数学九年级下锐角三角函数练习题

合集下载

第28章 锐角三角函数 练习 2022--2023学年人教版九年级数学下册

第28章 锐角三角函数   练习   2022--2023学年人教版九年级数学下册

第28章锐角三角函数(练习)-人教版九年级下册一.选择题1.正方形网格中,∠AOB如图所示放置(点A,C均在网格的格点上,且点C在OB上),则cos∠AOB的值为()A.B.C.D.2.在Rt△ABC中,∠C=90°,AB=9,则AC的长为()A.6B.2C.3D.93.如图,在Rt△ABC中,∠C=90°,则sin B=()A.B.2C.D.4.如图所示,河堤横断面迎水坡AB坡比是1:2,堤高BC=4m()A.8B.16C.4D.45.如图所示,是由小正方形构成的4×4网格,每个小正方形的顶点叫做格点,A,P,C,D均在格点上,则∠AOB和∠COD的大小关系为()A.∠AOB>∠COD B.∠AOB=∠COD C.∠AOB<∠COD D.无法确定6.在Rt△ABC中,∠C=90°,BC=1,下列各式中,正确的是()A.sin A=B.cos A=C.tan A=D.cot A=7.如图,已知Rt△ABC,CD是斜边AB边上的高()A.CD=AB•tan B B.CD=AD•cot A C.CD=AC•sin B D.CD=BC•cos A 8.若tan A=2,则∠A的度数估计在()A.在0°和30°之间B.在30°和45°之间C.在45°和60°之间D.在60°和90°之间9.如图,Rt△ABC中,∠C=90°,下列的三角函数对应正确的是()A.sin∠BAD=B.cos∠BAD=C.sin∠CAD=D.tan∠CAD=10.如图,小华在课外时间利用仪器测量红旗的高度,从点A处测得旗杆顶部B的仰角为α,若AD为h米,则红旗的高度BE为()A.(m tanα+h)米B.(+h)米C.m tanαD.米二.填空题11.计算:cos30°+sin60°=.12.在Rt△ABC中,∠ACB=90°,若∠A=60°,则sin∠ABC=.13.已知锐角A满足tan(90°﹣A)=,则∠A=.14.小明沿着坡比为1:2的山坡向上走了10m,则他升高了cm.15.某学校准备改善原有户外楼梯AB的安全性能,已知原楼梯长为6米,坡角∠BAC的度数为30°(i为铅直高度与水平宽度的比)则楼梯底部A向外延伸的长度为米.(结果精确到0.1,参考数据:√2≈1.41,√3≈1.73)三.解答题16.黄河是中华文明最主要的发源地,中国人称其为“母亲河”.为落实黄河文化的传承弘扬,某校组织学生到黄河某段流域进行研学旅行.某兴趣小组在只有米尺和测角仪的情况下(不能到对岸)如图,已知该段河对岸岸边有一点A,测得∠ABC=65°,∠ACB=45°(结果精确到1m,参考数据sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)17.一架飞机沿水平直线飞行,在点C处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米至点D处,已知建筑物AB的高为3米,求飞机飞行的高度(结果精确到1米,参考数据:≈1.414,≈1.732).18.如图,在△ABC中,AD⊥BC于点D,tan C=,BC=12.(1)求DC边的长;(2)求cos B的值.19.若商场为方便消费者购物,准备将原来的阶梯式自动扶梯改造成斜坡式动扶梯,如图所示,扶梯AB的坡度i为1:.改造后的斜坡式动扶梯的坡角∠ACB为15°.(1)请你求出AD的长度;(2)请你计算改造后的斜坡式自动扶梯AC的长度.(结果精确到0.1m.参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27)20.如图,⊙O是△ABC的外接圆,点D在BC延长线上(1)求证:AD是⊙O的切线;(2)若AC是∠BAD的平分线,sin B=,BC=4。

2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28-1锐角三角函数》同步练习题(附答案)

2022--2023学年人教版九年级数学下册《28.1锐角三角函数》同步练习题(附答案)一.选择题1.在Rt△ABC中,∠C=90°,AB=5,AC=3,则下列等式正确的是()A.sin A=B.cos A=C.tan A=D.cos A=2.三角函数sin30°、cos16°、cos43°之间的大小关系是()A.sin30°<cos16°<cos43°B.cos43°<sin30°<cos16°C.sin30°<cos43°<cos16°D.sin16°<cos30°<cos43°3.如图,在Rt△ABC中,CD是斜边AB上的高,∠A≠45°,则下列比值中不等于sin A 的是()A.B.C.D.4.如果锐角A的度数是25°,那么下列结论中正确的是()A.0<sin A<B.0<cos A<C.<tan A<1D.1<cot A<5.在Rt△ABC中,如果各边长度都扩大为原来的3倍,则锐角∠A的余弦值()A.扩大为原来的3倍B.没有变化C.缩小为原来的D.不能确定6.在Rt△ABC中,∠C=90°,AB=4,AC=2,则sin A的值为()A.B.C.D.7.若锐角α满足cosα<且tanα<,则α的范围是()A.30°<α<45°B.45°<α<60°C.60°<α<90°D.30°<α<60°8.在Rt△ABC中,∠B=90°,cos A=,则sin A=()A.B.C.D.9.若tan B=,则∠B的度数为()A.30°B.60°C.45°D.15°10.在Rt△ABC中,∠C=90°,AB=5,AC=4.下列四个选项,正确的是()A.tan B=0.75B.sin B=0.6C.sin B=0.8D.cos B=0.8 11.如图,△ABC的顶点是正方形网格的格点,则sin∠ABC的值为()A.B.C.D.二.填空题12.在Rt△ABC中,∠C=90°,若c=5,sin B=,则AC=.13.在△ABC中,∠C=90°,如果tan∠A=2,AC=3,那么BC=.14.如图,在Rt△ABC中,∠ACB=90°,D为AB上异于A,B的一点,AC≠BC.(1)若D为AB中点,且CD=2,则AB=.(2)当CD=AB时,∠A=α,要使点D必为AB的中点,则α的取值范围是.15.若∠A为锐角,且cos A=,则∠A的取值范围是.16.如图,已知两点A(2,0),B(0,4),且∠1=∠2,则tan∠OCA=.三.解答题17.如图,已知在Rt△ABC中,∠C=90°,AB=5,BC=3.求AC的长和sin A的值.18.如图,在Rt△ABC中,∠C=90°,AC=12,BC=5.求sin A,cos A和tan A.19.(1)如图锐角的正弦值和余弦值都随着锐角的确定而确定,变化而变化,试探索随着锐角度数的增大,它的正弦值和余弦值变化的规律.(2)根据你探索到的规律试比较18°,34°,50°,62°,88°,这些锐角的正弦值的大小和余弦值的大小.(3)比较大小(在空格处填写“>”“=”“<”号),若α=45°,则sinαcosα;若0°<α<45°,则sinαcosα;若45°<α<90°,sinαcosα.20.在Rt△ABC中,∠C=90°,斜边c=5,两直角边的长a,b是关于x的一元二次方程x2﹣mx+2m﹣2=0的两个根,求Rt△ABC中较小锐角的正弦值.21.已知如图,A,B,C,D四点的坐标分别是(3,0),(0,4),(12,0),(0,9),探索∠OBA和∠OCD的大小关系,并说明理由.22.在△ABC中,BC=2AB=12,∠ABC=α,BD是∠ABC的角平分线,以BC为斜边在△ABC外作等腰直角△BEC,连接DE.(1)求证:CD=2AD;(2)当α=90°时,求DE的长;(3)当0°<α<180°时,求DE的最大值.参考答案一.选择题1.解:如图所示:∵∠C=90°,AB=5,AC=3,∴BC=4,∴sin A=,故A错误;cos A=,故B正确;tan A=;故C错误;cos A=,故D错误;故选:B.2.解:∵sin30°=cos60°,又16°<43°<60°,余弦值随着角度的增大而减小,∴cos16°>cos43°>sin30°.故选:C.3.解:在Rt△ABC中,sin A=,在Rt△ACD中,sin A=,∵∠A+∠B=90°,∠B+∠BCD=90°,∴∠A=∠BCD,在Rt△BCD中,sin∠BCD=sin A=,故选:D.4.解:A.∵sin30°=,∴0<sin25°<,故A符合题意;B.∵cos30°=,∴cos25°>,故B不符合题意;C.∵tan30°=,∴tan25°<,故C不符合题意;D.∵cot30°=,∴cot25°>,故D不符合题意;故选:A.5.解:设原来三角形的各边分别为a,b,c,则cos A=,若把各边扩大为原来的3倍,则各边为3a,3b,3c,那么cos A==,所以余弦值不变.故选:B.6.解:在Rt△ABC中,∠C=90°,AB=4,AC=2,∴BC===2,∴sin A===,故选:D.7.解:∵α是锐角,∴cosα>0,∵cosα<,∴0<cosα<,又∵cos90°=0,cos45°=,∴45°<α<90°;∵α是锐角,∴tanα>0,∵tanα<,∴0<tanα<,又∵tan0°=0,tan60°=,0<α<60°;故45°<α<60°.故选:B.8.解:在Rt△ABC中,∠B=90°,cos A=,∴设AB=12k,AC=13k,∴BC===5k,∴sin A===,故选:A.10.解:∵tan B=,∴∠B=60°.故选:B.11.解:如图,∵∠C=90°,AB=5,AC=4,∴BC===3,A选项,原式==,故该选项不符合题意;B选项,原式===0.8,故该选项不符合题意;C选项,原式===0.8,故该选项符合题意;D选项,原式===0.6,故该选项不符合题意;故选:C.二.填空题12.解:在Rt△ABC中,∠C=90°,若c=5,sin B=,所以sin B===,所以AC=4,故答案为:4.13.解:在△ABC中,∠C=90°,tan∠A=2,AC=3,∴BC=AC tan∠A=3×2=6,故答案为:6.14.解:(1)∵∠ACB=90°,D为AB中点,∴AB=2CD=2×2=4;故答案为:4;(2)当以C点为圆心,CD为半径画弧与线段AB只有一个交点(点A、B除外),则点D必为AB的中点,∴CB≤CD或CA≤CD,∵CD=AB,∴CB≤AB或CA≤AB∵sin A=≤或sin B=≤,即sinα≤sin30°或sin B≤sin30°,∴α≤30或∠B≤30°,∴α≤30°或α≥60°,∴α的取值范围为0°<α≤30°或60°≤α<90°.故答案为:0°<α≤30°或45°或60°≤α<90°.15.解:∵0<<,又cos60°=,cos90°=0,锐角余弦函数值随角度的增大而减小,∴当cos A=时,60°<∠A<90°.故答案为:60°<∠A<90°.16.解:∵∠1=∠2,∴∠BAO=∠ACO,∵A(2,0),B(0,4),∴tan∠OCA=tan∠BAO==2.故答案为:2.三.解答题17.解:∵∠C=90°,AB=5,BC=3,∴AC===4,sin A==.答:AC的长为4,sin A的值为.18.解:在Rt△ABC中,∠C=90°,AC=12,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.19.解:(1)在图中,令AB1=AB2=AB3,B1C1⊥AC于点C1,B2C2⊥AC于点C2,B3C3⊥AC 于点C3,显然有:B1C1>B2C2>B3C3,∠B1AC>∠B2AC>∠B3AC.∵sin∠B1AC=,sin∠B2AC=,sin∠B3AC=,而>>,∴sin∠B1AC>sin∠B2AC>sin∠B3AC.在图中,Rt△ACB3中,∠C=90°,cos∠B1AC=,cos∠B2AC=,cos∠B3AC=,∵AB3>AB2>AB1,∴>>.即cos∠B3AC<cos∠B2AC<cos∠B1AC;结论:锐角的正弦值随角度的增大而增大,锐角的余弦值随角度的增大而减小.(2)由(1)可知:sin88°>sin62°>sin50°>sin34°>sin18°;cos88°<cos62°<cos50°<cos34°<cos18°.(3)若α=45°,则sinα=cosα;若0°<α<45°,则sinα<cosα;若45°<α<90°,则sinα>cosα.故答案为:=,<,>.20.解:∵a,b是方程x2﹣mx+2m﹣2=0的解,∴a+b=m,ab=2m﹣2,在Rt△ABC中,由勾股定理得,a2+b2=c2,而a2+b2=(a+b)2﹣2ab,c=5,∴a2+b2=(a+b)2﹣2ab=25,即:m2﹣2(2m﹣2)=25解得,m1=7,m2=﹣3,∵a,b是Rt△ABC的两条直角边的长.∴a+b=m>0,m=﹣3不合题意,舍去.∴m=7,当m=7时,原方程为x2﹣7x+12=0,解得,x1=3,x2=4,不妨设a=3,则sin A==,∴Rt△ABC中较小锐角的正弦值为21.解:∠OBA=∠OCD,理由如下:由勾股定理,得AB===5,CD===15,sin∠OBA==,sin∠OCD===,∠OBA=∠OCD.22.(1)证明:如图,过点D作DO∥BC交AB于点O,∴∠ODB=∠CBD,∵BD是角平分线,∴∠OBD=∠CBD,∴∠OBD=∠ODB,∴OB=OD,∵OD∥BC,∴=,△AOD∽△ABC,∴=,∴===,∴=,∴CD=2AD;解:(2)如图,过点D作DO∥BC交AB于点O,当α=90°时,BD平分∠ABC,∴∠DBC=∠OBD=45°,∠DOB=90°,∵△BEC为等腰直角三角形,BC=12,∴∠EBC=45°,BE=6,∴∠DBE=90°,由(1)可得AB=6,==,∴OB=4,∴BD=4,∴DE==2;(3)如图,过点D作DO∥BC交AB于点O,DE交BC于点F,设BC中点为点G,连接EG,∴BG=6,当α变化时,OB的长度不变,∴点O在以点B为圆心,半径为4的圆弧上,令圆弧与BC交于点F,∴BF=4,此时,点D在以点F为圆心,半径为4的圆弧上,当点D,E,F三点共线时,DE最大,∴GF=BG﹣BF=2,∴EF==2,∴DE的最大值=DF+FE=2+4.。

