2017年山东中考数学真题卷含答案解析

合集下载

2017年山东省青岛市数学中考试卷及参考答案PDF

2017年山东省青岛市数学中考试卷及参考答案PDF

2017年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)﹣的相反数是()A.8 B.﹣8 C.D.﹣2.(3分)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.3.(3分)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是4.(3分)计算6m6÷(﹣2m2)3的结果为()A.﹣m B.﹣1 C.D.﹣5.(3分)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为()A.(﹣4,2)B.(﹣2,4)C.(4,﹣2)D.(2,﹣4)6.(3分)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115° D.120°7.(3分)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A.B.C.D.8.(3分)一次函数y=kx+b(k≠0)的图象经过A(﹣1,﹣4),B(2,2)两点,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为()A.2 B.4 C.8 D.不确定二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为.10.(3分)计算:(+)×=.11.(3分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.12.(3分)如图,直线AB,CD分别与⊙O相切于B,D两点,且AB⊥CD,垂足为P,连接BD,若BD=4,则阴影部分的面积为.13.(3分)如图,在四边形ABCD中,∠ABC=∠ADC=90°,E为对角线AC的中点,连接BE,ED,BD.若∠BAD=58°,则∠EBD的度数为度.14.(3分)已知某几何体的三视图如图所示,其中俯视图为正六边形,则该几何体的表面积为.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹。

2017年山东省临沂市中考数学试卷(答案与解析)

2017年山东省临沂市中考数学试卷(答案与解析)

2017年山东省临沂市中考数学试卷一、选择题(本大题共14小题,每小题3分,共42分)1.﹣的相反数是()A.B.﹣C.2017 D.﹣20172.如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°3.下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b44.不等式组中,不等式①和②的解集在数轴上表示正确的是()A. B.C.D.5.如图所示的几何体是由五个小正方体组成的,它的左视图是()A.B.C.D.6.小明和小华玩“石头、剪子、布”的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.7.一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形8.甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=9.某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:部门人数每人创年利润(万元)A110B38C75D43这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,510.如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2 B.﹣πC.1 D.+π11.将一些相同的“○”按如图所示摆放,观察每个图形中的“○”的个数,若第n个图形中“○”的个数是78,则n的值是()A.11 B.12 C.13 D.1412.在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形13.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1.5s时,距离地面的高度是11m,其中正确结论的个数是()A.1 B.2 C.3 D.414.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N 两点,△OMN的面积为10.若动点P在x轴上,则PM+PN的最小值是()A.6 B.10 C.2D.2二、填空题(本大题共5小题,每小题3分,共15分)15.分解因式:m3﹣9m=.16.已知AB∥CD,AD与BC相交于点O.若=,AD=10,则AO=.17.计算:÷(x﹣)=.18.在中,对角线AC,BD相交于点O,若AB=4,BD=10,sin∠BDC=,则ABCD的面积是.19.在平面直角坐标系中,如果点P坐标为(m,n),向量可以用点P的坐标表示为=(m,n).已知:=(x1,y1),=(x2,y2),如果x1•x2+y1•y2=0,那么与互相垂直,下列四组向量:①=(2,1),=(﹣1,2);②=(cos30°,tan45°),=(1,sin60°);③=(﹣,﹣2),=(+,);④=(π0,2),=(2,﹣1).其中互相垂直的是(填上所有正确答案的符号).三、解答题(本大题共7小题,共63分)20.(7分)计算:|1﹣|+2cos45°﹣+()﹣121.(7分)为了解某校学生对《最强大脑》、《朗读者》、《中国诗词大会》、《出彩中国人》四个电视节目的喜爱情况,随机抽取了x名学生进行调查统计9要求每名学生选出并且只能选出一个自己最喜爱的节目),并将调查结果绘制成如下统计图表:学生最喜爱的节目人数统计表节目人数(名)百分比最强大脑510%朗读者15b%中国诗词大会a40%出彩中国人1020%根据以上提供的信息,解答下列问题:(1)x=,a=,b=;(2)补全上面的条形统计图;(3)若该校共有学生1000名,根据抽样调查结果,估计该校最喜爱《中国诗词大会》节目的学生有多少名.22.(7分)如图,两座建筑物的水平距离BC=30m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°,求这两座建筑物的高度.23.(9分)如图,∠BAC的平分线交△ABC的外接圆于点D,∠ABC的平分线交AD于点E,(1)求证:DE=DB;(2)若∠BAC=90°,BD=4,求△ABC外接圆的半径.24.(9分)某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40cm3(二月份用水量不超过25cm3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?25.(11分)数学课上,张老师出示了问题:如图1,AC,BD是四边形ABCD的对角线,若∠ACB=∠ACD=∠ABD=∠ADB=60°,则线段BC,CD,AC三者之间有何等量关系?经过思考,小明展示了一种正确的思路:如图2,延长CB到E,使BE=CD,连接AE,证得△ABE≌△ADC,从而容易证明△ACE是等边三角形,故AC=CE,所以AC=BC+CD.小亮展示了另一种正确的思路:如图3,将△ABC绕着点A逆时针旋转60°,使AB与AD重合,从而容易证明△ACF是等边三角形,故AC=CF,所以AC=BC+CD.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小颖提出的问题,请你写出结论,并给出证明.(2)小华提出:如图5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改为“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它条件不变,那么线段BC,CD,AC三者之间有何等量关系?针对小华提出的问题,请你写出结论,不用证明.26.(13分)如图,抛物线y=ax2+bx﹣3经过点A(2,﹣3),与x轴负半轴交于点B,与y轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)点D在y轴上,且∠BDO=∠BAC,求点D的坐标;(3)点M在抛物线上,点N在抛物线的对称轴上,是否存在以点A,B,M,N 为顶点的四边形是平行四边形?若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.参考答案一、选择题1.A.2.A.3.D.4.B.5.D.6.C.7.C.8.B.9.D.10.C.解:∵BT是⊙O的切线;设AT交⊙O于D,连结BD,∵AB是⊙O的直径,∴∠ADB=90°,而∠ATB=45°,∴△ADB、△BDT都是等腰直角三角形,∴AD=BD=TD=AB=,∴弓形AD的面积等于弓形BD的面积,=××=1.∴阴影部分的面积=S△BTD11.B.解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n个图形有1+2+3+…+n=个小圆;∵第n个图形中“○”的个数是78,∴78=,解得:n1=12,n2=﹣13(不合题意舍去),12.D.解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;13.B.解:由题意,抛物线的解析式为y=ax(x﹣9),把(1,8)代入可得a=﹣1,∴y=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故①错误,∴抛物线的对称轴t=4.5,故②正确,∵t=9时,y=0,∴足球被踢出9s时落地,故③正确,∵t=1.5时,y=11.25,故④错误.∴正确的有②③,14.C.解:∵正方形OABC的边长是6,∴点M的横坐标和点N的纵坐标为6,∴M(6,),N(,6),∴BN=6﹣,BM=6﹣,∵△OMN的面积为10,∴6×6﹣×6×﹣6×﹣×(6﹣)2=10,∴k=24,∴M(6,4),N(4,6),作M关于x轴的对称点M′,连接NM′交x轴于P,则NM′的长=PM+PN的最小值,∵AM=AM′=4,∴BM′=10,BN=2,∴NM′===2,二、填空题(本大题共5小题,每小题3分,共15分)15.m(m+3)(m﹣3).16.4.17..18.24.解:作OE⊥CD于E,如图所示:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD=BD=5,CD=AB=4,∵sin∠BDC==,∴OE=3,∴DE==4,∵CD=4,∴点E与点C重合,∴AC⊥CD,OC=3,∴AC=2OC=6,∴▱ABCD的面积=CD•AC=4×6=24;19.①③④.解:①因为2×(﹣1)+1×2=0,所以与互相垂直;②因为cos30°×1+tan45°•sin60°=×1+1×=≠0,所以与不互相垂直;③因为(﹣)(+)+(﹣2)×=3﹣2﹣1=0,所以与互相垂直;④因为π0×2+2×(﹣1)=2﹣2=0,所以与互相垂直.综上所述,①③④互相垂直.三、解答题(本大题共7小题,共63分)20.解:|1﹣|+2cos45°﹣+()﹣1=﹣1+2×﹣2+2=﹣1+﹣2+2=1.21.解:(1)根据题意得:x=5÷10%=50,a=50×40%=20,b=×100=30;故答案为:50;20;30;(2)中国诗词大会的人数为20人,补全条形统计图,如图所示:(3)根据题意得:1000×40%=400(名),则估计该校最喜爱《中国诗词大会》节目的学生有400名.22.解:延长CD,交AE于点E,可得DE⊥AE,在Rt△AED中,AE=BC=30m,∠EAD=30°,∴ED=AEtan30°=10m,在Rt△ABC中,∠BAC=30°,BC=30m,∴AB=30m,则CD=EC﹣ED=AB﹣ED=30﹣10=20m.23.(1)证明:∵BE平分∠BAC,AD平分∠ABC,∴∠ABE=∠CBE,∠BAE=∠CAD,∴,∴∠DBC=∠CAD,∴∠DBC=∠BAE,∵∠DBE=∠CBE+∠DBC,∠DEB=∠ABE+∠BAE,∴∠DBE=∠DEB,∴DE=DB;(2)解:连接CD,如图所示:由(1)得:,∴CD=BD=4,∵∠BAC=90°,∴BC是直径,∴∠BDC=90°,∴BC==4,∴△ABC外接圆的半径=×4=2.24.解:(1)当0≤x≤15时,设y与x的函数关系式为y=kx,15k=27,得k=1.8,即当0≤x≤15时,y与x的函数关系式为y=1.8x,当x>15时,设y与x的函数关系式为y=ax+b,,得,即当x>15时,y与x的函数关系式为y=2.4x﹣9,由上可得,y与x的函数关系式为y=;(2)设二月份的用水量是xm3,当15<x≤25时,2.4x﹣9+2.4(40﹣x)﹣9=79.8,解得,x无解,当0<x≤15时,1.8x+2.4(40﹣x)﹣9=79.8,解得,x=12,∴40﹣x=28,答:该用户二、三月份的用水量各是12m3、28m3.25.解:(1)BC+CD=AC;理由:如图1,延长CD至E,使DE=BC,∵∠ABD=∠ADB=45°,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=90°,∵∠ACB=∠ACD=45°,∴∠ACB+∠ACD=45°,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=45°,AC=AE,∴△ACE是等腰直角三角形,∴CE=AC,∵CE=CE+DE=CD+BC,∴BC+CD=AC;(2)BC+C D=2AC•cosα.理由:如图2,延长CD至E,使DE=BC,∵∠ABD=∠ADB=α,∴AB=AD,∠BAD=180°﹣∠ABD﹣∠ADB=180°﹣2α,∵∠ACB=∠ACD=α,∴∠ACB+∠ACD=2α,∴∠BAD+∠BCD=180°,∴∠ABC+∠ADC=180°,∵∠ADC+∠ADE=180°,∴∠ABC=∠ADE,在△ABC和△ADE中,,∴△ABC≌△ADE(SAS),∴∠ACB=∠AED=α,AC=AE,∴∠AEC=α,过点A作AF⊥CE于F,∴CE=2CF,在Rt△ACF中,∠ACD=α,CF=AC•cos∠ACD=AC•cosα,∴CE=2CF=2AC•cosα,∵CE=CD+DE=CD+BC,∴BC+CD=2AC•cosα.26.解:(1)由y=ax2+bx﹣3得C(0.﹣3),∴OC=3,∵OC=3OB,∴OB=1,∴B(﹣1,0),把A(2,﹣3),B(﹣1,0)代入y=ax2+bx﹣3得,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设连接AC,作BF⊥AC交AC的延长线于F,∵A(2,﹣3),C(0,﹣3),∴AF∥x轴,∴F(﹣1,﹣3),∴BF=3,AF=3,∴∠BAC=45°,设D(0,m),则OD=|m|,∵∠BDO=∠BAC,∴∠BDO=45°,∴OD=OB=1,∴|m|=1,∴m=±1,∴D1(0,1),D2(0,﹣1);(3)设M(a,a2﹣2a﹣3),N(1,n),①以AB为边,则AB∥MN,AB=MN,如图2,过M作ME⊥对称轴y于E,AF ⊥x轴于F,则△ABF≌△NME,∴NE=AF=3,ME=BF=3,∴|a﹣1|=3,∴a=3或a=﹣2,∴M(4,5)或(﹣2,11);②以AB为对角线,BN=AM,BN∥AM,如图3,则N在x轴上,M与C重合,∴M(0,﹣3),综上所述,存在以点A,B,M,N为顶点的四边形是平行四边形,M(4,5)或(﹣2,11)或(0,﹣3).。

2017年山东省菏泽市中考数学试卷(解析版)

2017年山东省菏泽市中考数学试卷(解析版)

2017年山东省菏泽市中考数学试卷一、选择题(共8小题,每小题3分,满分24分)1.()﹣2的相反数是()A.9 B.﹣9 C.D.﹣2.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣83.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.4.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):﹣7,﹣4,﹣2,1,﹣2,2.关于这组数据,下列结论不正确的是()A.平均数是﹣2 B.中位数是﹣2 C.众数是﹣2 D.方差是75.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°6.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣17.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2) D.(0,)8.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)9.分解因式:x3﹣x=.10.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是.11.菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为cm2.12.一个扇形的圆心角为100°,面积为15π cm2,则此扇形的半径长为.13.直线y=kx(k>0)与双曲线y=交于A(x1,y1)和B(x2,y2)两点,则3x1y2﹣9x2y1的值为.14.如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O1的位置,使点O1的对应点O2落在直线y=﹣x上,依次进行下去…若点B的坐标是(0,1),则点O12的纵坐标为.三、解答题(共10小题,共78分)15.计算:﹣12﹣|3﹣|+2sin45°﹣(﹣1)2.16.先化简,再求值:(1+)÷,其中x是不等式组的整数解.17.如图,E是▱ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.18.如图,某小区①号楼与⑪号楼隔河相望,李明家住在①号楼,他很想知道⑪号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算⑪号楼的高度CD.19.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?20.如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A、B两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.21.今年5月,某大型商业集团随机抽取所属的部分商业连锁店进行评估,将抽取的各商业连锁店按照评估成绩分成了A、B、C、D四个等级,并绘制了如图不完整的扇形统计图和条形统计图.根据以上信息,解答下列问题:(1)本次评估随即抽取了多少甲商业连锁店?(2)请补充完整扇形统计图和条形统计图,并在图中标注相应数据;(3)从A、B两个等级的商业连锁店中任选2家介绍营销经验,求其中至少有一家是A等级的概率.22.如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.(1)求证:∠BAC=∠CBP;(2)求证:PB2=PC•PA;(3)当AC=6,CP=3时,求sin∠PAB的值.23.正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AF=MN;(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为t s.①设BF=y cm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x 轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.2017年山东省菏泽市中考数学试卷参考答案与试题解析一、选择题(共8小题,每小题3分,满分24分)1.()﹣2的相反数是()A.9 B.﹣9 C.D.﹣【考点】6F:负整数指数幂;14:相反数.【分析】先将原数求出,然后再求该数的相反数.【解答】解:原数=32=9,∴9的相反数为:﹣9;故选(B)2.生物学家发现了一种病毒,其长度约为0.00000032mm,数据0.00000032用科学记数法表示正确的是()A.3.2×107B.3.2×108C.3.2×10﹣7D.3.2×10﹣8【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000032=3.2×10﹣7;故选:C.3.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A.B.C.D.【考点】U2:简单组合体的三视图.【分析】根据图形、找出几何体的左视图与俯视图,判断即可.【解答】解:A、左视图是两个正方形,俯视图是三个正方形,不符合题意;B、左视图与俯视图不同,不符合题意;C、左视图与俯视图相同,符合题意;D左视图与俯视图不同,不符合题意,故选:C.4.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):﹣7,﹣4,﹣2,1,﹣2,2.关于这组数据,下列结论不正确的是()A.平均数是﹣2 B.中位数是﹣2 C.众数是﹣2 D.方差是7【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】根据平均数、中位数、众数及方差的定义,依次计算各选项即可作出判断.【解答】解:A、平均数是﹣2,结论正确,故A不符合题意;B、中位数是﹣2,结论正确,故B不符合题意;C、众数是﹣2,结论正确,故C不符合题意;D、方差是9,结论错误,故D符合题意;故选:D.5.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是()A.55°B.60°C.65°D.70°【考点】R2:旋转的性质.【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的内角和定理可得结果.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CA′A=45°,∠CA′B=20°=∠BAC∴∠BAA′=180°﹣70°﹣45°=65°,故选:C.6.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x>ax+3的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣1【考点】FD:一次函数与一元一次不等式.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x>ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x>ax+3的解集为x<﹣1.故选D.7.如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC上的一点,当△ADE的周长最小时,点E的坐标是()A.(0,)B.(0,)C.(0,2) D.(0,)【考点】PA:轴对称﹣最短路线问题;D5:坐标与图形性质;LB:矩形的性质.【分析】作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,根据A的坐标为(﹣4,5),得到A′(4,5),B(﹣4,0),D(﹣2,0),求出直线DA′的解析式为y=x+,即可得到结论.【解答】解:作A关于y轴的对称点A′,连接A′D交y轴于E,则此时,△ADE的周长最小,∵四边形ABOC是矩形,∴AC∥OB,AC=OB,∵A的坐标为(﹣4,5),∴A′(4,5),B(﹣4,0),∵D是OB的中点,∴D(﹣2,0),设直线DA′的解析式为y=kx+b,∴,∴,∴直线DA′的解析式为y=x+,当x=0时,y=,∴E(0,),故选B.8.一次函数y=ax+b和反比例函数y=在同一平面直角坐标系中的图象如图所示,则二次函数y=ax2+bx+c的图象可能是()A.B.C.D.【考点】G2:反比例函数的图象;F3:一次函数的图象;H2:二次函数的图象.【分析】根据反比例函数图象和一次函数图象经过的象限,即可得出a<0、b>0、c<0,由此即可得出:二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y轴负半轴,再对照四个选项中的图象即可得出结论.【解答】解:观察函数图象可知:a<0,b>0,c<0,∴二次函数y=ax2+bx+c的图象开口向下,对称轴x=﹣>0,与y轴的交点在y 轴负半轴.故选A.二、填空题(共6小题,每小题3分,满分18分)9.分解因式:x3﹣x=x(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).10.关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,则k的值是0.【考点】A3:一元二次方程的解.【分析】由于方程的一个根是0,把x=0代入方程,求出k的值.因为方程是关于x的二次方程,所以未知数的二次项系数不能是0.【解答】解:由于关于x的一元二次方程(k﹣1)x2+6x+k2﹣k=0的一个根是0,把x=0代入方程,得k2﹣k=0,解得,k1=1,k2=0当k=1时,由于二次项系数k﹣1=0,方程(k﹣1)x2+6x+k2﹣k=0不是关于x的二次方程,故k≠1.所以k的值是0.故答案为:011.菱形ABCD中,∠A=60°,其周长为24cm,则菱形的面积为18cm2.【考点】L8:菱形的性质.【分析】根据菱形的性质以及锐角三角函数关系得出BE的长,即可得出菱形的面积.【解答】解:如图所示:过点B作BE⊥DA于点E∵菱形ABCD中,∠A=60°,其周长为24cm,∴∠C=60°,AB=AD=6cm,∴BE=AB•sin60°=3cm,∴菱形ABCD的面积S=AD×BE=18cm2.故答案为:18.12.一个扇形的圆心角为100°,面积为15π cm2,则此扇形的半径长为3.【考点】MO:扇形面积的计算.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=15π,解得R=3.即该扇形的半径为3cm.故答案是:3.13.直线y=kx(k>0)与双曲线y=交于A(x1,y1)和B(x2,y2)两点,则3x1y2﹣9x2y1的值为36.【考点】G8:反比例函数与一次函数的交点问题.【分析】由反比例函数图象上点的坐标特征,两交点坐标关于原点对称,故x1=﹣x2,y1=﹣y2,再代入3x1y2﹣9x2y1得出答案.【解答】解:由图象可知点A(x1,y1),B(x2,y2)关于原点对称,∴x1=﹣x2,y1=﹣y2,把A(x1,y1)代入双曲线y=,得x1y1=6,∴3x1y2﹣9x2y1=﹣3x1y1+9x1y1=﹣18+54=36.故答案为:36.14.如图,AB⊥y轴,垂足为B,将△ABO绕点A逆时针旋转到△AB1O1的位置,使点B的对应点B1落在直线y=﹣x上,再将△AB1O1绕点B1逆时针旋转到△A1B1O1的位置,使点O1的对应点O2落在直线y=﹣x上,依次进行下去…若点B的坐标是(0,1),则点O12的纵坐标为(﹣9﹣9,9+3).【考点】R7:坐标与图形变化﹣旋转;D2:规律型:点的坐标;F8:一次函数图象上点的坐标特征.【分析】观察图象可知,O12在直线y=﹣x时,OO12=6•OO2=6(1++2)=18+6,由此即可解决问题.【解答】解:观察图象可知,O12在直线y=﹣x时,OO12=6•OO2=6(1++2)=18+6,∴O12的横坐标=﹣(18+6)•cos30°=﹣9﹣9,O12的纵坐标=OO12=9+3,∴O12(﹣9﹣9,9+3).故答案为(﹣9﹣9,9+3).三、解答题(共10小题,共78分)15.计算:﹣12﹣|3﹣|+2sin45°﹣(﹣1)2.【考点】79:二次根式的混合运算;T5:特殊角的三角函数值.【分析】直接利用绝对值的性质以及特殊角的三角函数值和完全平方公式分别化简求出答案.【解答】解:原式=﹣1﹣(﹣3)+2×﹣=﹣1+3﹣+﹣2018+2=﹣2016+2.16.先化简,再求值:(1+)÷,其中x是不等式组的整数解.【考点】6D:分式的化简求值;CC:一元一次不等式组的整数解.【分析】解不等式组,先求出满足不等式组的整数解.化简分式,把不等式组的整数解代入化简后的分式,求出其值.【解答】解:不等式组解①,得x<3;解②,得x>1.∴不等式组的解集为1<x<3.∴不等式组的整数解为x=2.∵(1+)÷==4(x﹣1).当x=2时,原式=4×(2﹣1)=4.17.如图,E是▱ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.【考点】L5:平行四边形的性质.【分析】由平行四边形的性质得出AB=CD=6,AB∥CD,由平行线的性质得出∠F=∠DCE,由AAS证明△AEF≌△DEC,得出AF=CD=6,即可求出BF的长.【解答】解:∵E是▱ABCD的边AD的中点,∴AE=DE,∵四边形ABCD是平行四边形,∴AB=CD=6,AB∥CD,∴∠F=∠DCE,在△AEF和△DEC中,,∴△AEF≌△DEC(AAS),∴AF=CD=6,∴BF=AB+AF=12.18.如图,某小区①号楼与⑪号楼隔河相望,李明家住在①号楼,他很想知道⑪号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算⑪号楼的高度CD.【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】作AE⊥CD,用BD可以分别表示DE,CD的长,根据CD﹣DE=AB,即可求得BCD长,即可解题.【解答】解:作AE⊥CD,∵CD=BD•tan60°=BD,CE=BD•tan30°=BD,∴AB=CD﹣CE=BD,∴BC=21m,CD=BD•tan60°=BD=63m.答:乙建筑物的高度CD为63m.19.列方程解应用题:某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个,已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?【考点】AD:一元二次方程的应用.【分析】根据单件利润×销售量=总利润,列方程求解即可.【解答】解:设销售单价为x元,由题意,得:(x﹣360)[160+2]=20000,整理,得:x2﹣920x+211600=0,解得:x1=x2=460,答:这种玩具的销售单价为460元时,厂家每天可获利润20000.20.如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于A、B两点,B点的坐标为(3,2),连接OA、OB,过B作BD⊥y轴,垂足为D,交OA于C,若OC=CA.(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积.【考点】G8:反比例函数与一次函数的交点问题.【分析】(1)先利用待定系数法求出反比例函数解析式,进而确定出点A的坐标,再用待定系数法求出一次函数解析式;(2)先求出OB的解析式式,进而求出AG,用三角形的面积公式即可得出结论.【解答】解:(1)如图,过点A作AF⊥x轴交BD于E,∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y=,∵B(3,2),∴EF=2,∵BD⊥y轴,OC=CA,∴AE=EF=AF,∴AF=4,∴点A的纵坐标为4,∵点A在反比例函数y=图象上,∴A(,4),∴,∴,∴一次函数的表达式为y=﹣x+6;(2)如图1,过点A作AF⊥x轴于F交OB于G,∵B(3,2),∴直线OB的解析式为y=x,∴G(2,),∵A(3,4),∴AG=4﹣=,∴S △AOB =S △AOG +S △ABG =××3=4.21.今年5月,某大型商业集团随机抽取所属的部分商业连锁店进行评估,将抽取的各商业连锁店按照评估成绩分成了A 、B 、C 、D 四个等级,并绘制了如图不完整的扇形统计图和条形统计图.根据以上信息,解答下列问题:(1)本次评估随即抽取了多少甲商业连锁店?(2)请补充完整扇形统计图和条形统计图,并在图中标注相应数据;(3)从A 、B 两个等级的商业连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.【考点】X6:列表法与树状图法;VB :扇形统计图;VC :条形统计图. 【分析】(1)根据A 级的人数和所占的百分比求出总人数; (2)求出B 级的人数所占的百分比,补全图形即可;(3)画出树状图,由概率公式即可得出答案.【解答】解:(1)2÷8%=25(家),即本次评估随即抽取了25家商业连锁店;(2)25﹣2﹣15﹣6=2,2÷25×100%=8%,补全扇形统计图和条形统计图,如图所示:(3)画树状图,共有12个可能的结果,至少有一家是A等级的结果有10个,∴P(至少有一家是A等级)==.22.如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.(1)求证:∠BAC=∠CBP;(2)求证:PB2=PC•PA;(3)当AC=6,CP=3时,求sin∠PAB的值.【考点】S9:相似三角形的判定与性质;MC:切线的性质;T7:解直角三角形.【分析】(1)根据已知条件得到∠ACB=∠ABP=90°,根据余角的性质即可得到结论;(2)根据相似三角形的判定和性质即可得到结论;(3)根据三角函数的定义即可得到结论.【解答】解:(1)∵AB是⊙O的直径,PB与⊙O相切于点B,∴∠ACB=∠ABP=90°,∴∠A+∠ABC=∠ABC+∠CBP=90°,∴∠BAC=∠CBP;(2)∵∠PCB=∠ABP=90°,∠P=∠P,∴△ABP∽△BCP,∴,∴PB2=PC•PA;(3)∵PB2=PC•PA,AC=6,CP=3,∴PB2=9×3=27,∴PB=3,∴sin∠PAB===.23.正方形ABCD的边长为6cm,点E、M分别是线段BD、AD上的动点,连接AE并延长,交边BC于F,过M作MN⊥AF,垂足为H,交边AB于点N.(1)如图1,若点M与点D重合,求证:AF=MN;(2)如图2,若点M从点D出发,以1cm/s的速度沿DA向点A运动,同时点E从点B出发,以cm/s的速度沿BD向点D运动,运动时间为t s.①设BF=y cm,求y关于t的函数表达式;②当BN=2AN时,连接FN,求FN的长.【考点】LO:四边形综合题.【分析】(1)根据四边形的性质得到AD=AB,∠BAD=90°,由垂直的定义得到∠AHM=90°,由余角的性质得到∠BAF=∠AMH,根据全等三角形的性质即可得到结论;(2)①根据勾股定理得到BD=6,由题意得,DM=t,BE=t,求得AM=6﹣t,DE=6﹣t,根据相似三角形的判定和性质即可得到结论;②根据已知条件得到AN=2,BN=4,根据相似三角形的性质得到BF=,由①求得BF=,得方程=,于是得到结论.【解答】解:(1)∵四边形ABCD 是正方形,∴AD=AB,∠BAD=90°,∵MN⊥AF,∴∠AHM=90°,∴∠BAF+∠MAH=∠MAH+∠AMH=90°,∴∠BAF=∠AMH,在△AMN与△ABF中,,∴△AMN≌△ABF,∴AF=MN;(2)①∵AB=AD=6,∴BD=6,由题意得,DM=t,BE=t,∴AM=6﹣t,DE=6﹣t,∵AD∥BC,∴△ADE∽△FBE,∴,即,∴y=;②∵BN=2AN,∴AN=2,BN=4,由(1)证得∠BAF=∠AMN,∵∠ABF=∠MAN=90°,∴△ABF∽△AMN,∴=,即=,∴BF=,由①求得BF=,∴=,∴t=2,∴BF=3,∴FN==5.24.如图,在平面直角坐标系中,抛物线y=ax2+bx+1交y轴于点A,交x轴正半轴于点B(4,0),与过A点的直线相交于另一点D(3,),过点D作DC⊥x 轴,垂足为C.(1)求抛物线的表达式;(2)点P在线段OC上(不与点O、C重合),过P作PN⊥x轴,交直线AD于M,交抛物线于点N,连接CM,求△PCM面积的最大值;(3)若P是x轴正半轴上的一动点,设OP的长为t,是否存在t,使以点M、C、D、N为顶点的四边形是平行四边形?若存在,求出t的值;若不存在,请说明理由.【考点】HF:二次函数综合题.【分析】(1)把B(4,0),点D(3,)代入y=ax2+bx+1即可得出抛物线的解析式;(2)先用含t的代数式表示P、M坐标,再根据三角形的面积公式求出△PCM 的面积与t的函数关系式,然后运用配方法可求出△PCM面积的最大值;(3)若四边形BCMN为平行四边形,则有MN=DC,故可得出关于t的二元一次方程,解方程即可得到结论.【解答】解:(1)把点B(4,0),点D(3,),代入y=ax2+bx+1中得,,解得:,∴抛物线的表达式为y=﹣x2+x+1;(2)设直线AD的解析式为y=kx+b,∵A(0,1),D(3,),∴,∴,∴直线AD的解析式为y=x+1,设P(t,0),∴M(t,t+1),∴PM=t+1,∵CD⊥x轴,∴PC=3﹣t,=PC•PM=(3﹣t)(t+1),∴S△PCM=﹣t2+t+=﹣(t﹣)2+,∴S△PCM∴△PCM面积的最大值是;(3)∵OP=t,∴点M,N的横坐标为t,设M(t,t+1),N(t,﹣t2+t+1),∴MN=﹣t2+t+1﹣t﹣1=﹣t2+t,CD=,如果以点M、C、D、N为顶点的四边形是平行四边形,∴MN=CD,即﹣t2+t=,∵△=﹣39,∴方程﹣t2+t=无实数根,∴不存在t,使以点M、C、D、N为顶点的四边形是平行四边形.。

