓慢压缩到C 点,释放后弹簧恢复原长时物块恰停止在B 点,由能量守恒可弹簧压缩到C 点具有的弹性势能为:p 10BC E m gx μ-=质量为m 2=0.2kg 的物块将弹簧缓慢压缩到C 点释放,物块过B 点时,由动能定理可得:2p 2212BC B E m gx m v μ-=可得,2m BC x = 在这过程中摩擦力做功:12 1.6J BC W m gx μ=-=-由动能定理,B 到D 的过程中摩擦力做的功:W 2222201122D m v m v =- 代入数据可得:W 2=-1.1J质量为m 2=0.2kg 的物块释放后在桌面上运动的过程中摩擦力做的功12 2.7J W W W =+=-即克服摩擦力做功为2.7 J .3.如图所示,BC 为半径r 225=m 竖直放置的细圆管,O 为细圆管的圆心,在圆管的末端C 连接倾斜角为45°、动摩擦因数μ=0.6的足够长粗糙斜面,一质量为m =0.5kg 的小球从O 点正上方某处A 点以v 0水平抛出,恰好能垂直OB 从B 点进入细圆管,小球过C 点时速度大小不变,小球冲出C 点后经过98s 再次回到C 点。

高中物理曲线运动知识点

高中物理曲线运动知识点

高中物理曲线运动知识点一、知识概述《高中物理曲线运动知识点》①基本定义:曲线运动呢,简单说就是物体运动轨迹是曲线的运动。

比如说扔铅球吧,铅球在空中划过一道弧线才落地,这就是曲线运动。

②重要程度:在高中物理里超重要的。

很多自然现象比如行星绕太阳转就是曲线运动,在高考题里也是常常出现的。

③前置知识:你要先理解直线运动,像匀速直线运动、匀变速直线运动,还有力的概念、矢量的概念这些基础知识。

④应用价值:在体育项目中很多的,像跳远运动员起跳后的轨迹就是曲线运动,航天工程里卫星的轨道设计也是基于曲线运动知识的。

二、知识体系①知识图谱:它是力学里的一部分,跟力、加速度等知识密切相关。

就像是枝枝叶叶中的一大片枝叶,和很多东西都有联系。

②关联知识:和牛顿第二定律联系可紧密了,因为有力才有加速度,有加速度物体才会做曲线运动。

还和万有引力相关,毕竟像卫星在天上转是受万有引力才做曲线运动的。

③重难点分析:重难点在于理解曲线运动的条件。

关键就是要弄明白当物体所受合外力与速度方向不在一条直线上的时候就会做曲线运动。

这个挺难理解的,我当时就想了好久,为什么合外力不在速度方向就拐弯了呢。

④考点分析:考试里,选择题、计算题都会考。

选择题可能考曲线运动的基本概念和条件,计算题可能结合动能定理等知识来考曲线运动中的物体速度、位移等问题。

三、详细讲解【理论概念类】①概念辨析:曲线运动就是物体运动轨迹为曲线的运动呗。

这轨迹可不是直的,是弯弯绕绕的。

②特征分析:它的速度方向时刻在变。

就像摩托车在弯道上跑,每个瞬间车头的指向就是它的速度方向,这方向一直改变。

而且它是变速运动,因为速度是矢量,方向变了速度就变了。

③分类说明:可以分为平抛运动这种只受重力、加速度恒为g的曲线运动,还有像匀速圆周运动这种加速度大小不变但方向一直在变的曲线运动。

④应用范围:在抛体运动里适用,像扔篮球什么的,还适用于天体运动领域研究星球轨迹等,不过这些分析都是简化后的理想模型,实际情况可能更复杂。

高中物理曲线运动知识点总结

高中物理曲线运动知识点总结

高中物理曲线运动知识点总结高中物理曲线运动知识点总结一、曲线运动深刻理解曲线运动的条件和特点(1)曲线运动的条件:运动物体所受合外力的方向跟其速度方向不在一条直线上时,物体做曲线运动。

(2)曲线运动的特点:1在曲线运动中,运动质点在某一点的瞬时速度方向,就是通过这一点的曲线的切线方向、②曲线运动是变速运动,这是因为曲线运动的速度方向是不断变化的。

