分式方程解法的标准
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分式方程解法的标准
一,内容综述:
1.解分式方程的基本思想
在学习简单的分式方程的解法时,是将分式方程化为一元一次方程,复杂的(可化为一元二次方程)分式方程的基本思想也一样,就是设法将分式方程"转化"为整式方程.即
分式方程整式方程
2.解分式方程的基本方法
(1)去分母法
去分母法是解分式方程的一般方法,在方程两边同时乘以各分式的最简公分母,使分式方程转化为整式方程.但要注意,可能会产生增根.所以,必须验根.
产生增根的原因:
当最简公分母等于0时,这种变形不符合方程的同解原理(方程的两边都乘以或除以同一个不等于零的数,所得方程与原方程同解),这时得到的整式方程的解不一定是原方程的解.
检验根的方法:
将整式方程得到的解代入原方程进行检验,看方程左右两边是否相等.
为了简便,可把解得的根直接代入最简公分母中,如果不使公分母等于0,就是原方程的根;如果使公分母等于0,就是原方程的增根.必须舍去.
注意:增根是所得整式方程的根,但不是原方程的根,增根使原方程的公
分母为0.
用去分母法解分式方程的一般步骤:
(i)去分母,将分式方程转化为整式方程;
(ii)解所得的整式方程;
(iii)验根做答
(2)换元法
为了解决某些难度较大的代数问题,可通过添设辅助元素(或者叫辅助未知数)来解决.辅助元素的添设是使原来的未知量替换成新的未知量,从而把问题化繁为简,化难为易,使未知量向已知量转化,这种思维方法就是换元法.换元法是解分式方程的一种常用技巧,利用它可以简化求解过程.
用换元法解分式方程的一般步骤:
(i)设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数
式;
(ii)解所得到的关于辅助未知数的新方程,求出辅助未知数的值;
(iii)把辅助未知数的值代回原设中,求出原未知数的值;
(iv)检验做答.
注意:(1)换元法不是解分式方程的一般方法,它是解一些特殊的分式方程的特殊
方法.它的基本思想是用换元法把原方程化简,把解一个比较复杂的方程转化为解两个比较简单的方程.
(2)分式方程解法的选择顺序是先特殊后一般,即先考虑能否用换元法解,不能用换元法解的,再用去分母法.
(3)无论用什么方法解分式方程,验根都是必不可少的重要步骤.
等式。
表示相等关系的式子叫做等式。
等式的性质有三:
性质1:等式两边同时加上相等的数或式子,两边依然相等。
若a=b
那么有a+c=b+c
性质2:等式两边同时乘(或除)相等的数或式子,两边依然相等
若a=b
那么有a·c=b·c
或a÷c=b÷c
性质3:等式两边同时乘方(或开方),两边依然相等
若a=b
那么有a^c=b^c
或(c次根号a)=(c次根号b)
.不等式的基本性质:
性质1:如果a>b,b>c,那么a>c(不等式的传递性).
性质2:如果a>b,那么a+c>b+c(不等式的可加性).
性质3:如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么acb,c>d,那么
a+c>b+d.
性质4:如果a>b>0,c>d>0,那么ac>bd.
性质5:如果a>b>0,n∈N,n>1,那么an>bn,
常见的数量关系
1,每份数×份数=总数
总数÷每份数=份数
总数÷份数=每份数
2、1倍数×倍数=几倍数
几倍数÷1倍数=倍数
几倍数÷倍数=1倍数
3、速度×时间=路程
路程÷速度=时间
路程÷时间=速度
4、单价×数量=总价
总价÷单价=数量
总价÷数量=单价
5、工作效率×工作时间=工作总量
工作总量÷工作效率=工作时间
工作总量÷工作时间=工作效率
6、加数+加数=和
和-一个加数=另一个加数
7、被减数-减数=差
被减数-差=减数
差+减数=被减数
8 、因数×因数=积
积÷一个因数=另一个因数
9、被除数÷除数=商
被除数÷商=除数
商×除数=被除数
10、总数÷总份数=平均数
11、和差问题的公式
(和+差)÷2=大数
(和-差)÷2=小数
12、和倍问题
和÷(倍数-1)=小数
小数×倍数=大数
(或者和-小数=大数)
13、差倍问题
差÷(倍数-1)=小数
小数×倍数=大数
(或小数+差=大数)
14、植树问题
1 非封闭线路上的植树问题主要可分为以下三种情形:
⑴如果在非封闭线路的两端都要植树,那么:
株数=段数+1=全长÷株距-1
全长=株距×(株数-1)
株距=全长÷(株数-1)
⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距
全长=株距×株数
株距=全长÷株数
税后利息=本金×利率×时间×(1-20%)
15、盈亏问题
(盈+亏)÷两次分配量之差=参加分配的份数
(大盈-小盈)÷两次分配量之差=参加分配的份数
(大亏-小亏)÷两次分配量之差=参加分配的份数
16、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
17、追及问题
追及距离=速度差×追及时间
追及时间=追及距离÷速度差
速度差=追及距离÷追及时间
18、流水问题
顺流速度=静水速度+水流速度
逆流速度=静水速度-水流速度
静水速度=(顺流速度+逆流速度)÷2
水流速度=(顺流速度-逆流速度)÷2
19、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量×100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
20、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本×100%=(售出价÷成本-1)×100%
涨跌金额=本金×涨跌百分比
折扣=实际售价÷原售价×100%(折扣<1)