2019第2章第4节氢原子光谱与能级结构语文

合集下载

《氢原子光谱与能级结构》优秀教案(鲁科选修)

《氢原子光谱与能级结构》优秀教案(鲁科选修)

第四节氢原子光谱与能级结构学案【学习目标】(1)了解光谱地定义和分类;(2)了解氢原子光谱地实验规律,知道巴耳末系;(3)了解经典原子理论地困难.【学习重点】氢原子光谱地实验规律.【知识要点】1、光谱早在17世纪,牛顿就发现了日光通过三棱镜后地色散现象,并把实验中得到地彩色光带叫做光谱.(1)发射光谱物体发光直接产生地光谱叫做发射光谱.发射光谱可分为两类:连续光谱和明线光谱.稀薄气体或金属地蒸气地发射光谱是明线光谱.明线光谱是由游离状态地原子发射地,所以也叫原子地光谱.实践证明,原子不同,发射地明线光谱也不同,每种原子只能发出具有本身特征地某些波长地光,因此明线光谱地谱线也叫原子地特征谱线.(2)吸收光谱高温物体发出地白光(其中包含连续分布地一切波长地光)通过物质时,某些波长地光被物质吸收后产生地光谱,叫做吸收光谱.各种原子地吸收光谱中地每一条暗线都跟该种原子地原子地发射光谱中地一条明线相对应.这表明,低温气体原子吸收地光,恰好就是这种原子在高温时发出地光.因此吸收光谱中地暗谱线,也是原子地特征谱线.(3)光谱分析由于每种原子都有自己地特征谱线,因此可以根据光谱来鉴别物质和确定地化学组成.这种方法叫做光谱分析.原子光谱地不连续性反映出原子结构地不连续性,所以光谱分析也可以用于探索原子地结构.2、氢原子光谱地实验规律氢原子是最简单地原子,其光谱也最简单.(课件展示)4、玻尔理论对氢光谱地解释(1)基态和激发态基态:在正常状态下,原子处于最低能级,这时电子在离核最近地轨道上运动,这种定态,叫基态.激发态:原子处于较高能级时,电子在离核较远地轨道上运动,这种定态,叫激发态.(2)原子发光:原子从基态向激发态跃迁地过程是吸收能量地过程.原子从较高地激发态向较低地激发态或基态跃迁地过程,是辐射能量地过程,这个能量以光子地形式辐射出去,吸收或辐射地能量恰等于发生跃迁地两能级之差.5、玻尔理论地局限性玻尔理论虽然把量子理论引入原子领域,提出定态和跃迁概念,成功解释了氢原子光谱,但对多电子原子光谱无法解释,因为玻尔理论仍然以经典理论为基础.如粒子地观念和轨道.量子化条件地引进没有适当地理论解释.【典型例题】例题1:氦原子被电离一个核外电子,形成类氢结构地氦离子.已知基态地氦离子能量为E1=-54.4 eV,氦离子能级地示意图如图所示.在具有下列能量地光子中,不能被基态氦离子吸收而发生跃迁地是()A.40.8 eV B.43.2 eVC.51.0 eV D.54.4 eV解析:根据玻尔理论,氢原子吸收光子能量发生跃迁时光子地能量需等于能级差或大于基态能级地绝对值.氦离子地跃迁也是同样地.因为 E2-E1=-13.6-(-54.4) eV=40.8 eV,选项A是可能地.E3-E1=-6.0-(-54.4) eV=48.4 eVE4-E1=-3.4-(-54.4) eV=51.0 eV,选项C是可能地.E∞-E1=0-(-54.4)=54.4 eV,选项D是可能地. 所以本题选B.【达标训练】1.氢原子光谱在可见光部分只有四条谱线,一条红色、一条蓝色、两条紫色,它们分别是从n=3、4、5、6能级向n=2能级跃迁时产生地,则()(A)红色光谱是氢原子从n=6能级向n=2能级跃迁时产生地(B)蓝色光谱是氢原子从n=6能级或n=5能级向n=2能级跃迁时产生地(C)若从n=6能级向n=1能级跃迁时,则能够产生紫外线(D)若原子从n=6能级向n=1能级跃迁时所产生地辐射不能使某金属发生光电效应,则原子从n=6能级向n=2能级跃迁时将可能使该金属发生光电效应2.如图是氢原子能级图.有一群氢原子由n=4能级向低能级跃迁,已知普朗克常数h=6.63×10-34J·s,求:(1)这群氢原子地光谱共有几条谱线;(2)这群氢原子发出光地最大波长.答案:1.C2. 解析:(1)62)14(42)1(=-=-n n 条(或画图得出6条) (2)光子地能量越小,则频率越小,波长越大.从n=4能级向n=3跃迁时,辐射地光子能量最小J eV eV eV E E E 193410056.166.0)51.1(85.0-⨯==---=-=∆光子地最大波长为版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.rqyn1。

第3-4节《氢原子光谱和原子的能级结构》(20130205修改)

第3-4节《氢原子光谱和原子的能级结构》(20130205修改)
A、 E2>E1、r2>r1; B、E2>E1,r2<r1; C、E2<E1,r2>r1; D、E2<E1,r2<r1 。
答案:A
4、根据玻尔理论,氢原子的电子由外层 轨道跃迁到内层轨道后
A、原子的能量增加,电子的动能减少 B、原子的能量增加,电子的动能增加 C、原子的能量减少,电子的动能减少 D、原子的能量减少,电子的动能增加
定义:连续光谱中某些波长的光被物质吸收后产生的 吸 光谱 收 光 产生条件:炽热的白光通过温度较白光低的气体后, 谱 再色散形成的
光谱形式:用分光镜观察时,见到连续光谱背景上 出现一些暗线(与特征谱线相对应)
光谱 日光通过三棱镜后在光屏上所形成的彩色光带
发射光谱 物质发光直接产生的光谱 •连续谱: 连续分布着包含从红光到紫光的各种色光的光谱
从n=5直接跃迁到n=2的能级时,辐射的光子的 频率最大,
从n=5跃迁到n=4的能级时,辐射的光子的频率 最小,
课堂练习
1、玻尔在他提出的原子模型中所做的假设有 A、原子处于称为定态的能量状态时,虽然电子做加 速运动,但并不向外辐射能量 B、原子的不同能量状态与电子沿不同的圆轨道绕核 运动相对应,而电子的可能轨道的分布是不连续的 C、电子从一个轨道跃迁到另一轨道时,辐射(或吸 收)一定频率的光子 D、电子跃迁时辐射的光子的频率等于电子绕核做圆 周运动的频率
原一34 子一的对状应态的与。电子的轨道EE、34((能--10..级5815都eeVV))是10..9686eeVV
(第一
激发态) 2
E2(-3.4eV)
放出?
10.2eV
(基态) 1
E1(-13.6eV)
⊿ E放 = E3- E1 = -1.51 -(-13.6)eV=12.09 eV