3做曲线运动的质点,其所受的合外力一定不为零,一定具有加速度。

(3)曲线运动物体所受合外力方向和速度方向不在一直线上,且一定指向曲线的凹侧。

二、运动的合成与分解1、深刻理解运动的合成与分解(1)物体的实际运动往往是由几个独立的分运动合成的,由已知的分运动求跟它们等效的合运动叫做运动的合成;由已知的合运动求跟它等效的分运动叫做运动的分解。

运动的合成与分解基本关系:1分运动的独立性;2运动的等效性(合运动和分运动是等效替代关系,不能并存);3运动的等时性;4运动的矢量性(加速度、速度、位移都是矢量,其合成和分解遵循平行四边形定则。

)(2)互成角度的两个分运动的合运动的判断合运动的情况取决于两分运动的速度的合速度与两分运动的加速度的合加速度,两者是否在同一直线上,在同一直线上作直线运动,不在同一直线上将作曲线运动。

①两个直线运动的合运动仍然是匀速直线运动。

②一个匀速直线运动和一个匀加速直线运动的合运动是曲线运动。

③两个初速度为零的匀加速直线运动的合运动仍然是匀加速直线运动。

④两个初速度不为零的匀加速直线运动的合运动估计是直线运动也估计是曲线运动。

当两个分运动的初速度的合速度的方向与这两个分运动的合加速度方向在同一直线上时,合运动是匀加速直线运动,否则是曲线运动。

2、如何确定合运动和分运动①合运动一定是物体的实际运动②假如选择运动的物体作为参照物,则参照物的运动和物体相对参照物的运动是分运动,物体相对地面的运动是合运动。

③进行运动的分解时,在遵循平行四边形定则的前提下,类似力的分解,要依照实际效果进行分解。

高中物理必修二知识点总结之曲线运动

高中物理必修二知识点总结之曲线运动

高中物理必修二知识点总结之曲线运动曲线运动知识点:一、曲线运动1.曲线运动的特征(1)曲线运动的轨迹是曲线。

(2)由于运动的速度方向总沿轨迹的切线方向,又由于曲线运动的轨迹是曲线,所以曲线运动的速度方向时刻变化。

即使其速度大小保持恒定,由于其方向不断变化,所以说:曲线运动一定是变速运动。

(3)由于曲线运动的速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的中速度必不为零,所受到的合外力必不为零,必定有加速度。

(注意:合外力为零只有两种状态:静止和匀速直线运动。

)曲线运动速度方向一定变化,曲线运动一定是变速运动,反之,变速运动不一定是曲线运动。

2.物体做曲线运动的条件(1)从动力学角度看:物体所受合外力方向跟它的速度方向不在同一条直线上。

(2)从运动学角度看:物体的加速度方向跟它的速度方向不在同一条直线上。

3.匀变速运动:加速度(大小和方向)不变的运动。

也可以说是:合外力不变的运动。

4.曲线运动的合力、轨迹、速度之间的关系(1)轨迹特点:轨迹在速度方向和合力方向之间,且向合力方向一侧弯曲。

(2)合力的效果:合力沿切线方向的分力F2改变速度的大小,沿径向的分力F1改变速度的方向。

①当合力方向与速度方向的夹角为锐角时,物体的速率将增大。

②当合力方向与速度方向的夹角为钝角时,物体的速率将减小。

③当合力方向与速度方向垂直时,物体的速率不变。

(举例:匀速圆周运动)二、绳拉物体合运动:实际的运动。

对应的是合速度。

方法:把合速度分解为沿绳方向和垂直于绳方向。

三、小船渡河例1:一艘小船在200m宽的河中横渡到对岸,已知水流速度是3m/s,小船在静水中的速度是5m/s,求:(1)欲使船渡河时间最短,船应该怎样渡河?最短时间是多少?船经过的位移多大?(2)欲使航行位移最短,船应该怎样渡河?最短位移是多少?渡河时间多长?船渡河时间:主要看小船垂直于河岸的分速度,如果小船垂直于河岸没有分速度,则不能渡河。

高中物理曲线运动知识点总结

高中物理曲线运动知识点总结

第五章 曲线运动章末总结基本概念一.曲线运动1.运动性质——变速运动,加速度一定不为零2.速度方向——沿曲线一点的切线方向3.质点做曲线运动的条件(1)从动力学看,物体所受合力方向跟物体的速度不再同一直线上,合力指向轨迹的凹侧。