2017年山东省济宁市中考数学试卷及答案与解析

2017年山东省济宁市中考数学试卷及答案与解析

2017年省市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)的倒数是()A.6 B.﹣6 C.D.﹣2.(3分)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.53.(3分)下列图形中是中心对称图形的是()A.B.C.D.4.(3分)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣45.(3分)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C. D.6.(3分)若++1在实数围有意义,则x满足的条件是()A.x≥B.x≤C.x=D.x≠7.(3分)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a68.(3分)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.10.(3分)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)分解因式:ma2+2mab+mb2= .12.(3分)请写出一个过点(1,1),且与x轴无交点的函数解析式:.13.(3分)《子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.14.(3分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P(a,b),则a与b的数量关系是.15.(3分)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.三、解答题(本大题共7小题,共55分)16.(5分)解方程:=1﹣.17.(7分)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.18.(7分)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?19.(8分)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.20.(8分)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.21.(9分)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值围,并写出当m取围最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.22.(11分)定义:点P是△ABC部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.2017年省市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•)的倒数是()A.6 B.﹣6 C.D.﹣【解答】解:的倒数是6.故选:A.2.(3分)(2017•)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.5【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.3.(3分)(2017•)下列图形中是中心对称图形的是()A.B.C.D.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.4.(3分)(2017•)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4B.1.6×10﹣5C.1.6×10﹣6D.16×10﹣4【解答】解:0.000016=1.6×10﹣5;故选;B.5.(3分)(2017•)下列几何体中,主视图、俯视图、左视图都相同的是()A.B.C. D.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.(2017•)若++1在实数围有意义,则x满足的条件是()(3分)6.A.x≥B.x≤C.x=D.x≠【解答】解:由题意可知:解得:x=故选(C)7.(3分)(2017•)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a6【解答】解:(a2)3+a2•a3﹣a2÷a﹣3=a6+a5﹣a5=a6.故选:D.8.(3分)(2017•)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率==.故选B.9.(3分)(2017•)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC 绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,==.∴S扇形ABD又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.10.(3分)(2017•)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P 从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x 函数关系的是()A.①B.③C.②或④D.①或③【解答】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③,故选D.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(2017•)分解因式:ma2+2mab+mb2= m(a+b)2.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)212.(3分)(2017•)请写出一个过点(1,1),且与x轴无交点的函数解析式:y=(答案不唯一).【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=1×1=1,所以反比例函数y=(答案不唯一)符合题意.故答案可以是:y=(答案不唯一).13.(3分)(2017•)《子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【解答】解:由题意可得,,故答案为:.14.(3分)(2017•)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P(a,b),则a与b的数量关系是a+b=0 .【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限,∴b=﹣a,即a+b=0,故答案为:a+b=0.15.(3分)(2017•)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.三、解答题(本大题共7小题,共55分)16.(5分)(2017•)解方程:=1﹣.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.17.(7分)(2017•)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40 ;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【解答】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.18.(7分)(2017•)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.19.(8分)(2017•)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.【解答】(1)证明:连接OD,∵D为的中点,∴=,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠ADE=90°,∴∠AED=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.20.(8分)(2017•)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM的数量关系,写出折叠方案,并结合方案证明你的结论.【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.21.(9分)(2017•)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值围,并写出当m取围最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.【解答】解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==5,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).的解析式为y=2(x﹣2)2+1.∴当点P与点M距离最大时函数C222.(11分)(2017•)定义:点P是△ABC部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC的自相似点.例如:如图1,点P在△ABC的部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠AON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=,∴OD=OPcos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作ME⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△ABC的部,∴∠PBC≠∠A,∠PCB≠∠ABC,∴存在点M和点N,使△MON无自相似点.。

2017年山东省日照市中考数学试卷(含答案)

2017年山东省日照市中考数学试卷(含答案)

2017年山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C. D.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105 B.4.64×106 C.4.64×107 D.4.64×1084.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30°C.40°D.60°6.式子有意义,则实数a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>27.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等8.反比例函数y=的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B.C.D.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A. B. C.5 D.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.13912.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m=.14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD 是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2;(2)先化简,再求值:﹣÷,其中a=.18.如图,已知BA=AE=DC,AD=EC,CE⊥AE,垂足为E.(1)求证:△DCA≌△EAC;(2)只需添加一个条件,即,可使四边形ABCD为矩形.请加以证明.19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?21.阅读材料:在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P0(0,0)到直线4x+3y﹣3=0的距离.解:由直线4x+3y﹣3=0知,A=4,B=3,C=﹣3,∴点P0(0,0)到直线4x+3y﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P1(3,4)到直线y=﹣x+的距离为;问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=﹣x+b相切,求实数b的值;问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.22.如图所示,在平面直角坐标系中,⊙C经过坐标原点O,且与x轴,y轴分别相交于M(4,0),N(0,3)两点.已知抛物线开口向上,与⊙C交于N,H,P三点,P为抛物线的顶点,抛物线的对称轴经过点C 且垂直x轴于点D.(1)求线段CD的长及顶点P的坐标;(2)求抛物线的函数表达式;(3)设抛物线交x轴于A,B两点,在抛物线上是否存在点Q,使得S四边形OPMN=8S△QAB,且△QAB∽△OBN 成立?若存在,请求出Q点的坐标;若不存在,请说明理由.2017年山东省日照市中考数学试卷一、选择题:(本大题共12小题,其中1~8题每小题3分,9~12题每小题3分,满分40分)1.﹣3的绝对值是()A.﹣3 B.3 C.±3 D.【答案】B.试题分析:当a是负有理数时,a的绝对值是它的相反数﹣a,所以﹣3的绝对值是3.故选B.考点:绝对值.2.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.【答案】A.考点:中心对称图形;轴对称图形.3.铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.即4640万=4.64×107.故选C.考点:科学记数法—表示较大的数.4.在Rt△ABC中,∠C=90°,AB=13,AC=5,则sinA的值为()A.B.C.D.【答案】B.试题分析:在Rt△ABC中,根据勾股定理求得BC=12,所以sinA=1213BCAB,故选B.考点:锐角三角函数的定义.5.如图,AB∥CD,直线l交AB于点E,交CD于点F,若∠1=60°,则∠2等于()A.120°B.30° C.40° D.60°【答案】D.试题分析:由∠AEF=∠1=60°,AB∥CD,可得∠2=∠AEF=60°,故选D.考点:平行线的性质.6.式子12aa+-a的取值范围是()A.a≥﹣1 B.a≠2 C.a≥﹣1且a≠2 D.a>2 【答案】C.试题分析:式子12aa+-a+1≥0,且a﹣2≠0,解得:a≥﹣1且a≠2.故选C.考点:二次根式有意义的条件.7.下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等【答案】A.试题分析:如图,∠AOB=3606=60°,OA=OB,可得△AOB是等边三角形,所以AB=OA,即可得圆内接正六边形的边长与该圆的半径相等,A正确;在平面直角坐标系中,不同的坐标可以表示不同一点,B错误;一元二次方程ax2+bx+c=0(a≠0)不一定有实数根,C错误;根据旋转变换的性质可知,将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE全等,D错误;故选A.考点:正多边形和圆;根的判别式;点的坐标;旋转的性质.8.反比例函数y=kbx的图象如图所示,则一次函数y=kx+b(k≠0)的图象的图象大致是()A.B. C.D.【答案】D.试题分析:∵y=kbx的图象经过第一、三象限,∴kb>0,∴k,b同号,选项A图象过二、四象限,则k<0,图象经过y轴正半轴,则b>0,此时,k,b异号,故此选项不合题意;选项B图象过二、四象限,则k<0,图象经过原点,则b=0,此时,k,b不同号,故此选项不合题意;选项C图象过一、三象限,则k>0,图象经过y轴负半轴,则b<0,此时,k,b异号,故此选项不合题意;选项D图象过一、三象限,则k>0,图象经过y轴正半轴,则b>0,此时,k,b同号,故此选项符合题意;故选D.考点:反比例函数的图象;一次函数的图象.9.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A. B. C.5 D.【答案】A.试题分析:过点D作OD⊥AC于点D,∵AB是⊙O的直径,PA切⊙O于点A,∴AB⊥AP,∴∠BAP=90°,∵∠P=30°,∴∠AOP=60°,∴∠AOC=120°,∵OA=OC,∴∠OAD=30°,∵AB=10,∴OA=5,∴OD= 12AO=2.5,∴AD=2253 2AO OD-= = ,∴AC=2AD=53,故选A.考点:切线的性质.10.如图,∠BAC=60°,点O从A点出发,以2m/s的速度沿∠BAC的角平分线向右运动,在运动过程中,以O为圆心的圆始终保持与∠BAC的两边相切,设⊙O的面积为S(cm2),则⊙O的面积S与圆心O运动的时间t(s)的函数图象大致为()A.B.C.D.【答案】D.考点:动点问题的函数图象.11.观察下面“品”字形中各数之间的规律,根据观察到的规律得出a的值为()A.23 B.75 C.77 D.139【答案】B.试题分析:观察可得,上边的数为连续的奇数1,3,5,7,9,11,左边的数为21,22,23,…,所以b=26=64,又因上边的数与左边的数的和正好等于右边的数,所以a=11+64=75,故选B.考点:规律型:数字的变化类.12.已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A.①②③B.③④⑤C.①②④D.①④⑤【答案】C.考点:抛物线与x轴的交点;二次函数图象与系数的关系.学科网二、填空题(本大题共4小题,每小题4分,满分16分)13.分解因式:2m3﹣8m= .【答案】2m(m+2)(m﹣2).试题分析:提公因式2m,再运用平方差公式对括号里的因式分解即可,即2m3﹣8m=2m(m2﹣4)=2m(m+2)(m﹣2).考点:提公因式法与公式法的综合运用.14.为了解某初级中学附近路口的汽车流量,交通管理部门调查了某周一至周五下午放学时间段通过该路口的汽车数量(单位:辆),结果如下:183 191 169 190 177则在该时间段中,通过这个路口的汽车数量的平均数是.【答案】182.试题分析::根据题意,得在该时间段中,通过这个路口的汽车数量的平均数是(183+191+169+190+177)÷5=182.考点:算术平均数.15.如图,四边形ABCD中,AB=CD,AD∥BC,以点B为圆心,BA为半径的圆弧与BC交于点E,四边形AECD 是平行四边形,AB=6,则扇形(图中阴影部分)的面积是.【答案】6π.考点:扇形面积的计算;平行四边形的性质.16.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为,∠AOB=∠OBA=45°,则k的值为.【答案】5试题分析:过A 作AM ⊥y 轴于M ,过B 作BD 选择x 轴于D ,直线BD 与AM 交于点N ,如图所示:则OD=MN ,DN=OM ,∠AMO=∠BNA=90°, ∴∠AOM+∠OAM=90°, ∵∠AOB=∠OBA=45°, ∴OA=BA ,∠OAB=90°, ∴∠OAM+∠BAN=90°, ∴∠AOM=∠BAN ,在△AOM 和△BAN 中,AOM BAN AMO BNA OA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOM ≌△BAN (AAS ),∴AM=BN=2,OM=AN=2k ,∴OD=2k +2,OD=BD=2k ﹣2,∴B (2k +2,2k﹣2),∴双曲线y=(x >0)同时经过点A 和B ,∴(2k +2)•(2k ﹣2)=k , 整理得:k 2﹣2k ﹣4=0, 解得:k=1±5(负值舍去), ∴k=1+5.考点:反比例函数图象上点的坐标特征.三、解答题17.(1)计算:﹣(2﹣)﹣(π﹣3.14)0+(1﹣cos30°)×()﹣2; (2)先化简,再求值:﹣÷,其中a=.【答案】(1)3+1;(2)原式= 221a --,当2=2-. 试题分析:(1)根据去括号得法则、零指数幂、特殊角的三角函数值、负整数指数幂可以解答本题;(2)根据分式的除法和减法可以化简题目中的式子,然后将a 的值代入即可解答本题. 试题解析:(1)原式32﹣1+(13)×4 333; (2)原式=21111(1)1a a a a a ++-÷+-- =21111(1)1a a a a a +--⋅+-+ =1111a a -+- =1(1)(1)(1)a a a a --++-=221a --, 当2时,原式=22221(2)1=-=---. 考点:分式的化简求值;实数的运算.18.如图,已知BA=AE=DC ,AD=EC ,CE ⊥AE ,垂足为E . (1)求证:△DCA ≌△EAC ;(2)只需添加一个条件,即 ,可使四边形ABCD 为矩形.请加以证明.【答案】(1)详见解析;(2)AD=BC(答案不唯一).试题分析:(1)由SSS证明△DCA≌△EAC即可;(2)先证明四边形ABCD是平行四边形,再由全等三角形的性质得出∠D=90°,即可得出结论.(2)添加AD=BC,可使四边形ABCD为矩形;理由如下:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形,∵CE⊥AE,∴∠E=90°,由(1)得:△DCA≌△EAC,∴∠D=∠E=90°,∴四边形ABCD为矩形;考点:矩形的判定;全等三角形的判定与性质.19.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.【答案】(1)15、25、35、45;(2)15.试题分析:(1)根据“两位递增数”定义可得;(2)画树状图列出所有“两位递增数”,找到个位数字与十位数字之积能被10整除的结果数,根据概率公式求解可得.试题解析:(1)根据题意所有个位数字是5的“两位递增数”是15、25、35、45这4个;(2)画树状图为:共有15种等可能的结果数,其中个位数字与十位数字之积能被10整除的结果数为3,所以个位数字与十位数字之积能被10整除的概率=31 155.考点:列表法与树状图法.20.某市为创建全国文明城市,开展“美化绿化城市”活动,计划经过若干年使城区绿化总面积新增360万平方米.自2013年初开始实施后,实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务.(1)问实际每年绿化面积多少万平方米?(2)为加大创城力度,市政府决定从2016年起加快绿化速度,要求不超过2年完成,那么实际平均每年绿化面积至少还要增加多少万平方米?【答案】(1) 实际每年绿化面积为54万平方米;(2) 则至少每年平均增加72万平方米.试题分析:(1)设原计划每年绿化面积为x万平方米,则实际每年绿化面积为1.6x万平方米.根据“实际每年绿化面积是原计划的1.6倍,这样可提前4年完成任务”列出方程;(2)设平均每年绿化面积增加a 万平方米.则由“完成新增绿化面积不超过2年”列出不等式.(2)设平均每年绿化面积增加a万平方米,根据题意得54×2+2(54+a)≥360解得:a ≥72.答:则至少每年平均增加72万平方米.考点:分式方程的应用;一元一次不等式的应用. 21.阅读材料:在平面直角坐标系xOy 中,点P (x 0,y 0)到直线Ax+By+C=0的距离公式为:d=.例如:求点P 0(0,0)到直线4x+3y ﹣3=0的距离. 解:由直线4x+3y ﹣3=0知,A=4,B=3,C=﹣3, ∴点P 0(0,0)到直线4x+3y ﹣3=0的距离为d==.根据以上材料,解决下列问题:问题1:点P 1(3,4)到直线y=﹣x+的距离为 ;问题2:已知:⊙C 是以点C (2,1)为圆心,1为半径的圆,⊙C 与直线y=﹣x+b 相切,求实数b 的值; 问题3:如图,设点P 为问题2中⊙C 上的任意一点,点A ,B 为直线3x+4y+5=0上的两点,且AB=2,请求出S △ABP 的最大值和最小值.【答案】(1)4;(2)b=5或15;(3)最大值为4,最小值为2.试题分析:(1)根据点到直线的距离公式就是即可;(2)根据点到直线的距离公式,列出方程即可解决问题;(3)求出圆心C 到直线3x+4y+5=0的距离,求出⊙C 上点P 到直线3x+4y+5=0的距离的最大值以及最小值即可解决问题. 试题解析:(1)点P 1(3,4)到直线3x+4y ﹣5=0的距离223344534⨯+⨯-+;(2)∵⊙C 与直线y=﹣34x+b 相切,⊙C 的半径为1, ∴C (2,1)到直线3x+4y ﹣b=0的距离d=1, ∴226434b +-+=1,解得b=5或15.(3)点C (2,1)到直线3x+4y+5=0的距离d=2264534+++=3,∴⊙C 上点P 到直线3x+4y+5=0的距离的最大值为4,最小值为2, ∴S △ABP 的最大值=12×2×4=4,S △ABP 的最小值=12×2×2=2. 考点:一次函数综合题.22.如图所示,在平面直角坐标系中,⊙C 经过坐标原点O ,且与x 轴,y 轴分别相交于M (4,0),N (0,3)两点.已知抛物线开口向上,与⊙C 交于N ,H ,P 三点,P 为抛物线的顶点,抛物线的对称轴经过点C 且垂直x 轴于点D .(1)求线段CD 的长及顶点P 的坐标; (2)求抛物线的函数表达式;(3)设抛物线交x 轴于A ,B 两点,在抛物线上是否存在点Q ,使得S 四边形OPMN =8S △QAB ,且△QAB ∽△OBN 成立?若存在,请求出Q 点的坐标;若不存在,请说明理由.【答案】(1) CD=32, P (2,﹣1);(2) y=x 2﹣4x+3;(3) 存在满足条件的点Q ,其坐标为(2,﹣1). 试题分析:(1)连接OC ,由勾股定理可求得MN 的长,则可求得OC 的长,由垂径定理可求得OD 的长,在Rt △OCD 中,可求得CD 的长,则可求得PD 的长,可求得P 点坐标;(2)可设抛物线的解析式为顶点式,再把N 点坐标代入可求得抛物线解析式;(3)由抛物线解析式可求得A 、B 的坐标,由S 四边形OPMN =8S △QAB 可求得点Q 到x 轴的距离,且点Q 只能在x 轴的下方,则可求得Q 点的坐标,再证明△QAB ∽△OBN 即可. 试题解析:(1)如图,连接OC ,∵M (4,0),N (0,3),∴OM=4,ON=3,∴MN=5,∴OC=12MN=52, ∵CD 为抛物线对称轴,∴OD=MD=2,在Rt △OCD 中,由勾股定理可得22225()22OC OD -=-=32, ∴PD=PC ﹣CD=52﹣32=1, ∴P (2,﹣1);(2)∵抛物线的顶点为P (2,﹣1),∴设抛物线的函数表达式为y=a (x ﹣2)2﹣1,∵抛物线过N (0,3),∴3=a (0﹣2)2﹣1,解得a=1,∴抛物线的函数表达式为y=(x ﹣2)2﹣1,即y=x 2﹣4x+3;(3)在y=x 2﹣4x+3中,令y=0可得0=x 2﹣4x+3,解得x=1或x=3,∴A(1,0),B(3,0),∴AB=3﹣1=2,∵ON=3,OM=4,PD=1,∴S四边形OPMN=S△OMP+S△OMN=12OM•PD+12OM•ON=12×4×1+12×4×3=8=8S△QAB,∴S△QAB=1,设Q点纵坐标为y,则12×2×|y|=1,解得y=1或y=﹣1,当y=1时,则△QAB为钝角三角形,而△OBN为直角三角形,不合题意,舍去,当y=﹣1时,可知P点即为所求的Q点,∵D为AB的中点,∴AD=BD=QD,∴△QAB为等腰直角三角形,∵ON=OB=3,∴△OBN为等腰直角三角形,∴△QAB∽△OBN,学-科网综上可知存在满足条件的点Q,其坐标为(2,﹣1).考点:二次函数综合题.。