第4节 氢原子的光谱与能级结构

第4节   氢原子的光谱与能级结构


486.1nm

652.2nm
434.0nm
λ/nm n=1 E1= -13.6ev
四、玻尔理论的局限 1、无法计算光谱的强度。
2、对氢以外的其它元素的原子形成的复杂光谱的理论分析与实 验结果相差很大。
五、玻尔理论的局限的原因 玻尔在推导电子绕原子核运动的轨道半 径时,是根据电子以库仑力为绕运动的向 心力求得的,完全是经典力学的方法。而 假定电子轨道是量子化的,并根据量子化 能量计算光的发射和吸收频率,是一种量 子论的方法。因此,玻尔理论是一种半经 典的量子论。其实电子在原子核外运动并 没有固定的轨道,是以电子云的形式出现 在核外空间,真正适用于微观世界的是理 论是完全脱离了经典物理的量子理论。
第4节 氢原子的光 谱与能级结构
一、光谱
复色光经过色散系统(如棱镜、光栅)分光后,被色散 开的单色光按波长(或频率)大小而依次排列的图案
观察光谱实验
1.实验装置
分光镜
2.原理图
H、Hg、Ne的光谱
人类在19初世纪就观察到了原子光谱,而且还发现不同的原子光 谱具有不同的特征,到19世纪60年代形成了用光谱来分析物质的化 学成分---光谱分析科学,但是一直没有找到产生原子光谱的原因。
1 1 R 2 2 1 n 1
n 2,4, 3,
红 外 区
帕邢(Friedrich Paschen,1865~1947)德国物理学家。 1908年发现了氢原子红外区的谱线遵循的数学觃律。 帕邢线系
1 1 R 2 2 3 n 1
n 4,5,6,
二、氢原子光谱
可见光区
(里德伯常数: R=1.09677581×1 07m-1)
巴尔末(1825-1909)瑞 士数学家。1884年发现 了可光区的谱线遵循的 数学规律。

原子结构氢原子光谱课件

原子结构氢原子光谱课件
氢原子光谱可用于核聚变 能源的研究,探索未来清 洁能源的发展方向。
氢原子光谱与其他学科的交叉研究
量子力学
氢原子光谱是量子力学的重要实验验证之一,通过研究氢原子光 谱可以深入理解量子力学的原理。
天体物理学
氢原子光谱在天体物理学中有着广泛的应用,可用于研究恒星、星 系等天体的演化过程。
环境科学
氢原子光谱可用于环境监测,如大气中污染物的检测和治理效果子结构氢原子光谱课件
• 原子结构 • 氢原子的特性 • 氢原子光谱 • 氢原子光谱的应用 • 氢原子光谱的未来发展
01
原子结构
原子的构成
原子由原子核和核外 电子组成,其中原子 核由质子和中子组成。
原子核的质量约占整 个原子的99.96%, 但体积仅占整个原子 的极小部分。
原子核位于原子的中 心,而核外电子则围 绕原子核旋转。
程。
星际物质研究
在宇宙空间中,氢原子广泛存在 于星际物质中,其光谱特征对于 研究星际物质的结构和性质具有
重要意义。
太阳活动监测
太阳上的氢原子活动可以反映太 阳的活动状态,通过对氢原子光 谱的监测,有助于预测和防范太 阳风暴等对地球产生影响的事件。
化学中的氢原子光谱
化合物鉴定
氢原子光谱在化学分析中常用于 鉴定化合物中的氢原子类型和数 量,有助于确定化合物的结构和
性质。
反应机理研究
通过观察化学反应过程中氢原子光 谱的变化,可以深入了解化学反应 的机理和动力学过程。
药物研发
在药物研发过程中,氢原子光谱可 以用于研究药物分子与生物大分子 的相互作用,有助于新药的发现和 优化。
其他领域中的氢原子光谱应用
环境监测
在环境保护领域,氢原子光谱可用于监测水体、空气等环境样品中的有害物质,为环境污染治理和预防提供科学 依据。

第2章 氢原子的光谱与能级

第2章 氢原子的光谱与能级

(2.1.2)
上式就是里德伯方程,其中, RH = 1.0967758 × 107 m −1 ,称作里德伯常数。 用里德伯方程表示的巴尔末线系的谱线如表 2.1.2 表 2.1.2 巴尔末系
n Name λ(nm) 3 Hα 656.3 4 Hβ 486.1 5 Hγ 434.1 6 Hδ 410.2 7 Hε 397.0 8 Hζ 388.9 9 Hη 383.5 364.6 ∞
~ = T ( m) − T ( n) ν
其中 T (m) =
(2.1.3)
RH R , T ( n) = H , T ( m) 、 T ( n ) 称为光谱项。 2 m n2
4
起初, 人们认为巴尔末公式和里德伯方程只是对氢原子光谱规律的经验总结, 似乎就是 一些数字的组合。 但也有人从此受到了启发, 相信如此简单的物理规律之后必定隐藏着简单 而深刻的物理本质!
ν = RH [
n λ(nm) 4 1874.5 5 1281.4 6 1093.5 7
1 1 − ] , n = 4, 5, 6," 32 n 2
8 954.3 9 922.6 10 901.2 11 886.0 12 874.8 13 866.2 ∞ 820.1
表 2.1.4 氢原子的帕邢系
1004.6
图 2.1.1 太阳光经过三棱镜后的色散 光源所发出的光,往往含有各种的波长成分,如果用光谱仪器测量并记录光源中各个波 长成分的强度,就可以得到光源的光谱。光谱仪器都是色散仪器,其中的色散元件可以是棱 镜(图 2.1.2) ,也可以是光栅(图 2.1.3) ,光经过棱镜或者光栅后,不同的波长成分以不同 的角度出射,这就是色散。如果用照像装置记录,则可得到一张光谱照片,不同波长的光被 记录在照片上不同的位置; 如果用能够探测光强的记录装置, 则可得到光强按频率或波长的 分布图,这就是常见的光谱图。光谱可以用函数表示为光强随波长或频率的分布,即