【单元练】人教版初中九年级数学下册第二十八章《锐角三角函数》经典练习题(含答案解析)

【单元练】人教版初中九年级数学下册第二十八章《锐角三角函数》经典练习题(含答案解析)

一、选择题1.在ABC 中,若21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭,则C ∠的度数是( ) A .45︒ B .60︒C .75︒D .105︒C解析:C 【分析】根据偶次方和绝对值的非负性可得1cos 02A -=,1tan 0B -=,利用特殊角的三角函数值可得A ∠和B 的度数,利用三角形内角和定理即可求解. 【详解】解:21cos |1tan |02A B ⎛⎫-+-= ⎪⎝⎭, 21cos 0,|1tan |02A B ⎛⎫∴-=-= ⎪⎝⎭,1cos 02A ∴-=,1tan 0B -=,则1cos 2A =,tan 1B =,解得:60A ∠=︒,45B ∠=︒, 则180604575C ∠=︒-︒-︒=︒. 故选:C . 【点睛】本题考查偶次方和绝对值的非负性、特殊角的三角函数值、三角形内角和定理,熟悉特殊角的三角函数值是解题的关键.2.如图,这是某市政道路的交通指示牌,BD 的距离为5m ,从D 点测得指示牌顶端A 点和底端C 点的仰角分别是60°和45°,则指示牌的高度,即AC 的长度是( )A .53mB .52mC .(5352mD .()535m D解析:D 【分析】由题意可得到BD=BC=5,根据锐角三角函数关系得出方程,然后解方程即可.【详解】解:由题意可得:∠CDB=∠DCB=45°, ∴BD=BC=5,设AC=x m ,则AB=(x +5)m , 在Rt △ABD 中,tan60°=AB BD, 则535x +=, 解得:535x =-, 即AC 的长度是()535m -; 故选:D . 【点睛】此题主要考查了解直角三角形的应用,正确应用锐角三角函数关系是解题关键. 3.下表是小红填写的实践活动报告的部分内容,设铁塔顶端到地面的高度FE 为xm ,根据以上条件,可以列出的方程为 ( ) 题目测量铁塔顶端到地面的高度测量目标示意图相关数据10,45,50CD m αβ==︒=︒A .()10tan50x x =-︒B .()10cos50x x =-︒C .10tan50x x -=︒D .()10sin50x x =+︒A解析:A 【分析】过D 作DH ⊥EF 于H ,则四边形DCEH 是矩形,根据矩形的性质得到HE =CD =10,CE =DH ,求得FH =x−10,得到CE =x−10,根据三角函数的定义列方程即可得到结论. 【详解】过D 作DH ⊥EF 于H , 则四边形DCEH 是矩形, ∴HE =CD =10,CE =DH , ∴FH =x−10,∵∠FDH =α=45°, ∴DH =FH =x−10, ∴CE =x−10,∵tanβ=tan50°=EF CE =-10x x , ∴x =(x−10)tan 50°, 故选:A . 【点睛】本题考查了解直角三角形的应用,由实际问题抽象出边角关系的等式,正确的识别图形是解题的关键.4.下列计算中错误的是( ) A .sin60sin30sin30︒-︒=︒ B .22sin 45 cos 451︒+︒= C .sin 60tan 60sin 30︒︒=︒D .cos30tan 60cos60︒︒=︒A解析:A 【分析】根据特殊角的三角函数值、二次根式的运算即可得. 【详解】A、11sin 60sin 303022︒-︒==︒=,此项错误; B、222211sin 45 cos 45122︒+︒=+=+=⎝⎭⎝⎭,此项正确; C、sin 602tan 601sin 302︒︒===︒sin 60tan 60sin 30︒︒=︒,此项正确; D、cos302tan 601cos 602︒︒===︒cos30tan 60cos60︒︒=︒,此项正确; 故选:A . 【点睛】本题考查了特殊角的三角函数值、二次根式的运算,熟记特殊角的三角函数值是解题关键.5.如图,河坝横断面迎水坡AB 的坡比为1BC =3m ,则AB 的长度为( )A .6mB .33mC .9mD .63m A解析:A 【分析】根据坡比的概念求出AC ,根据勾股定理求出AB . 【详解】解:∵迎水坡AB 的坡比为1:3, ∴13BC AC =,即313AC =, 解得,AC =33, 由勾股定理得,AB 22BC AC =+=6(m ),故选:A . 【点睛】本题考查的是解直角三角形的应用-坡度坡角问题,掌握坡度的概念是解题的关键. 6.如图,在A 处测得点P 在北偏东60︒方向上,在B 处测得点P 在北偏东30︒方向上,若2AB =米,则点P 到直线AB 距离PC 为( ).A .3米B 3米C .2米D .1米B解析:B 【分析】设点P 到直线AB 距离PC 为x 米,根据正切的定义用x 表示出AC 、BC ,根据题意列出方程,解方程即可. 【详解】解:设点P 到直线AB 距离PC 为x 米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:B . 【点睛】本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键.7.如图,在平面直角坐标系中,边长为2的正方形ABCD 的对角线AC 在x 轴上,点A 的坐标是()1,0,把正方形ABCD 绕原点O 旋转180︒,则点B 的对应点B '的坐标是( )A .(-1,-1)B .()2,1C .()2,1--D .()2,1--D解析:D 【分析】根据题意,画出图形,连接BD ,交x 轴于E ,根据正方形的性质可得AB=2,BD ⊥x 轴,AE=BE ,∠BAE=45°,利用锐角三角函数即可求出AE 和BE ,从而求出OE ,即可求出点B 的坐标,然后根据关于原点对称的两点坐标关系即可求出结论. 【详解】解:把正方形ABCD 绕原点O 旋转180︒,如图所示,连接BD ,交x 轴于E∵四边形ABCD 2∴2,BD ⊥x 轴,AE=BE ,∠BAE=45° ∴AE=BE=AB·sin ∠BAE=1 ∴OE=OA +AE=2 ∴点B 的坐标为(2,1)∴点B 绕点O 旋转180°的对应点B '的坐标(-2,-1) 故选D . 【点睛】此题考查的是正方形的性质,锐角三角函数和关于原点对称的两点坐标关系,掌握正方形的性质,锐角三角函数和关于原点对称的两点坐标关系是解题关键. 8.如图,点A ,B ,C 在正方形网格的格点上,则sin ∠BAC=( )A .26B .2626C .2613D .1313B 解析:B 【分析】作BD ⊥AC 于D ,根据勾股定理求出AB 、AC ,利用三角形的面积求出BD ,最后在直角△ABD 中根据三角函数的意义求解. 【详解】解:如图,作BD ⊥AC 于D ,由勾股定理得,22223213,3332AB AC =+==+= ∵1113213222ABCSAC BD BD =⋅=⨯=⨯⨯, ∴2BD =, ∴2262sin 2613BD BAC AB ∠===. 故选:B . 【点睛】本题考查了勾股定理,解直角三角形,三角形的面积,三角函数的意义等知识,根据网格构造直角三角形和利用三角形的面积求出BD 是解决问题的关键.9.如图,在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB 沿射线AO 平移,平移后点A '的横坐标为43,则点B ′的坐标为( )A .(63,2)-B .(63,23)-C .()6,2-D .(63,2)-D解析:D 【详解】如解图,过点A 作AC x ⊥轴,过点A '作A D x '⊥轴,∵AOB 是等边三角形,∴4AO BO ==,60AOB ∠=︒,∴30AOC ∠=︒,∴·cos 23CO OA AOC ==,2AC =,∴(23,2)A -,∵30AOD AOC ∠'=∠=︒,43OD =,∴·t 34343an A D OD A OD ⨯=∠'==',∴(43,4)A '-,∴点A '是将点A 向右平移63个单位,向下平移6个单位得到的,∴点B '也是将点B 向右平移63个单位,向下平移6个单位得到的,∵()0,4B ,∴B '的坐标为(63,2)-.10.构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在Rt △ACB 中,∠C =90°,∠ABC =30°,延长CB 使BD =AB ,连接AD ,得∠D =15°,所以tan15°()()12323232323AC CD -====-++-.类比这种方法,计算tan22.5°的值为( )A 21B 2﹣1C 2D .12B 解析:B 【分析】作Rt △ABC ,使∠C =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,根据构造的直角三角形,设AC =x ,再用x 表示出CD ,即可求出tan22.5°的值. 【详解】解:作Rt △ABC ,使∠C =90°,∠ABC =90°,∠ABC =45°,延长CB 到D ,使BD =AB ,连接AD ,设AC =x ,则:BC =x ,AB =2x ,CD =()1+2x ,()22.5==211+2AC xC tan taD xn D =∠=-︒故选:B. 【点睛】本题考查解直角三角形,解题的关键是根据阅读构造含45°的直角三角形,再作辅助线得到22.5°的直角三角形.二、填空题11.已知ABC 与ABD △不全等,且3AC AD ==,30ABD ABC ∠=∠=︒,60ACB ∠=︒,则CD =________.或3【分析】如图△ABC ≌△ABP 当D′是PB 中点或点D″是BC 的中点时满足条件分别求解即可【详解】解:如图△ABC ≌△ABP ∴∴CAP 共线∴△BPC 是等边三角形当D′是PB 中点时AD′=BP=AC解析:3或3 【分析】如图,△ABC ≌△ABP ,当D′是PB 中点或点D″是BC 的中点时,满足条件,分别求解即可. 【详解】解:如图,△ABC ≌△ABP ,3AC AP ==,30ABP ABC ∠=∠=︒,60ACB ∠=︒,∴60APB ∠=︒,90CAB PAB ∠=∠=︒, ∴C ,A ,P 共线,BC BP AC AP ===, ∴△BPC 是等边三角形,当D′是PB 中点时,AD′=12BP=AC=3,此时ABC 与D'AB 满足条件, ∴D'90C P ∠=︒,∴CD′= PD′tan 60︒=3PD′=3,当点D″是BC 的中点时,此时ABC 与D AB "也满足条件, ∴CD″=3,∴满足条件的CD 的长为3或3. 故答案为:3或3. 【点睛】本题考查等边三角形的判定和性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是画出符合题意的图形,用分类讨论的思想思考问题.12.小芳同学在学习了图形的镶嵌和拼接以后,设计了一幅瓷砖贴纸(图1),它是由图2这种基本图形拼接而成。