山东省青岛市2017年中考数学真题试题(含解析)

山东省青岛市2017年中考数学真题试题(含解析)

山东省青岛市2017年中考数学真题试题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分; 第Ⅱ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分. 要求所有题目均在答题卡上作答,在本卷上作答无效.第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分. 1.81-的相反数是( ). A .8 B .8-C .81 D .81-【答案】C 【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:81-的相反数是81. 故选:C考点:相反数定义2.下列四个图形中,是轴对称图形,但不是中心对称图形的是( ).【答案】A考点:轴对称图形和中心对称图形的定义3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是( ).A 、众数是6吨B 、平均数是5吨C 、中位数是5吨D 、方差是34【答案】C考点:1、方差;2、平均数;3、中位数;4、众数 4.计算326)2(6m m -÷的结果为( ). A .m - B .1- C .43 D .43- 【答案】D 【解析】试题分析:根据幂的混合运算,利用积的乘方性质和同底数幂相除计算为:()4386)2(666326-=-÷=-÷m m m m故选:D考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算 5. 如图,若将△ABC 绕点O 逆时针旋转90°则顶点B 的对应点B 1的坐标为( )A.)2,4(-B.)4,2(-C. )2,4(-D.)4,2(- 【答案】B 【解析】试题分析:将△ABC 绕点O 逆时针旋转90°后,图形如下图所以B 1的坐标为)4,2(- 故选:B考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算6. 如图,AB 是⊙O 的直径,C ,D ,E 在⊙O 上,若∠AED =20°,则∠BCD 的度数为( ) A 、100° B 、110° C 、115° D 、120°【答案】B【解析】试题分析:如下图,连接AD ,AD ,根据同弧所对的圆周角相等,可知∠ABD=∠AED =20°,然后根据直径所对的圆周角为直角得到∠ADB =90°,从而由三角形的内角和求得∠BAD =70°,因此可求得∠BCD=110°. 故选:B考点:圆的性质与计算7. 如图,平行四边形ABCD 的对角线AC 与BD 相交于点O ,AE ⊥BC ,垂足为E ,3=AB ,AC =2,BD =4,则AE 的长为( )A .23 B .23C .721 D .7212 【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. 一次函数)0(≠+=k b kx y 的图像经过点A (4,1--),B (2,2)两点,P 为反比例函数xkby =图像上的一个动点,O 为坐标原点,过P 作y 轴的垂线,垂足为C ,则△PCO 的面积为( )A 、2B 、4C 、8D 、不确定 【答案】 【解析】试题分析:如下图,考点: 1、一次函数,2、反比例函数图像与性质第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。

2017年全国中考试卷解析-山东省德州市中考数学试题(解析版)

2017年全国中考试卷解析-山东省德州市中考数学试题(解析版)

2017年山东德州市中考试卷满分:120分版本:第Ⅰ卷(选择题共36分)一、选择题(共12小题,每小题3分,合计36分)1.(2017山东德州,1,3分)-2的倒数是()A.2 1 -B.21C.-2 D.2答案:A,解析:乘积为1的两个数互为倒数,故-2的倒数为1÷(-2)=21-.2.(2017山东德州,2,3分)下列图形中,既是轴对称图形又是中心对称图形的是()答案:D,解析:图形A、B是中心对称图形但不是轴对称图形;图形C是轴对称图形但不是中心对称图形,图形D既是轴对称图形又是中心对称图形,符合题意.3.(2017山东德州,3,3分)2016年,我市“全面改薄”和解决大班额工程成绩突出,两项工程累计开工面积达477万平方米,各项指标均居全省前列.477万用科学记数法表示正确的是()A.4.77×105 B.47.7×105 C.4.77×106 D.0.477×106答案:C,解析:477万=4 770 000=4.77×106.4.(2017山东德州,4,3分)如图,两个等直径圆柱构成如图所示的T型管道,则其俯视图正确的是()答案:B,解析:俯视图是从上往下看得到的图形,图中竖直圆柱的俯视图是圆形,横放的圆柱的俯视图是长方形,又它们等直径,故该T型管道的俯视图是选项B中图形.5.(2017山东德州,5,3分)下列运算正确的是()A.(a2)m=a2m B.(2a)3=2a3C.a3·5-a=15-a D.a3÷5-a=2-a答案:A 解析:(a2)m=a2m,故A正确;(2a)3=23a3=8a3,故B错误;a3·5-a=)15(3-+a=12-a,故C错误;a3÷5-a=)5(3--a=8a,故D错误.6.(2017山东德州,6,3分)某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:尺码39 40 41 42 43平均每天销售数量/件10 12 20 12 12)A.平均数B.方差C.众数D.中位数答案:C,解析:由于41尺码的衬衫销售的数量最多,因此该店主本周进货时,增加一些41码的衬衫,一组数据中出现次数最多的数即为这组数据的众数,所以影响该店主决策的统计量是众数.7.(2017山东德州,7,3分)下列函数中,对于任意实数x1,x2,当x1>x2时,满足y1<y2的是()A.y=-3x+2 B.y=2x+1 C.y=2x2+1 D.y=x1-答案:A,解析:一次函数y=-3x+2中,由于k=-3<0,所以y随着x的增大而减小,即对于任意实数x 1,x 2,当x 1>x 2时,满足y 1<y 2.8.(2017山东德州,8,3分)不等式组⎪⎩⎪⎨⎧->+≥+1321,392x x x 的解集是( )A .x ≥-3B .-3≤x <4C .-3≤x <2D .x >4答案:B ,解析:解不等式2x +9≥3,得2x ≥-6,x ≥-3;解不等式321x+>x -1,得1+2x >3x -3,4>x ,即x <4;所以原不等式组的解是-3≤x <4. 9.(2017山东德州,8,3分)公式L =L 0+KP 表示当重力为P 时的物体作用在弹簧上时弹簧的长度.L 0代表弹簧的初始长度,用厘米(cm)表示,K 表示单位重力物体作用在弹簧上时弹簧拉伸的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是( ) A .L =10+0.5P B .L =10+5P C .L =80+0.5P D .L =80+5P答案:A ,解析:公式L =L 0+KP 中,L 0代表弹簧的初始长度,故四个选项中选项A 与B 的L 0=10cm ,为较短的弹簧;K 表示单位重力物体作用在弹簧上时弹簧拉伸的长度,选项A 中K =0.5cm ,选项B 中K =5cm ,显然选项A 中的弹簧更硬,综上可知,应选A . 10.(2017山东德州,10,3分)某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A .412020240=--x xB .412020240=-+x xC .420240120=--x xD .420240120=+-x x答案:D 解析:根据题意可知,第一次购买的资料的单价为x120元,第二次购买的资料的单价为20240+x 元,因比第一次购买时的单价少4元,故有420240120=+-x x .11.(2017山东德州,11,3分)如图放置的两个正方形,大正方形ABCD 边长为a ,小正方形CEFG 边长为b (a >b ),M 在BC 边上,且BM =b ,连接AM ,MF ,MF 交CG 于点P ,将△ABM 绕点A 旋转至△ADN ,将△MEF 绕点F 旋转至△NGF .给出以下五个结论:①∠MAD =∠AND ;②CP =b -ab 2;③△ABM ≌△NGF ;④S 四边形AMFN =a 2+b 2;⑤A ,M ,P ,D四点共圆.其中正确的个数是( ) A .2 B .3 C .4D .5答案:D ,解析:由△ABM 绕点A 旋转至△ADN ,可得∠AND =∠AMB ,在正方形ABCD 中,AD ∥BC ,∴∠AMB =∠MAD ,∴∠MAD =∠AND ,即①正确;由FG ∥CM ,易得△MCP ∽△FGP ,∴GP CP FG MC =,即cPb CPb b a -=-,解得CP =b -a b 2,故②正确;C AB D NMFGP∵BM =CE =b ,∴BM +CM =CE +CM ,即BC =EM ,∴AB =EM .又∵∠B =∠E ,BM =EF ,∴△ABM ≌△MEF .又△NGF 是由△MEF 旋转所得,∴△ABM ≌△NGF ,③正确;由旋转条件及已证△ABM ≌△MEF ,得AN =AM =MF =NF ,∠MAN =∠MAD +∠DAN =∠AND +∠DAN =90°,∴四边形AMFN 是正方形,∴S 四边形AMFN =AM 2=AB 2+BM 2=a 2+b 2,④正确; 由∠AMP =∠ADP =90°,可得Rt △AMP 与Rt △AMP 的外接圆的圆心均为斜边AP 的中点,半径均为斜边AP 长的一半,即A ,M ,P ,D 四点共圆,故⑤正确. 12.(2017山东德州,12,3分)观察下列图形,它是把一个三角形分别连接这个三角形三边的中点,构成4个小三角形,挖去中间的一个小三角形(如图1);对剩下的三个小三角形再分别重复以上做法,……将这种做法继续下去(如图2、图3……),则图6中挖去三角形的个数为( ) A .121 B .362 C .364 D .729答案:C ,解析:图1挖去三角形的个数为1;图2挖去三角形的个数为1+3;图3挖去三角形的个数为32+3+1;图4挖去三角形的个数为33+32+3+1;图5挖去三角形的个数为34+33+32+3+1;图6挖去三角形的个数为35+34+33+32+3+1=364. 二、填空题(共5小题,每小题4分,合计20分)13.(2017山东德州,13,4分)计算:8-2= .答案:2,解析:8-2=22-2=2. 14.(2017山东德州,14,4分)如图是利用直尺和三角板过已知直线l 外一点P 作直线l 的平行线的方法,其理由是 .答案:同位角相等,两直线平行,解析:由作平行线的过程可知,三角板移动前后的60°角为同位角,根据“同位角相等,两直线平行”的判定条件,可得过点P 的直线与直线l 平行. 15.(2017山东德州,15,4分)方程3x (x -1)=2(x -1)的根为 .答案:x =1或x =32解析:当x -1=0时,即x =1,方程两边均为0,即x =1是原方程的根;当x -1≠0时,方程两边同除以x -1,得3x =2,解得x =32.综上可知,原方程的根为x =1或x=32. 16.(2017山东德州,16,4分)淘淘和丽丽是非常要好的九年级学生,在5月份进行的物理、化学、生物实验技能考试中,考试科目要求三选一,并且采取抽签方式取得,那么他们两人都抽到物理实验的概率是 .答案:91,解析:画树状图如下:图1 图2 图3或列表如下:可知共有9种等可能的结果,其中两人都抽到物理实验的情况只有1种,所以他们两人都抽到物理实验的概率是91.17.(2017山东德州,17,4分)某景区修建一栋复古建筑,其窗户设计如图所示.圆O的圆心与矩形ABCD对角线的交点重合,且圆与矩形上下两边相切(E为上切点),与左右两边相交(F,G 为其中两个交点),图中阴影部分为不透光区域,其余部分为透光区域.已知圆的半径为1m,根据设计要求,若∠EOF=45°,则此窗户的透光率(透光区域与矩形窗面的面积的比值)为.答案:82)2(+π,解析:如图,作OH⊥AD于点H.由切线的性质,得OE⊥AB,又∠A=90°,可知四边形AHOE是矩形.∵∠EOF=45°,∴∠HOF=45°.OH=OF·sin45°=1×22=22.所以此窗户透光区域的面积为(21×22×22+3601452⋅⋅π)×4=22+π,矩形的面积为(22×2)×(1+1)=22.此窗户的透光率为22+π:22=82)2(+π.三、解答题(本大题共7个小题,满分64分)18.(2017山东德州)(本小题满分6分)先化简,再求值:44422-+-aaa÷aaa222+--3,其中a=27.思路分析:把分式的分子与分母进行因式分解,同时把除法运算转化为乘法运算,然后再进行约分化简,最后代数求值.解:44422-+-aaa÷aaa222+--3=)2)(2()2(2+--aaa·2)2(-+aaa-3=a-3.H物化生物(物,物) (物,化) (物,生)化(化,物) (化,化) (化,生)生(生,物) (生,化) (生,生)淘淘丽丽代入a =27求值得,原式=21.19.(2017山东德州)(本小题满分8分)随着移动终端设备的升级换代,手机已经成为我们生活中不可或缺的一部分.为了解中学生在假期使用手机的情况(选项:A .和同学亲友聊天;B .学习;C .购物;D .游戏;E .其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:(1)这次被调查的学生有多少人?(2)求表中m ,n ,p 的值,并补全条形统计图;(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议. 思路分析:(1)利用选项C(或E)中已知的频数及其所占的频率,其商即为这次被调查的学生人数;(2)m 的值为10除以调查的学生人数所得的商,或者用1减去其他选项的频率即为m 的值;n 的值为调查的学生人数与0.2的积;同理,p 的值为调查的学生人数与0.4的积;根据选项B 与D 的频数补全条形统计图即可;(3)由调查数据可估计全校学生中利用手机购物或玩游戏的频率和为0.1+0.4=0.5,它与800之积即为所求结果.可从使用手机多学习少玩游戏等具有积极意义的方面提出合理建议.解:(1)从C 可以看出:5÷0.1=50(人). 答:这次被调查的学生有50人.(2)m =5010=0.2,n =0.2×50=10,p =0.4×50=20. 补全图形如图所示.(3)800×(0.1+0.4)=800×0.5=400(人).合理即可.比如:中学生使用手机要多用于学习;中学生要少用手机玩游戏等.20.(2017山东德州)(本小题满分8分)如图,已知Rt △ABC ,∠C =90°,D 为BC 的中点.以AC为直径的⊙O 交AB 于点E . (1)求证:DE 是⊙O 的切线;(2)若AE ∶EB =1∶2,BC =6,求AE 的长.思路分析:(1)连接OE ,只需证OE ⊥DE ,即得DE 是⊙O 的切线.再连接CE ,利用圆的性质与直角三角形的性质,易证∠OED =∠ACD =90°,从而获得结论;(2)根据AE : EB =1:2,易得BE 与BA 之比,通过证明Rt △BEC ∽Rt △BCA ,获得BC ,BE ,BA 间的数量关系,据此构建方程可求解AE 的长.证明:(1)如图所示,连接OE ,CE .∵AC 是⊙O 的直径,∴∠AEC =∠BEC =90°.∵D 是BC 的中点,∴ED =21BC =DC . ∴∠1=∠2.∵OE =OC ,∴∠3=∠4.∴∠1+∠3=∠2+∠4,即∠OED =∠ACD . ∵∠ACD =90°,∴∠OED =90°,即OE ⊥DE . 又∵E 是⊙O 上一点,∴DE 是⊙O 的切线.(2)由(1)知∠BEC =90°.在Rt △BEC 与Rt △BCA 中,∠B 为公共角, ∴△BEC ∽△BCA .∴BC BE =BABC. 即BC 2=BE ·BA .∵AE : EB =1:2,设AE =x ,则BE =2x ,BA =3x . 又∵BC =6,∴62=2x ·3x . ∴x =6,即AE =6.21.(2017山东德州)(本小题满分10分)如图所示,某公路检测中心在一事故多发地段安装了一个测速仪器,检测点设在距离公路10m 的A 处,测得一辆汽车从B 处行驶到C 处所用时间为0.9秒.已知∠B =30°,∠C =45°. (1)求B 、C 之间的距离;(保留根号)(2)如果此地限速为80km/h ,那么这辆汽车是否超速?请说明理由.(参考数据:3≈1.7,2≈1.4)思路分析:(1)作AD ⊥BC 于点D ,通过解Rt △ACD 与Rt △ABD 分别得到线段BD 与DC 的长度,A其和即为B 、C 之间的距离;(2)利用(1)中所求B 、C 之间的距离除以汽车的行驶时间,得汽车的速度,与限速相比,即可判断是否超速. 解:(1)如图,过点A 作AD ⊥BC 于点D ,则AD =10cm .∵在Rt △ACD 中,∠C =90°, ∴Rt △ACD 是等腰直角三角形. ∴CD =AD =10cm .在Rt △ABD 中,tan B =BD AD, ∵∠B =30°,∴33=BD10.∴BD =103m .∴BC =BD +DC =(103+10)m .答:B 、C 之间的距离是(103+10)m . (2)这辆汽车超速.理由如下:由(1)知BC =(103+10)m ,又3≈1.7, ∴BC =27m . ∴汽车速度v =9.027=30(m/s). 又30m/s =108km/h ,此地限速为80km/h , ∵108>80,∴这辆汽车超速. 答:这辆汽车超速.22.(2017山东德州)(本小题满分10分)随着新农村的建设和旧城的改造,我们的家园越来越美丽.小明家附近广场中央新修了个圆形喷水池,在水池中心竖直安装了一根高为2米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为1米处达到最高,水柱落地处离池中心3米. (1)请你建立适当的平面直角坐标系,并求出水柱抛物线的函数解析式; (2)求出水柱的最大高度是多少?思路分析:(1)由于题目所给数据均与水池中心相关,故可选取水池中心为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系,再利用顶点式求解函数关系式;(2)抛物线的顶点纵坐标即为水柱的最大高度. 解:(1)如图,以水管与地面交点为原点,原点与水柱落地点所在直线为x 轴,水管所在直线为y 轴,建立平面直角坐标系.ACD由题意可设抛物线的函数解析式为y =a (x -1)2+h (0≤x ≤3). 抛物线过点(0,2)和(3,0),代入抛物线解析式可得⎩⎨⎧=+=+.2,04h a h a 解得⎪⎪⎩⎪⎪⎨⎧=-=.38,32h a 所以,抛物线解析式为y =38)1(322+--x (0≤x ≤3). 化为一般式为y =32-x 2+34x +2(0≤x ≤3). (2)由(1)抛物线解析式为y =38)1(322+--x (0≤x ≤3).当x =1时,y =38.所以抛物线水柱的最大高度为38m .23.(2017山东德州)(本小题满分10分)如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ .过点E 作EF ∥AB 交PQ 于F ,连接BF . (1)求证:四边形BFEP 为菱形;(2)当点E 在AD 边上移动时,折痕的端点P 、Q 也随之移动. ①当点Q 与点C 重合时(如图2),求菱形BFEP 的边长;②若限定P 、Q 分别在边BA 、BC 上移动,求出点E 在边AD 上移动的最大距离.思路分析:(1)由折叠知PB =PE ,BF =EF ,结合平行线的性质,易得∠EPF =∠BPF =∠EFP ,故有EP =EF ,从而可得四边相等,则四边形BFEP 为菱形;(2)①在Rt △CDE 中,已知CD 长,CE =CB ,利用勾股定理计算DE 的长,进而可得AE 的长;又知AB 的长,且BP =PE ,故Rt △APE 中,利用勾股定理构建方程求解PE 的长.②点Q 与点C 重合时,点E 离A 点最近,①中已求此时AE 的长.当点P 与点A 重合时,则点E 离A 点最远,此时四边形ABQE 为正方形,AE =AB .两者之差就是点E 在边AD 上移动的最大距离.解:(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称.∴PB =PE ,BF =EF ,∠BPF =∠EPF . 又∵EF ∥AB ,∴∠BPF =∠EFP .A BDC PF(Q )E图2A B C D PFQ E 图1∴∠EPF =∠EFP .∴EP =EF . ∴BP =BF =FE =EP . ∴四边形BFEP 为菱形.(2)①如图2,∵四边形ABCD 为矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90°. ∵点B 与点E 关于PQ 对称, ∴CE =BC =5cm .在Rt △CDE 中,DE 2=CE 2-CD 2,即DE 2=52-32,∴DE =4cm . ∴AE =AD -DE =5cm -4cm =1cm .∴在Rt △APE 中,AE =1,AP =3-PB =3-PE , ∴EP 2=12+(3-EP )2,解得EP =35cm . ∴菱形BFEP 边长为35cm . ②当点Q 与点C 重合时,如图2,点E 离A 点最近,由①知,此时AE =1cm . 当点P 与点A 重合时,如图3,点E 离A 点最远,此时四边形ABQE 为正方形, AE =AB =3cm ,∴点E 在边AD 上移动的最大距离为2cm .24.(2017山东德州)(本小题满分12分)有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y =k 1x 与y =xk(k ≠0)的图象性质. 小明根据学习函数的经验,对函数y =k 1x 与y =xk,当k >0时的图象性质进行了探究.下面是小明的探究过程: (1)如图所示,设函数y =k 1x 与y =xk图象的交点为A ,B .已知A 点的坐标为(-k ,-1),则B 点的坐标为 .(2)若点P 为第一象限内双曲线上不同于点B 的任意一点. ①设直线PA 交x 轴于点M ,直线PB 交x 轴于点N . 求证:PM =PN . 证明过程如下:设P (m ,mk),直线PA 的解析式为y =ax +b (a ≠0). A B DC PF(Q )E图2A BC D P FQ E 图1 图3EDQ CA (P )则⎪⎩⎪⎨⎧=+-=+-.,1m k b ma b ka解得⎩⎨⎧==.____________,b a∴直线PA 的解析式为 .请你把上面的解答过程补充完整,并完成剩余的证明.②当P 点坐标为(1,k )(k ≠0)时,判断△PAB 的形状,并用k 表示出△PAB 的面积.思路分析:(1)根据反比例函数的对称性可知点A 与点B 关于原点O 对称,据此可求B 点的坐标;(2)①利用加减消元法易求a ,b 的值(用含m ,k 的式子表示);利用直线PA 的解析式,确定点M 的坐标,过点P 作PH ⊥x 轴于H ,利用点的坐标表示MN 与PH 的长,再利用勾股定理求得PM 的长,同理求得PN 长,可得结论PM =PN .②当P 点坐标为(1,k )(k ≠0)时,有MH =HN =PH ,从而可求∠APB =90°,故△PAB 为直角三角形.分k >1、0<k <1两种情况,利用相关三角形的面积和差计算△PAB 的面积.解:(1)B 点的坐标为(k ,1).(2)①证明过程如下:P (m ,m k),直线PA 的解析式为y =ax +b (a ≠0), 则⎪⎩⎪⎨⎧=+-=+-.,1m k b ma b ka 解得⎪⎪⎩⎪⎪⎨⎧-==.1,1m k b ma 所以直线PA 的解析式为y =m 1x +mk-1.令y =0,得x =m -k .∴M 点的坐标为(m -k ,0).过点P 作PH ⊥x 轴于H ,∴点H 的坐标为(m ,0). ∴MH =x H -x M =m -(m -k )=k . 同理可得HN =k . ∴PM =PN .备用图2017年度中考数学试卷(精品文档)11 ②由①知,在△PMN 中,PM =PN ,∴△PMN 为等腰三角形,且MH =HN =k .当P 点坐标为(1,k )时,PH =k ,∴MH =HN =PH . ∴∠PMH =∠MPH =45°,∠PNH =∠NPH =45°. ∴∠MPN =90°,即∠APB =90°.∴△PAB 为直角三角形.当k >1时,如图1,S △PAB = S △PMN -S △OBN + S △OAM =21MN ·PH -21ON ·y B +21OM ·|y A | =21×2k ×k -21(k +1)·1+21(k -1)·1=k 2-1. 当0<k <1时,如图2,S △PAB = S △OBN -S △PMN + S △OAM =21ON ·y B -k 2+21OM ·|y A | =21(k +1)·1-k 2+21(1-k )·1=1-k 2.图2图1。