氢原子光谱课件

氢原子光谱课件

氢原子光谱课件引言氢原子光谱是量子力学和原子物理学领域的基础内容,对于理解原子结构、光谱现象以及化学键的形成具有重要意义。

本课件旨在介绍氢原子光谱的基本原理、实验观测和理论解释,帮助读者深入理解氢原子的能级结构和光谱特性。

一、氢原子的基本结构1.1电子轨道和量子数氢原子由一个质子和一个电子组成,电子围绕质子旋转。

根据量子力学的原理,电子在氢原子中只能存在于特定的轨道上,这些轨道被称为能级。

每个能级由主量子数n来描述,n的取值为正整数。

1.2能级和能级跃迁氢原子的能级可以用公式E_n=-13.6eV/n^2来表示,其中E_n 是第n能级的能量,单位为电子伏特(eV)。

当电子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子,这个频率与能级之间的能量差有关。

二、氢原子光谱的实验观测2.1光谱仪和光谱图氢原子光谱可以通过光谱仪进行观测。

光谱仪将入射光分解成不同频率的光谱线,并将这些光谱线投射到感光材料上,形成光谱图。

通过观察光谱图,可以得知氢原子的能级结构和光谱特性。

2.2巴尔末公式实验观测到的氢原子光谱线可以通过巴尔末公式来描述,公式为1/λ=R_H(1/n1^21/n2^2),其中λ是光谱线的波长,R_H是里德伯常数,n1和n2是两个能级的主量子数。

巴尔末公式可以准确地预测氢原子光谱线的位置。

三、氢原子光谱的理论解释3.1玻尔模型1913年,尼尔斯·玻尔提出了氢原子的量子理论模型,即玻尔模型。

该模型假设电子在氢原子中只能存在于特定的轨道上,每个轨道对应一个能级。

当电子从一个能级跃迁到另一个能级时,会吸收或发射一定频率的光子。

3.2量子力学解释1925年,海森堡、薛定谔和狄拉克等人发展了量子力学理论,为氢原子光谱提供了更为精确的解释。

量子力学认为,电子在氢原子中的状态可以用波函数来描述,波函数的平方表示电子在空间中的概率分布。

通过解薛定谔方程,可以得到氢原子的能级和波函数。

四、结论氢原子光谱是量子力学和原子物理学的基础内容,对于理解原子结构、光谱现象以及化学键的形成具有重要意义。

氢原子的光谱与能级结构 课件(15张)

氢原子的光谱与能级结构 课件(15张)

1.了解氢原子光 谱的特点,知道巴尔末 公式。 2.通过玻尔理论对氢 光谱的解释,知道玻尔 理论的正确性与局限 性。 3.知道玻尔理论是一 种半经典半量子化的 理论。
一、氢原子光谱
复色光经过色散系统(如棱镜、光栅)分光后,被色散 开的单色光按波长(或频率)大小而依次排列的图案
观察光谱实验
1. 实 验
1 12

1 n2

n 2,3,4,
红 外 区
帕邢线系
1


R

1 32

1 n2

还 有 三
布喇开系
1


R

1 42

1 n2

个 线 系
普丰特线系
1


R
1

52

1 n2

n 4,5,6,
n 5,6,7,
n 6,7,8,
二、玻尔理论对氢原光光谱的解释
1.氦氖激光器能产生三种波长的激光,其中两种波长分
别为 λ1=0.6328μm,λ2=3.39μm。已知波长为 λ1 的激光是氖原
子在能级间隔为 ΔE1=1.96 eV 的两个能级之间跃迁产生的。
用 ΔE2 表示产生波长为 λ2 的激光所对应的跃迁能级间隔,则
ΔE2 的近似值为( )
A.10.50eV B.0.98 eV
第4节 氢原子的光谱与能级结构
情境导入
课程目标
霓虹灯发出的光,线条结构丰富,色彩鲜艳、绚丽多姿, 形状、色彩变幻莫测,令人赏心悦目。一幅幅流动的画 面,似天上彩虹,像人间银河,更酷似一个梦幻世界,使人 难以忘怀。霓虹灯是一种增添节日欢快气氛和进行广 告宣传的最佳光源,霓虹灯的亮、美、动特点,在各类新 型光源中独领风骚。同学们,你们知道霓虹灯的发光原 理吗?

氢原子光谱ppt课件

氢原子光谱ppt课件

03
氢原子光谱实验观测与分析
氢原子光谱实验装置介绍
光源
氢原子灯或放电管,产生氢原子 光谱。
单色仪
将复合光分解为单色光,并可选 择特定波长的光通过。
光探测器
如光电倍增管或CCD,将光信号 转换为电信号进行记录和分析。
数据采集与处理系统
对实验数据进行采集、处理和分 析,得出实验结果。
氢原子光谱观测方法
氢原子光谱研究挑战与机遇
实验技术挑战
01
尽管精密测量技术取得了显著进展,但进一步提高测量精度仍
面临诸多挑战,如如何消除系统误差、提高信噪比等。
理论模型挑战
02
现有理论模型在描述某些复杂现象时仍存在一定局限性,需要
进一步完善和发展。
交叉学科机遇
03
氢原子光谱研究与粒子物理、宇宙学等领域密切相关,这些领
04
氢原子光谱理论解释与应用
薛定谔方程与波函数概念
薛定谔方程
描述了微观粒子状态随时间变化 的规律,是量子力学的基本方程
之一。
波函数
量子力学中用来描述粒子状态的函 数,其模平方表示粒子在特定位置 被发现的概率。
量子数
描述原子或分子中电子运动状态的 参数,如主量子数、角量子数等。
氢原子光谱理论解释
玻尔模型
玻尔提出的氢原子模型,假设电子在 特定轨道上运动,且能量是量子化的。
能量级与光谱线
选择定则
解释了为何只有特定能级间的跃迁才 会产生光谱线,如偶极跃迁选择定则 等。
氢原子光谱由一系列分立的谱线组成, 对应着电子在不同能级间的跃迁。
氢原子光谱在物理、化学等领域应用
01
02
03
04
原子钟
利用氢原子光谱的稳定性和精 确性,制成高精度原子钟,用