(2)从运动学看,物体加速度方向跟物体的速度方向不共线 二.抛体运动:只在重力作用下的运动.特殊:平抛运动1.定义:水平抛出的物体只在重力作用下的运动. 2.性质:是加速度为重力加速度g 的匀变速曲线运动,轨迹是抛物线. 3.平抛运动的研究方法(1)平抛运动的两个分运动:水平方向是匀速直线运动,竖直方向是自由落体运动. (2)平抛运动的速度水平方向:0v v x = ; 竖直方向:ghghgt v y22g===合速度:22y x v v v +=(求合速度必用) ,方向:vgt v v tg xy ==θ (3)平抛运动的位移水平方向水平位移: gh v t v S x 200== 竖直位移:s y =21gt 2合位移:22yx ss s +=(求合位移必用) 方向:tg φ=vgt gt s s xy2vt 212==4.平抛运动的轨迹:抛物线;轨迹方程:2202x v g y =运动时间为ght 2=,即运行时间由高度h 决定,与初速度v 0无关.水平射程ghv x 20=,即由v 0和h 共同决定. 相同时间内速度改变量相等,即△v =g △t, △v 的方向竖直向下.三.圆周运动a.非匀圆周运动:合力不指向圆心,但向心力(只是合力的一个分力)指向圆心。

b.1.匀速圆周运动(1)运动学特征: v 大小不变,T 不变,ω不变,a 向大小不变; v 和a 向的方向时刻在变.匀速圆周运动是变加速运动.(2)动力学特征:合外力(向心力)大小恒定,方向始终指向圆心.基本公式及描述圆周运动的物理量(1)线速度 方向:质点在圆弧某点的线速度方向沿圆弧该点的切线方向. 大小:ωR T T s v ===r2π(s 是t 时间内通过的弧长). 01 v 2v 1y v v 图5-2-3(2)角速度 大小:nR VT Tππφω22====(单位rad/s),其中φ是t 时间内转过的角度. (3)周期 n V R f T 1212====πωπ频率 n T f ==1做圆周运动的物体在单位时间内沿圆周绕圆心转过的圈数,叫做频率,也叫转速.单位:Hz.(4) v 、ω、T 、f 的关系f T 1=,f T ππ22==ω,ωr vr v ==π2 (5)向心加速度(状态量) 物理意义:描述线速度方向改变的快慢.大小: 22222222444v a w r r f r n rr T πππ=====方向:总是指向圆心即方向始终在变.所以不论a 的大小是否变化,它都是个变化的量.3.向心力F (状态量,只看瞬时对应的各个物理量即可求得数值,不需过多考虑) ①作用效果:产生向心加速度,不断改变质点的速度方向,而不改变速度的大小.②大小: 22222222444v F m mw r m r m f r m n rr T πππ=====③匀速圆周运动的向心力就是合外力,而在非匀速圆周运动中,向心力是合外力沿半径方向的分力,而合外力沿切线方向的分力改变线速度的大小.4.质点做匀速圆周运动的条件:(1)质点具有初速度; (2)质点受到的合外力始终与速度方向垂直;(3)合外力F 的大小保持不变,且r m rv m F 22ω== 若r m r vm F 22ω=<,质点做离心运动;若r m rv m F 22ω=>,质点做近心运动; 若F = 0,质点沿切线做直线运动.基本模型 问题与方法一.绳子与杆末端速度的分解方法绳与杆问题的要点,物体运动为合运动,沿绳或杆方向和垂直于绳或杆方向的运动为分运动。

第四章曲线运动(高中物理基本概念归纳整理)完整版6

第四章曲线运动(高中物理基本概念归纳整理)完整版6

vy
gt
vx v0
2.位移规律:
水平方向:匀速直线运动,x v0t
竖直方向:自由落体运动,y 1 gt 2
实际位移: 大小: s
2 x2 y2
方向: tan
y x
gt 2v0
O
v0
β