(完整版)2017年山东省济南市中考数学试卷(含答案解析版)

(完整版)2017年山东省济南市中考数学试卷(含答案解析版)

2017年山东省济南市中考数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)在实数0,﹣2,√5,3中,最大的是()A.0 B.﹣2 C.√5D.32.(3分)如图所示的几何体,它的左视图是()A.B. C. D.3.(3分)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×1034.(3分)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°5.(3分)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A .B .C .D .6.(3分)化简a 2+ab a−b ÷ab a−b 的结果是( ) A .a 2 B .a2a−b C .a−b b D .a+b b7.(3分)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .68.(3分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =49.(3分)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23 10.(3分)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A.12cm B.24cm C.6√3cm D.12√3cm11.(3分)将一次函数y=2x的图象向上平移2个单位后,当y>0时,x的取值范围是()A.x>﹣1 B.x>1 C.x>﹣2 D.x>212.(3分)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3 C.35D.413.(3分)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF的长是()A.3√105B.2√2 C.3√54D.3√2214.(3分)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b>0;②2a <b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.415.(3分)如图1,有一正方形广场ABCD,图形中的线段均表示直行道路,BD̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y 与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)分解因式:x2﹣4x+4=.17.(3分)计算:|﹣2﹣4|+(√3)0=.18.(3分)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是.19.(3分)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD的长度为cm.20.(3分)如图,过点O的直线AB与反比例函数y=kx的图象交于A,B两点,A(2,1),直线BC ∥y 轴,与反比例函数y=−3k x (x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 .21.(3分)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ=5或PT +TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 .三、解答题(本大题共8小题,共57分)22.(6分)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3.(2)解不等式组:{3x −5≥2(x −2)①x 2>x −1②. 23.(4分)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .24.(4分)如图,AB 是⊙O 的直径,∠ACD=25°,求∠BAD 的度数.25.(8分)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?26.(8分)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本) 频数(人数)频率5a 0.2 618 0.36 714 b 88 0.16 合计 c 1 (1)统计表中的a= ,b= ,c= ;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.27.(9分)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=kx(x>0)的图象经过的B.(1)求点B的坐标和反比例函数的关系式;(2)如图2,直线MN分别与x轴、y轴的正半轴交于M,N两点,若点O和点B 关于直线MN成轴对称,求线段ON的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.28.(9分)某学习小组的学生在学习中遇到了下面的问题:如图1,在△ABC和△ADE中,∠ACB=∠AED=90°,∠CAB=∠EAD=60°,点E,A,C 在同一条直线上,连接BD,点F是BD的中点,连接EF,CF,试判断△CEF的形状并说明理由.问题探究:(1)小婷同学提出解题思路:先探究△CEF的两条边是否相等,如EF=CF,以下是她的证明过程证明:延长线段EF交CB的延长线于点G.∵F是BD的中点,∴BF=DF.∵∠ACB=∠AED=90°,∴ED∥CG.∴∠BGF=∠DEF.又∵∠BFG=∠DFE,∴△BGF≌△DEF().∴EF=FG.∴CF=EF=12EG.请根据以上证明过程,解答下列两个问题:①在图1中作出证明中所描述的辅助线;②在证明的括号中填写理由(请在SAS,ASA,AAS,SSS中选择).(2)在(1)的探究结论的基础上,请你帮助小婷求出∠CEF的度数,并判断△CEF 的形状.问题拓展:(3)如图2,当△ADE绕点A逆时针旋转某个角度时,连接CE,延长DE交BC的延长线于点P,其他条件不变,判断△CEF的形状并给出证明.29.(9分)如图1,矩形OABC的顶点A,C的坐标分别为(4,0),(0,6),直线AD交B C于点D,tan∠OAD=2,抛物线M1:y=ax2+bx(a≠0)过A,D两点.(1)求点D的坐标和抛物线M1的表达式;(2)点P是抛物线M1对称轴上一动点,当∠CPA=90°时,求所有符合条件的点P的坐标;(3)如图2,点E(0,4),连接AE,将抛物线M1的图象向下平移m(m>0)个单位得到抛物线M2.①设点D平移后的对应点为点D′,当点D′恰好在直线AE上时,求m的值;②当1≤x≤m(m>1)时,若抛物线M2与直线AE有两个交点,求m的取值范围.2017年山东省济南市中考数学试卷参考答案与试题解析一、选择题(本大题共15小题,每小题3分,共45分)1.(3分)(2017•济南)在实数0,﹣2,√5,3中,最大的是()A.0 B.﹣2 C.√5D.3【考点】2A:实数大小比较.【分析】根据正负数的大小比较,估算无理数的大小进行判断即可.【解答】解:2<√5<3,实数0,﹣2,√5,3中,最大的是3.故选D.【点评】本题考查了实数的大小比较,要注意无理数的大小范围.2.(3分)(2017•济南)如图所示的几何体,它的左视图是()A.B. C. D.【考点】U2:简单组合体的三视图.【分析】根据几何体确定出其左视图即可.【解答】解:根据题意得:几何体的左视图为:,故选A【点评】此题考查了简单组合体的三视图,锻炼了学生的思考能力和对几何体三种视图的空间想象能力.3.(3分)(2017•济南)2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×104C.5.55×103D.55.5×103【考点】1I:科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5550=5.55×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•济南)如图,直线a∥b,直线l与a,b分别相交于A,B两点,AC ⊥AB交b于点C,∠1=40°,则∠2的度数是()A.40°B.45°C.50°D.60°【考点】JA:平行线的性质;J3:垂线.【分析】先根据平行线的性质求出∠ABC的度数,再根据垂直的定义和余角的性质求出∠2的度数.【解答】解:∵直线a∥b,∴∠1=∠CBA,∵∠1=40°,∴∠CBA=40°,∵AC⊥AB,∴∠2+∠CBA=90°,∴∠2=50°,故选C.【点评】本题主要考查了平行线的性质,解题的关键是掌握两直线平行,同位角相等.5.(3分)(2017•济南)中国古代建筑中的窗格图案美观大方,寓意吉祥,下列绘出的图案中既是轴对称图形又是中心对称图形是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:B是轴对称图形又是中心对称图形,故选:B.【点评】本题考查了中心对称图形,掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.6.(3分)(2017•济南)化简a2+aba−b÷aba−b的结果是()A.a2B.a2a−bC.a−bbD.a+bb【考点】6A:分式的乘除法.【分析】先将分子因式分解,再将除法转化为乘法后约分即可.【解答】解:原式=a(a+b)a−b•a−bab=a+bb,故选:D.【点评】本题主要考查分式的乘除法,熟练掌握分式乘除法的运算法则是解题的关键.7.(3分)(2017•济南)关于x 的方程x 2+5x +m=0的一个根为﹣2,则另一个根是( )A .﹣6B .﹣3C .3D .6【考点】AB :根与系数的关系.【分析】设方程的另一个根为n ,根据两根之和等于﹣b a,即可得出关于n 的一元一次方程,解之即可得出结论.【解答】解:设方程的另一个根为n ,则有﹣2+n=﹣5,解得:n=﹣3.故选C .【点评】本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a 是解题的关键.8.(3分)(2017•济南)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x 人,物价为y 钱,以下列出的方程组正确的是( )A .{y −8x =3y −7x =4B .{y −8x =37x −y =4C .{8x −y =3y −7x =4D .{8x −y =37x −y =4【考点】99:由实际问题抽象出二元一次方程组.【分析】设合伙人数为x 人,物价为y 钱,根据题意得到相等关系:①8×人数﹣物品价值=3,②物品价值﹣7×人数=4,据此可列方程组.【解答】解:设合伙人数为x 人,物价为y 钱,根据题意,可列方程组:{8x −y =3y −7x =4, 故选:C .【点评】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系.9.(3分)(2017•济南)如图,五一旅游黄金周期间,某景区规定A 和B 为入口,C ,D ,E 为出口,小红随机选一个入口进入景区,游玩后任选一个出口离开,则她选择从A 入口进入、从C ,D 出口离开的概率是( )A .12B .13C .16D .23 【考点】X6:列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果,可求得聪聪从入口A 进入景区并从C ,D 出口离开的情况,再利用概率公式求解即可求得答案.【解答】解:画树形图如图得:由树形图可知所有可能的结果有6种,设小红从入口A 进入景区并从C ,D 出口离开的概率是P ,∵小红从入口A 进入景区并从C ,D 出口离开的有2种情况,∴P=13. 故选:B .【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.10.(3分)(2017•济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6√3cmD .12√3cm【考点】MC :切线的性质.【分析】设圆形螺母的圆心为O ,连接OD ,OE ,OA ,如图所示:根据切线的性质得到AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,得到∠OAE=∠OAD=12∠DAB=60°,根据三角函数的定义求出OD 的长,即为圆的半径,进而确定出圆的直径.【解答】解:设圆形螺母的圆心为O ,与AB 切于E ,连接OD ,OE ,OA ,如图所示: ∵AD ,AB 分别为圆O 的切线,∴AO 为∠DAB 的平分线,OD ⊥AC ,OD ⊥AC ,又∠CAB=60°,∴∠OAE=∠OAD=12∠DAB=60°, 在Rt △AOD 中,∠OAD=60°,AD=6cm ,∴tan ∠OAD=tan60°=OD AD ,即OD 6=√3, ∴OD=6√3cm ,则圆形螺母的直径为12√3cm .故选D .【点评】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.11.(3分)(2017•济南)将一次函数y=2x 的图象向上平移2个单位后,当y >0时,x 的取值范围是( )A.x>﹣1 B.x>1 C.x>﹣2 D.x>2【考点】F9:一次函数图象与几何变换.【分析】首先得出平移后解析式,进而求出函数与坐标轴交点,即可得出y>0时,x 的取值范围.【解答】解:∵将y=2x的图象向上平移2个单位,∴平移后解析式为:y=2x+2,当y=0时,x=﹣1,故y>0,则x的取值范围是:x>﹣1.故选A【点评】此题主要考查了一次函数图象与几何变换,正确得出平移后解析式是解题关键.12.(3分)(2017•济南)如图,为了测量山坡护坡石坝的坡度(坡面的铅直高度与水平宽度的比称为坡度),把一根长5m的竹竿AC斜靠在石坝旁,量出杆长1m处的D点离地面的高度DE=0.6m,又量的杆底与坝脚的距离AB=3m,则石坝的坡度为()A.34B.3 C.35D.4【考点】T9:解直角三角形的应用﹣坡度坡角问题.【分析】先过C作CF⊥AB于F,根据DE∥CF,可得ADAC=DECF,进而得出CF=3,根据勾股定理可得AF的长,根据CF和BF的长可得石坝的坡度.【解答】解:如图,过C作CF⊥AB于F,则DE∥CF,∴ADAC=DECF,即15=0.6CF,解得CF=3,∴Rt△ACF中,AF=√52−32=4,又∵AB=3,∴BF=4﹣3=1,∴石坝的坡度为CFBF =31=3,故选:B.【点评】本题主要考查了坡度问题,在解决坡度的有关问题中,一般通过作高构成直角三角形,坡角即是一锐角,坡度实际就是一锐角的正切值,水平宽度或铅直高度都是直角边,实质也是解直角三角形问题.13.(3分)(2017•济南)如图,正方形ABCD的对角线AC,BD相交于点O,AB=3√2,E为OC上一点,OE=1,连接BE,过点A作AF⊥BE于点F,与BD交于点G,则BF 的长是()A.3√105B.2√2 C.3√54D.3√22【考点】LE:正方形的性质;KD:全等三角形的判定与性质.【分析】根据正方形的性质、全等三角形的判定定理证明△GAO≌△EBO,得到OG=OE=1,证明△BFG∽△BOE,根据相似三角形的性质计算即可.【解答】解:∵四边形ABCD是正方形,AB=3√2,∴∠AOB=90°,AO=BO=CO=3,∵AF⊥BE,∴∠EBO=∠GAO,在△GAO和△EBO中,{∠GAO=∠EBO AO=BO∠AOG=∠BOE,∴△GAO≌△EBO,∴OG=OE=1,∴BG=2,在Rt△BOE中,BE=√OB2+OE2=√10,∵∠BFG=∠BOE=90°,∠GBF=∠EBO,∴△BFG∽△BOE,∴BFOB=BGBE,即BF3=√10,解得,BF=3√10 5,故选:A.【点评】本题考查的是正方形的性质、全等三角形的判定和性质以及相似三角形的判定和性质,掌握相关的判定定理和性质定理是解题的关键.14.(3分)(2017•济南)二次函数y=ax2+bx+c(a≠0)的图象经过点(﹣2,0),(x0,0),1<x0<2,与y轴的负半轴相交,且交点在(0,﹣2)的上方,下列结论:①b >0;②2a<b;③2a﹣b﹣1<0;④2a+c<0.其中正确结论的个数是()A.1 B.2 C.3 D.4【考点】H4:二次函数图象与系数的关系.【分析】①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣b2a=−2+x12>﹣12,即ba<1,于是得到b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c>0,解不等式即可得到2a>b,所以②正确.③由②知2a﹣b<0,于是得到2a﹣b﹣1<0,故③正确;④把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,即2b=4a+c>0(因为b >0),等量代换得到2a+c<0,故④正确.【解答】解:如图:①由图象开口向上知a>0,由y=ax2+bx+c与x轴的另一个交点坐标为(x1,0 ),且1<x1<2,则该抛物线的对称轴为x=﹣=﹣b2a=−2+x12>﹣12,即ba<1,由a>0,两边都乘以a得:b>a,∵a>0,对称轴x=﹣b2a<0,∴b>0;故①正确;②由x=﹣2时,4a﹣2b+c=0得2a﹣b=﹣c2,而﹣2<c<0,∴2a﹣b>0,所以②错误.③∵2a﹣b<0,∴2a﹣b﹣1<0,故③正确;④∵把(﹣2,0)代入y=ax2+bx+c得:4a﹣2b+c=0,∴即2b=4a+c>0(因为b>0),∵当x=1时,a+b+c<0,∴2a+2b+2c<0,∴6a+3c<0,即2a+c<0,∴④正确;故选D.【点评】本题考查了二次函数图象与系数的关系,主要考查学生根据图形进行推理和辨析的能力,用了数形结合思想,题目比较好,但是难度偏大.15.(3分)(2017•济南)如图1,有一正方形广场ABCD,图形中的线段均表示直行̂表示一条以A为圆心,以AB为半径的圆弧形道路.如图2,在该广场的A 道路,BD处有一路灯,O是灯泡,夜晚小齐同学沿广场道路散步时,影子长度随行走路线的变化而变化,设他步行的路程为x (m)时,相应影子的长度为y (m),根据他步行的路线得到y与x之间关系的大致图象如图3,则他行走的路线是()A.A→B→E→G B.A→E→D→C C.A→E→B→F D.A→B→D→C【考点】E7:动点问题的函数图象.【分析】根据函数图象的中间一部分为水平方向的线段,可知沿着弧形道路步行,根据函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,即可得出第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC.【解答】解:根据图3可得,函数图象的中间一部分为水平方向的线段,故影子的长度不变,即沿着弧形道路步行,因为函数图象中第一段和第三段图象对应的x的范围相等,且均小于中间一段图象对应的x的范围,̂,故中间一段图象对应的路径为BD又因为第一段和第三段图象都从左往右上升,所以第一段函数图象对应的路径为正方形的边AB或AD,第三段函数图象对应的路径为BC或DC,故行走的路线是A→B→D→C(或A→D→B→C),故选:D.【点评】本题主要考查了动点问题的函数图象,解题时注意:在点光源的照射下,在不同位置,物体高度与影长不成比例.二、填空题(本大题共6小题,每小题3分,共18分)16.(3分)(2017•济南)分解因式:x2﹣4x+4=(x﹣2)2.【考点】54:因式分解﹣运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2﹣4x+4=(x﹣2)2.【点评】本题主要考查利用完全平方公式分解因式.完全平方公式:(a﹣b)2=a2﹣2ab+b2.17.(3分)(2017•济南)计算:|﹣2﹣4|+(√3)0=7.【考点】2C:实数的运算;6E:零指数幂.【分析】直接利用绝对值的性质结合零指数幂的性质计算得出答案.【解答】解:|﹣2﹣4|+(√3)0=6+1=7.故答案为:7.【点评】此题主要考查了实数运算以及零指数幂的性质,正确化简各数是解题关键.18.(3分)(2017•济南)在学校的歌咏比赛中,10名选手的成绩如统计图所示,则这10名选手成绩的众数是90.【考点】W5:众数.【分析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据折线统计图可得:90分的人数有5个,人数最多,则众数是90;故答案为:90.【点评】此题考查了众数,掌握一组数据中出现次数最多的数据叫做这组数据的众数是本题的关键.19.(3分)(2017•济南)如图,扇形纸叠扇完全打开后,扇形ABC 的面积为300πcm 2,∠BAC=120°,BD=2AD ,则BD 的长度为 20 cm .【考点】MO :扇形面积的计算.【分析】设AD=x ,则AB=3x .由题意300π=120⋅π⋅(3x)2360,解方程即可.【解答】解:设AD=x ,则AB=3x . 由题意300π=120⋅π⋅(3x)2360,解得x=10,∴BD=2x=20cm . 故答案为20.【点评】本题考查扇形的面积公式、解题的关键是理解题意,学会利用参数构建方程解决问题,属于中考常考题型.20.(3分)(2017•济南)如图,过点O 的直线AB 与反比例函数y=kx的图象交于A ,B 两点,A (2,1),直线BC ∥y 轴,与反比例函数y=−3kx(x <0)的图象交于点C ,连接AC ,则△ABC 的面积为 8 .【考点】G8:反比例函数与一次函数的交点问题.【分析】由A (2,1)求得两个反比例函数分别为y=2x ,y=−6x ,与AB 的解析式y=12x ,解方程组求得B 的坐标,进而求得C 点的纵坐标,即可求得BC ,根据三角形的面积公式即可求得结论.【解答】解:∵A (2,1)在反比例函数y=kx 的图象上,∴k=2×1=2,∴两个反比例函数分别为y=2x ,y=−6x,设AB 的解析式为y=kx ,把A (2,1)代入得,k=12,∴y=12x ,解方程组{y =12x y =2x 得:{x 1=2y 1=1,{x 2=−2y 2=−1,∴B (﹣2,﹣1), ∵BC ∥y 轴,∴C 点的横坐标为﹣2, ∴C 点的纵坐标为−6−2=3, ∴BC=3﹣(﹣1)=4,∴△ABC 的面积为12×4×4=8,故答案为:8.【点评】本题主要考查了反比例函数于一次函数的交点问题,三角形的面积,正确的理解题意是解题的关键.21.(3分)(2017•济南)定义:在平面直角坐标系xOy 中,把从点P 出发沿纵或横方向到达点Q (至多拐一次弯)的路径长称为P ,Q 的“实际距离”.如图,若P (﹣1,1),Q (2,3),则P ,Q 的“实际距离”为5,即PS +SQ=5或PT +TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A ,B ,C 三个小区的坐标分别为A (3,1),B (5,﹣3),C (﹣1,﹣5),若点M 表示单车停放点,且满足M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为 (1,﹣2) .【考点】D3:坐标确定位置.【分析】直接利用实际距离的定义,结合A ,B ,C 点的坐标,进而得出答案. 【解答】解:由题意可得:M 到A ,B ,C 的“实际距离”相等,则点M 的坐标为(1,﹣2),此时M 到A ,B ,C 的实际距离都为5. 故答案为:(1,﹣2).【点评】此题主要考查了坐标确定位置,正确理解实际距离的定义是解题关键.三、解答题(本大题共8小题,共57分)22.(6分)(2017•济南)(1)先化简,再求值:(a +3)2﹣(a +2)(a +3),其中a=3. (2)解不等式组:{3x −5≥2(x −2)①x2>x −1②. 【考点】4J :整式的混合运算—化简求值;CB :解一元一次不等式组. 【分析】(1)根据完全平方公式和多项式乘多项式可以解答本题; (2)根据解不等式组的方法可以解答本题. 【解答】解:(1)(a +3)2﹣(a +2)(a +3) =a 2+6a +9﹣a 2﹣5a ﹣6 =a +3,当a=3时,原式=3+3=6; (2){3x −5≥2(x −2)①x2>x −1② 由不等式①,得 x ≥1,由不等式②,得 x <2故原不等式组的解集是1≤x <2.【点评】.本题考查整式的混合运算﹣化简求值、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法.23.(4分)(2017•济南)如图,在矩形ABCD ,AD=AE ,DF ⊥AE 于点F .求证:AB=DF .【考点】LB :矩形的性质;KD :全等三角形的判定与性质.【分析】利用矩形和直角三角形的性质得到∠AEB=∠EAD 、∠AFD=∠B ,从而证得两个三角形全等,可得结论.【解答】证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∠B=90°, ∴∠AEB=∠DAE , ∵DF ⊥AE , ∴∠AFD=∠B=90°, 在△ABE 和△DFA 中 ∵{∠AEB =∠DAE ∠AFD =∠B AD =AE∴△ABE ≌△DFA , ∴AB=DF .【点评】本题考查了全等三角形的判定与性质、矩形的性质的知识,属于基础题,难度不是很大,熟练掌握全等三角形的判定与性质是关键.24.(4分)(2017•济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.【考点】M5:圆周角定理.【分析】根据直径所对的圆周角是直角,构造直角三角形ABD,再根据同弧所对的圆周角相等,求得∠B的度数,即可求得∠BAD的度数.【解答】解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.【点评】考查了圆周角定理的推论.利用直径所对的圆周角是直角是解题关键.25.(8分)(2017•济南)某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?【考点】B7:分式方程的应用.【分析】根据题意可以列出相应的分式方程,从而可以解答本题.【解答】解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,12000 x +90001.5x=150,解得,x=120,经检验x=120是原分式方程的解,∴1.5x=180,答:银杏树和玉兰树的单价各是120元、180元.【点评】本题考查分式方程的应用,解答本题的关键是明确题意,列出相应的分式方程,注意分式方程要经验26.(8分)(2017•济南)中央电视台的“朗读者”节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本书最少的有5本,最多的有8本,并根据调查结果绘制了不完整的图表,如图所示:本数(本)频数(人数)频率5a0.26180.36714b880.16合计c1(1)统计表中的a=10,b=0.28,c=50;(2)请将频数分布表直方图补充完整;(3)求所有被调查学生课外阅读的平均本数;(4)若该校八年级共有1200名学生,请你分析该校八年级学生课外阅读7本及以上的人数.【考点】V8:频数(率)分布直方图;V5:用样本估计总体;V7:频数(率)分布表.【分析】(1)根据百分比=所占人数总人数计算即可;(2)求出a组人数,画出直方图即可;(3)根据平均数的定义计算即可;(4)利用样本估计总体的思想解决问题即可;【解答】解:(1)由题意c=18÷0.36=50,∴a=50×0.2=10,b=1450=0.28,故答案为10,0.28,50.(2)频数分布表直方图如图所示.(3)所有被调查学生课外阅读的平均本数=10×5+18×6+14×7+8×850=6.4(本)(4)该校八年级共有1200名学生,该校八年级学生课外阅读7本及以上的人数有1200×14+850=528(名).【点评】本题考查频数分布直方图、扇形统计图、样本估计总体等知识,解题的关键是熟练掌握基本概念,灵活运用所学知识解决问题,属于中考常考题型.27.(9分)(2017•济南)如图1,▱OABC 的边OC 在y 轴的正半轴上,OC=3,A (2,1),反比例函数y=k x(x >0)的图象经过的B .(1)求点B 的坐标和反比例函数的关系式;(2)如图2,直线MN 分别与x 轴、y 轴的正半轴交于M ,N 两点,若点O 和点B 关于直线MN 成轴对称,求线段ON 的长;(3)如图3,将线段OA延长交y=kx(x>0)的图象于点D,过B,D的直线分别交x轴、y轴于E,F两点,请探究线段ED与BF的数量关系,并说明理由.【考点】GB:反比例函数综合题.【分析】(1)利用平行四边形的性质求出点B的坐标即可解决问题;(2)根据两直线垂直的条件,求出直线MN的解析式即可解决问题;(3)结论:BF=DE.如图3中,延长BA交x轴于N,作DM⊥x轴于M,作NK∥EF交y轴于K.设ON=n,OM=m,ME=a.则BN=kn ,DM=km.由△EDM∽△EBN,推出EM EN =DMBN,即am+a−n=kmkn,可得a=m,由△KNO≌△DEM,推出DE=KN,再证明四边形NKFB是平行四边形,即可解决问题;【解答】解:(1)如图1中,∵四边形OABC是平行四边形,∴AB=OC=3,∵A(2,1),∴B(2,4),把B(2,4)代入y=kx中,得到k=8,∴反比例函数的解析式为y=8 x .(2)如图2中,设K是OB的中点,则K(1,2).。