高三物理氢原子的光谱与能级结构

高三物理氢原子的光谱与能级结构


还 有 三
布喇开系
1


R

1 42

1 n2

个 线 系
普丰特线系
1


R
1

52

1 n2

n 4,5,6,
n 5,6,7,
n 6,7,8,
二、玻尔理论对氢原光光谱的解释
En

13.6 n2
eV
1


E1 hc
(
1 n2

1 22
)
n=6
n=5 n=4
486.1nm
1.几种特定频率的光
2.光谱是分立的亮线
Hα (红色)
652.2nm
λ/nm
原子光谱
每一种光谱-------印记
每一种原子都有自己特定的原子光谱,不同原子,其原子 光谱均不同
巴尔末的研究氢原子光谱
(可见光区)
(里德伯常数:R=1.09677581×107m-1)
R E1 hc
巴尔末公式
第4节 氢原子的光谱与能级结构
一、光谱
复色光经过色散系统(如棱镜、光栅)分光后,被色散 开的单色光按波长( 验
玻璃管充进氢气
连续光谱经过氢气的光谱
2. 氢原子的光谱图
(紫绿色) Hδ
410.1nm
特点
Hγ (青色)
434.0nm
Hβ (蓝绿色)
N > 6 的符合巴耳末公式的光谱线(大部分在紫外区) 巴尔末系
人们把一系列符合巴耳末公式的光谱线统称为巴耳末系 适用区域: 可见光区、紫外线区
氢原子光谱的其他线系
紫 外 线 区
赖曼线系