x
α
y
y(h)
S
α vx
vy
v
3.加速度:自由落体加速度g 4.运动性质:平抛运动为匀变速 曲线运动
注意:速度的反向延长线正好与水平位移 的中点相交.
动。
凸v
注意: ①物体做曲线运动的轨迹夹在速度方向与合外力方向之间 ②做曲线运动的物体所受合外力指向轨迹的凹面
凹F 凹 F 凸v
一.曲线运动
注意: ③合外力与速度夹角θ=00或者θ=1800物体做直线运动。
F//
F//
F
④合外力与速度夹角θ=900物体做匀速圆周运动。 ⑤合外力与速度夹角θ>900物体做减速曲线运动。 ⑥合外力与速度夹角θ<900物体做加速曲线运动。
斜面最远?最远距
若v0变大或者变小,落到斜面上角度都相同,变形可求时间:t
2v0
tan
g
离是多少?
五.平抛运动的应用
3.从圆心处平抛,落到圆周上 方法:勾股定理
v0
y R
x v0t y 1 gt 2
2
x 思考以下问题该如何处理:
x2 y2 R2
1.什么时候离全面最远?2.最远距离是多少?
2.运动的合成与分解:
由分运动求合运动的过程叫作运动的合成;由合运动求分运动的过程叫作运动的分解。
3.运动的合成与分解遵循的运算法则:

高中物理必修2第五章曲线运动知识点总结

高中物理必修2第五章曲线运动知识点总结

精品文档第五章曲线运动知识点总结§ 5-1 曲线运动 & 运动的合成与分解一、曲线运动1. 定义:物体运动轨迹是曲线的运动。

2. 条件:运动物体所受合力的方向跟它的速度方向不在同一直线上。

3. 特点: ①方向:某点瞬时速度方向就是通过这一点的曲线的切线方向。

②运动类型:变速运动(速度方向不断变化) 。

③F 合 ≠0,一定有加速度 a 。

④F 合 方向一定指向曲线凹侧。

⑤F 合 可以分解成水平和竖直的两个力。

4. 运动描述——蜡块运动涉及的公式:vvyv v x 2v y 2v xv yPtan蜡块的位置v xθ二、运动的合成与分解1. 合运动与分运动的关系: 等时性、独立性、等效性、矢量性。

2. 互成角度的两个分运动的合运动的判断:①两个匀速直线运动的合运动仍然是匀速直线运动。

②速度方向不在同一直线上的两个分运动, 一个是匀速直线运动, 一个是匀变速直线运动,其合运动是匀变速 曲线运动, a 合为分运动的加速度。

③两初速度为 0 的匀加速直线运动的合运动仍然是匀加速直线运动。

④两个初速度不为 0 的匀加速直线运动的合运动可能是直线运动也可能是曲线运动。

当两个分运动的初速度的和速度方向与这两个分运动的和加速度在同一直线上时,合运动是匀变速直线运动,否则即为曲线运动。

三、有关“曲线运动”的两大题型(一)小船过河问题模型一: 过河时间 t 最短:模型二: 直接位移 x 最短:v 船vvv船ddθv 水θ v 水当 v 水<v 船 时, x min =d ,tm ind d td,v 船, xv 船 sinsintanv 船cosv 水v 水v 船.精品文档模型三:间接位移x 最短:v 船v船dθAθv 水当 v 水>v 船时,x min dcostd,cos v 船 sinsmin(v水 - v船cos )Lv船sin v水L,v船v 船v 水(二)绳杆问题 ( 连带运动问题 )1、实质:合运动的识别与合运动的分解。

高中物理曲线运动

高中物理曲线运动

若不能提供,将怎样运动?
若火车……
五、 粗略验证向心力公式
1.装置:圆锥摆
? 2.目的:
mg tan
m v2 r
3.测量:
FT
h
Fr
⑴ m 可以测,也可以不测
m
⑵ 不测θ,而测 tan,故r要测r和h;小球半径g不能忽略
h
⑶ 难以测v,而
v2 r
4 2
T2
r
4n2
t2
r,故要测n 转圈的时间t
4.数据处理及实验结论: ⑴ 比较mgtan 与 m v2 r
θ

g
v0x
x
所以速度变化量均为 v gt (如平抛图)
三、实验:研究平抛运动
1.装置
⑴描出轨迹
2.目的 ⑵验证抛物线 ⑶计算初速度
3.测量及数据处理及 结果:
⑴中,不需测量,只需操 作和作图
o ...
⑵中,在轨迹上取若干
x 点,测出x1 y1、x2 y2… 算出:
. .
a1
y1 x12
, a2
如图所示,一物体自固定斜面顶端沿水平方向以速度v抛出 后落在斜面上,物体与斜面接触时速度与斜面的夹角为θ, 若抛出物体的速度只有一半,物体与斜面接触时速度与斜 面的夹角为α,则α与θ满足关系式
A. α= θ/2
B. α= θ
θ
C.tanα =2tanθ
D. 2tan α =tanθ
08学年七校期中试卷
C.重力和绳拉力的合力沿绳方向的分力
D.绳的拉力和重力沿绳方向分力的合力
θ
<学程评价>P99
如图所示,圆筒以转速n 匀速转动,一个物体紧靠在 圆筒的内壁上一起运动,若圆筒以转速2n 匀速转动, 则: A.物体所受摩擦力增大 B.物体所受摩擦力不变 C.物体所受弹力增大 D.物体所受弹力不变
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