山东省青岛市2017年中考数学真题试题(含解析)

 山东省青岛市2017年中考数学真题试题(含解析)

山东省青岛市2017年中考数学真题试题(考试时间:120分钟;满分:120分)第(Ⅰ)卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.的相反数是().A.8B.C.D.【答案】C【解析】试题分析:根据只有符号不同的两个数是互为相反数,知:的相反数是.故选:C考点:相反数定义2.下列四个图形中,是轴对称图形,但不是中心对称图形的是().【答案】A考点:轴对称图形和中心对称图形的定义3.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A、众数是6吨B、平均数是5吨C、中位数是5吨D、方差是【答案】C考点:1、方差;2、平均数;3、中位数;4、众数4.计算的结果为().A. B. C. D.【答案】D【解析】试题分析:根据幂的混合运算,利用积的乘方性质和同底数幂相除计算为:故选:D考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算的坐标为()5. 如图,若将△ABC绕点O逆时针旋转90°则顶点B的对应点B1A. B. C. D.【答案】B【解析】试题分析:将△ABC绕点O逆时针旋转90°后,图形如下图的坐标为所以B1故选:B考点:1、同底数幂的乘除法运算法则;2、积的乘方运算法则;3、幂的乘方运算6. 如图,AB 是⊙O 的直径,C,D,E 在⊙O 上,若∠AED=20°,则∠BCD的度数为()A、100°B、110°C、115°D、120°【答案】B【解析】试题分析:如下图,连接AD,AD,根据同弧所对的圆周角相等,可知∠ABD=∠AED=20°,然后根据直径所对的圆周角为直角得到∠ADB=90°,从而由三角形的内角和求得∠BAD=70°,因此可求得∠BCD=110°.故选:B考点:圆的性质与计算7. 如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,,AC=2,BD=4,则AE的长为()A. B.C. D.【答案】D考点:1、平行四边形的性质,2、勾股定理,3、面积法求线段长度8. 一次函数的图像经过点A(),B(2,2)两点,P为反比例函数图像上的一个动点,O为坐标原点,过P作y轴的垂线,垂足为C,则△PCO的面积为()A、2B、4C、8D、不确定【答案】【解析】试题分析:如下图,考点: 1、一次函数,2、反比例函数图像与性质第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.近年来,国家重视精准扶贫,收效显著,据统计约65 000 000人脱贫。

2017年山东省东营市中考数学试卷(含答案)

2017年山东省东营市中考数学试卷(含答案)

2017年##省东营市中考数学试卷一、选择题〔本大题共10小题,每小题3分,共30分〕1.下列四个数中,最大的数是〔 〕A .3B .3C .0D .π 2.下列运算正确的是〔 〕 A .〔x ﹣y 〕2=x 2﹣y 2B .|3﹣2|=2﹣3C .8﹣3=5D .﹣〔﹣a+1〕=a+13.若|x 2﹣4x+4|与23x y --互为相反数,则x+y 的值为〔 〕A .3B .4C .6D .94.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s 〔m 〕与时间t 〔min 〕的大致图象是〔 〕A .B .C .D .5.已知a ∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于〔 〕A .100°B.135°C.155°D.165°6.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是〔 〕A .47B .37C .27D .177.如图,在▱ABCD 中,用直尺和圆规作∠BAD 的平分线AG 交BC 于点E .若BF=8,AB=5,则AE 的长为〔 〕A .5B .6C .8D .128.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为〔 〕A .60°B.90°C.120°D.180°9.如图,把△ABC 沿着BC 的方向平移到△DEF 的位置,它们重叠部分的面积是△ABC 面积的一半,若BC=,则△ABC 移动的距离是〔 〕A .32B .33C .62D .3﹣6210.如图,在正方形ABCD 中,△BPC 是等边三角形,BP 、CP 的延长线分别交AD 于点E 、F,连接BD 、DP,BD 与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC其中正确的是〔〕A.①②③④B.②③C.①②④D.①③④二、填空题〔本大题共8小题,共28分〕11.《"一带一路"贸易合作大数据报告〔2017〕》以"一带一路"贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.12.分解因式:﹣2x2y+16xy﹣32y=.13.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数与其方差s2如下表所示:甲乙丙丁1′05″331′04″261′04″261′07″29S2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派去.14.如图,AB是半圆直径,半径OC⊥AB于点O,D为半圆上一点,AC∥OD,AD与OC交于点E,连结CD、BD,给出以下三个结论:①OD平分∠COB;②BD=CD;③CD2=CECO,其中正确结论的序号是.15.如图,已知菱形ABCD的周长为16,面积为83,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为.16.我国古代有这样一道数学问题:"枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?"题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是尺.17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.18.如图,在平面直角坐标系中,直线l:y=33x﹣33与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.三、解答题〔本大题共7小题,共62分〕19.〔1〕计算:6cos45°+〔13〕﹣1+〔3﹣1.73〕0+|5﹣32|+42017×〔﹣0.25〕2017〔2〕先化简,再求值:〔31a+﹣a+1〕÷244412a aa a-+++-﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.20.为大力弘扬"奉献、友爱、互助、进步"的志愿服务精神,传播"奉献他人、提升自我"的志愿服务理念,东营市某中学利用周末时间开展了"助老助残、社区服务、生态环保、网络文明"四个志愿服务活动〔每人只参加一个活动〕,九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:〔1〕求该班的人数;〔2〕请把折线统计图补充完整;〔3〕求扇形统计图中,网络文明部分对应的圆心角的度数;〔4〕小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.〔1〕求证:DE⊥AC;〔2〕若DE+EA=8,⊙O的半径为10,求AF的长度.22.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=nx的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.〔1〕求一次函数与反比例函数的解析式;〔2〕直接写出当x>0时,kx+b﹣nx<0的解集.23.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.〔1〕改扩建1所A类学校和1所B类学校所需资金分别是多少万元?〔2〕该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?24.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点〔不与B、C重合〕,在AC 上取一点E,使∠ADE=30°.〔1〕求证:△ABD ∽△DCE ;〔2〕设BD=x,AE=y,求y 关于x 的函数关系式并写出自变量x 的取值范围;〔3〕当△ADE 是等腰三角形时,求AE 的长.25.如图,直线y=33x 轴、y 轴交于B 、C 两点,点A 在x 轴上,∠ACB=90°,抛物线y=ax 23A,B 两点.〔1〕求A 、B 两点的坐标;〔2〕求抛物线的解析式;〔3〕点M 是直线BC 上方抛物线上的一点,过点M 作MH ⊥BC 于点H,作MD ∥y 轴交BC 于点D,求△DMH 周长的最大值.一、选择题〔本大题共10小题,每小题3分,共30分〕1.下列四个数中,最大的数是〔 〕A .3B 3.0D .π[答案]D[解析]试题分析:根据在数轴上表示的两个实数,右边的总比左边的大可得03<3<π,故选:D .考点:实数的比较大小2.下列运算正确的是〔 〕A .〔x ﹣y 〕2=x 2﹣y 2B .32|=23835D .﹣〔﹣a+1〕=a+1[答案]B[解析]考点:1、二次根式的加减法,2、实数的性质,3、完全平方公式,4、去括号3.若|x 2﹣4x+4|23x y --,则x+y 的值为〔 〕A .3B .4C .6D .9[答案]A试题分析:根据相反数的定义得到|x 2﹣4x+4|+23x y --=0,再根据非负数的性质得x 2﹣4x+4=0,2x ﹣y ﹣3=0,然后利用配方法求出x=2,再求出y=1,最后计算它们的和x+y=3.故选A .考点:解一元二次方程﹣配方法4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程s 〔m 〕与时间t 〔min 〕的大致图象是〔 〕A .B .C .D .[答案]C[解析]又随时间t 的增长而增长,学#科网故选:C .考点:函数图象5.已知a ∥b,一块含30°角的直角三角板如图所示放置,∠2=45°,则∠1等于〔 〕A .100°B.135°C.155°D.165° [答案]D[解析]试题分析:先过P 作PQ ∥a,则PQ ∥b,根据平行线的性质即可得到∠3=180°﹣∠APQ=165°,再根据对顶角相等即可得出∠1=165°,故选:D .考点:平行线的性质6.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是〔 〕A .47B .37C .27D .17[解析]考点:概率7.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=8,AB=5,则AE的长为〔〕A.5B.6C.8D.12[答案]B[解析]试题分析:由基本作图得到AB=AF,AG平分∠BAD,故可得出四边形ABEF是菱形,由菱形的性质可知AE⊥BF,故可得出OB=4,再由勾股定理即可得出OA=3,进而得出AE=2AO=6.故选B.考点:1、作图﹣基本作图,2、平行四边形的性质,3、勾股定理,4、平行线的性质8.若圆锥的侧面积等于其底面积的3倍,则该圆锥侧面展开图所对应扇形圆心角的度数为〔〕A.60°B.90°C.120°D.180°[答案]C[解析]故选:C.学#科网考点:有关扇形和圆锥的相关计算9.如图,把△ABC沿着BC的方向平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若BC=3,则△ABC移动的距离是〔〕A.32B.33C.62D.3﹣62[答案]D[解析]试题分析:移动的距离可以视为BE或CF的长度,根据题意可知△ABC与阴影部分为相似三角形,且面积比为2:1,所以EC:BC=1:2,推出EC=62,利用线段的差求BE=BC﹣EC=3﹣62.故选:D.考点:1、相似三角形的判定和性质,2、平移的性质10.如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC 其中正确的是〔〕A.①②③④B.②③C.①②④D.①③④[答案]C[解析]∵∠FDP=∠PBD=15°,∠ADB=45°,∴∠PDB=30°,而∠DFP=60°,∴∠PFD≠∠PDB,∴△PFD与△PDB不会相似;故③错误;∵∠PDH=∠PCD=30°,∠DPH=∠DPC,∴△DPH∽△CPD,∴DP PH PC DP,∴DP2=PHPC,故④正确;故选C.考点:1、正方形的性质,2、等边三角形的性质,3、相似三角形的判定和性质二、填空题〔本大题共8小题,共28分〕11.《"一带一路"贸易合作大数据报告〔2017〕》以"一带一路"贸易合作现状分析和趋势预测为核心,采集调用了8000多个种类,总计1.2亿条全球进出口贸易基础数据…,1.2亿用科学记数法表示为.[答案]1.2×108[解析]故答案为:1.2×108.学#科网考点:科学记数法12.分解因式:﹣2x2y+16xy﹣32y=.[答案]﹣2y〔x﹣4〕2[解析]试题分析:根据提取公因式以与完全平方公式即可求出:原式=﹣2y〔x2﹣8x+16〕=﹣2y〔x﹣4〕2故答案为:﹣2y〔x﹣4〕2考点:因式分解13.为选拔一名选手参加全国中学生游泳锦标赛自由泳比赛,我市四名中学生参加了男子100米自由泳训练,他们成绩的平均数与其方差s 2如下表所示:甲 乙 丙 丁1′05″33 1′04″26 1′04″26 1′07″29 S 2 1.1 1.1 1.3 1.6如果选拔一名学生去参赛,应派去.[答案]乙[解析]试题分析:首先比较平均数,可得=x x x x 丁甲乙丙>>,然后在平均数相同的情况下,根据平均数相同的两个运动员的方差22S S 乙丙<,可知选择方差较小的运动员参加,即选择乙参赛,故答案为:乙.学#科网考点:1、平均数,2、方差14.如图,AB 是半圆直径,半径OC ⊥AB 于点O,D 为半圆上一点,AC ∥OD,AD 与OC 交于点E,连结CD 、BD,给出以下三个结论:①OD 平分∠COB ;②BD=CD ;③CD 2=CECO,其中正确结论的序号是.[答案]①②③[解析]考点:1、圆周角定理,2、平行线的性质,3、圆的性质,4、圆心角与弦的关系定理的运用,5、相似三角形的判定与性质15.如图,已知菱形ABCD 的周长为16,面积为3,E 为AB 的中点,若P 为对角线BD 上一动点,则EP+AP 的最小值为.[答案3[解析]故答案为3考点:1、轴对称﹣最短问题,2、菱形的性质16.我国古代有这样一道数学问题:"枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?"题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A 处缠绕而上,绕五周后其末端恰好到达点B 处,则问题中葛藤的最短长度是尺.[答案]25[解析]试题分析:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题,根据勾股定理可求出葛藤长为2220+15=25〔尺〕.故答案为:25.考点:平面展开最短路径问题17.一数学兴趣小组来到某公园,准备测量一座塔的高度.如图,在A处测得塔顶的仰角为α,在B处测得塔顶的仰角为β,又测量出A、B两点的距离为s米,则塔高为米.[答案]tan tan tan tans αββα⋅⋅-[解析]故答案为:tan tantan tansαββα⋅⋅-.考点:解直角三角形的应用﹣仰角俯角问题18.如图,在平面直角坐标系中,直线l:y=33x﹣33与x轴交于点B1,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,则点A2017的横坐标是.[答案]2017 212-[解析]故答案为:2017212-.考点:1、一次函数图象上点的坐标特征,2、等边三角形的性质三、解答题〔本大题共7小题,共62分〕19.〔1〕计算:6cos45°+〔13〕﹣1+3 1.73〕0+|5﹣2|+42017×〔﹣0.25〕2017〔2〕先化简,再求值:〔31a+﹣a+1〕÷244412a aa a-+++-﹣a,并从﹣1,0,2中选一个合适的数作为a的值代入求值.[答案]〔1〕8〔2〕﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1[解析]试题分析:〔1〕根据特殊角的三角函数值、负整数指数幂、零指数幂、绝对值、幂的乘方可以解答本题;〔2〕根据分式的加减法和除法可以化简题目中的式子,然后在﹣1,0,2中选一个使得原分式有意义的值代入即可解答本题.=﹣a﹣1,当a=0时,原式=﹣0﹣1=﹣1.考点:1、分式的化简求值,2、实数的运算,3、殊角的三角函数值,4、负整数指数幂,5、零指数幂,6、绝对值,7、幂的乘方20.为大力弘扬"奉献、友爱、互助、进步"的志愿服务精神,传播"奉献他人、提升自我"的志愿服务理念,东营市某中学利用周末时间开展了"助老助残、社区服务、生态环保、网络文明"四个志愿服务活动〔每人只参加一个活动〕,九年级某班全班同学都参加了志愿服务,班长为了解志愿服务的情况,收集整理数据后,绘制以下不完整的统计图,请你根据统计图中所提供的信息解答下列问题:〔1〕求该班的人数;〔2〕请把折线统计图补充完整;〔3〕求扇形统计图中,网络文明部分对应的圆心角的度数;〔4〕小明和小丽参加了志愿服务活动,请用树状图或列表法求出他们参加同一服务活动的概率.[答案]〔1〕48〔2〕图形见解析〔3〕45°〔4〕1 4[解析]〔2〕48×50%=24,折线统计如图所示:学#科网〔3〕648×360°=45°.〔4〕分别用"1,2,3,4"代表"助老助残、社区服务、生态环保、网络文明"四个服务活动,列表如下:则所有可能有16种,其中他们参加同一活动有4种,所以他们参加同一服务活动的概率P=416=14.考点:1、折线图,2、扇形统计图,3、列表法,4、概率21.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.〔1〕求证:DE⊥AC;〔2〕若DE+EA=8,⊙O的半径为10,求AF的长度.[答案]〔1〕证明见解析〔2〕8[解析]∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC.∵DE是⊙O的切线,OD是半径,∴DE⊥OD,∴DE⊥AC;∵OH⊥AF,∴AH=FH=12 AF,∴AF=2AH=2×8=16.学科&网考点:1、切线的性质,2、勾股定理,3、矩形的判定与性质22.如图,一次函数y=kx+b的图象与坐标轴分别交于A、B两点,与反比例函数y=nx的图象在第一象限的交点为C,CD⊥x轴,垂足为D,若OB=3,OD=6,△AOB的面积为3.〔1〕求一次函数与反比例函数的解析式;〔2〕直接写出当x>0时,kx+b﹣nx<0的解集.[答案]〔1〕y=23x﹣2,y=12x〔2〕0<x<6[解析]试题分析:〔1〕根据三角形面积求出OA,得出A、B的坐标,代入一次函数的解析式即可求出解析式,把x=6代入求出D的坐标,把D的坐标代入反比例函数的解析式求出即可;〔2〕根据图象即可得出答案.∴C〔6,2〕,∴n=6×2=12,∴反比例函数的解析式是y=12x;〔2〕当x>0时,kx+b﹣nx<0的解集是0<x<6.考点:1、待定系数法求出函数的解析式,2、一次函数和和反比例函数的交点问题,3、函数的图象的应用23.为解决中小学大班额问题,东营市各县区今年将改扩建部分中小学,某县计划对A、B两类学校进行改扩建,根据预算,改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元.〔1〕改扩建1所A类学校和1所B类学校所需资金分别是多少万元?〔2〕该县计划改扩建A、B两类学校共10所,改扩建资金由国家财政和地方财政共同承担.若国家财政拨付资金不超过11800万元;地方财政投入资金不少于4000万元,其中地方财政投入到A、B两类学校的改扩建资金分别为每所300万元和500万元.请问共有哪几种改扩建方案?[答案]〔1〕改扩建一所A类学校和一所B类学校所需资金分别为1200万元和1800万元〔2〕共有3种方案[解析]试题分析:〔1〕可根据"改扩建2所A类学校和3所B类学校共需资金7800万元,改扩建3所A类学校和1所B类学校共需资金5400万元",列出方程组求出答案;〔2〕设今年改扩建A类学校a所,则改扩建B类学校〔10﹣a〕所,由题意得:(1200300)(1800500)(10)11800 300500(10)400a aa a-+--≤⎧⎨+-≥⎩,解得3aa≥⎧⎨≤⎩,∴3≤a≤5,∵x取整数,∴x=3,4,5.即共有3种方案:方案一:改扩建A类学校3所,B类学校7所;方案二:改扩建A类学校4所,B类学校6所;方案三:改扩建A类学校5所,B类学校5所.考点:1、一元一次不等式组的应用,2、二元一次方程组的应用24.如图,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,点D是BC边上的一个动点〔不与B、C重合〕,在AC 上取一点E,使∠ADE=30°.〔1〕求证:△ABD ∽△DCE ;〔2〕设BD=x,AE=y,求y 关于x 的函数关系式并写出自变量x 的取值范围;〔3〕当△ADE 是等腰三角形时,求AE 的长.[答案]〔1〕证明见解析〔2〕y=2132x -x+2〔0<x <23〕〔3〕当△ADE 是等腰三角形时,AE=4﹣23或23.[解析]∴∠EDC=∠DAB,∴△ABD ∽△DCE ;〔2〕如图1,∵AB=AC=2,∠BAC=120°,过A 作AF ⊥BC 于F,∴∠AFB=90°,∵AB=2,∠ABF=30°,∴AF=12AB=1,∴BF=3,∴BC=2BF=23,则DC=23﹣x,EC=2﹣y,∵△ABD ∽△DCE,∴ABDCBD CE =,∴2232xx y -=-,化简得:y=2132x -x+2〔0<x <23〕;〔3〕当AD=DE 时,如图2,∠EAD=∠EDA=30°,∠AED=120°,∴∠DEC=60°,∠EDC=90°,则ED=12EC,即y=12〔2﹣y 〕,解得:y=23,即AE=23,考点:1、三角形相似的性质和判定,2、等腰三角形的性质,3、直角三角形30°角的性质25.如图,直线y=﹣33x+3分别与x轴、y轴交于B、C两点,点A在x 轴上,∠ACB=90°,抛物线y=ax2+bx+3经过A,B两点.〔1〕求A、B两点的坐标;〔2〕求抛物线的解析式;〔3〕点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.[答案]〔1〕〔﹣1,0〕〔2〕y=﹣33x2+233x+3〔3〕93+98[解析]试题分析:〔1〕由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt △AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;〔2〕由A、B两点坐标,利用待定系数法可求得抛物线解析式;〔3〕由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH的周长,利用二次函数的性质可求得其最大值.∴AOCO=tan30°=33,即3AO=33,解得AO=1,学科网∴A〔﹣1,0〕;〔2〕∵抛物线y=ax2+bx+3经过A,B两点,∴309330a ba b⎧-+=⎪⎨++=⎪⎩,解得33233ab⎧=-⎪⎪⎨⎪=⎪⎩,∴抛物线解析式为y=﹣33x2+233x+3;〔3〕∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DM H=30°,∴DH=12∴△DMH 的周长=DM+DH+MH=DM+12DM+2DM=2DM, ∴当DM 有最大值时,其周长有最大值,∵点M 是直线BC 上方抛物线上的一点,考点:1、二次函数的综合应用,2、待定系数法,3、三角函数的定义,4方程思想。