氢原子光谱与能级结构

  氢原子光谱与能级结构

第4节氢原子光谱与能级结构[先填空]1.氢原子光谱的特点(1)从红外区到紫外区呈现多条具有确定波长的谱线;Hα~Hδ的这n个波长数值成了氢原子的“印记”,不论是何种化合物的光谱,只要它里面含有这些波长的光谱线,就能断定这种化合物里一定含有氢.(2)从长波到短波,Hα~Hδ等谱线间的距离越来越小,表现出明显的规律性.2.巴尔末公式1λ=R(122-1n2)(n=3,4,5,…),其中R叫做里德伯常量,数值为R=1.096 77581×107 m-1.[再判断]1.氢原子光谱是不连续的,是由若干频率的光组成的.(√)2.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是相同的.(×)3.由于不同元素的原子结构不同,所以不同元素的原子光谱也不相同.(√) [后思考]氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同?【提示】氢原子光谱是分立的线状谱.它在可见光区的谱线满足巴耳末公式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.[核心点击]的有________条.【解析】在氢原子光谱中,电子从较高能级跃迁到n=2能级发光的谱线属于巴尔末线系.因此只有由n=3能级跃迁至n=2能级的1条谱线属巴尔末线系.【答案】 12.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所对应的n,并计算其波长.【解析】对应的n越小,波长越长,故当n=3时,氢原子发光所对应的波长最长.当n=3时,1λ1=1.10×107×⎝⎛⎭⎪⎫122-132m-1解得λ1=6.55×10-7 m.当n=∞时,波长最短,1λ=R⎝⎛⎭⎪⎫122-1n2=R×14,λ=4R=41.1×107m=3.64×10-7 m.【答案】当n=3时,波长最长为6.55×10-7 m当n =∞时,波长最短为3.64×10-7 m巴尔末公式的应用方法及注意问题(1)巴尔末公式反映氢原子发光的规律特征,不能描述其他原子.(2)公式中n 只能取整数,不能连续取值,因此波长也是分立的值.(3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用.(4)应用时熟记公式,当n 取不同值时求出一一对应的波长λ.玻 尔 理 论 对 氢 光 谱 的 解 释[先填空]1.理论推导按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n =2的能级上时,辐射出的光子能量应为hν=E n -E 2,根据氢原子的能级公式E n =E 1n 2可得E 2=E 122,由此可得hν=-E 1⎝ ⎛⎭⎪⎫122-1n 2,由于c =λν,所以上式可写成1λ=-E 1hc ⎝ ⎛⎭⎪⎫122-1n 2,把这个式子与巴尔末公式比较,可以看出它们的形式是完全一样的,并且R =-E 1hc ,计算出-E 1hc的值为1.097×107 m -1与里德伯常量的实验值符合得很好.这就是说,根据玻尔理论,不但可以推导出表示氢原子光谱规律性的公式,而且还可以从理论上来计算里德伯常量的值.由此可知,氢原子光谱的巴尔末系是电子从n =3,4,5,6,…能级跃迁到n =2的能级时辐射出来的.其中H α~H δ在可见光区.2.玻尔理论的成功与局限性1.玻尔理论是完整的量子化理论.(×)2.玻尔理论成功的解释了氢原子光谱的实验规律.(√)3.玻尔理论不但能解释氢原子光谱,也能解释复杂原子的光谱.(×)[后思考]玻尔理论的成功和局限是什么?【提示】成功之处在于引入了量子化的观念,局限之处在于保留了经典粒子的观念,把电子的运动看做是经典力作用下的轨道运动.[核心点击]1.成功方面(1)运用经典理论和量子化观念确定了氢原子的各个定态的能量并由此画出能级图.(2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合的很好,由于能级是分立的,辐射光子的波长也是不连续的.(3)不仅成功地解释了氢光谱的巴尔末系,计算出了里德伯常数,而且,玻尔理论还预言了当时尚未发现的氢原子的其他光谱线系,这些线系后来相继被发现,也都跟玻尔理论的预言相符.2.局限性及原因(1)局限性:成功地解释了氢原子光谱的实验规律,但不能解释稍复杂原子的光谱现象.(2)原因:保留了经典粒子的观念,把电子的运动仍然看作经典力学描述下的轨道运动.3.(多选)关于经典电磁理论与氢原子光谱之间的关系,下列说法正确的是() 【导学号:64772032】A.经典电磁理论不能解释原子的稳定性B.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上C.根据经典电磁理论,原子光谱应该是连续的D.氢原子光谱彻底否定了经典电磁理论【解析】 根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量最后被吸附到原子核上,原子不应该是稳定的,并且发射的光谱应该是连续的.氢原子光谱并没有完全否定经典电磁理论,是引入了新的观念.【答案】 ABC4.氢原子光谱的巴耳末系中波长最长的光波的波长为λ1,波长次之为λ2,则λ1λ2=________. 【解析】 由1λ=R ⎝ ⎛⎭⎪⎫122-1n 2得:当n =3时,波长最长,1λ1=R ⎝ ⎛⎭⎪⎫122-132,当n =4时,波长次之,1λ2=R ⎝ ⎛⎭⎪⎫122-142,解得:λ1λ2=2720. 【答案】 27205.已知氢原子光谱中巴尔末线系第一条谱线H α的波长为6 565 A 0,求: 【导学号:64772033】(1)试推算里德伯常量的值;(2)利用巴尔末公式求其中第四条谱线的波长和对应光子的能量.(1 A 0=10-10 m)【解析】 (1)巴尔末系中第一条谱线为n =3时,即1λ1=R (122-132) R =365λ1=365×6 565×10-10m -1=1.097×107 m -1. (2)巴尔末系中第四条谱线对应n =6,则1λ4=R (122-162) λ4=368×1.097×107 m =4.102×10-7 m E =hν=h ·c λ4=6.63×10-34×3×1084.102×10-7J=4.85×1019 J.【答案】(1)1.097×107 m-1(2)4.102×10-7 m 4.85×1019 J氢原子光谱线是最早发现、研究的光谱线1.氢光谱是线状的、不连续的,波长只能是分立的值.2.谱线之间有一定的关系,可用一个统一的公式表达:1λ=R(1m2-1n2)式中m=2对应巴尔末公式:1λ=R(122-1n2),(n=3,4,5,…).其谱线称为巴尔末线系,是氢原子核外电子由高能级跃迁至n=2的能级时产生的光谱,其中Hα~Hδ在可见光区.由于光的频率不同,其颜色不同.m=1对应赖曼系即赖曼系(在紫外区)1λ=R(112-1n2),(n=2,3,4,…)m=3对应帕邢系即帕邢系(在红外区)1λ=R(132-1n2),(n=4,5,6,…)学业分层测评(七)(建议用时:45分钟)[学业达标]1.关于原子光谱,下列说法中正确的是() A.每种原子处在不同温度下发光的光谱不同B.