人教版九年级数学下册第28章《锐角三角函数》单元测试【含答案】

人教版九年级数学下册第28章《锐角三角函数》单元测试【含答案】

人教版九年级数学下册第28章《锐角三角函数》单元测试一.选择题(共10小题,满分30分)1.在Rt△ABC中,∠C=90°,若cos A=( )A.B.C.D.2.在边长相等的小正方形组成的网格中,点A,B,C都在格点上( )A.B.C.D.3.在Rt△ABC中,∠C=90°,BC=1,那么tan B的值是( )A.B.C.D.4.∠β为锐角,且2cosβ﹣1=0,则∠β=( )A.30°B.60°C.45°D.37.5°5.在Rt△ABC中,∠C=90°,AB=5,则tan A的值是( )A.B.C.D.6.如图,在Rt△ABC中,∠C=90°,则sin B=( )A.B.2C.D.7.若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是( )A.B.C.D.8.如图,AD是△ABC的高,AB=4,tan∠CAD=,则BC的长为( )A. +1B.2+2C.2+1D. +49.如图,半径为3的⊙O内有一点A,OA=,当∠OPA最大时,S△OPA等于( )A.B.C.D.110.如图,一辆自行车竖直摆放在水平地面上,右边是它的部分示意图,∠C=42°,AB=60( )A.60sin50°B.C.60cos50°D.60tan50°二.填空题(共10小题,满分30分)11.在Rt△ABC中,∠C=90°,sin A= .12.用科学计算器计算: tan16°15′≈ (结果精确到0.01)13.在△ABC中,若,∠A,∠B都是锐角 三角形.14.在Rt△ABC中,∠C=90°,AC=6,那么AB的长为 .15.比较大小:sin80° tan50°(填“>”或“<”).16.在Rt△ABC中,∠C=90°,cos A= .17.在△ABC中,若|sin A﹣|+(﹣cos B)2=0,则∠C的度数是 .18.如图,在Rt△ABC中,CD是斜边AB上的中线,AC=6,则tan A的值为 .19.如图,在Rt△ABC中,∠ACB=90°,连接CD,过点B作CD的垂线,tan A=,则cos∠DBE的值为 .20.如图,河坝横断面迎水坡AB的坡比是1:(坡比是坡面的铅直高度BC与水平宽度AC之比),水平宽度AC=m 米.三.解答题(共7小题,满分6021.已知cos45°=,求cos21°+cos22°+…+cos289°的值.22.如图,在Rt△ABC中,∠C=90°,BC=5.求sin A,cos A和tan A.23.如图,在Rt△ABC中,∠C=90˚,BC=6,求AC的长和sin A的值.24.计算:cos60°﹣2sin245°+tan230°﹣sin30°.25.计算:(1);(2)sin245°+cos245°+tan30°tan60°﹣cos30°.26.2022年8月21日,重庆市北碚区缙云山突发山火,山火无情,各地消防迅速出动,冲锋在前,然后沿着坡比为5:12的斜坡前进104米到达B处平台,继续前进到达C,沿斜坡CD前行800米到达着火点D.(1)求着火点D距离山脚的垂直高度;(2)已知消防员在平地的平均速度为4m/s,求消防员通过平台BC的时间.(保留一位小数)(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈,≈1.732)27.如图,已知∠ABC和射线BD P(点P与点B不重合),且点P到BA、BC的距离为PE、PF.(1)若∠EBP=40°,∠FBP=20°,PB=m;(2)若∠EBP=α,∠FBP=β,α,β都是锐角,并给出证明.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:如图,∵∠C=90°,∴设AC=5k,AB=13k,根据勾股定理得,BC==,所以,sin A===.故选:D.2.解:设点C到AB的距离为h,由勾股定理可知:AC==2=,由于S△ABC=32﹣×6×2﹣×7×3=9﹣8﹣3=4.∴AB•h=4,∴h=,∴sin∠BAC==,∴cos∠BAC=,故选:A.3.解:∵∠C=90°,∴tan B===.故选:D.4.解:∵∠β为锐角,且2cosβ﹣1=8,∴cosβ=,∴∠β=60°.故选:B.5.解:∵∠C=90°,AB=5,∴AC===4,∴tan A==,故选:D.6.解:∵∠C=90°,tan A=2,∴BC=2AC,∴,∴,故C正确.故选:C.7.解:若用我们数学课本上采用的科学计算器计算sin42°16′,按键顺序正确的是.故选:C.8.解:∵AD是△ABC的高,∴∠ADB=∠ADC=90°,在Rt△ABD中,cos∠BAD=,∴cos60°=,sin60°=,∴AD=4cos60°=7×=5=4,在Rt△ADC中,tan∠CAD=,∴=,解得CD=1,∴BC=BD+CD=2+1.故选:C.9.解:如图所示:∵OA、OP是定值,∴PA⊥OA时,∠OPA最大,在直角三角形OPA中,OA=,∴PA==,∴S△OPA=OA•AP=××=.故选:B.10.解:过点A作AD⊥BC于点D,如图所示:∵∠BAC=88°,∠C=42°,∴∠B=180°﹣88°﹣42°=50°,在Rt△ABD中,AD=AB×sin60×sin50°,∴点A到BC的距离为60sin50°,故A正确.故选:A.二.填空题(共10小题,满分30分)11.解:由sin A=知,可设a=6x,b=3x.∴tan A=.故答案为:.12.解: tan16°15′≈0.71,故答案为:4.71.13.解:∵,∴sin A=,cos B=,∴∠A=60°,∠B=60°,∴△ABC是等边三角形.故答案为:等边.14.解:∵cos A==,AC=7,∴AB==8,故答案为:8.15.解:∵tan50°>tan45°,tan45°=1,∴tan50°>1,又sin80°<2,∴sin80°<tan50°;故答案为:<.16.解:∵在△ABC中,∠C=90°,∴∠A+∠B=90°,∴sin B=cos A=.故答案为:.17.解:∵|sin A﹣|+(2=2,∴sin A﹣=4,,即sin A=,cos B=,∴∠A=30°,∠B=45°,∴∠C=180°﹣∠A﹣∠B=105°.故答案为:105°.18.解:在Rt△ABC中,CD是斜边AB上的中线,∴AB=2CD=10,∵AC=6,∴BC===8,∴tan A===,故答案为:.19.解:过点C作CF⊥AB,垂足为F,在Rt△ABC中,AC=3a=,∴BC=4a,AB=5a,∵D是AB的中点,∴CD=AB=a,∵△ABC的面积=AB•CF=,∴AB•CF=AC•CB,∴5aCF=3a×4a,∴CF=a,∴cos∠DCF==,∵BE⊥CD,∴∠E=90°,∴∠EDB+∠EBD=90°,∵∠FCD+∠CDF=90°,∠CDF=∠BDE,∴∠EBD=∠DCF,∴cos∠DBE=cos∠DCF=,故答案为:.20.解:∵河坝横断面迎水坡AB的坡比是1:,AC=m,∴=,∴BC=AC==3(m),在Rt△ABC中,由勾股定理得:AB==,故答案为:6.三.解答题(共7小题,满分60分)21.解:原式=(cos21°+cos289°)+(cos22°+cos588°)+…+(cos244°+cos246°)+cos445=(sin21°+cos51°)+(sin22°+cos22°)+…+(sin844°+cos244°)+cos245=44+()2=44.22.解:在Rt△ABC中,∠C=90°,BC=5.∴AB===13,∴sin A==,cos A==,tan A==.23.解:∵△ABC中,tan A=,∴=,∴AC=8,∴AB===10,∴sin A==24.解:原式=﹣4×()6+×()2﹣=﹣2×+×﹣=﹣2+﹣=﹣.25.解:(1)=﹣4﹣7+1=﹣4;(2)sin645°+cos245°+tan30°tan60°﹣cos30°===.26.(1)如图所示,过点B,C,D分别作水平线的垂线,F,G,延长BC交AG于点H,BHGE是矩形,依题意,,AB=104米,CD=800米,在Rt△ABE中,,设BE=8k米,∴AB=13k,∵AB=104米,∴k=8,∴BE=5×2=40(米),AE=12×8=96(米),在Rt△DCH中,CD=800米,∴DG=DH+HG=DH+BE=480+40=520(米),即着火点D距离山脚的垂直高度为520米;(2)依题意,∠DAG=30°,∴米,∵Rt△DCH中,CH=cos37°×CD=≈0.8×800=640(米),又AE=96米,∴(米),∵消防员在平地的平均速度为4m/s,∴消防员通过平台BC的时间为(秒).27.解:(1)在Rt△BPE中,sin∠EBP=在Rt△BPF中,sin∠FBP=又sin40°>sin20°∴PE>PF;(2)根据(1)得sin∠EBP==sinα=sinβ又∵α>β∴sinα>sinβ∴PE>PF.。