2017年山东省临沂市中考数学试卷及答案与解析

2017年山东省临沂市中考数学试卷及答案与解析

2017年山东省临沂市中考数学试卷参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)1.(3分)(2017•临沂)﹣的相反数是()A.B.﹣C.2017 D.﹣2017【解答】解:﹣的相反数是:.故选:A.2.(3分)(2017•临沂)如图,将直尺与含30°角的三角尺摆放在一起,若∠1=20°,则∠2的度数是()A.50°B.60°C.70°D.80°【解答】解:∵∠BEF是△AEF的外角,∠1=20°,∠F=30°,∴∠BEF=∠1+∠F=50°,∵AB∥CD,∴∠2=∠BEF=50°,故选A.3.(3分)(2017•临沂)下列计算正确的是()A.﹣(a﹣b)=﹣a﹣b B.a2+a2=a4 C.a2•a3=a6 D.(ab2)2=a2b4【解答】解:A、括号前是负号,去括号全变号,故A不符合题意;B、不是同底数幂的乘法指数不能相加,故B不符合题意;C、同底数幂的乘法底数不变指数相加,故C不符合题意;D、积的乘方等于乘方的积,故D符合题意;故选:D.4.(3分)(2017•临沂)不等式组中,不等式①和②的解集在数轴上表示正确的是()A.B.C.D.【解答】解:解不等式①,得:x<1,解不等式②,得:x≥﹣3,则不等式组的解集为﹣3≤x<1,故选:B.5.(3分)(2017•临沂)如图所示的几何体是由五个小正方体组成的,它的左视图是()A.B.C. D.【解答】解:该几何体的三视图如下:主视图:;俯视图:;左视图:,故选:D.6.(3分)(2017•临沂)小明和小华玩“石头、剪子、布"的游戏,若随机出手一次,则小华获胜的概率是()A.B.C.D.【解答】解:画树状图得:∵共有9种等可能的结果,小华获胜的情况数是3种,∴小华获胜的概率是:=.故选C.7.(3分)(2017•临沂)一个多边形的内角和是外角和的2倍,则这个多边形是()A.四边形B.五边形C.六边形D.八边形【解答】解:设所求正n边形边数为n,由题意得(n﹣2)•180°=360°×2解得n=6.则这个多边形是六边形.故选:C.8.(3分)(2017•临沂)甲、乙二人做某种机械零件,已知甲每小时比乙多做6个,甲做90个所用时间与乙做60个所用时间相等,求甲、乙每小时各做零件多少个.如果设乙每小时做x个,那么所列方程是()A.=B.=C.=D.=【解答】解:设乙每小时做x个,甲每小时做(x+6)个,根据甲做90个所用时间与乙做60个所用时间相等,得=,故选:B.9.(3分)(2017•临沂)某公司有15名员工,他们所在部门及相应每人所创年利润如下表所示:部门人数每人创年利润(万元)A110B38C75D43这15名员工每人所创年利润的众数、中位数分别是()A.10,5 B.7,8 C.5,6.5 D.5,5【解答】解:由题意可得,这15名员工的每人创年利润为:10、8、8、8、5、5、5、5、5、5、5、3、3、3、3,∴这组数据的众数是5,中位数是5,故选D.10.(3分)(2017•临沂)如图,AB是⊙O的直径,BT是⊙O的切线,若∠ATB=45°,AB=2,则阴影部分的面积是()A.2 B.﹣πC.1 D.+π【解答】解:∵BT是⊙O的切线;设AT交⊙O于D,连结BD,∵AB是⊙O的直径,∴∠ADB=90°,而∠ATB=45°,∴△ADB、△BDT都是等腰直角三角形,∴AD=BD=TD=AB=,∴弓形AD的面积等于弓形BD的面积,=××=1.∴阴影部分的面积=S△BTD故选C.11.(3分)(2017•临沂)将一些相同的“○"按如图所示摆放,观察每个图形中的“○"的个数,若第n个图形中“○”的个数是78,则n的值是()A.11 B.12 C.13 D.14【解答】解:第1个图形有1个小圆;第2个图形有1+2=3个小圆;第3个图形有1+2+3=6个小圆;第4个图形有1+2+3+4=10个小圆;第n个图形有1+2+3+…+n=个小圆;∵第n个图形中“○”的个数是78,∴78=,解得:n1=12,n2=﹣13(不合题意舍去),故选:B.12.(3分)(2017•临沂)在△ABC中,点D是边BC上的点(与B,C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB,AC于E,F两点,下列说法正确的是()A.若AD⊥BC,则四边形AEDF是矩形B.若AD垂直平分BC,则四边形AEDF是矩形C.若BD=CD,则四边形AEDF是菱形D.若AD平分∠BAC,则四边形AEDF是菱形【解答】解:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;选项A 错误;若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;选项B错误;若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;选项C错误;若AD平分∠BAC,则四边形AEDF是菱形;正确;故选:D.13.(3分)(2017•临沂)足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论:①足球距离地面的最大高度为20m;②足球飞行路线的对称轴是直线t=;③足球被踢出9s时落地;④足球被踢出1。

山东滨州2017中考试题数学卷(word版含解析)

山东滨州2017中考试题数学卷(word版含解析)

一、选择题(每小题3分,共12小题,合计36分) 1.计算-(-1)+|-1|,结果为A .-2B .2C .0D .-1【答案】B.【解析】原式=1+1=2,故选B.2.一元二次方程x 2-2x =0根的判别式的值为A .4B .2C .0D .-4【答案】A.【解析】在这个方程中,a =1,b =-2,c =0,△=2(2)4104--⨯⨯= ,故选A. 3.如图,直线AC ∥BD ,AO ,BO 分别是∠BAC 、∠ABD 的平分线,那么下列结论错误的是 A .∠BAO 与∠CAO 相等 B .∠BAC 与∠ABD 互补C .∠BAO 与∠ABO 互余D .∠ABO 与∠DBO 不等【答案】D.4.下列计算:(12)2=2,(2)2(2)-2,(3)(23-2=12,(4(23)(23)1-=-,其中结果正确的个数为A .1B .2C .3D .4【答案】D.【解析】根据二次根式的性质可得(1)、(2)、(3)正确;根据平方差公式可得(4)正确,故选D.5.若正方形的外接圆半径为2,则其内切圆半径为A 2B .2C 2D .1【答案】A.【解析】如图,由题意得,OA=2,△AOM 是等腰直角三角形,根据勾股定理可得2 ,故选A.ACDB6.分式方程311(1)(2)x x x x -=--+的解为A .x =1B .x =-1C .无解D .x =-2【答案】C.7.如图,在△ABC 中,AC ⊥BC ,∠ABC =30°,点D 是CB 延长线上的一点,且BD =BA ,则tan ∠DAC 的值为A .23B .3C .33D .3【答案】A.【解析】设AC=x ,在Rt △ABC 中,∠ABC=30°,即可得AB=2x ,3,所以BD=BA=2x,即可得33)x ,在Rt △ACD 中,tan ∠DAC=(32)32CD xAC +==+ ,故选A.8.如图,在△ABC 中,AB =AC ,D 为BC 上一点,且DA =DC ,BD =BA ,则∠B 的大小为A .40°B .36°C .80°D .25°AB CD【答案】B.【解析】设∠B=x ,因AB=AC,根据等腰三角形的性质可得∠B=∠C=x ,因AD=CD ,根据等腰三角形的性质可得∠DAC=∠C=x ,因BD=BA ,根据等腰三角形的性质和三角形外角的性质可得∠BAD=∠ADB=2x ,在△ABD 中,根据三角形的内角和定理可得x+2x+2x=180°,解得x=36°,即∠B=36°,故选B.9.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个.若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是 A .22x =16(27-x )B .16x =22(27-x )C .2×16x =22(27-x )D .2×22x =16(27-x )【答案】D10.若点M (-7,m )、N (-8,n )都是函数y =-(k 2+2k +4)x +1(k 为常数)的图象上,则m 和n 的大小关系是A .m >nB .m <nC .m =nD .不能确定【答案】A.【解析】因2224(1)30k k k ++=++f , 所以2(24)0k k -++p ,即可得y 随x 的增大而减小,又因-7<-8,所以m>n ,故选A.11.如图,点P 为定角∠AOB 的平分线上的一个定点,且∠MPN 与∠AOB 互补.若∠MPN 在绕点P 旋转的过程中,其两边分别与OA ,OB 相交于M 、N 两点,则以下结论:(1)PM =PN 恒成立,(2)OM +ON 的值不变,(3)四边形PMON 的面积不变,(4)MN 的长不变,其中正确的个数为A .4B .3C .2D .1PA ONBM【答案】B.12.在平面直角坐标系内,直线AB垂直于x轴于点C(点C在原点的右侧),并分别与直线y=x和双曲线y=1x相交于点A、B,且AC+BC=4,则△OAB的面积为A.3+3或3 3 B2+12-1C.3 3 D2-1【答案】A.【解析】如图,分线段AB在双曲线1yx=和直线y=x交点的左右两侧两种情况,设点C 的坐标为(m,0),则点A的坐标为(m,m),点B的坐标为(m,1m),因AC+BC=4,所以m+1m=4,解得m=23,当3时,即线段AB在双曲线1yx=和直线y=x交点的左侧,求得33,所以333即可求得△OAB的面积为123(23)2332⨯=-;当3时,即线段AB在双曲线1yx=和直线y=x交点的右侧,求得AC=2+3,BC=2-3,所以AB=(2+3)-(2-3)=23,即可求得△OAB的面积为123(23)2332⨯⨯+=+,故选A.第II卷(非选择题,共84分)二、填空题:本大题共6个题,每小题4分,满分24分.13.计算:33+(3-3)0-|-12|-2-1-cos60°=____________.【答案】3- .【解析】原式=113123322+---=- .14.不等式组3(2)4,21152x xx x-->⎧⎪-+⎨⎪⎩≤的解集为___________.15.在平面直角坐标系中,点C、D的坐标分别为C(2,3)、D(1,0).现以原点为位似中心,将线段CD放大得到线段AB,若点D的对应点B在x轴上且OB=2,则点C的对应点A 的坐标为_______.【答案】(4,6)或(-4,-6).【解析】已知点D(1,0),点D的对应点B在x轴上,且OB=2,所以位似比为2,即可得点A的坐标为(2×2,3×2)或[2×(-2),3×(-2)],即点A的坐标为(4,6)或(-4,-6).16.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在AB边上的E处,EQ与BC相交于点F.若AD=8,AB=6,AE=4,则△EBF周长的大小为___________.23(左视图)【答案】8.17.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为_________.【答案】12+15π.【解析】这个几何体的表面积为:2×3+2×3+2324π⨯ +2324π⨯+32234π⨯⨯⨯ =12+15π. 18.观察下列各式: 2111313=-⨯,2112424=-⨯2113535=-⨯……请利用你所得结论,化简代数式213⨯+224⨯+235⨯+…+2(2)n n +(n ≥3且为整数),其结果为__________.【答案】2354(1)(2)n nn n +++ .【解析】根据题目中所给的规律可得,原式=12222(...)2132435(2)n n ++++⨯⨯⨯+ =111111111(1...)23243512n n n -+-+-+-+-++=111113(1)(2)2(2)2(1)(1)221222(1)(2)n n n n n n n n ++-+-++--=⨯++++=2354(1)(2)n n n n +++ . 三、解答题:本大题共6个小题,满分60分. 19.(本小题满分8分)(1)计算:(a -b )(a 2+ab +b 2)(2)利用所学知识以及(1)所得等式,化简代数式332222222m n m n m mn n m mn n --÷++++. 【答案】(1)a 3-b 3;(2)m +n . 【解析】20.(本小题满分9分) 根据要求,解答下列问题. (1)根据要求,解答下列问题.①方程x 2-2x +1=0的解为________________________; ②方程x 2-3x +2=0的解为________________________; ③方程x 2-4x +3=0的解为________________________; …………(2)根据以上方程特征及其解的特征,请猜想:①方程x 2-9x +8=0的解为________________________; ②关于x 的方程________________________的解为x 1=1,x 2=n . (3)请用配方法解方程x 2-9x +8=0,以验证猜想结论的正确性.【答案】(1)①x1=1,x2=1;②x1=1,x2=2;③x1=1,x2=3.(2)①x1=1,x2=8,②x2-(1+n)x+n=0;(3)x1=1,x2=8.【解析】试题分析:(1)观察这些方程可得,方程的共同特征为二次项系数均为1,一次性系数分别为-2、-3、-4,常数项分别为1,2,3.解的特征:一个解为1,另一个解分别是1、2、3、4、…,由此写出答案即可;(2)根据(1)的方法直接写出答案即可;(3)用配方法解方程即可.(3)x2-9x+8=0x2-9x=-8x2-9x+814=-8+814(x-92)2=494∴x-92=±72.∴x1=1,x2=8.21.(本小题满分9分)为了考察甲、乙两种成熟期小麦的株高长势状况,现从中各随机抽取6株,并测得它们的株高(单位:cm)如下表所示:甲63 66 63 61 64 61乙63 65 60 63 64 63(1)请分别计算表内两组数据的方差,并借此比较哪种小麦的株高长势比较整齐?(2)现将进行两种小麦优良品种杂交试验,需从表内的甲、乙两种小麦中,各随机抽取一株进行配对,以预估整体配对状况.请你用列表法或画树状图的方法,求所抽取的两株配对小麦株高恰好都等于各自平均株高的概率.【答案】(1) 乙种小麦长势整齐;(2)16.【解析】试题分析:(1)先分别计算出这两组数据的平均数,再利用方差公式分别求得这两组数据的方差,比较即可得答案;(2)列表(或画树状图)求得所有等可能的结果,利用概率公式求得所抽取的两株配对小麦株高恰好都等于各自平均株高的概率即可.(2)列表如下63 65 60 63 64 6363 (63,63)(63,65)(63,60)(63,63)(63,64)(63,63)66 (66,63)(66,65)(66,60)(66,63)(66,64)(66,63)63 (63,63)(63,65)(63,60)(63,63)(63,64)(63,63)61 (61,63)(61,65)(61,60)(61,63)(61,64)(61,63)64 (64,63)(64,65)(64,60)(64,63)(64,64)(64,63)61 (61,63)(61,65)(61,60)(61,63)(61,64)(61,63)∴共有36种情况,其中小麦株高恰好都等于各自平均株高(记为事件A)有6种.∴P(A)=16.22.(本小题满分10分)如图,在□ABCD中,以点A为圆心,AB长为半径画弧交AD于点F;再分别以点B、F为圆心,大于12BF的相同长为半径画弧,两弧交于点P;连接AP并延长交BC于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证四边形ABEF是菱形;(2)若菱形ABEF的周长为16,AE=3C的大小.AB EF DCP【答案】(1)详见解析;(2)60°.【解析】试题解析:(1)由作图过程可知,AB=AF,AE平分∠BA D.∴∠BAE=∠EAF.∵四边形ABCD为平行四边形,∴BC∥A D.∴∠AEB=∠EAF.∴∠BAE=∠AEB,∴AB=BE.∴BE=AF.∴四边形ABEF为平行四边形.∴四边形ABEF为菱形.(2)连接BF,∵四边形ABEF为菱形,∴BF与AE互相垂直平分,∠BAE=∠FAE.∴OA=12AE=23.∵菱形ABEF的周长为16,∴AF=4.∴cos∠OAF=OAAF3.∴∠OAF=30°,∴∠BAF=60°.∵四边形ABCD为平行四边形,∴∠C=∠BAD=60°.23.(本小题满分10分)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D;连接BD,过点D作直线DM,使∠BDM=∠DA C.(1)求证:直线DM是⊙O的切线;(2)求证:DE2=DF·D A.【答案】详见解析.【解析】试题解析:证明:(1)如图1,连接DO,并延长交⊙O于点G,连接BG;∵点E是△ABC的内心,∴AD平分∠BAC,∴∠BAD=∠DA C.∵∠G=∠BAD,∴∠MDB=∠G,∵DG为⊙O的直径,∴∠GBD=90°,∴∠G+∠BDG=90°.∴∠MDB+∠BDG=90°.∴直线DM是⊙O的切线;(2)如图2,连接BE.∵点E是△ABC的内心,∴∠ABE=∠CBE,∠BAD=∠CA D.∵∠EBD=∠CBE+∠CBD,∠BED=∠ABE+∠BAD,∠CBD=∠CA D.24.(本小题满分14分)如图,直线y=kx+b(k、b为常数)分别与x轴、y轴交于点A(-4,0)、B(0,3),抛物线y=-x2+2x+1与y轴交于点C.(1)求直线y=kx+b的解析式;(2)若点P(x,y)是抛物线y=-x2+2x+1上的任意一点,设点P到直线AB的距离为d,求d关于x的函数解析式,并求d取最小值时点P的坐标;(3)若点E在抛物线y=-x2+2x+1的对称轴上移动,点F在直线AB上移动,求CE +EF的最小值.【答案】(1) y=34x+3;(2)P(58,11964);(3)145.【解析】试题分析:(1)将A、B两点坐标代入y=kx+b中,求出k、b的值;(2)作出点P到直线AB的距离后,由于∠AHC=90°,考虑构造“K形”相似,得到△MAH、△OBA、△NHP三个三角形两两相似,三边之比都是3∶4∶5.由“345NH CN CH ==”可得23(3)(21)4345m x x x m d +--++-==,整理可得d 关于x 的二次函数,配方可求出d 的最小值;(3)如果点C 关于直线x =1的对称点C ′,根据对称性可知,CE =C′E .当C ′F ⊥AB 时,CE +EF 最小.试题解析:解:(1)∵y =kx +b 经过A (-4,0)、B (0,3),∴403k b b -+=⎧⎨=⎩,解得k =34,b =3. ∴y =34x +3. (2)过点P 作PH ⊥AB 于点H ,过点H 作x 轴的平行线MN ,分别过点A 、P 作MN 的垂线段,垂足分别为M 、N .(3)作点C 关于直线x =1的对称点C ′,过点C ′作C ′F ⊥AB 于F .过点F 作JK ∥x 轴,,分别过点A 、C ′作AJ ⊥JK 于点J ,C ′K ⊥JK 于点K .则C ′(2,1) 学&科网设F(m,34m+3)∴CE+EF的最小值=C′E=145.。