每种原子处在不同的物质中的光谱不同C.每种原子在任何条件下发光的光谱都相同D.两种不同的原子发光的光谱可能相同【解析】每种原子都有自己的结构,只能发出由内部结构决定的自己的特征谱线,不会因温度、物质不同而改变,C正确.【答案】 C2.(多选)有关氢原子光谱的说法正确的是() 【导学号:64772097】A.氢原子的发射光谱是连续谱B.氢原子光谱说明氢原子只发出特定频率的光C.氢原子光谱说明氢原子能级是分立的D.氢原子光谱线的频率与氢原子能级的能量差无关【解析】原子的发射光谱是原子跃迁时形成的,由于原子的能级是分立的,所以氢原子的发射光谱是线状谱,原子发出的光子的能量正好等于原子跃迁时的能级差,故氢原子只能发出特定频率的光,综上所述,选项D、A错,B、C对.【答案】BC3.对于巴尔末公式下列说法正确的是() 【导学号:64772098】A.所有氢原子光谱的波长都与巴尔末公式相对应B.巴尔末公式只确定了氢原子光谱的可见光部分的光的波长C.巴尔末公式确定了氢原子光谱的一个线系的波长,其中既有可见光,又有紫外光D.巴尔末公式确定了各种原子光谱中的光的波长【解析】巴尔末公式只确定了氢原子光谱中一个线系波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A、D错误;巴尔末公式是由当时巳知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,该线系包括可见光和紫外光,B错误,C正确.【答案】 C4.利用光谱分析的方法能够鉴别物质和确定物质的组成成分,关于光谱分析下列说法正确的是()A.利用高温物体的连续谱就可鉴别其组成成分B.利用物质的线状谱就可鉴别其组成成分C.高温物体发出的光通过某物质后的光谱上的暗线反映了高温物体的组成成分D.同一种物质的线状谱与吸收光谱上的暗线,由于光谱的不同,它们没有关系【解析】由于高温物体的光谱包括了各种频率的光,与其组成成分无关,故A错误;某种物质发射的线状谱中的明线与某种原子发出的某频率的光有关,通过这些亮线与原子的特征谱对照,即可确定物质的组成成分,B正确;高温物体发出的光通过物质后某些频率的光被吸收而形成暗线,这些暗线与通过的物质有关,C错误;某种物质发出某种频率的光,当光通过这种物质时它也会吸收这种频率的光,因此线状谱中的亮线与吸收光谱中的暗线相对应,D错误.正确选项是B.【答案】 B5.(多选)关于巴耳末公式1λ=R⎝⎛⎭⎪⎫122-1n2的理解,正确的是()A.此公式是巴耳末在研究氢原子光谱特征时发现的B.公式中n可取任意值,故氢原子光谱是连续谱C.公式中n只能取大于或等于3的整数值,故氢原子光谱是线状谱D.巴耳末公式只确定了氢原子发光中的一个线系的波长,不能描述氢原子发出的其他线系的波长【解析】此公式是巴耳末在研究氢原子光谱在可见光区的14条谱线中得到的,只适用于氢原子光谱的巴耳末线系分析,且n只能取大于或等于3的整数,因此λ不能取连续值,故氢原子光谱是线状谱,A、C、D正确.【答案】ACD6.(多选)以下论断中正确的是()A.按经典电磁理论,核外电子受原子核库仑引力,不能静止只能绕核运转,电子绕核加速运转,不断地向外辐射电磁波B .按经典理论,绕核运转的电子不断向外辐射能量,电子将逐渐接近原子核,最后落入原子核内C .按照卢瑟福的核式结构理论,原子核外电子绕核旋转,原子是不稳定的,说明该理论不正确D .经典电磁理论可以很好地应用于宏观物体,但不能用于解释原子世界的现象【解析】 卢瑟福的核式结构没有问题,主要问题出在经典电磁理论不能用来解释原子世界的现象;按照玻尔理论,原子核外的电子在各不连续的轨道上做匀速圆周运动时并不向外辐射电磁波,故A 、B 、D 正确,C 错误.【答案】 ABD7.氢原子第n 能级的能量为E n =E 1n 2,其中E 1是基态能量.当氢原子由第4能级跃迁到第2能级时,发出光子的频率为ν1;若氢原子由第2能级跃迁到基态,发出光子的频率为ν2,则ν1ν2=________. 【解析】 根据氢原子的能级公式,hν1=E 4-E 2=E 142-E 122=-316E 1hν2=E 2-E 1=E 122-E 112=-34E 1所以ν1ν2=31634=14. 【答案】 148.有一群处于n =4能级上的氢原子,已知里德伯常量R =1.097×107 m -1,则:(1)这群氢原子发光的光谱有几条?几条是可见光?(2)根据巴尔末公式计算出可见光中的最大波长是多少?【解析】 (1)这群氢原子的能级图如图所示,由图可以判断出,这群氢原子可能发生的跃迁共有6种,所能发出的光谱共有6条,其中有2条是可见光.(2)根据巴尔末公式1λ=R⎝⎛⎭⎪⎫122-1n2得,当n=3时,波长最大,代入数据得λ=6.563×10-7 m.【答案】(1)62(2)6.563×10-7 m[能力提升]9.如图2-4-1甲所示是a,b,c,d四种元素的线状谱,图乙是某矿物质的线状谱,通过光潽分析可以了解该矿物质中缺乏的是()图2-4-1①a元素②b元素③c元素④d元素A.①②B.③④C.①③D.②④【解析】对比图(甲)和图(乙)可知,图(乙)中没有b,d对应的特征谱线,所以在矿物质中缺乏b,d两种元素.【答案】 D10.氢原子从第4能级跃迁到第2能级发出蓝光,那么当氢原子从第5能级跃迁到第2能级应发出() 【导学号:64772099】A.X射线B.红光C.黄光D.紫光【解析】氢原子从第5能级跃迁到第2能级发出的光在可见光范围内,且比蓝光的频率更大.在为E5-E2=hν2>E4-E2=hν1.由此可知,只能是紫光,故D正确.【答案】 D11.在可见光范围内,氢原子光谱中波长最长的2条谱线所对应的基数为n. 【导学号:64772034】(1)它们的波长各是多少?(2)其中波长最长的光对应的光子能量是多少?【解析】 (1)谱线对应的n 越小,波长越长,故当n =3时,氢原子发光所对应的波长最长.当n =3时,1λ1=1.10×107×(122-132) m -1 解得λ1=6.5×10-7 m.当n =4时,1λ2=1.10×107×(122-142) m -1 解得λ2=4.8×10-7 m.(2)n =3时,对应着氢原子巴尔末系中波长最长的光,设其波长为λ,因此E =hν=h c λ=6.63×10-34×3×1086.5×10-7J =3.06×10-19 J. 【答案】 (1)6.5×10-7 m 4.8×10-7 m(2)3.06×10-19 J12.氢原子光谱除了巴尔末系外,还有赖曼系、帕邢系等,其中帕邢系的公式为1λ=R ⎝ ⎛⎭⎪⎫132-1n 2(n =4,5,6,…),R =1.10×107 m -1.若已知帕邢系的氢原子光谱在红外线区域,求:(1)n =6时,对应的波长;(2)帕邢系形成的谱线在真空中的波速为多少?n =6时,传播频率为多大?【解析】 (1)由帕邢系公式1λ=R ⎝ ⎛⎭⎪⎫132-1n 2, 当n =6时,得λ=1.09×10-6 m.(2)帕邢系形成的谱线在红外区域,而红外线属于电磁波,在真空中以光速传播,故波速为光速c =3×108 m/s ,由v =λT =λν,得ν=v λ=c λ=3×1081.09×10-6 Hz =2.75×1014 Hz.【答案】(1)1.09×10-6 m (2)3×108 m/s 2.75×1014 Hz。