初中数学人教版九年级下册 28.1 锐角三角函数同步练习(共3课时,无答案)

初中数学人教版九年级下册 28.1 锐角三角函数同步练习(共3课时,无答案)

28.1 锐角三角函数第一课时一、填空题1. 如图所示, B、B'是∠MAN的AN 边上的任意两点, BC⊥AM于 C 点, B'C'⊥AM于 C'点,则△B'AC'∽ , 从而B ′C′BC =AB′()=()AC,又可得①B ′C′AB′=¯,即在Rt△ABC中(∠C=90°), 当∠A 确定时, 它的与的比是一个值;②AC ′AB′=¯,即在Rt△ABC中(∠C=90°), 当∠A确定时, 它的与的比也是一个值;③B ′C′AC′=¯,即在Rt△ABC中(∠C=90°), 当∠A确定时, 它的与的比还是一个值.2. 如图所示, 在Rt△ABC中, ∠C=90°.①sinA=¯,sinB=¯;②cosA=¯,cosB=¯;③tanA=¯,tanB=¯.3. AE、CF是锐角△ABC的两条高, 如果 AE: CF=3: 2, 则 sinA: sinC 等于 .4. 在Rt△ABC中, ∠C=90°, 若a=3, b=4, 则c= ,sinA=____________,cosA=_______________,tanA=______________.sinB= , cosB= , tanB= .5. 在Rt△ABC中, ∠C=90°, 若∠B=30°, 则∠A= ,sinA= , tanA= , cosA= ,sinB= , cosB= , tanB= .6. 在Rt△ABC中, ∠C=90°, 若a=1, b=2, 则c= ,sinA= , cosA= , tanA= ,sinB= , cosB= , tanB= .二、选择题7.把Rt△ABC各边的长度都扩大3倍得Rt△A'B'C',那么锐角A,A'的余弦值的关系为( ).A. cosA=cosA'B. cosA=3cosA'C. 3cosA=cosA'D. 不能确定8. 如图3, 点A为∠B边上的任意一点, 作AC⊥BC于点C, CD⊥AB于点D, 下列用线段比表示cosα的值,错误的是 ( )A.BDBC B.BCABC.CDACD.ADAC9. 在△ABC中, ∠C=90°, ∠A, ∠B, ∠C的对边分别是a, b, c,则下列各项中正确的是 ( ).A. a=c·sinBB. a=c·cosBC. a=c·tanBD. 以上均不正确10. 在Rt△ABC中,∠C=90°, cosA=23,则 tanB 等于 ( ).A 35B.√53C.25√5D.√5211. ⊙O的半径为R, 若∠AOB=α, 则弦AB的长为 ( ).A.2Rsinα2 B. 2RsinαC.2Rcosα2D. Rsinα12. 如图,△ABC的顶点都是正方形网格中的格点, 则cos∠ABC等于 ( ).A.√5B.√55C.2√55D.3√510三、解答题13. 已知: 如图, Rt△ABC 中, ∠ACB=90°, CD⊥AB 于 D 点,AB=4, BC=3. 求: sin∠ACD、cos∠ACD、tan∠ACD.14. 已知: 如图, Rt△ABC中, ∠C=90°. D是AC边上一点, DE⊥AB 于E点. BC:AC=1:2.求: sin∠ADE、cos∠ADE、tan∠ADE .15. 如图, 在矩形纸片 ABCD 中, AB=6, BC=8. 把△BCD 沿对角线 BD折叠, 使点C 落在 C'处, BC'交 AD 于点 G; E、F 分别是 C'D和BD上的点, 线段EF交AD 于点H, 把△FDE沿E F折叠, 使点D落在 D'处, 点D'恰好与点 A 重合.(1) 求证: △ABG≌△C' DG; (2) 求 tan∠ABG的值;(3) 求EF的长.第二课时一、填空题1. sin30°= , sin60°= , sin60°= ;cos30°= , cos45°= , cos60°= ;tan30°= , tan45°= , tan60°= .2. 已知: α是锐角, cosα=12√2,tanα=¯.3. 已知∠A 是锐角, 且tanA=√3,则sin A2=¯.4. 已知: ∠α是锐角, sinα=cos36°, 则α的度数是 .5. 小明同学遇到了这样一道题:√3tan(a+20∘)=1,则锐角.α的度数应是 .6. 已知∠α为锐角, 若sinα=cos30°, tanα= ; 若tan70°·tanα=1, 则∠α= .二、选择题7. 当锐角A 的cosA>√22时, ∠A的值为( ).A 小于45°B 小于30°C 大于45°D 大于60°8.在△ABC中,∠A,∠B都是锐角,且sinA=12,cosB=√32,则此三角形形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.形状不能确定9. 在△ABC中, ∠C=90∘,sinA=√32,则cosB等于 ( ).A. 1B.√32C.√22D 1210. 在平面直角坐标系内 P 点的坐标(cos30°, tan45°), 则 P 点关于x轴对称点 P'的坐标为 ( ).A.(√32,1)B.(−1,√32)C.(√32,−1)D.(−√32,−1)11. 下列不等式成立的是 ( ).A.tan45°<sin60°<cos45°B. cos45° <sin45° <tan45°C. cos45° <tan60° <tan45°D.cos45°<sin60°<tan60°12. 若√3tan(α+10∘)=1,则锐角α的度数为( ).A. 20°B. 30°C. 40°D. 50°三、解答题13. 计算:(1)(−2)−1−|−√8|+(√2−1)0+4cos45∘(2)(√2+1)0−2−1−√2tan45∘+|1−√2|14. 我们定义:等腰三角形中底边与腰之比叫做顶角的正对( sad),在△ABC中,AB=AC ,顶角 A 的正对记作 sadA, 这时已知sinα=35(α为锐角) , 计算sadα的值.15. 如图,根据图中数据完成填空,再按要求答题:sin²A₁+sin²B₁=;sin²A₂+sin²B₂=;sin²A₃+sin²B₃=________.(1) 观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin²A+sin²B=.(2) 如图④, 在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.第三课时一、填空题1. 化简: √(tan30∘−1)2=¯.2. 计算: sin²30°+cos²30°=,sin²45°+cos²45°=sin²60°+cos²60°=.3. 化简: √1−2sinα⋅cosα(其中( 0°<α<90°)=.4. 已知: 如图, Rt△ABC中, ∠C=90°, 按要求填空:(1)∵sinA=ac,∴a=c·sinA,c= ;(2)∵cosA=bc,∴b= , c= ;(3)∵tanA=ab,∴a= , b= ;(4)∵sinB=√32,∴cosB=¯,tanB=¯;(5)∵cosB =35,∴sinB =¯,tanA =¯;(6) ∵tanB=3, ∴sin B = , sinA= .5. 如图, ⊙O 的半径OA=16cm, OC ⊥AB 于C 点, sin ∠AOC =34.则AB= . 6. 已知: 如图, △ABC 中, AB=9, BC=6, △ABC 的面积等于9, 则 sinB =.二、选择题7. 如图,梯子(长度不变) 跟地面所成的锐角为A ,关于∠A 的三角函数值与梯子的倾斜程度之间,叙述正确的是 ( ) A. sinA 的值越大, 梯子越陡 B. cosA 的值越大, 梯子越陡 C. tanA 的值越小, 梯子越陡 D. 陡缓程度与∠A 的函数值无关8. 如图,在等边△ABC 中, D 为BC 边上一点, E 为AC 边上一点, 且∠ADE=60°, BD=4, CE =43,则△ABC 的面积为( ) .A.8√3B. 15C.9√3D.12√39.如图,直径为10的⊙A 经过点 C(0,5)和点O(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ).A 12 B 34 C.√32 D 4510. 如图, △ABC 和△CDE 均为等腰直角三角形, 点B, C, D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC =BCCD ;②S △ABC+S △CDE ≧S △ACE;③BM ⊥DM; ④BM=DM, 正确结论的个数是 ( )A 、1个B 、2个C 、3个D 、4个11. 如图, △ABC中,BC=7,cosB=√22,sinC=35,则△ABC的面积是 ( )A. 12B. 12C. 14D. 2112. 已知: 如图, AB是⊙O的直径, 弦AD、BC相交于P点, 那么DCAB的值为( )A. sin∠APCB. cos∠APCC. tan∠APCD.1tan∠APC三、解答题13. 阅读下面材料:小天在学习锐角三角函数中遇到这样一个问题: 在 Rt△ABC中,∠C=90°, ∠B=22.5°, 则t an22.5° =小天根据学习几何的经验,先画出了几何图形(如图1),他发现22.5°不是特殊角,但它是特殊角 45°的一半,若构造有特殊角的直角三角形,则可能解决这个问题. 于是小天尝试着在 CB 边上截取 CD=CA, 连接AD(如图2), 通过构造有特殊角(45°) 的直角三角形,经过推理和计算使问题得到解决.请回答:tan22.5°=.参考小天思考问题的方法,解决问题:如图3, 在等腰△ABC 中, AB=AC, ∠A=30°, 请借助△ABC, 构造出15°的角, 并求出该角的正切值.̂上的两点,∠AOD>∠AOC,求证:14. 已知: 如图, ∠AOB=90°, AO=OB, C、D是AB(1) 0<sin∠AOC<sin∠AOD<1;(2)1>cos∠AOC>cos∠AOD>0;(3) 锐角的正弦函数值随角度的增大而;(4) 锐角的余弦函数值随角度的增大而 .15.已知:如图,在△ABC中,. AB=AC,AD⊥BC于D, BE⊥AC于E,交AD于H点.在底边BCS HBC的值是保持不变的情况下,当高AD变长或变短时,△ABC和△HBC的面积的积SABC′否随着变化?请说明你的理由.。