曲线运动单元切块:按照考纲的要求,本章内容可以分成三部分,即:运动的合成和分解、平抛运动;圆周运动;其中重点是平抛运动的分解方法及运动规律、匀速圆周运动的线速度、角速度、向心加速度的概念并记住相应的关系式。

难点是牛顿定律处理圆周运动问题。

运动的合成与分解 平抛物体的运动教学目标:1.明确形成曲线运动的条件(落实到平抛运动和匀速圆周运动);2.理解和运动、分运动,能够运用平行四边形定则处理运动的合成与分解问题。

3.掌握平抛运动的分解方法及运动规律4.通过例题的分析,探究解决有关平抛运动实际问题的基本思路和方法,并注意到相关物理知识的综合运用,以提高学生的综合能力.教学重点:平抛运动的特点及其规律 教学难点:运动的合成与分解 教学方法:讲练结合,计算机辅助教学 教学过程:一、曲线运动1.曲线运动的条件:质点所受合外力的方向(或加速度方向)跟它的速度方向不在同一直线上。

当物体受到的合力为恒力(大小恒定、方向不变)时,物体作匀变速曲线运动,如平抛运动。

当物体受到的合力大小恒定而方向总跟速度的方向垂直,则物体将做匀速率圆周运动.(这里的合力可以是万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、弹力——绳拴着的物体在光滑水平面上绕绳的一端旋转、重力与弹力的合力——锥摆、静摩擦力——水平转盘上的物体等.)如果物体受到约束,只能沿圆形轨道运动,而速率不断变化——如小球被绳或杆约束着在竖直平面内运动,是变速率圆周运动.合力的方向并不总跟速度方向垂直.2.曲线运动的特点:曲线运动的速度方向一定改变,所以是变速运动。

需要重点掌握的两种情况:一是加速度大小、方向均不变的曲线运动,叫匀变速曲线运动,如平抛运动,另一是加速度大小不变、方向时刻改变的曲线运动,如匀速圆周运动。

二、运动的合成与分解1.从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。

重点是判断合运动和分运动,这里分两种情况介绍。

一种是研究对象被另一个运动物体所牵连,这个牵连指的是相互作用的牵连,如船在水上航行,水也在流动着。

船对地的运动为船对静水的运动与水对地的运动的合运动。

一般地,物体的实际运动就是合运动。

第二种情况是物体间没有相互作用力的牵连,只是由于参照物的变换带来了运动的合成问题。

如两辆车的运动,甲车以v甲=8 m/s的速度向东运动,乙车以v乙=8 m/s的速度向北运动。

求甲车相对于乙车的运动速度v甲对乙。

2.求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。

3.合运动与分运动的特征:①等时性:合运动所需时间和对应的每个分运动时间相等②独立性:一个物体可以同时参与几个不同的分运动,各个分运动独立进行,互不影响。

4.物体的运动状态是由初速度状态(v0)和受力情况(F合)决定的,这是处理复杂运动的力和运动的观点.思路是:(1)存在中间牵连参照物问题:如人在自动扶梯上行走,可将人对地运动转化为人对梯和梯对地的两个分运动处理。

(2)匀变速曲线运动问题:可根据初速度(v 0)和受力情况建立直角坐标系,将复杂运动转化为坐标轴上的简单运动来处理。

如平抛运动、带电粒子在匀强电场中的偏转、带电粒子在重力场和电场中的曲线运动等都可以利用这种方法处理。

5.运动的性质和轨迹物体运动的性质由加速度决定(加速度得零时物体静止或做匀速运动;加速度恒定时物体做匀变速运动;加速度变化时物体做变加速运动)。

物体运动的轨迹(直线还是曲线)则由物体的速度和加速度的方向关系决定(速度与加速度方向在同一条直线上时物体做直线运动;速度和加速度方向成角度时物体做曲线运动)。

两个互成角度的直线运动的合运动是直线运动还是曲线运动?决定于它们的合速度和合加速度方向是否共线(如图所示)。

常见的类型有:⑴a =0:匀速直线运动或静止。

⑵a 恒定:性质为匀变速运动,分为:① v 、a 同向,匀加速直线运动;②v 、a 反向,匀减速直线运动;③v 、a 成角度,匀变速曲线运动(轨迹在v 、a 之间,和速度v 的方向相切,方向逐渐向a 的方向接近,但不可能达到。