第二章氢原子的光谱与能级

第二章氢原子的光谱与能级
名称 Hα Hβ Hγ Hδ
波长(Å) 6562.10 4860.74 4340.10 4101.20 颜色 红 深绿 青 紫
2、氢的Balmer线系
♣Balmer发现,对于已知的14条氢的光谱线, 可以用一个简单的公式表示其波长分布 (1885年)
n2 B 2 n 4
n 3,4,5, Balmer公式
1 1 RH R 109737.31 1 m / M 1 1/1836.15 1 109677.58c m ★与实验值完全吻合!
(2) 核质量对光谱线的影响及氘的发现: (a)核质量增大,光谱线兰移:
v R 故R增大→ v
线兰移.
·由上式可知,当M增大→R(里德伯常数)增大;而
♣经典理论:粒子发光频率等于电子运动频率. 由
♣其中E为电子总能量,Ek电子动能.
m r
2
Ze
2 2 可得
4 0r

Ze
2 3
4 0r
♣由上式可知,随着电子轨道r逐渐减小 时,电子运动园频率ω 将逐渐增大,导致 光发射频率连续增大,故氢原子光谱应 为连续谱.
三、波尔氢原子模型:
1、波尔假设: (a) 定态假设:电子处于某些能量状态 时是稳定的,不发生辐射,这些状态称原子的 定态.
§2.2 Bohr氢原子模型
• 一、历史背景: • 1、卢瑟福α粒子散射实验→原子核式(行星)模型.
• 2、氢原子的线状光谱(离散谱)
1 1 RH m2 n2
二、经典理论的困难:
• 1、电子轨道稳定吗: • (a) 电子轨道能量: ♣因为M>>me→可认为核不动,电子作圆周运 动, v2 Ze2 2 有: r 4 r
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4节氢原子光谱与能级结构理解玻尔理论对氢原子光谱规律的解.2)释.(重点)(难点3.了解玻尔理论的局限性.谱子光氢原]先填空[ 氢原子光谱的特点1.个波长~H的这n(1)从红外区到紫外区呈现多条具有确定波长的谱线;Hδα只要它里面含有这些波数值成了氢原子的“印记”,不论是何种化合物的光谱,长的光谱线,就能断定这种化合物里一定含有氢.等谱线间的距离越来越小,(2)从长波到短波,H~H表现出明显的规律性.δα2.巴尔末公式1111.096 775 叫做里德伯常量,数值为,其中RR=,…)(-=R(n=3,4,5)22λn217-.81×10 m]再判断[).氢原子光谱是不连续的,是由若干频率的光组成的.1(√.由于原子都是由原子核和核外电子组成的,所以各种原子的原子光谱是2)×相同的.() (由于不同元素的原子结构不同,3.所以不同元素的原子光谱也不相同.√]后思考[ 氢原子光谱有什么特征,不同区域的特征光谱满足的规律是否相同?它在可见光区的谱线满足巴耳末公【提示】氢原子光谱是分立的线状谱.式,在红外和紫外光区的其他谱线也都满足与巴耳末公式类似的关系式.]核心点击[页 1 第111),…n=3,4,5,6-=R()(22λn2 巴尔末公式17-m10只能取整数,最小值为3,里德伯常量R=1.10×式中n巴尔末线系的14条谱线都处于可见光区1对应的=3时,值越大,对应的波长λ越短,即n在巴尔末线系中n规2波长最长律除了巴尔末系,氢原子光谱在红外区和紫外区的其他谱线也都满足3与巴尔末公式类似的关系式能级自发跃迁至低能级发出的谱线中属于巴尔末线系=3一群氢原子由1.n ________条.的有能级发光的谱线=2【解析】在氢原子光谱中,电子从较高能级跃迁到n条谱线属巴尔末线能级的1能级跃迁至n=2属于巴尔末线系.因此只有由n=3 系.1 【答案】.根据巴耳末公式,指出氢原子光谱巴耳末线系的最长波长和最短波长所2 ,并计算其波长.对应的n时,氢原子发光所对应的3n越小,波长越长,故当n=【解析】对应的波长最长.111??17-??m×1.10=×10当n=3时,-22 32λ??17m.λ=6.55×10解得-11111??-??R×,=n当=∞时,波长最短,=R22n2λ4??447=λ103.64m=×=m. -7R101.1×7-m×时,波长最长为=当【答案】n36.5510页 2 第7-m10=∞时,波长最短为3.64×当n巴尔末公式的应用方法及注意问题(1)巴尔末公式反映氢原子发光的规律特征,不能描述其他原子.(2)公式中n只能取整数,不能连续取值,因此波长也是分立的值.(3)公式是在对可见光区的四条谱线分析时总结出的,在紫外区的谱线也适用.(4)应用时熟记公式,当n取不同值时求出一一对应的波长λ.玻尔理论对氢光谱的解释[先填空]1.理论推导按照玻尔原子理论,氢原子的电子从能量较高的能级跃迁到n=2的能级上E1时,辐射出的光子能量应为hν=E-E,根据氢原子的能级公式E=可得E222nn n -E11111E????11--????,所以上式可写成=,由于c=λν,=由此可得hν=-E,222221nn22λhc2 把这个式子与巴尔末公式比较,可以看出它们的形式是完全一样的,并且R=-EE1117-,计算出-的值为1.097×10 m与里德伯常量的实验值符合得很好.这hchc就是说,根据玻尔理论,不但可以推导出表示氢原子光谱规律性的公式,而且还可以从理论上来计算里德伯常量的值.由此可知,氢原子光谱的巴尔末系是电子从n=3,4,5,6,…能级跃迁到n=2的能级时辐射出来的.其中H~H在可见光区.δα2.玻尔理论的成功与局限项目内容页 3 第1.玻尔理论是完整的量子化理论.(×)2.玻尔理论成功的解释了氢原子光谱的实验规律.(√)3.玻尔理论不但能解释氢原子光谱,也能解释复杂原子的光谱.(×)[后思考]玻尔理论的成功和局限是什么?【提示】成功之处在于引入了量子化的观念,局限之处在于保留了经典粒子的观念,把电子的运动看做是经典力作用下的轨道运动.[核心点击]1.成功方面(1)运用经典理论和量子化观念确定了氢原子的各个定态的能量并由此画出能级图.(2)处于激发态的氢原子向低能级跃迁辐射出光子,辐射光子的能量与实际符合的很好,由于能级是分立的,辐射光子的波长也是不连续的.(3)不仅成功地解释了氢光谱的巴尔末系,计算出了里德伯常数,而且,玻尔理论还预言了当时尚未发现的氢原子的其他光谱线系,这些线系后来相继被发现,也都跟玻尔理论的预言相符.2.局限性及原因(1)局限性:成功地解释了氢原子光谱的实验规律,但不能解释稍复杂原子的光谱现象.(2)原因:保留了经典粒子的观念,把电子的运动仍然看作经典力学描述下的轨道运动.3.(多选)关于经典电磁理论与氢原子光谱之间的关系,下列说法正确的是()【导学号:64772032】A.经典电磁理论不能解释原子的稳定性B.根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量,最后被吸附到原子核上C.根据经典电磁理论,原子光谱应该是连续的D.氢原子光谱彻底否定了经典电磁理论页 4 第【解析】根据经典电磁理论,电子绕原子核转动时,电子会不断释放能量最后被吸附到原子核上,原子不应该是稳定的,并且发射的光谱应该是连续的.氢原子光谱并没有完全否定经典电磁理论,是引入了新的观念.【答案】ABC4.氢原子光谱的巴耳末系中波长最长的光波的波长为λ,波长次之为λ,21λ1则=________. λ2111111????--????,当=Rn得:当n=3时,波长最长,【解析】由=R22223n22λλ????111λ271??1-??,解得:=.=4时,波长次之,=R2242λλ20??2227【答案】200导【求:H的波长为6 565 A,5.已知氢原子光谱中巴尔末线系第一条谱线α】学号:64772033 试推算里德伯常量的值;(1)0-10A(2)利用巴尔末公式求其中第四条谱线的波长和对应光子的能量.(1 =10 m)【解析】(1)巴尔末系中第一条谱线为n=3时,111即=R(-)22λ3213636171. 1.097×10m=R=m=--λ51010×5×6 565-1(2)巴尔末系中第四条谱线对应n=6,111则=R(-)22λ624367λ=m=4.102×10 m-7410××1.0978cE=hν=h·λ4页 5 第34810310××6.63×-=J74.102×10-19 J.10=4.85×71-10 m【答案】(1)1.097×719-J10(2)4.102×104.85×m氢原子光谱线是最早发现、研究的光谱线1.