人教版九年级下册数学第二十八章 锐角三角函数含答案解析

人教版九年级下册数学第二十八章 锐角三角函数含答案解析

人教版九年级下册数学第二十八章锐角三角函数含答案一、单选题(共15题,共计45分)1、如图,在⊙O中,E是直径AB延长线上一点,CE切⊙O于点E,若CE=2BE,则∠E的余弦值为()A. B. C. D.2、如图,在Rt△ABC中,CD是斜边AB上的高,则下列线段的比中不等于sinA 的是( )A. B. C. D.3、如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10m,则树AB的高度是()m.A.20B.30C.30D.404、如图所示,已知:点A(0,0),B(,0),C(0,1).在△ABC内依次作等边三角形,使一边在x轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…,则第n个等边三角形的边长等于()A. B. C. D.5、已知Rt△ABC中,∠A=90°,则是∠B的()A.正切;B.余切;C.正弦;D.余弦6、如图,在的正方形网格中,每个小正方形的边长都是1,的顶点都在这些小正方形的顶点上,那么的值为().A. B. C. D.7、如图,在△ABC中,AC=3,BC=4,AB=5,则tanB的值是()A. B. C. D.8、如图,已知Rt△ABC中,∠C=90°,BC=3, AC=4,则sinA的值为()..A. B. C. D.9、定义:在等腰三角形中,底边与腰的比叫做顶角的正对,顶角A的正对记作sadA,即sadA=底边:腰.如图,在△ABC中,AB=AC,∠A=4∠B.则cosB•sadA=()A.1B.C.D.10、Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,且a:b=3:4,斜边c=15,则b的值是()A.12B.9C.4D.311、已知tanα=0.3249,则α约为()A.17°B.18°C.19°D.20°12、如图,在Rt△ABC中,∠C=90°,∠B=22.5°,DE垂直平分AB交BC于E,若BE=2 ,则AC=( )A.1B.2C.3D.413、如图,在一块矩形ABCD区域内,正好划出5个全等的矩形停车位,其中EF=a米,FG=b米,∠AEF=30°,则AD等于()A.(a+ b)米B.(a+ b)米C.(a+ b)米D.(a+ b)米14、如图,平面直角坐标系中,A(8,0),B(0,6),∠BAO,∠ABO的平分线相交于点C,过点C作CD∥x轴交AB于点D,则点D的坐标为()A.(,2)B.(,1)C.(,2)D.(,1)15、如图,已知A,B,C,D是⊙O上的点,AB⊥CD,OA=2,CD=2 ,则∠D 等于()A. B. C. D.二、填空题(共10题,共计30分)16、图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD上,时钟中心在矩形ABCD对角线的交点O上.若,则BC长为________cm(结果保留根号).17、在三角形ABC中,AB=2,AC= ,∠B=45°,则BC的长________.18、如图,射线OC与x轴正半轴的夹角为30°,点A是OC上一点,AH⊥x轴于H,将△AOH绕着点O逆时针旋转90°后,到达△DOB的位置,再将△DOB沿着y轴翻折到达△GOB的位置,若点G恰好在抛物线y=x2(x>0)上,则点A 的坐标为________.19、如图,在△ABC中,∠C=90°,∠A=30°,BC=3,点D、E分别在AB、AC 上,将△ABC沿DE折叠,点A落在AC边的点F处.若F为CE的中点,则DF 的长为________.20、如图,在Rt△ABC中,∠C=90°,BC=4 ,AC=4,点D是BC的中点,点E是边AB上一动点,沿DE所在直线把△BDE翻折到△B′DE的位置,B′D交AB于点F.若∠AB′F为直角,则AE的长为________.21、小华从斜坡底端沿斜坡走了100米后,他的垂直高度升高了50米,那么该斜坡的坡角为________度22、在Rt△ABC中,∠C=90°,sinA=,则cosA=________.23、如图,ABCD中,E是AD边上一点,AD=4 ,CD=3,ED= ,∠A=45.点P,Q分别是BC,CD边上的动点,且始终保持∠EPQ=45°.将CPQ沿它的一条边翻折,当翻折前后两个三角形组成的四边形为菱形时,线段BP的长为________.24、把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是________.25、已知:正方形ABCD的边长为3,点P是直线CD上一点,若DP=1,则tan∠BPC的值是________.三、解答题(共5题,共计25分)26、计算:+(tan60﹣1)0+| ﹣1|﹣2cos30°.27、教育部布的《基础教育课程改革纲要》要求每位学生每学年都要参加社会实践活动,某学校组织了一次测量探究活动,如图,某大楼的顶部竖有一块广告牌CD,小明与同学们在山坡的坡脚A处测得广告牌底部D的仰角为53°,沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度1:,AB=10米,AE=21米,求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米,参考数据:≈1.41,≈1.73,tan53°≈,cos53°≈0.60)28、如图,B位于A南偏西37°方向,港口C位于A南偏东35°方向,B位于C正西方向. 轮船甲从A出发沿正南方向行驶40海里到达点D处,此时轮船乙从B出发沿正东方向行驶20海里至E处,E位于D南偏西45°方向.这时,E 处距离港口C有多远?(参考数据:tan37°≈0.75,tan35°≈0.70)29、周末,小亮一家在东昌湖游玩,妈妈在湖心岛岸边P处观看小亮与爸爸在湖中划船(如图).小船从P处出发,沿北偏东60°划行200米到达A处,接着向正南方向划行一段时间到达B处.在B处小亮观测妈妈所在的P处在北偏西37°方向上,这时小亮与妈妈相距多少米(精确到米)?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈1.73)30、每年的6至8月份是台风多发季节,某次台风来袭时,一棵大树树干AB (假定树干AB垂直于地面)被刮倾斜15°后折断倒在地上,树的项部恰好接触到地面D(如图所示),量得树干的倾斜角为∠BAC=15°,大树被折断部分和地面所成的角∠ADC=60°,AD=4米,求这棵大树AB原来的高度是多少米?(结果精确到个位,参考数据:)参考答案一、单选题(共15题,共计45分)1、B2、D3、B4、A5、A6、D7、A8、C9、B10、A11、B12、B13、A14、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、。

浙教新版九年级下册《1.2_锐角三角函数的计算》2024年同步练习卷(4)+答案解析

浙教新版九年级下册《1.2_锐角三角函数的计算》2024年同步练习卷(4)+答案解析

浙教新版九年级下册《1.2锐角三角函数的计算》2024年同步练习卷(4)一、选择题:本题共4小题,每小题3分,共12分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.计算的值约是()A. B.C.D.2.如图,在中,,,若用科学计算器求边AC 的长,则下列按键顺序正确的是()A. B.C.D.3.如图,一个人从山脚下的A 点出发,沿山坡小路AB 走到山顶B 点.已知山高千米,小路千米.用科学计算器计算坡角的度数,下列按键顺序正确的是()A.B.C.D.4.在“测量旗杆的高度”的数学课题学习中,某学习小组测得太阳光线与水平面的夹角为,此时旗杆在水平地面上的影子的长度为24米,则旗杆的高度约为()A.24米B.20米C.16米D.12米二、填空题:本题共5小题,每小题3分,共15分。

5.用“>”或“<”填空:______可用计算器计算6.如图,某营业大厅自动扶梯AB 的倾斜角为,AB 的长为12米,则大厅两层之间的高度BC 为______米.参考数据:,,7.在中,,,,那么______精确到8.如图,一根竖直的木杆在离地面3m处折断,木杆顶端落在地面上,且与地面成角,则木杆折断之前高度约为______参考数据:,,9.用计算器计算,,,…,的值,总结规律,并利用此规律比较当时,与的大小,即______三、解答题:本题共4小题,共32分。

解答应写出文字说明,证明过程或演算步骤。

10.本小题8分如图,在中,,求边AB上的高精确到11.本小题8分如图,游艇的航速为,它从灯塔S正南方向的点A处向正东方向航行至点B处需要,且在点B处测得灯塔S在北偏西方向,求BS的长精确到12.本小题8分用计算器求下列各式的值:精确到;13.本小题8分如图,在四边形ABCD中,,,,,,求AB的长结果取整数,参考数据:,,答案和解析1.【答案】C【解析】解:,,,故选:根据余弦的增减性以及,可以进行估算.本题考查余弦函数,解题关键是明确余弦函数的增减性以及特殊角的三角函数值.2.【答案】D【解析】解:,,故选:根据正切的定义求出AC的表达式即可得出答案.本题考查了计算器,根据正切的定义求出AC的表达式是解题的关键.3.【答案】B【解析】解:,度数的按键顺序为:故选:根据正弦函数的定义得出,从而知度数的按键顺序,即可得出答案.本题主要考查解直角三角形的应用-坡度坡角问题,熟练掌握正弦函数的定义和三角函数的计算器使用是解题的关键.4.【答案】D【解析】解:,米,,,把米,代入得,米.故选:直接根据锐角三角函数的定义可知,,把米,代入进行计算即可.本题考查的是解直角三角形的应用,熟记锐角三角函数的定义是解答此题的关键.5.【答案】>【解析】解:,故答案为:熟练应用计算器,对计算器给出的结果,精确到千分位,再根据有理数的大小比较,可得答案.本题考查了计算器,结合算器的用法,再取近似数.6.【答案】【解析】解:由题意可得:则故答案为:直接利用锐角三角函数关系得出,进而得出答案.此题主要考查了解直角三角形的应用,正确掌握边角关系是解题关键.7.【答案】【解析】解:,,故答案为:利用正弦的定义得到,则,然后进行近似计算.本题考查了近似数:“精确到第几位”是精确度的常用的表示形式.也考查了解直角三角形.8.【答案】8【解析】解:如图:,,,木杆折断之前高度故答案为在中,由AC的长及的值可得出AB的长,即可解答.本题考查了解直角三角形的应用,通过解直角三角形选择适当的三角函数求出三角形边长是解题的关键.9.【答案】>【解析】解:用计算器计算,,,…,的值,可发现在到之间,角越大,余弦值越小;故当时,与的大小,即故答案为熟练应用计算器求值,总结三角函数的规律.借助计算器计算的结果,发现并总结应用规律解题.10.【答案】解:过C点作于D,如图,在中,,,所以边AB上的高约为【解析】过C点作于D,如图,利用正弦的定义得到,然后进行近似计算.本题考查了近似数:“精确到第几位”是精确度的常用的表示形式.11.【答案】解:由题意得:,,,在中,,,即BS的长约为【解析】由题意得,,,再由锐角三角函数定义得,即可得出BS的长.本题考查了解直角三角形的应用-方向角问题,熟练掌握锐角三角函数定义是解题的关键.12.【答案】解:;【解析】先利用科学计算器求出正弦、余弦和正切值,再计算加减可得;先利用科学计算器求出正弦、余弦和正切值,再计算加减可得.本题考查了计算器-三角函数、近似数和有效数字,解决本题的关键是熟练运用计算器.13.【答案】解:如图,过点C作于点E,过点D作于点F,,又,四边形AEFD是矩形,,,,,在中,,,,,,,,在中,,,,,则【解析】过点C作于点E,过点D作于点F,利用垂直的定义得到两个角为直角,再由为直角,利用三个角为直角的四边形是矩形得到四边形AEFD为矩形,可得出矩形的内角为直角,,由求出的度数,在中,利用余弦函数定义求出DF 的长,即为AE的长,在中,利用正弦函数定义求出EB的长,由求出AB的长即可.此题考查了解直角三角形,勾股定理,矩形的性质与判定,锐角三角函数定义,熟练掌握各自的性质是解本题的关键.。