)⑶a 变化:性质为变加速运动。

如简谐运动,加速度大小、方向都随时间变化。

6.过河问题如右图所示,若用v 1表示水速,v 2表示船速,则: ①过河时间仅由v 2的垂直于岸的分量v ⊥决定,即⊥=v dt ,与v 1无关,所以当v 2⊥岸时,过河所用时间最短,最短时间为2v dt =也与v 1无关。

②过河路程由实际运动轨迹的方向决定,当v 1<v 2时,最短路程为d ;当v 1>v 2时,最短路程程为d v v 21(如右图所示)。

7.连带运动问题指物拉绳(杆)或绳(杆)拉物问题。

由于高中研究的绳都是不可伸长的,杆都是不可伸长和压缩的,即绳或杆的长度不会改变,所以解题原则是:把物体的实际速度分解为垂直于绳(杆)和平行于绳(杆)两个分量,根据沿绳(杆)方向的分速度大小相同求解。

【例1】如图所示,汽车甲以速度v 1拉汽车乙前进,乙的速度为v 2,甲、乙都在水平面上运动,求v 1∶v 2解析:甲、乙沿绳的速度分别为v 1和v 2cos α,两者应该相等,所以有v 1∶v 2=cos α∶1【例2】 两根光滑的杆互相垂直地固定在一起。

上面分别穿有一个小球。

小球a 、b 间用一细直棒相连如图。

当细直棒与竖直杆夹角为α时,求两小球实际速度之比v a ∶v b解析:a 、b 沿杆的分速度分别为v a cos α和v b sin α ∴v a ∶v b = tan α∶1 三、平抛运动当物体初速度水平且仅受重力作用时的运动,被称为平抛运动。

其轨迹为抛物线,性质为匀变速运动。

平抛运动可分解为水平方向的匀速运动和竖直方向的自由落体运动这两个分运动。

广义地说,当物体所受的合外力恒定且与初速度垂直时,做类平抛运动。

1、平抛运动基本规律① 速度:0v v x =,gt v y =合速度 22yx v v v +=方向 :tan θ=oxy v gtv v =②位移x =v o t y =221gt 合位移大小:s =22y x + 方向:tan α=t v g x y o⋅=2 ③时间由y =221gt 得t =x y 2(由下落的高度y 决定) ④竖直方向自由落体运动,匀变速直线运动的一切规律在竖直方向上都成立。

v 1甲乙α v 1v 2v av bαα v 1甲乙α v 1 v 22.应用举例 (1)方格问题【例3】平抛小球的闪光照片如图。

已知方格边长a 和闪光照相的频闪间隔T ,求:v 0、g 、v c解析:水平方向:T a v 20=竖直方向:22,Ta g gT s =∴=∆ 先求C 点的水平分速度v x 和竖直分速度v y ,再求合速度v C :412,25,20Tav T a v T a v v c y x =∴===(2)临界问题典型例题是在排球运动中,为了使从某一位置和某一高度水平扣出的球既不触网、又不出界,扣球速度的取值范围应是多少?【例4】 已知网高H ,半场长L ,扣球点高h ,扣球点离网水平距离s 、求:水平扣球速度v 的取值范围。

解析:假设运动员用速度v max 扣球时,球刚好不会出界,用速度v min 扣球时,球刚好不触网,从图中数量关系可得:()hgs L g h s L v 2)(2/max +=+=; )(2)(2/min H h gsg H h s v -=-= 实际扣球速度应在这两个值之间。

【例5】如图所示,长斜面OA 的倾角为θ,放在水平地面上,现从顶点O 以速度v 0平抛一小球,不计空气阻力,重力加速度为g ,求小球在飞行过程中离斜面的最大距离s 是多少?解析:为计算简便,本题也可不用常规方法来处理,而是将速度和加速度分别沿垂直于斜面和平行于斜面方向进行分解。