山东省潍坊市2017年中考数学真题试题(含答案)

山东省潍坊市2017年中考数学真题试题(含答案)

秘密★启用前 试卷类型:A2017年潍坊市初中学业水平考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第I 卷为选择题,36分;第Ⅱ卷为非选择题,84分;共4页,120分.考试时间为120分钟.2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚.所有答案都必须涂、写在答 题卡相应位置,答在本试卷上一律无效.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均记0分) 1.下列计算,正确的是( ).A.623a a a =⨯ B.33a a a =÷ C.422a a a =+ D.422a a =)( 2.如图所示的几何体,其俯视图是( ).3.可燃冰,学名叫“天然气水合物”,是一种高效清洁、储量巨大的新能源,据报道,仅我国可燃冰预测远景资源量就超过了1000亿吨油当量.将1000亿用科学记数法可表示为( ).A.3101⨯ B.8101000⨯ C.11101⨯ D.14101⨯4.小莹和小博士下棋,小莹执圆子,小博士执方子.如图,棋盘中心方子的位置用()0,1-表示,右下角方子的位置用()1,0-表示.小莹将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.她放的位置是( ).A.()1,2-B.()1,1-C.()2,1-D.()2,1--5.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A.B 与CB.C 与D C、E 与F D、A 与B6.如图,︒=∠90BCD ,DE AB //,则α∠与β∠满足( )A. ︒=∠+∠180βαB.︒=∠-∠90αβC.αβ∠=∠3D.︒=∠+∠90βα7.甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次、甲、乙两人的成绩如表所示,丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数和方差两个因素分析,应选( ).甲 乙 平均数 9 8 方差11A.甲B. 乙C. 丙D. 丁 8.一次函数b ax y +=与反比例函数xba y -=,其中0<ab ,b a 、为常数,它们在同一坐标系中的图象可以是( ).9.若代数式12--x x 有意义,则实数x 的取值范围是( ). A.1≥x B.2≥x C.1>x D.2>x10.如图,四边形ABCD 为⊙O 的内接四边形.延长AB 与DC 相交于点G ,CD AO ⊥,垂足为E ,连接BD ,︒=∠50GBC ,则DBC ∠的度数为( ). A.50° B.60° C.80° D.85°11.定义[]x 表示不超过实数x 的最大整数,如[1.8]=1,[-1.4]=-2,[-3]=-3.函数的图象如图所示,则方程[]221x x =的解为( ). A.0或2 B.0或2C.1或2-D.2或2-12.点C A 、为半径是3的圆周上两点,点B 为C A的中点,以线段BA 、BC 为邻边作菱形ABCD ,顶点D 恰在该圆直径的三等分点上,则该菱形的边长为( ).A.5或22B.5或32C.6或22D.6或32第Ⅱ卷(非选择题 共84分)说明:将第Ⅱ卷答案用0.5mm 的黑色签字笔答在答题卡的相应位置上.二、填空题(本大题共6小题,共18分,只要求填写最后结果,每小题填对得3分)13.计算:=--÷--12)111(2x x x . 14.因式分解:=-+-)2(22x x x .15.如图,在ABC ∆中,AC AB ≠,E D 、分别为边AB 、AC 上的点,AD AC 3=,AE AB 3=,点F 为BC 边上一点,添加一个条件: ,可以使得FDB ∆与ADE ∆相似.(只需写出一个)16.已知关于x 的一元二次方程0122=+-x kx 有实数根,则k 的取值范围是 .17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n 个图中正方形和等边三角形的个数之和为 个.18.如图,将一张矩形纸片ABCD 的边BC 斜着向AD 边对折,使点B 落在D 上,记为B ',折痕为CE ;再将CD 边斜向下对折,使点D 落在C B '上,记为D ',折痕为CG ,2=''D B ,BC BE 31=.则矩形纸片ABCD 的面积为 .三、解答题(本大题共7小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤) 19.(本题满分8分)某校为了解九年级男同学的体育考试准备情况,随机抽取部分男同学进行了1000米跑测试.按照成绩分为优秀、良好、合格与不合格四个等级.学校绘制了如下不完整的统计图.(1)根据给出的信息,补全两幅统计图;(2)该校九年级有600名男生,请估计成绩未达到良好有多少名?(3)某班甲、乙两位成绩优秀的同学被选中参加即将举行的学校运动会1000米比赛,预赛分为A、B、C 三组进行,选手由抽签确定分组.甲、乙两人恰好分在同一组的概率是多少?20.(本题满分8分)如图,某数学兴趣小组要测量一栋五层居民楼CD 的高度.该楼底层为车库,高2.5米;上面五层居住,每层高度相等.测角仪支架离地1.5米,在A 处测得五楼顶部点D 的仰角为︒60,在B 处测得四楼顶部点E 的仰角为︒30,14=AB 米.求居民楼的高度(精确到0.1米,参考数据:3≈1.73). 21.(本题满分8分)某蔬菜加工公司先后两批次收购蒜薹(tai)共100吨.第一批蒜薹价格为4000元/吨;因蒜薹大量上市,第二批价格跌至1000元/吨,这两批蒜薹共用去16万元. (1)求两批次购进蒜薹各多少吨? (2)公司收购后对蒜薹进行加工,分为粗加工和精加工两种粗加工每吨利润400元,精加工每吨利润1000元.要求精加工数量不多于粗加工数量的三倍.为获得最大利润,精加工数量应为多少吨?最大利润是多少?22.(本题满分8分)如图,AB 为半圆O 的直径,AC 是⊙O 的一条弦,D 为C B的中点,作AC DE ⊥,交B 的延长线于点F ,连接DA . (1)求证:EF 为半圆O 的切线;(2)若DA =DF =63,求阴影区域的面积.(结果保留根号和π)23.(本题满分9分)工人师傅用一块长为10dm ,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形,(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为212dm 时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少? 24.(本题满分12分)边长为6的等边ABC ∆中,点D 、E 分别在AC 、BC 边上, AB DE //, 32=EC .(l)如图1,将DEC ∆沿射线EC 方向平移,得到C E D '''∆,边E D ''与AC 的交点为M ,边D C ''与C AC '∠的角平分线交于点N .当C C '多大时,四边形D MCN '为菱形?并说明理由. (2)如图2,将DEC ∆绕点C 旋转α(︒<<︒3600α),得到C E D ''∆,连接D A '、E B ',边E D ''的中点为P .①在旋转过程中,D A '和E B '有怎样的数量关系?并说明理由. ②连接AP ,当AP 最大时,求D A '的值.(结果保留根号) 25.(本题满分13分)如图1,抛物线c bx ax y ++=2经过平行四边形ABCD 的顶点)30(,A 、)01(,-B 、)32(,D ,抛物线与x 轴的另一交点为E .经过点E 的直线l 将平行四边形ABCD 分割为面积相等的两部分,与抛物线交于另一点P .点P 为直线l 上方抛物线上一动点,设点P 的横坐标为t .(1)求抛物线的解析式;(2)当t 何值时,PFE ∆的面积最大?并求最大值的立方根;(3)是否存在点P 使PAE ∆为直角三角形?若存在,求出t 的值;若不存在,说明理由.。

2017年山东省聊城市中考数学试卷含答案解析

2017年山东省聊城市中考数学试卷含答案解析

2017年山东省聊城市中考数学试卷一、选择题(本大题共12个小题,每小题3分,共36分)1.64的立方根是()A.4B.8C.±4D.±82.在Rt△ABC中,cosA=,那么sinA的值是()A.B.C.D.3.下列计算错误的是()A.=4B.32×3﹣1=3C.20÷2﹣2=D.(﹣3×102)3=﹣2.7×1074.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC5.纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2﹣13当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时6.如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()A.B.C.D.7.如果解关于x的分式方程﹣=1时出现增根,那么m的值为()A.﹣2B.2C.4D.﹣48.计算(5﹣2)÷(﹣)的结果为()A.5B.﹣5C.7D.﹣79.如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个10.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元C.29元D.34.5元11.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′12.端午节前夕,在东昌湖举行第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是()A.乙队比甲队提前0.25min到达终点B.当乙队划行110m时,此时落后甲队15mC.0.5min后,乙队比甲队每分钟快40mD.自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min二、填空题(每小题3分,共15分)13.因式分解:2x2﹣32x4=.14.已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为.15.不等式组的解集是.16.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.17.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为.三、解答题(本题共8个小题,满分69分)18.先化简,再求值:2﹣÷,其中x=3,y=﹣4.19.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.20.为了绿化环境,育英中学八年级三班同学都积极参加植树活动,今年植树节时,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)八年级三班共有多少名同学?(2)条形统计图中,m=,n=.(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.21.耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B两点的距离(精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)22.在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A 乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?23.如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.24.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.25.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P 的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?2017年山东省聊城市中考数学试卷参考答案与试题解析一、选择题(本大题共12个小题,每小题3分,共36分)1.64的立方根是()A.4B.8C.±4D.±8【考点】24:立方根.【分析】如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.【解答】解:∵4的立方是64,∴64的立方根是4.故选A.2.在Rt△ABC中,cosA=,那么sinA的值是()A.B.C.D.【考点】T3:同角三角函数的关系;T5:特殊角的三角函数值.【分析】利用同角三角函数间的基本关系求出sinA的值即可.【解答】解:∵Rt△ABC中,cosA=,∴sinA==,故选B3.下列计算错误的是()A.=4B.32×3﹣1=3C.20÷2﹣2=D.(﹣3×102)3=﹣2.7×107【考点】47:幂的乘方与积的乘方;6E:零指数幂;6F:负整数指数幂.【分析】根据幂的乘方和积的乘方以及零指数幂和负指数幂进行计算即可.【解答】解:A、=4,正确,故A不合题意;B、32×3﹣1=3,正确,故B不合题意;C、20÷2﹣2=4,不正确,故C合题意;D、(﹣3×102)3=﹣2.7×107,正确,故D不合题意;故选C.4.如图,△ABC中,DE∥BC,EF∥AB,要判定四边形DBFE是菱形,还需要添加的条件是()A.AB=AC B.AD=BD C.BE⊥AC D.BE平分∠ABC【考点】L9:菱形的判定.【分析】当BE平分∠ABE时,四边形DBFE是菱形,可知先证明四边形BDEF是平行四边形,再证明BD=DE即可解决问题.【解答】解:当BE平分∠ABE时,四边形DBFE是菱形,理由:∵DE∥BC,∴∠DEB=∠EBC,∵∠EBC=∠EBD,∴∠EBD=∠DEB,∴BD=DE,∵DE∥BC,EF∥AB,∴四边形DBEF是平行四边形,∵BD=DE,∴四边形DBEF是菱形.其余选项均无法判断四边形DBEF是菱形,故选D.5.纽约、悉尼与北京时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数):城市悉尼纽约时差/时+2﹣13当北京6月15日23时,悉尼、纽约的时间分别是()A.6月16日1时;6月15日10时B.6月16日1时;6月14日10时C.6月15日21时;6月15日10时D.6月15日21时;6月16日12时【考点】11:正数和负数.【分析】由统计表得出:悉尼时间比北京时间早2小时,悉尼比北京的时间要早2个小时,也就是6月16日1时.纽约比北京时间要晚13个小时,也就是6月15日10时.【解答】解:悉尼的时间是:6月15日23时+2小时=6月16日1时,纽约时间是:6月15日23时﹣13小时=6月15日10时.故选:A.6.如图是由若干小正方体组成的几何体的俯视图,小正方形中的数字表示该位置小正方体的个数,这个几何体的主视图是()A.B.C.D.【考点】U3:由三视图判断几何体;U2:简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一列有3个正方形,第二列有2个正方形,第三列有1个正方形..故选:C.7.如果解关于x的分式方程﹣=1时出现增根,那么m的值为()A.﹣2B.2C.4D.﹣4【考点】B5:分式方程的增根.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,确定可能的增根;然后代入化为整式方程的方程求解,即可得到正确的答案.【解答】解:﹣=1,去分母,方程两边同时乘以x﹣2,得:m+2x=x﹣2,由分母可知,分式方程的增根可能是2,当x=2时,m+4=2﹣2,m=﹣4,故选D.8.计算(5﹣2)÷(﹣)的结果为()A.5B.﹣5C.7D.﹣7【考点】79:二次根式的混合运算.【分析】先把二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:原式=(﹣6)÷(﹣)=(﹣5)÷(﹣)=5.故选A.9.如图是由8个全等的矩形组成的大正方形,线段AB的端点都在小矩形的顶点上,如果点P是某个小矩形的顶点,连接PA、PB,那么使△ABP为等腰直角三角形的点P的个数是()A.2个B.3个C.4个D.5个【考点】KW:等腰直角三角形.【分析】根据等腰直角三角形的判定即可得到结论.【解答】解:如图所示,使△ABP为等腰直角三角形的点P的个数是3,故选B.10.为了满足顾客的需求,某商场将5kg奶糖,3kg酥心糖和2kg水果糖混合成什锦糖出售.已知奶糖的售价为每千克40元,酥心糖为每千克20元,水果糖为每千克15元,混合后什锦糖的售价应为每千克()A.25元B.28.5元C.29元D.34.5元【考点】W2:加权平均数.【分析】先求出买5kg奶糖,3kg酥心糖和2kg水果糖的总钱数,再除以总的斤数,即可得出混合后什锦糖的售价.【解答】解:根据题意得:(40×5+20×3+15×2)÷(5+3+2)=29(元),答:混合后什锦糖的售价应为每千克29元.故选C.11.如图,将△ABC绕点C顺时针旋转,使点B落在AB边上点B′处,此时,点A的对应点A′恰好落在BC边的延长线上,下列结论错误的()A.∠BCB′=∠ACA′B.∠ACB=2∠BC.∠B′CA=∠B′AC D.B′C平分∠BB′A′【考点】R2:旋转的性质.【分析】根据旋转的性质得到∠BCB′=∠ACA′,故A正确,根据等腰三角形的性质得到∠B=∠BB'C,根据三角形的外角的性质得到∠A'CB'=2∠B,等量代换得到∠ACB=2∠B,故B正确;等量代换得到∠A′B′C=∠BB′C,于是得到B′C平分∠BB′A′,故D正确.【解答】解:根据旋转的性质得,∠BCB'和∠ACA'都是旋转角,则∠BCB′=∠ACA′,故A正确,∵CB=CB',∴∠B=∠BB'C,又∵∠A'CB'=∠B+∠BB'C,∴∠A'CB'=2∠B,又∵∠ACB=∠A'CB',∴∠ACB=2∠B,故B正确;∵∠A′B′C=∠B,∴∠A′B′C=∠BB′C,∴B′C平分∠BB′A′,故D正确;故选C.12.端午节前夕,在东昌湖举行第七届全民健身运动会龙舟比赛中,甲、乙两队在500米的赛道上,所划行的路程y(m)与时间x(min)之间的函数关系如图所示,下列说法错误的是()A.乙队比甲队提前0.25min到达终点B.当乙队划行110m时,此时落后甲队15mC.0.5min后,乙队比甲队每分钟快40mD.自1.5min开始,甲队若要与乙队同时到达终点,甲队的速度需要提高到255m/min【考点】E6:函数的图象.【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,根据图象上特殊点的意义即可求出答案.【解答】解:A、由横坐标看出乙队比甲队提前0.25min到达终点,故A不符合题意;B、乙AB段的解析式为y=240x﹣40,当y=110时,x=;甲的解析式为y=200x,当x=时,y=125,当乙队划行110m时,此时落后甲队15m,故B不符合题意;C、乙AB段的解析式为y=240x﹣40乙的速度是240m/min;甲的解析式为y=200x,甲的速度是200m/min,0.5min后,乙队比甲队每分钟快40m,故C不符合题意;D、甲的解析式为y=200x,当x=1.5时,y=300,甲乙同时到达÷(2.25﹣1.5)=266m/min,故D符合题意;故选:D.二、填空题(每小题3分,共15分)13.因式分解:2x2﹣32x4=2x2(1+4x)(1﹣4x).【考点】55:提公因式法与公式法的综合运用.【分析】此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:2x2﹣32x4=2x2(1﹣16x2)=2x2(1+4x)(1﹣4x).故答案为:2x2(1+4x)(1﹣4x).14.已知圆锥形工件的底面直径是40cm,母线长30cm,其侧面展开图圆心角的度数为240°.【考点】MP:圆锥的计算.【分析】设圆锥的侧面展开图的圆心角的度数为n°,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到40π=,然后解方程即可.【解答】解:设圆锥的侧面展开图的圆心角的度数为n°,根据题意得40π=,解得n=240.故答案为240°.15.不等式组的解集是4<x≤5.【考点】CB:解一元一次不等式组.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≤5,解不等式②得:x>4,∴不等式组的解集为4<x≤5,故答案为:4<x≤5.16.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤3,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.【考点】X6:列表法与树状图法;AA:根的判别式.【分析】首先确定m、n的值,推出有序整数(m,n)共有:3×7=21(种),由方程x2+nx+m=0有两个相等实数根,则需:△=n2﹣4m=0,有(0,0),(1,2),(1,﹣2)三种可能,由此即可解决问题、【解答】解:m=0,±1,n=0,±1,±2,±3∴有序整数(m,n)共有:3×7=21(种),∵方程x2+nx+m=0有两个相等实数根,则需:△=n2﹣4m=0,有(0,0),(1,2),(1,﹣2)三种可能,∴关于x的方程x2+nx+m=0有两个相等实数根的概率是=,故答案为.17.如图,在平面直角坐标系中,直线l的函数表达式为y=x,点O1的坐标为(1,0),以O1为圆心,O1O为半径画圆,交直线l于点P1,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交直线l于点P2,交x轴正半轴于点O3,以O3为圆心,O3O为半径画圆,交直线l于点P3,交x轴正半轴于点O4;…按此做法进行下去,其中的长为22015π..【考点】MN:弧长的计算;F8:一次函数图象上点的坐标特征.【分析】连接P1O1,P2O2,P3O3,易求得P n O n垂直于x轴,可得为圆的周长,再找出圆半径的规律即可解题.【解答】解:连接P1O1,P2O2,P3O3…∵P1是⊙O2上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,P n O n垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO n=2n﹣1,∴=•2π•OO n=π•2n﹣1=2n﹣2π,当n=2017时,=22015π.故答案为22015π.三、解答题(本题共8个小题,满分69分)18.先化简,再求值:2﹣÷,其中x=3,y=﹣4.【考点】6D:分式的化简求值.【分析】根据分式的除法和减法可以化简题目中的式子,然后将x、y的值代入即可解答本题.【解答】解:2﹣÷=2﹣=2﹣===,当x=3,y=﹣4时,原式=.19.如图,已知AB∥DE,AB=DE,BE=CF,求证:AC∥DF.【考点】KD:全等三角形的判定与性质.【分析】首先由BE=CF可以得到BC=EF,然后利用边边边证明△ABC≌△DEF,最后利用全等三角形的性质和平行线的判定即可解决问题.【解答】证明:∵AB∥CD,∴∠ABC=∠DEF,又∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC和△DEF中∴△ABC≌△DEF(SAS),∴∠ACB=∠DFE,∴AC∥DF.20.为了绿化环境,育英中学八年级三班同学都积极参加植树活动,今年植树节时,该班同学植树情况的部分数据如图所示,请根据统计图信息,回答下列问题:(1)八年级三班共有多少名同学?(2)条形统计图中,m=7,n=10.(3)扇形统计图中,试计算植树2棵的人数所对应的扇形圆心角的度数.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)根据植4株的有11人,所占百分比为22%,求出总人数;(2)根据植树5棵人数所占的比例来求n的值;用总人数减去其它植树的人数,就是m的值,从而补全统计图;(3)根据植树2棵的人数所占比例,即可得出圆心角的比例相同,即可求出圆心角的度数.【解答】解:(1)由两图可知,植树4棵的人数是11人,占全班人数的22%,所以八年级三班共有人数为:11÷22%=50(人).(2)由扇形统计图可知,植树5棵人数占全班人数的14%,所以n=50×14%=7(人).m=50﹣(4+18+11+7)=10(人).故答案是:7;10;(3)所求扇形圆心角的度数为:360×=72°.21.耸立在临清市城北大运河东岸的舍利宝塔,是“运河四大名塔”之一(如图1).数学兴趣小组的小亮同学在塔上观景点P处,利用测角仪测得运河两岸上的A,B两点的俯角分别为17.9°,22°,并测得塔底点C到点B的距离为142米(A、B、C在同一直线上,如图2),求运河两岸上的A、B两点的距离(精确到1米).(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin17.9°≈0.31,cos17.9°≈0.95,tan17.9°≈0.32)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【分析】在Rt△PBC中,求出BC,在Rt△PAC中,求出AC,根据AB=AC﹣BC计算即可.【解答】解:根据题意,BC=142米,∠PBC=22°,∠PAC=17.9°,在Rt△PBC中,tan∠PBC=,∴PC=BCtan∠PBC=142•tan22°,在Rt△PAC中,tan∠PAC=,∴AC==≈≈177.5,∴AB=AC﹣BC=177.5﹣142≈36米.答:运河两岸上的A、B两点的距离为36米.22.在推进城乡义务教育均衡发展工作中,我市某区政府通过公开招标的方式为辖区内全部乡镇中学采购了某型号的学生用电脑和教师用笔记本电脑,其中,A 乡镇中学更新学生用电脑110台和教师用笔记本电脑32台,共花费30.5万元;B乡镇中学更新学生电脑55台和教师用笔记本电脑24台,共花费17.65万元.(1)求该型号的学生用电脑和教师用笔记本电脑单价分别是多少万元?(2)经统计,全部乡镇中学需要购进的教师用笔记本电脑台数比购进的学生用电脑台数的少90台,在两种电脑的总费用不超过预算438万元的情况下,至多能购进的学生用电脑和教师用笔记本电脑各多少台?【考点】C9:一元一次不等式的应用;9A:二元一次方程组的应用.【分析】(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,根据题意列出方程组,求出方程组的解得到x与y的值,即可得到结果;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m﹣90)台,根据“两种电脑的总费用不超过预算438万元”列出不等式,求出不等式的解集.【解答】解:(1)设该型号的学生用电脑的单价为x万元,教师用笔记本电脑的单价为y万元,依题意得:,解得,经检验,方程组的解符合题意.答:该型号的学生用电脑的单价为0.19万元,教师用笔记本电脑的单价为0.3万元;(2)设能购进的学生用电脑m台,则能购进的教师用笔记本电脑为(m﹣90)台,依题意得:0.19m+0.3×(m﹣90)≤438,解得m≤1860.所以m﹣90=×1860﹣90=282(台).答:能购进的学生用电脑1860台,则能购进的教师用笔记本电脑为282台.23.如图,分别位于反比例函数y=,y=在第一象限图象上的两点A、B,与原点O在同一直线上,且=.(1)求反比例函数y=的表达式;(2)过点A作x轴的平行线交y=的图象于点C,连接BC,求△ABC的面积.【考点】G7:待定系数法求反比例函数解析式;G5:反比例函数系数k的几何意义.【分析】(1)作AE、BF分别垂直于x轴,垂足为E、F,根据△AOE∽△BOF,则设A的横坐标是m,则可利用m表示出A和B的坐标,利用待定系数法求得k 的值;(2)根据AC∥x轴,则可利用m表示出C的坐标,利用三角形的面积公式求解.【解答】解:(1)作AE、BF分别垂直于x轴,垂足为E、F.∵△AOE∽△BOF,又=,∴===.由点A在函数y=的图象上,设A的坐标是(m,),∴==,==,∴OF=3m,BF=,即B的坐标是(3m,).又点B在y=的图象上,∴=,解得k=9,则反比例函数y=的表达式是y=;(2)由(1)可知,A(m,),B(3m,),又已知过A作x轴的平行线交y=的图象于点C.∴C的纵坐标是,把y=代入y=得x=9m,∴C的坐标是(9m,),∴AC=9m﹣m=8m.=×8m×=8.∴S△ABC24.如图,⊙O是△ABC的外接圆,O点在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线,与AB的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△PBD∽△DCA;(3)当AB=6,AC=8时,求线段PB的长.【考点】S9:相似三角形的判定与性质;ME:切线的判定与性质.【分析】(1)由直径所对的圆周角为直角得到∠BAC为直角,再由AD为角平分线,得到一对角相等,根据同弧所对的圆心角等于圆周角的2倍及等量代换确定出∠DOC为直角,与平行线中的一条垂直,与另一条也垂直得到OD与PD垂直,即可得证;(2)由PD与BC平行,得到一对同位角相等,再由同弧所对的圆周角相等及等量代换得到∠P=∠ACD,根据同角的补角相等得到一对角相等,利用两对角相等的三角形相似即可得证;(3)由三角形ABC为直角三角形,利用勾股定理求出BC的长,再由OD垂直平分BC,得到DB=DC,根据(2)的相似,得比例,求出所求即可.【解答】(1)证明:∵圆心O在BC上,∴BC是圆O的直径,∴∠BAC=90°,连接OD,∵AD平分∠BAC,∴∠BAC=2∠DAC,∵∠DOC=2∠DAC,∴∠DOC=∠BAC=90°,即OD⊥BC,∵PD∥BC,∴OD⊥PD,∵OD为圆O的半径,∴PD是圆O的切线;(2)证明:∵PD∥BC,∴∠P=∠ABC,∵∠ABC=∠ADC,∴∠P=∠ADC,∵∠PBD+∠ABD=180°,∠ACD+∠ABD=180°,∴∠PBD=∠ACD,∴△PBD∽△DCA;(3)解:∵△ABC为直角三角形,∴BC2=AB2+AC2=62+82=100,∴BC=10,∵OD垂直平分BC,∴DB=DC,∵BC为圆O的直径,∴∠BDC=90°,在Rt△DBC中,DB2+DC2=BC2,即2DC2=BC2=100,∴DC=DB=5,∵△PBD∽△DCA,∴=,则PB===.25.如图,已知抛物线y=ax2+2x+c与y轴交于点A(0,6),与x轴交于点B(6,0),点P是线段AB上方抛物线上的一个动点.(1)求这条抛物线的表达式及其顶点坐标;(2)当点P移动到抛物线的什么位置时,使得∠PAB=75°,求出此时点P的坐标;(3)当点P从A点出发沿线段AB上方的抛物线向终点B移动,在移动中,点P 的横坐标以每秒1个单位长度的速度变动,与此同时点M以每秒1个单位长度的速度沿AO向终点O移动,点P,M移动到各自终点时停止,当两个移点移动t秒时,求四边形PAMB的面积S关于t的函数表达式,并求t为何值时,S有最大值,最大值是多少?【考点】HF:二次函数综合题.【分析】(1)由A、B坐标,利用待定系数法可求得抛物线的表达式,化为顶点式可求得顶点坐标;(2)过P作PC⊥y轴于点C,由条件可求得∠PAC=60°,可设AC=m,在Rt△PAC 中,可表示出PC的长,从而可用m表示出P点坐标,代入抛物线解析式可求得m的值,即可求得P点坐标;(3)用t可表示出P、M的坐标,过P作PE⊥x轴于点E,交AB于点F,则可表示出F的坐标,从而可用t表示出PF的长,从而可表示出△PAB的面积,利用S四边形PAMB=S△PAB+S△AMB,可得到S关于t的二次函数,利用二次函数的性质可求得其最大值.【解答】解:(1)根据题意,把A(0,6),B(6,0)代入抛物线解析式可得,解得,∴抛物线的表达式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴抛物线的顶点坐标为(2,8);(2)如图1,过P作PC⊥y轴于点C,∵OA=OB=6,∴∠OAB=45°,∴当∠PAB=75°时,∠PAC=60°,∴tan∠PAC=,即=,设AC=m,则PC=m,∴P(m,6+m),把P点坐标代入抛物线表达式可得6+m=﹣(m)2+2m+6,解得m=0或m=﹣,经检验,P(0,6)与点A重合,不合题意,舍去,∴所求的P点坐标为(4﹣,+);(3)当两个支点移动t秒时,则P(t,﹣t2+2t+6),M(0,6﹣t),如图2,作PE⊥x轴于点E,交AB于点F,则EF=EB=6﹣t,∴F(t,6﹣t),∴FP=t2+2t+6﹣(6﹣t)=﹣t2+3t,∵点A到PE的距离竽OE,点B到PE的距离等于BE,=FP•OE+FP•BE=FP•(OE+BE)=FP•OB=×(﹣t2+3t)×6=﹣t2+9t,∴S△PAB=AM•OB=×t×6=3t,且S△AMB=S△PAB+S△AMB=﹣t2+12t=﹣(t﹣4)2+24,∴S=S四边形PAMB∴当t=4时,S有最大值,最大值为24.2017年7月4日。