人教版九年级数学下册第二十八章: 锐角三角函数 练习(含答案)

人教版九年级数学下册第二十八章: 锐角三角函数 练习(含答案)

第二十八章 锐角三角函数一、单选题1.在Rt △ABC 中,∠C=90°,AC=12,BC=5,则sinA 的值为( )A .B .C .D . 2.(2016甘肃省兰州市)在Rt △ABC 中,∠C =90°,sin A =35,BC =6,则AB =( ) A .4 B .6 C .8 D .103.在Rt △ABC 中,∠C=90°,sinB=513,则tanA 的值为( ) A .513 B .1213 C .512 D .1254.Rt ABC 中,C 90∠=,若BC 2=,AC 3=,下列各式中正确的是 ( ) A .2sinA 3= B .2cosA 3= C .2tanA 3= D .2cotA 3= 5.如图,过点C (﹣2,5)的直线AB 分别交坐标轴于A (0,2),B 两点,则tan ∠OAB=( )A .25B .23C .52D .326.如图,某超市自动扶梯的倾斜角 为 ,扶梯长 为 米,则扶梯高 的长为( )A.米B.米C.米D.米7.聊城流传着一首家喻户晓的民谣:“东昌府,有三宝,铁塔、古楼、玉皇皋.”被人们誉为三宝之一的铁塔,初建年代在北宋早期,是本市现存最古老的建筑.如图,测绘师在离铁塔10米处的点C测得塔顶A的仰角为α,他又在离铁塔25米处的点D测得塔顶A的仰角为β,若tanαtanβ=1,点D,C,B在同一条直线上,那么测绘师测得铁塔的高度约为(参考≈3.162)()A.15.81米B.16.81米C.30.62米D.31.62米8.若某人沿坡角为α的斜坡前进100m,则他上升的最大高度是()A.100 αm B.100sinαm C.100cosαm D.100 αm9.某水坝的坡度i=1,坡长AB=20米,则坝的高度为()A.10米B.20米C.40米D.2010.如图,两建筑物的水平距离为32 m,从点A测得点C的俯角为30°,点D的俯角为45°,则建筑物CD的高约为()A.14 m B.17 m C.20 m D.22 m二、填空题11.2sin45°+2sin60°﹣=_____. 12.在Rt △ABC 中,∠C =90°,AB =5,BC =3,则sin A = .13.某同学沿坡比为1: 的斜坡前进了90米,那么他上升的高度是______米14.如图,在边长相同的小正方形网格中,点A 、B 、C 、D 都在这些小正方形的顶点上,AB 与CD 相交于点P ,则tan ∠APD 的值为______.三、解答题15.计算:|﹣2|﹣2cos60°+(16)﹣1﹣(π0. 16.如图,为了测得某建筑物的高度AB ,在C 处用高为1米的测角仪CF ,测得该建筑物顶端A 的仰角为45°,再向建筑物方向前进40米,又测得该建筑物顶端A 的仰角为60°.求该建筑物的高度AB .(结果保留根号)17.如图,在△ABC中,AD是BC边上的高,AE是BC边上的中线,∠C=45°,sinB=13,AD=1.(1)求BC的长;(2)求tan∠DAE的值.18.如图,为了测量出楼房AC的高度,从距离楼底C处D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据: 53°≈0.8, 53°≈0.6, 53°≈43,计算结果用根号表示,不取近似值).答案1.D2.D3.D4.C5.B6.A7.A8.A9.A10.A1112.3513.4514.215.|﹣2|﹣2cos60°+(16)﹣1﹣(π﹣ )0 =2﹣2×12+6﹣1 =6.16.解:设AM x =米,在Rt AFM ∆中,45AFM ︒∠=,∴FM AM x ==,在Rt AEM ∆中,AM tan EMAEM ∠=,则tan AM EM x AEM ==∠, 由题意得,FM EM EF -=,即40x x -=,解得,60x =+,∴61AB AM MB =+=+答:该建筑物的高度AB为(61+米.17.解:(1)在△ABC 中,∵AD 是BC 边上的高,∴∠ADB=∠ADC=90°。

人教版九年级下册第二十八章 《锐角三角函数》单元练习题(含答案)

人教版九年级下册第二十八章 《锐角三角函数》单元练习题(含答案)