氢光谱是线状的、不连续的,波长只能是分立的值.1112.谱线之间有一定的关系,可用一个统一的公式表达:=R(-)22λnm111式中m=2对应巴尔末公式:=R(-),(n=3,4,5,…).其谱线称为巴22λn2尔末线系,是氢原子核外电子由高能级跃迁至n=2的能级时产生的光谱,其中H~H在可见光区.由于光的频率不同,其颜色不同.δαm=1对应赖曼系即赖曼系(在紫外区)111=R(-),(n=2,3,4,…)22λn1m=3对应帕邢系即帕邢系(在红外区)111=R(-),(n=4,5,6,…)22λn3学业分层测评(七)(建议用时:45分钟)[学业达标]1.关于原子光谱,下列说法中正确的是()A.每种原子处在不同温度下发光的光谱不同B.每种原子处在不同的物质中的光谱不同C.每种原子在任何条件下发光的光谱都相同页 6 第D.两种不同的原子发光的光谱可能相同【解析】每种原子都有自己的结构,只能发出由内部结构决定的自己的特征谱线,不会因温度、物质不同而改变,C正确.【答案】C2.(多选)有关氢原子光谱的说法正确的是() 【导学号:64772097】A.氢原子的发射光谱是连续谱B.氢原子光谱说明氢原子只发出特定频率的光C.氢原子光谱说明氢原子能级是分立的D.氢原子光谱线的频率与氢原子能级的能量差无关【解析】原子的发射光谱是原子跃迁时形成的,由于原子的能级是分立的,所以氢原子的发射光谱是线状谱,原子发出的光子的能量正好等于原子跃迁时的能级差,故氢原子只能发出特定频率的光,综上所述,选项D、A错,B、C对.【答案】BC3.对于巴尔末公式下列说法正确的是() 【导学号:64772098】A.所有氢原子光谱的波长都与巴尔末公式相对应B.巴尔末公式只确定了氢原子光谱的可见光部分的光的波长C.巴尔末公式确定了氢原子光谱的一个线系的波长,其中既有可见光,又有紫外光D.巴尔末公式确定了各种原子光谱中的光的波长【解析】巴尔末公式只确定了氢原子光谱中一个线系波长,不能描述氢原子发出的各种波长,也不能描述其他原子的发光,A、D错误;巴尔末公式是由当时巳知的可见光中的部分谱线总结出来的,但它适用于整个巴尔末线系,该线系包括可见光和紫外光,B错误,C正确.【答案】C4.利用光谱分析的方法能够鉴别物质和确定物质的组成成分,关于光谱分析下列说法正确的是()页 7 第A.利用高温物体的连续谱就可鉴别其组成成分B.利用物质的线状谱就可鉴别其组成成分C.高温物体发出的光通过某物质后的光谱上的暗线反映了高温物体的组成成分D.同一种物质的线状谱与吸收光谱上的暗线,由于光谱的不同,它们没有关系【解析】由于高温物体的光谱包括了各种频率的光,与其组成成分无关,故A错误;某种物质发射的线状谱中的明线与某种原子发出的某频率的光有关,通过这些亮线与原子的特征谱对照,即可确定物质的组成成分,B正确;高温物体发出的光通过物质后某些频率的光被吸收而形成暗线,这些暗线与通过的物质有关,C错误;某种物质发出某种频率的光,当光通过这种物质时它也会吸收这种频率的光,因此线状谱中的亮线与吸收光谱中的暗线相对应,D错误.正确选项是B.【答案】B111??-??的理解,正确的是(=关于巴耳末公式R)5.(多选)22n2λ??A.此公式是巴耳末在研究氢原子光谱特征时发现的B.公式中n可取任意值,故氢原子光谱是连续谱C.公式中n只能取大于或等于3的整数值,故氢原子光谱是线状谱D.巴耳末公式只确定了氢原子发光中的一个线系的波长,不能描述氢原子发出的其他线系的波长【解析】此公式是巴耳末在研究氢原子光谱在可见光区的14条谱线中得到的,只适用于氢原子光谱的巴耳末线系分析,且n只能取大于或等于3的整数,因此λ不能取连续值,故氢原子光谱是线状谱,A、C、D正确.【答案】ACD6.(多选)以下论断中正确的是()A.按经典电磁理论,核外电子受原子核库仑引力,不能静止只能绕核运转,页8 第电子绕核加速运转,不断地向外辐射电磁波B.按经典理论,绕核运转的电子不断向外辐射能量,电子将逐渐接近原子核,最后落入原子核内C.按照卢瑟福的核式结构理论,原子核外电子绕核旋转,原子是不稳定的,说明该理论不正确D.经典电磁理论可以很好地应用于宏观物体,但不能用于解释原子世界的现象【解析】卢瑟福的核式结构没有问题,主要问题出在经典电磁理论不能用来解释原子世界的现象;按照玻尔理论,原子核外的电子在各不连续的轨道上做匀速圆周运动时并不向外辐射电磁波,故A、B、D正确,C错误.【答案】ABDE17.氢原子第n能级的能量为E=,其中E是基态能量.当氢原子由第421n n能级跃迁到第2能级时,发出光子的频率为ν;若氢原子由第2能级跃迁到基态,1ν1发出光子的频率为ν,则=________.2ν2EE311【解析】根据氢原子的能级公式,hν=E-E=-=-E22 11241642EE311 hν=E-E=-=-E221221412316ν11所以==.ν43241【答案】471-,10 m==8.有一群处于n4能级上的氢原子,已知里德伯常量R1.097×则:(1)这群氢原子发光的光谱有几条?几条是可见光?(2)根据巴尔末公式计算出可见光中的最大波长是多少?【解析】(1)这群氢原子的能级图如图所示,由图可以判断出,这群氢原页 9 第子可能发生的跃迁共有6种,所能发出的光谱共有6条,其中有2条是可见光.111??-??得,当n=3(2)根据巴尔末公式=R时,波长最大,代入数据得λ22 n2λ??7 m.×10=6.563-7-m(2)6.563×10(1)6【答案】2[能力提升]9.如图2-4-1甲所示是a,b,c,d四种元素的线状谱,图乙是某矿物质的线状谱,通过光潽分析可以了解该矿物质中缺乏的是()图2-4-1①a元素②b元素③c元素④d元素A.①②B.③④D .①③.②④C【解析】对比图(甲)和图(乙)可知,图(乙)中没有b,d对应的特征谱线,所以在矿物质中缺乏b,d两种元素.【答案】D10.氢原子从第4能级跃迁到第2能级发出蓝光,那么当氢原子从第5能级跃迁到第2能级应发出() 【导学号:64772099】A.X射线B.红光D .紫光C.黄光【解析】氢原子从第5能级跃迁到第2能级发出的光在可见光范围内,且比蓝光的频率更大.在为E-E=hν>E-E=hν.由此可知,只能是紫光,故124252D正确.【答案】D11.在可见光范围内,氢原子光谱中波长最长的2条谱线所对应的基数为n. 【导学号:64772034】(1)它们的波长各是多少?(2)其中波长最长的光对应的光子能量是多少?页 10 第【解析】(1)谱线对应的n越小,波长越长,故当n=3时,氢原子发光所对应的波长最长.11171) m-×1.10×10(时,当n=3=-22λ3217 m.×10解得λ=6.5-111171) m(×10-×当n=4时,=1.10-22λ4227 m.10λ=4.8×解得-2(2)n=3时,对应着氢原子巴尔末系中波长最长的光,设其波长为λ,因此3486.63×10×3×10-c19 J.E=hν=h=J=3.06×10-λ7106.5×-77--m4.810×10 m【答案】(1)6.5×19-J×10(2)3.0612.氢原子光谱除了巴尔末系外,还有赖曼系、帕邢系等,其中帕邢系的公111??71--??. m1.10×10若已知帕邢系的氢原子光谱n=4,5,6,…),R式为=R=(22n3λ??在红外线区域,求:(1)n=6时,对应的波长;(2)帕邢系形成的谱线在真空中的波速为多少?n=6时,传播频率为多大?111??-??,R【解析】(1)由帕邢系公式=22n3λ??6 m.10λ=1.09×时,得当n=6-(2)帕邢系形成的谱线在红外区域,而红外线属于电磁波,在真空中以光速8 m/s,×310传播,故波速为光速c=λ由v==λν,T8v10×3c14 Hz. ×10Hz=ν===2.75得λλ6101.09×-页 11 第6-m (1)1.09×10【答案】814 Hz ×2.7510×(2)310 m/s页 12 第。

相关文档
最新文档