如图15,速度v 0沿垂直斜面方向上的分量为v 1= v 0 sin θ,加速度g 在垂直于斜面方向上的分量为a =g cos θ,根据分运动各自独立的原理可知,球离斜面的最大距离仅由和决定,当垂直于斜面的分速度减小为零时,球离斜面的距离才是最大。

θϑcos 2sin 22021g v a v s ==。

点评:运动的合成与分解遵守平行四边形定则,有时另辟蹊径可以收到意想不到的效果。

(3)一个有用的推论平抛物体任意时刻瞬时时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。

证明:设时间t 内物体的水平位移为s ,竖直位移为h ,则末速度的水平分量v x =v 0=s/t ,而竖直分量v y =2h/t , sh v v 2tan xy ==α,所以有2tan sh s =='α 【例6】 从倾角为θ=30°的斜面顶端以初动能E =6J 向下坡方向平抛出一个小球,则小球落到斜面上时的动能E /为______J 。

解析:以抛出点和落地点连线为对角线画出矩形ABCD ,可以证明末速度v t 的反向延长线必然交AB 于其中点O ,由图中可知AD ∶AO =2∶3,由相似形可知v t ∶v 0=7∶3,因此很容易可以得出结论:E /=14J 。

点评:本题也能用解析法求解。

列出竖直分运动和水平分运动的方程,注意到倾角和下落高度和射程的关系,有:h=21gt 2,s=v 0t ,θtan =sh或 h=21v y t , s=v 0 t ,θtan =sh同样可求得v t ∶v 0=7∶3,E /=14J 四、曲线运动的一般研究方法研究曲线运动的一般方法就是正交分解法。

将复杂的曲线运动分解为两个互相垂直方向上的直线运动。

一般以初速度或合外力的方向为坐标轴进行分解。

【例7】 如图所示,在竖直平面的xoy 坐标系内,oy 表示竖直向上方向。

该平面内存在沿x 轴正向的匀强电场。

一个带电小球从坐标原点沿oy 方向竖直向上抛出,初动能为4J ,不计空气阻力。

它达到的最高点位置vv Ov tx如图中M 点所示。

求:⑴小球在M 点时的动能E 1。

⑵在图上标出小球落回x 轴时的位置N 。

⑶小球到达N 点时的动能E 2。

解析:⑴在竖直方向小球只受重力,从O →M 速度由v 0减小到0;在水平方向小球只受电场力,速度由0增大到v 1,由图知这两个分运动平均速度大小之比为2∶3,因此v 0∶v 1=2∶3,所以小球在M 点时的动能E 1=9J 。

⑵由竖直分运动知,O →M 和M →N 经历的时间相同,因此水平位移大小之比为1∶3,故N 点的横坐标为12。

⑶小球到达N 点时的竖直分速度为v 0,水平分速度为2v 1,由此可得此时动能E 2=40J 。

五、综合例析【例8】如图所示,为一平抛物体运动的闪光照片示意图,照片与实际大小相比缩小10倍.对照片中小球位置进行测量得:1与4闪光点竖直距离为1.5 cm ,4与7闪光点竖直距离为2.5 cm ,各闪光点之间水平距离均为0.5 cm.则(1)小球抛出时的速度大小为多少?(2)验证小球抛出点是否在闪光点1处,若不在,则抛出点距闪光点1的实际水平距离和竖直距离分别为多少?(空气阻力不计,g =10 m/s 2)解析:(1)设1~4之间时间为T ,竖直方向有:(2.5-1.5)×10-2×10 m =gT 2 所以T = 0.1 s水平方向:0.5×10-2×3×10 m =v 0T 所以v 0=1.5 m/s(2)设物体在1点的竖直分速度为v 1y 1~4竖直方向:1.5×10-2×10 m=v 1y T +21gT 2解得v 1y =1 m/s因v 1y ≠0,所以1点不是抛出点设抛出点为O 点,距1水平位移为x m ,竖直位移为y m ,有 水平方向 x =v 0t竖直方向:⎪⎩⎪⎨⎧==gt v gt y y 1221 解得t = 0.1 s , x =0.15 m=15 cm y =0.05 m=5 cm即抛出点距1点水平位移为15 cm ,竖直位移为5 cm【例9】 柯受良驾驶汽车飞越黄河,汽车从最高点开始到着地为止这一过程的运动可以看作平抛运动。

相关文档
最新文档