人教版九年级下册第二十八章《锐角三角函数》单元练习题(含答案)一、选择题1.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,那么cos A的值等于()A.B.C.D.2.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A.4B.2C.D.3.已知∠A为锐角,且tan A=,则∠A的取值范围是()A.0°<∠A<30°B.30°<∠A<45°C.45°<∠A<60°D.60°<∠A<90°4.把Rt△ABC各边的长度都缩小为原来的得Rt△A′B′C′,则锐角A、A′的余弦值之间的关系是()A.cos A=cos A′B.cos A=5cos A′C.5cos A=cos A′D.不能确定5.Rt△ABC中,∠C=90°,tan A=,AC=6 cm,那么BC等于()A.8 cmB.cmC.cmD.cm6.在△ABC中,∠C=90°,已知tan A=,则cos B的值等于()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A.B.4C.2D.58.已知∠A为锐角,且sin A<,那么∠A的取值范围是()A.0°<∠A<30°B.30°<∠A<60°C.60°<∠A<90°D.30°<∠A<90°分卷II二、填空题9.在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,则∠A=________.10.若tan (x+10°)=1,则锐角x的度数为__________.11.在△ABC中,∠C=90°,如果tan B=3,则cos A=__________.12.如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以20海里/小时的速度向西北方向航行,我渔政船立即沿北偏东60°方向航行,1.5小时后,在我领海区域的C处截获可疑渔船,我渔政船的航行路程是________海里.13.如图,某电视塔AB和楼CD的水平距离为100 m,从楼顶C处及楼底D处测得塔顶A的仰角分别为45°和60°,试求塔高为__________,楼高为__________.14.在Rt△ABC中,∠C=90°,且tan A=3,则cos B的值为__________.15.如图,将△ABC放在每个小正方形边长为1的网格中,点A,B,C均在格点上,则tan A 的值是__________.16.△ABC中,∠C=90°,cos ∠A=0.3,AB=10,则AC=__________.三、解答题17.如图,某公园内有座桥,桥的高度是5米,CB⊥DB,坡面AC的倾斜角为45°,为方便老人过桥,市政部门决定降低坡度,使新坡面DC的坡度为i=∶3.若新坡角外需留下2米宽的人行道,问离原坡角(A点处)6米的一棵树是否需要移栽?(参考数据:≈1.414,≈1.732)18.课堂上我们在直角三角形中研究了锐角的正弦,余弦和正切函数,与此类似,在Rt△ABC 中,∠C=90°,把∠A的邻边与对边的比叫做∠A的余切,记作cot A=.(1)若∠A=45°,则cot 45°=__________;若∠A=60°,则cot 60°=__________;(2)探究tan A·cot A的值.19.已知Rt△ABC中,角A,B,C对应的边分别为a,b,c,∠C=90°,a:c=2:3,求tan A 的值.20.在Rt△ABC中,∠C=90°,∠A=30°,a=5,解这个直角三角形.21.如图1是一种折叠椅,忽略其支架等的宽度,得到他的侧面简化结构图(图2),支架与坐板均用线段表示,若座板DF平行于地面MN,前支撑架AB与后支撑架AC分别与座板DF 交于点E、D,现测得DE=20厘米,DC=40厘米,∠AED=58°,∠ADE=76°.(1)求椅子的高度(即椅子的座板DF与地面MN之间的距离)(精确到1厘米)(2)求椅子两脚B、C之间的距离(精确到1厘米)(参考数据:sin 58°≈0.85,cos 58°≈0.53,tan 58°≈1.60,sin 76°≈0.97.cos 76°≈0.24,tan 76°≈4.00)第二十八章《锐角三角函数》单元练习题答案解析1.【答案】D【解析】∵在Rt△ABC中,∠C=90°,AC=4,BC=3,∴AB===5.∴cos A==,故选D.2.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.3.【答案】C【解析】∵tan 45°=1,tan 60°=,锐角的正切值随角增大而增大,又1<<,∴45°<∠A<60°.故选C.4.【答案】【解析】∵Rt△ABC各边的长度都缩小为原来的得Rt△A′B′C′,∴Rt△ABC∽Rt△A′B′C′,∴∠A=∠A′,∴cos A=cos A′.故选A.5.【答案】A【解析】∵Rt△ABC中,∠C=90°,tan A=,AC=6 cm,∴tan A===,解得BC=8,故选A.6.【答案】A【解析】设BC=2x,∵tan A=,∴AC=x,∴AB=3,∴cos B==,故选A.7.【答案】B【解析】∵cos B=,∴BC=AB·cos B=6×=4.故选B.8.【答案】A【解析】∵∠A为锐角,且sin 30°=,又∵当∠A是锐角时,其正弦随角度的增大而增大,∴0°<A<30°,故选A.9.【答案】60°【解析】∵在Rt△ABC中,∠C=90°,BC=10,若△ABC的面积为,∴S=AC·BC=,∴AC=,∵tan A===,∴∠A=60°.10.【答案】20°【解析】∵tan (x+10°)=1,∴tan (x+10°)==,∴x+10°=30°,∴x=20°.11.【答案】【解析】由tan B=3,可以设∠B的对边是3k,邻边是k,则根据勾股定理,得斜边是k=k,故cos A=.12.【答案】30【解析】作CD⊥AB于点D,垂足为D,在Rt△BCD中,∵BC=20×1.5=30(海里),∠CBD=45°,∴CD=BC·sin 45°=30×=15(海里),则在Rt△ACD中,AC==15×2=30(海里).13.【答案】100m(100-100)m【解析】设CD=x m,则∵CE=BD=100,∠ACE=45°,∴AE=CE·tan 45°=100.∴AB=100+x.在Rt△ADB中,∵∠ADB=60°,∠ABD=90°,∴tan 60°=,∴AB=BD,即x+100=100,∴x=100-100,即楼高100-100 m,塔高100m.14.【答案】【解析】解法1:利用三角函数的定义及勾股定理求解.∵在Rt△ABC中,∠C=90°,tan A=3,设a=3x,b=x,则c=x,∴cos B===.解法2:利用同角、互为余角的三角函数关系式求解.又∵tan A==3,∴sin A=3cos A.又sin2A+cos2A=1,∴cos A=.∵A、B互为余角,∴cos B=sin (90°-B)=sin A=.15.【答案】【解析】作BD⊥AC于点D,∵BC=2,AC==3,点A到BC的距离为3,AB==,∴=,即=,解得BD=,∴AD===2,∴tan A===.16.【答案】3【解析】∵∠C=90°,AB=10,∴cos A===0.3,∴AC=3.17.【答案】解不需要移栽,理由:∵CB⊥AB,∠CAB=45°,∴△ABC为等腰直角三角形,∴AB=BC=5米,在Rt△BCD中,新坡面DC的坡度为i=∶3,即∠CDB=30°,∴DC=2BC=10米,BD=BC=5米,∴AD=BD-AB=(5-5)米≈3.66米,∵2+3.66=5.66<6,∴不需要移栽.【解析】根据题意得到三角形ABC为等腰直角三角形,求出AB的长,在直角三角形BCD中,根据新坡面的坡度求出∠BDC的度数为30,利用30度角所对的直角边等于斜边的一半求出DC的长,再利用勾股定理求出DB的长,由DB-AB求出AD的长,然后将AD+2与6进行比较,若大于则需要移栽,反之不需要移栽.18.【答案】解(1)由题意得:cot 45°=1,cot 60°=;(2)∵tan A=,cot A=,∴tan A·cot A=·=1.【解析】(1)根据题目所给的信息求解即可;(2)根据tan A=,cotA=,求出tan A·cot A的值即可.19.【答案】解设a=2k,c=3k.由勾股定理得b===k.则tan A===.【解析】设a=2k,c=3k,依据勾股定理可求得b的长度,然后依据锐角三角函数的定义解答即可.20.【答案】解在Rt△ABC中,∠B=90°-∠A=60°,∵tan B=,∴b=a×tan B=5×tan 60°=5,由勾股定理,得c==10.【解析】直角三角形的两个锐角互余,并且Rt△ABC中,∠C=90°则∠A=90-∠B=60°,解直角三角形就是求直角三角形中出直角以外的两锐角,三边中的未知的元素.21.【答案】解(1)如图,作DP⊥MN于点P,即∠DPC=90°,∵DE∥MN,∴∠DCP=∠ADE=76°,则在Rt△CDP中,DP=CD sin ∠DCP=40×sin 76°≈39(cm),答:椅子的高度约为39厘米;(2)作EQ⊥MN于点Q,∴∠DPQ=∠EQP=90°,∴DP∥EQ,又∵DF∥MN,∠AED=58°,∠ADE=76°,∴四边形DEQP是矩形,∠DCP=∠ADE=76°,∠EBQ=∠AED=58°,∴DE=PQ=20,EQ=DP=39,又∵CP=CD cos ∠DCP=40×cos 76°≈9.6(cm),BQ==≈24.4(cm),∴BC=BQ+PQ+CP=24.4+20+9.6≈54(cm),答:椅子两脚B、C之间的距离约为54 cm.【解析】(1)作DP⊥MN于点P,即∠DPC=90°,由DE∥MN知,∠DCP=∠ADE=76°,根据DP=CD sin ∠DCP可得答案;(2)作EQ⊥MN于点Q可得四边形DEQP是矩形,知DE=PQ=20,EQ=DP=39,再分别求出BQ、CP的长可得答案.人教版数学九年级下册第二十八章锐角三角函数 章末专题训练人教版数学九年级下册第二十八章锐角三角函数 章末专题训练一、选择题1.在Rt △ABC 中,∠C =90°,若将各边长度都扩大为原来的5倍,则∠A 的正弦值( D )A .扩大为原来的5倍B .缩小为原来的15C .扩大为原来的10倍D .不变2. 下列式子错误的是( D )A .cos40°=sin50°B .tan15°·tan75°=1 C.sin 225°+cos 225°=1 D .sin60°=2sin30°3. 如图所示,AB 为斜坡,D 是斜坡AB 上一点,斜坡AB 的坡度为i ,坡角为α,AC ⊥BM 于C ,下列式子:①i =AC ∶AB ;②i =(AC -DE)∶EC ;③i =tan α=DE BE;④AC =i ·BC.其中正确的有( C )A .1个B .2个C .3个D .4个4.河堤横断面如图所示,堤高BC =5米,迎水坡AB 的坡度是(坡度是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是 ( A ) A.米B.米C. 15米D. 10米5.△ABC 在网格中的位置如图K -17-2所示(每个小正方形的边长都为1),AD ⊥BC 于点D ,下列选项中,错误..的是( C )图K-17-2A.sinα=cosα B.tanC=2C.sinβ=cosβ D.tanα=16.把Rt△ABC各边的长度都扩大3倍得到Rt△A′B′C′,那么锐角∠A、∠A′的余弦值的关系是( B )A.cosA=cosA′B.cosA=3cosA′C.3cosA=cosA′D.不能确定7. 如图,要在宽为22米的九洲大道AB两边安装路灯,路灯的灯臂CD长2米,且与灯柱BC成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO与灯臂CD垂直。

人教版九年级数学下《第二十八章锐角三角函数》单元练习题含答案

人教版九年级数学下《第二十八章锐角三角函数》单元练习题含答案

第二十八章锐角三角函数一、选择题1.在Rt△ABC中,∠C=90°,AB=6,cos B=,则BC的长为()A. 4B. 2C.D.2.在Rt△ABC中,∠C=90°,BC=a,AC=b,AB=c,则sin A等于()A.B.C.D.3.在Rt△ABC中,∠C=90°,a=1,b=,则∠A等于()A. 30°B. 45°C. 60°D. 90°4.如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)()A.B.C.D.h·cosα5.如图,一辆小车沿倾斜角为α的斜坡向上行驶13米,已知cosα=,则小车上升的高度是()A. 5米B. 6米C. 6.5米D. 12米6.Rt△ABC中,∠C=90°,AB=13,AC=5,则sin B的值为()A.B.C.D.7.在Rt△ABC中,∠C=90°,AB=6,AC=4,则cos A的值是()A.B.C.D.8.如图,在一笔直的海岸线l上有A、B两个观测站,C离海岸线l的距离(即CD的长)为2,从A 测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向,则AB的长()A. 2 kmB. (2+)kmC. (4-2) kmD. (4-) km9.在高为100米的楼顶测得地面上某目标的俯角为α,那么楼底到该目标的水平距离是() A. 100tanα米B. 100cotα米C. 100sinα米D. 100cosα米10.把△ABC三边的长度都扩大为原来的3倍,则锐角A的余弦函数值()A.不变B.缩小为原来的C.扩大为原来的3倍D.不能确定二、填空题11.若2cosα-=0,则锐角α=____________度.12.在Rt△ABC中,∠C=90°,AB=2BC,现给出下列结论:①sin A=;②cos B=;③tan A=;④tan B=,其中正确的结论是__________(只需填上正确结论的序号)13.如图,已知点A(0,1),B(0,-1),以点A为圆心,AB为半径作圆,交x轴的正半轴于点C,则sin ∠BAC=____________.14.已知∠A的补角是120°,则tan A=________.15.如图是一斜坡的横截面,某人沿着斜坡从P处出发,走了13米到达M处,此时在铅垂方向上上升了5米,那么该斜坡的坡度是____________.16.汽车沿着坡度为1∶7的斜坡向上行驶了50米,则汽车升高了____________米.17.已知0°<θ<30°,且sinθ=km+(k为常数且k<O),则m的取值范围是__________.18.在Rt△ABC中,∠C=90°,BC=3,sin A=,那么AB=__________.19.如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则sin ∠ABC=________.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为________米.(精确到1米,参考数据:≈1.73)三、解答题21.如图,初三一班数学兴趣小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°.朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°,已知A点的高度AB为2米,台阶AC的坡度为(即AB∶BC=),且B,C,E三点在同一条直线上,请根据以上条件求出树DE的高度.(测量器的高度忽略不计)22.南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos 75°=0.2588,sin 75°=0.9659,tan 75°=3.732,=1.732,=1.414)23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30 cm,∠OBC=45°,求AB的长度.(结果精确到0.1 cm)(参考数据:sin 15°≈0.259,cos 15°≈0.966,tan 15°≈0.268,≈1.414)24.小明周日在广场放风筝,如图,小明为了计算风筝离地面的高度,他测得风筝的仰角为60°,已知风筝线BC的长为20米,小明的身高AB为1.75米,请你帮小明计算出风筝离地面的高度.(结果精确到0.1米,参考数据≈1.41,≈1.73)25.如图,一艘海轮位于灯塔P的北偏东53°方向,距离灯塔100海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向上的B处.(1)在图中画出点B,并求出B处与灯塔P的距离(结果取整数);(2)用方向和距离描述灯塔P相对于B处的位置.(参考数据:sin 53°=0.80,cos 53°=0.60,tan 53°=0.33,=1.41)26.如图,在Rt△ABC中,∠C=90°,M是直角边AC上一点,MN⊥AB于点N,AN=3,AM=4,求cos B的值.27.如图是某小区的一个健身器材,已知BC=0.15 m,AB=2.70 m,∠BOD=70°,求端点A到地面CD的距离(精确到0.1 m).(参考数据:sin 70°≈0.94,cos 70°≈0.34,tan 70°≈2.75)28.在△ABC中,∠C=90°,AC=7,BC=24,求sin A,sin B的值.答案解析1.【答案】A【解析】如图,∵∠C=90°,∴cos B=,∴BC=AB cos B=6×=4,故选A.2.【答案】B【解析】sin A==,故选B.3.【答案】A【解析】如图所示:∵在Rt△ABC中,∠C=90°,a=1,b=,∴tan A==.∴∠A=30°,故选A.4.【答案】B【解析】∵∠CAD+∠ACD=90°,∠ACD+∠BCD=90°,∴∠CAD=∠BCD,在Rt△BCD中,∵cos ∠BCD=,∴BC==,故选B.5.【答案】A【解析】在如图AC=13,作CB⊥AB,∵cosα==,∴AB=12,∴BC===5,∴小车上升的高度是5 m.故选A.6.【答案】A【解析】∵Rt△ABC中,∠C=90°,AB=13,AC=5,∴sin B==.故选A.7.【答案】B【解析】cos A===.故选B.8.【答案】C【解析】在CD上取一点E,使BD=DE,可得∠EBD=45°,AD=DC=2,∵从B测得船C在北偏东22.5°的方向,∴∠BCE=∠CBE=22.5°,∴BE=EC.设AB=x,则DE=BD=AD-AB=2-x,∴EC=BE=BD=(2-x),∵DE+EC=CD,∴2-x+(2-x)=2,解得x=4-2,即AB=4-2.故选C.9.【答案】B【解析】∵∠BAC=α,BC=100 m,∴AB=BC·cotα=100cotαm.故选B.10.【答案】A【解析】因为△ABC三边的长度都扩大为原来的3倍所得的三角形与原三角形相似,所以锐角A的大小没改变,故锐角A的余弦函数值也不变.故选A.11.【答案】45°【解析】∵2cosα-=0,∴cosα=,又∵cos 45°=,∴锐角α=45°.12.【答案】②③④【解析】如图所示:∵在Rt△ABC中,∠C=90°,AB=2BC,∴sin A==,故①错误;∴∠A=30°,∴∠B=60°,∴cos B=cos 60°=,故②正确;∵∠A=30°,∴tan A=tan 30°=,故③正确;∵∠B=60°,∴tan B=tan 60°=,故④正确.故答案为②③④.13.【答案】【解析】∵A(0,1),B(0,-1),∴AB=2,OA=1,∴AC=2,由勾股定理,得OC==,∴在Rt△AOC中,sin ∠OAC=sin ∠BAC==.14.【答案】【解析】∵∠A的补角是120°,∴∠A=180°-120°=60°,∴tan A=tan 60°=.15.【答案】5∶12【解析】如图所示,由题意可知,PM=13 m,MC=5米,∴PC==12,∴MC∶PC=5∶12,故答案为5∶12.16.【答案】5【解析】∵坡度为1∶7,∴设坡角是α,则sinα==,∴上升的高度是50×=5(米).17.【答案】<m<【解析】∵0°<θ<30°,∴sin 0°<sinθ<sin 30°,即0<km+<,∴<km<,∴<m<.18.【答案】18【解析】在Rt△ABC中,∵∠C=90°,sin A==,∴AB=3×6=18.19.【答案】【解析】∵小正方形边长为1,∴AB2=8,BC2=10,AC2=2;∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠CAB=90°,∴sin ∠ABC===.20.【答案】208【解析】由题意可得:tan 30°===,解得:BD=30,tan 60°===,解得DC=90,故该建筑物的高度为BC=BD+DC=120≈208(m).21.【答案】解∵AF⊥AB,AB⊥BE,DE⊥BE,∴四边形ABEF为矩形,∴AF=BE,EF=AB=2,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,∵=,AB=2,∴BC=2,在Rt△AFD中,DF=DE-EF=x-2,∴AF===(x-2),∵AF=BE=BC+CE.∴(x-2)=2+x,解得x=6.答:树DE的高度为6米.【解析】由于AF⊥AB,则四边形ABEF为矩形,设DE=x,在Rt△CDE中,CE===x,在Rt△ABC中,得到=,求出BC,在Rt△AFD中,求出AF,由AF=BC+CE 即可求出x的长.22.【答案】解过B作BD⊥AC,∵∠BAC=75°-30°=45°,∴在Rt△ABD中,∠BAD=∠ABD=45°,∠ADB=90°,由勾股定理,得BD=AD=×20=10(海里),在Rt△BCD中,∠C=15°,∠CBD=75°,∴tan ∠CBD=,即CD=10×3.732=52.77048,则AC=AD+DC=10+10×3.732=66.91048≈67(海里),即我海监执法船在前往监视巡查的过程中行驶了67海里.【解析】过B作BD⊥AC,在直角三角形ABD中,利用勾股定理求出BD与AD的长,在直角三角形BCD中,求出CD的长,由AD+DC求出AC的长即可.23.【答案】解过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO·sin 15°≈30×0.259≈7.77(cm)AD=AO·co s 15°≈30×0.966≈28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈36.8(cm).答:AB的长度为36.8 cm.【解析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO·sin 15°,AD=AO·cos 15°,在Rt△BDO中根据∠OBC=45°可知,BD=OD,再根据AB=AD+BD即可得出结论.24.【答案】解∵在Rt△CBE中,sin 60°=,∴CE=BC·sin 60°=20×≈17.3 m,∴CD=CE+ED=17.3+1.75=19.05≈19.1 m.答:风筝离地面的高度是19.1 m.【解析】先根据锐角三角函数的定义求出CE的长,再由CD=CE+ED即可得出结论.25.【答案】解(1)如图,作PC⊥AB于C,在Rt△PAC中,∵PA=100,∠PAC=53°,∴PC=PA·sin ∠PAC=100×0.80=80,在Rt△PBC中,∵PC=80,∠PBC=∠BPC=45°,∴PB=PC=1.41×80≈113,即B处与灯塔P的距离约为113海里;(2)∵∠CBP=45°,PB≈113海里,∴灯塔P位于B处北偏西45°方向,且距离B处约113海里.【解析】(1)根据方向角的定义结合已知条件在图中画出点B,作PC⊥AB于C,先解Rt△PAC,得出PC=PA·sin ∠PAC=80,再解Rt△PBC,得出PB=PC=1.41×80≈113;(2)由∠CBP=45°,PB≈113海里,即可得到灯塔P位于B处北偏西45°方向,且距离B处约113海里.26.【答案】解∵∠C=90°,MN⊥AB,∴∠C=∠ANM=90°,∴∠A+∠B=90°,∠A+∠AMN=90°,∴∠B=∠AMN,又AN=3,AM=4,∴MN==,∴cos B=cos ∠AMN==.【解析】根据“同角的余角相等”,可得∠B=∠AMN,又AN=3,AM=4,由勾股定理得MN=,故 cos B=cos ∠AMN.27.【答案】解作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,∵OD⊥CD,∠BOD=70°,∴AE∥OD,∴∠A=∠BOD=70°,在Rt△AFB中,∵AB=2.7,∴AF=2.7×cos 70°≈2.7×0.34=0.918,∴AE=AF+BC≈0.918+0.15=1.068≈1.1 m,答:端点A到地面CD的距离是1.1 m.【解析】作AE⊥CD于E,BF⊥AE于F,则四边形EFBC是矩形,求出AF、EF即可解决问题.28.【答案】解在△ABC中,∠C=90°,AC=7,BC=24,由勾股定理,得AB===25,sin A==,sin B==.【解析】根据勾股定理,可得AC的长,根据锐角的正弦为对边比斜边,可得答案.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学九年级下锐角三角函数练习题
一、选择题(共4小题;共20分)
1. 在中,,,,则
A. B. C. D.
2. 如图,在矩形中,点在边上,沿折叠矩形,使点落在边上
的点处,若,,则的值为
3.
B. D.
4. 在中,若,则的度数是
A. B. C. D.
二、填空题(共3小题;共15分)
5. 若锐角满足,则的度数为.
6. 如图,中,,,,现将折叠,使点与点
重合,折痕为,则.
7. 如图,角的顶点为,它的一边在轴的正半轴上,另一边上有一点,则

三、解答题(共3小题;共39分)
8. 如图,在平面直角坐标系中,一次函数的图象与反比例函数
的图象交于点,与轴、轴分别交于点,,过点作轴,垂足为.若,.
(1)求反比例函数和一次函数的解析式;
(2)点是反比例函数图象在第三象限部分上的一点,且到轴的距离是,连接,,求的面积.
9. 在中,,,垂足为,点是延长线上一点,连接

(1)如图,若,,求的长;
(2)如图,点是线段上一点,,点是外一点,,连接并延长交于点,且点是线段的中点,求证:.
10. 在平面直角坐标系中,抛物线经过点,且与轴
正半轴交于点,与轴交于点,点是顶点.
(1)填空:;顶点的坐标为;直线的函数表达式为:.(2)直线与轴相交于一点.
①当时得到直线(如图),点是直线上方抛物线上的一点.若
,求出此时点的坐标.
②当时(如图),直线与抛物线,及轴分别相交于点,,
,,试证明线段,,总能组成等腰三角形;如果此等腰三角形底角的余弦值为,求此时的值.
答案
第一部分
1. C
2. C
3. B
4. C 【解析】由题意,得,,
,,

第二部分
5.
6.
7.
第三部分
8. (1)由题,,


,,

反比例函数的解析式为.
将,代入得:
解得
一次函数的解析式为.
(2)由题设代入,



9. (1)因为,,
所以.
则.
所以.
(2)延长到点,使得,连接.如图,
因为,
所以,
在和中,
所以(),
所以,
因为,
所以,
在和中,
所以(),
所以,,
所以,
所以,
即.
10. (1);;
【解析】抛物线经过点,
,解得:.
抛物线解析式为:.
,.
顶点的坐标为:.
令,得:,即点的坐标为.
点,对称轴为直线,

点的坐标为,
设直线的解析式为:,
解得:
直线的解析式为:.
(2)①设点的坐标为,


,解得:,


点;
②设直线的解析式为,
解得:
直线的解析式为:.
点,点,点.

,.



当时,线段,,总能组成等腰三角形.
由题意的:,即,
,解得:.

.。

相关文档
最新文档