【精品】2017年山东省17地市中考数学真题全套解析

【精品】2017年山东省17地市中考数学真题全套解析

1甲地气温的方差等于 1乙地气温的方差等于 (!#因此乙地气 +
,
, ,40
温变化小较稳定!故答案选 +! -!"% 解析 连接 +) 如 解 图 由 条 件 可
+ +
'
,50 ,
#
>,5,0
+
',50
得 $+)' ' $+') ' $% '$"*3 $'+)'/"*又已知圆的半径 $+''+'
的横坐标
5(
-
# (
'#纵坐标
#
-
# (
'
/ (
所以 %1 5#
/ (
!
&!"% 解析 从上往下看时能看到的部分画成实线看不到的部 + !+! 1% % 解 析 由 条 件 设 点 3 - - 4# 列 方 程 -# 4
分要画成虚线!故选 )!
+
'!(% 解析 本题考查了平行线的性质和三角形外角和定理的应
!!#"!$ 山东烟台数学解析
!!"% 解析 实数分有理数和无理数其中有理数是整数与分数的
统称!无理数是无限不 循 环 小 数!槡&
'("
! (
都 是 有 理 数!故 答
案选 )!
+ + + +
!&
!
! #
% 解析 本题考查解直角三角形!由题意可知$$'0"3

2017年山东省济宁市中考数学试卷含答案解析版

2017年山东省济宁市中考数学试卷含答案解析版

2017年XX省XX市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•)的倒数是()A.6 B.﹣6 C.D.﹣【考点】17:倒数.【分析】根据乘积为1的两个数互为倒数,可得答案.【解答】解:的倒数是6.故选:A.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.2.(3分)(2017•)单项式9x m y3与单项式4x2y n是同类项,则m+n的值是()A.2 B.3 C.4 D.5【考点】34:同类项.【分析】根据同类项的定义,可得m,n的值,根据有理数的加法,可得答案.【解答】解:由题意,得m=2,n=3.m+n=2+3=5,故选:D.【点评】本题考查了同类项,利用同类项的定义得出m,n的值是解题关键.3.(3分)(2017•)下列图形中是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误.故选C.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)(2017•)某桑蚕丝的直径约为0.000016米,将0.000016用科学记数法表示是()A.1.6×10﹣4 B.1.6×10﹣5 C.1.6×10﹣6 D.16×10﹣4【考点】1J:科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000016=1.6×10﹣5;故选;B.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.(3分)(2017•)下列几何体中,主视图、俯视图、左视图都相同的是()A. B.C.D.【考点】U1:简单几何体的三视图.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:A、三棱柱的主视图是长方形,左视图是长方形,俯视图是三角形,故此选项不符合题意;B、球的主视图、左视图、俯视图都是半径相同的圆,故此选项符合题意;C、圆锥体的主视图是三角形,左视图是三角形,俯视图是圆及圆心,故此选项不符合题意;D、长方体的主视图是长方形,左视图是长方形,俯视图是长方形,但是每个长方形的长与宽不完全相同,故此选项不符合题意;故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.6.(3分)(2017•)若++1在实数范围内有意义,则x满足的条件是()A.x≥B.x≤C.x= D.x≠【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件即可求出x的值.【解答】解:由题意可知:解得:x=故选(C)【点评】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.7.(3分)(2017•)计算(a2)3+a2•a3﹣a2÷a﹣3,结果是()A.2a5﹣a B.2a5﹣C.a5D.a6【考点】47:幂的乘方与积的乘方;46:同底数幂的乘法;6F:负整数指数幂.【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则化简求出答案.【解答】解:(a2)3+a2•a3﹣a2÷a﹣3=a6+a5﹣a5=a6.故选:D.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘除运算,正确掌握运算法则是解题关键.8.(3分)(2017•)将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球,不放回;再随机摸出一球,两次摸出的球上的汉字组成“孔孟”的概率是()A.B.C.D.【考点】X6:列表法与树状图法.【专题】11 :计算题.【分析】画树状图展示所以12种等可能的结果数,再找出两次摸出的球上的汉字组成“孔孟”的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有12种等可能的结果数,其中两次摸出的球上的汉字组成“孔孟”的结果数为2,所以两次摸出的球上的汉字组成“孔孟”的概率==.故选B.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.9.(3分)(2017•)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,将Rt△ABC 绕点A逆时针旋转30°后得到Rt△ADE,点B经过的路径为,则图中阴影部分的面积是()A.B.C.﹣D.【考点】MO:扇形面积的计算;KW:等腰直角三角形;R2:旋转的性质.【分析】先根据勾股定理得到AB=,再根据扇形的面积公式计算出S扇形ABD,由旋转的性质得到Rt△ADE≌Rt△ACB,于是S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD.【解答】解:∵∠ACB=90°,AC=BC=1,∴AB=,∴S扇形ABD==.又∵Rt△ABC绕A点逆时针旋转30°后得到Rt△ADE,∴Rt△ADE≌Rt△ACB,∴S阴影部分=S△ADE+S扇形ABD﹣S△ABC=S扇形ABD=.故选:A.【点评】本题主要考查的是旋转的性质、扇形的面积公式,勾股定理的应用,将阴影部分的面积转化为扇形ABD的面积是解题的关键.10.(3分)(2017•)如图,A,B是半径为1的⊙O上两点,且OA⊥OB,点P 从点A出发,在⊙O上以每秒一个单位长度的速度匀速运动,回到点A运动结束,设运动时间为x(单位:s),弦BP的长为y,那么下列图象中可能表示y与x函数关系的是()A.①B.③C.②或④D.①或③【考点】E7:动点问题的函数图象.【分析】分两种情形讨论当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,由此即可解决问题.【解答】解:当点P顺时针旋转时,图象是③,当点P逆时针旋转时,图象是①,故答案为①③,故选D.【点评】本题考查动点问题函数图象、圆的有关知识,解题的关键理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.二、填空题(本大题共5小题,每小题3分,共15分)11.(3分)(2017•)分解因式:ma2+2mab+mb2= m(a+b)2.【考点】55:提公因式法与公式法的综合运用.【专题】11 :计算题;44 :因式分解.【分析】原式提取m,再利用完全平方公式分解即可.【解答】解:原式=m(a2+2ab+b2)=m(a+b)2,故答案为:m(a+b)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.(3分)(2017•)请写出一个过点(1,1),且与x轴无交点的函数解析式:y=(答案不唯一).【考点】G4:反比例函数的性质;F5:一次函数的性质;F6:正比例函数的性质;H3:二次函数的性质.【专题】26 :开放型.【分析】反比例函数的图象与坐标轴无交点.【解答】解:反比例函数图象与坐标轴无交点,且反比例函数系数k=1×1=1,所以反比例函数y=(答案不唯一)符合题意.故答案可以是:y=(答案不唯一).【点评】本题考查了反比例函数的性质,此题属于开放题,答案不唯一,若是二次函数也符合题意.13.(3分)(2017•)《孙子算经》是中国古代重要的数学著作,其中有一段文字的大意是:甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,甲、乙两人原来各有多少钱?设甲原有x文钱,乙原有y文钱,可列方程组是.【考点】99:由实际问题抽象出二元一次方程组.【分析】根据甲、乙两人各有若干钱,如果甲得到乙所有钱的一半,那么甲共有钱48文;如果乙得到甲所有钱的,那么乙也共有钱48文,可以列出方程组,从而可以解答本题.【解答】解:由题意可得,,故答案为:.【点评】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.14.(3分)(2017•)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限内交于点P(a,b),则a与b的数量关系是a+b=0 .【考点】N2:作图—基本作图;D5:坐标与图形性质;J5:点到直线的距离.【分析】根据作图方法可得点P在第二象限的角平分线上,根据角平分线的性质和第二象限内点的坐标符号,可得a与b的数量关系为互为相反数.【解答】解:根据作图方法可得,点P在第二象限角平分线上,∴点P到x轴、y轴的距离相等,即|b|=|a|,又∵点P(a,b)第二象限内,∴b=﹣a,即a+b=0,故答案为:a+b=0.【点评】此题主要考查了角平分线的性质以及坐标与图形的性质,解题时注意:第二象限内的点的横坐标为负,纵坐标为正,得出P点位置是解题关键.15.(3分)(2017•)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.【考点】MM:正多边形和圆.【分析】由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,由直角三角形的性质得出B1B2=A1B1=,A2B2=A1B2=B1B2=,由相似多边形的性质得出正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=,求出正六边形A1B1C1D1E1F1的面积=,得出正六边形A2B2C2D2E2F2的面积,同理得出正六边形A4B4C4D4E4F4的面积.【解答】解:由正六边形的性质得:∠A1B1B2=90°,∠B1A1B2=30°,A1A2=A2B2,∴B1B2=A1B1=,∴A2B2=A1B2=B1B2=,∵正六边形A1B1C1D1E1F1∽正六边形A2B2C2D2E2F2,∴正六边形A2B2C2D2E2F2的面积:正六边形A1B1C1D1E1F1的面积=()2=,∵正六边形A1B1C1D1E1F1的面积=6××1×=,∴正六边形A2B2C2D2E2F2的面积=×=,同理:正六边形A4B4C4D4E4F4的面积=()3×=;故答案为:.【点评】本题考查了正六边形的性质、相似多边形的性质、正六边形面积的计算等知识;熟练掌握正六边形的性质,由相似多边形的性质得出规律是关键.三、解答题(本大题共7小题,共55分)16.(5分)(2017•)解方程:=1﹣.【考点】B3:解分式方程.【专题】11 :计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.17.(7分)(2017•)为了参加学校举行的传统文化知识竞赛,某班进行了四次模拟训练,将成绩优秀的人数和优秀率绘制成如下两个不完整的统计图:请根据以上两图解答下列问题:(1)该班总人数是40 ;(2)根据计算,请你补全两个统计图;(3)观察补全后的统计图,写出一条你发现的结论.【考点】VC:条形统计图;VB:扇形统计图.【分析】(1)利用折线统计图结合条形统计图,利用优秀人数÷优秀率=总人数求出即可;(2)分别求出第四次模拟考试的优秀人数以及第三次的优秀率即可得出答案;(3)利用已知条形统计图以及折线统计图分析得出答案.【解答】解:(1)由题意可得:该班总人数是:22÷55%=40(人);故答案为:40;(2)由(1)得,第四次优秀的人数为:40×85%=34(人),第三次优秀率为:×100%=80%;如图所示:;(3)答案不唯一,如优秀人数逐渐增多,增大的幅度逐渐减小等.【点评】此题主要考查了条形统计图以及折线统计图,利用图形获取正确信息是解题关键.18.(7分)(2017•)某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=﹣x+60(30≤x≤60).设这种双肩包每天的销售利润为w元.(1)求w与x之间的函数解析式;(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?【考点】HE:二次函数的应用.【分析】(1)每天的销售利润W=每天的销售量×每件产品的利润;(2)根据配方法,可得答案;(3)根据自变量与函数值的对应关系,可得答案.【解答】解:(1)w=(x﹣30)•y=(﹣x+60)(x﹣30)=﹣x2+30x+60x﹣1800=﹣x2+90x﹣1800,w与x之间的函数解析式w=﹣x2+90x﹣1800;(2)根据题意得:w=﹣x2+90x﹣1800=﹣(x﹣45)2+225,∵﹣1<0,当x=45时,w有最大值,最大值是225.(3)当w=200时,﹣x2+90x﹣1800=200,解得x1=40,x2=50,∵50>48,x2=50不符合题意,舍,答:该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为40元.【点评】本题考查了二次函数的应用;得到每天的销售利润的关系式是解决本题的关键;利用配方法或公式法求得二次函数的最值问题是常用的解题方法.19.(8分)(2017•)如图,已知⊙O的直径AB=12,弦AC=10,D是的中点,过点D作DE⊥AC,交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.【考点】ME:切线的判定与性质;KQ:勾股定理;M2:垂径定理.【专题】11 :计算题;55A:与圆有关的位置关系.【分析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED 为矩形,求出FE的长,由AF+EF求出AE的长即可.【解答】(1)证明:连接OD,∵D为的中点,∴=,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠ADE=90°,∴∠AED=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=10,∴AF=CF=AC=5,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=12,∴FE=6,则AE=AF+FE=5+6=11.【点评】此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.20.(8分)(2017•)实验探究:(1)如图1,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展开;再一次折叠纸片,使点A落在EF上,并使折痕经过点B,得到折痕BM,同时得到线段BN,MN.请你观察图1,猜想∠MBN的度数是多少,并证明你的结论.(2)将图1中的三角形纸片BMN剪下,如图2,折叠该纸片,探究MN与BM 的数量关系,写出折叠方案,并结合方案证明你的结论.【考点】PB:翻折变换(折叠问题);LB:矩形的性质;P9:剪纸问题.【分析】(1)猜想:∠MBN=30°.只要证明△ABN是等边三角形即可;(2)结论:MN=BM.折纸方案:如图,折叠△BMN,使得点N落在BM上O 处,折痕为MP,连接OP.由折叠可知△MOP≌△MNP,只要证明△MOP≌△BOP,即可推出MO=BO=BM;【解答】解:(1)猜想:∠MBN=30°.理由:如图1中,连接AN,∵直线EF是AB的垂直平分线,∴NA=NB,由折叠可知,BN=AB,∴AB=BN=AN,∴△ABN是等边三角形,∴∠ABN=60°,∴NBM=∠ABM=∠ABN=30°.(2)结论:MN=BM.折纸方案:如图2中,折叠△BMN,使得点N落在BM上O处,折痕为MP,连接OP.理由:由折叠可知△MOP≌△MNP,∴MN=OM,∠OMP=∠NMP=∠OMN=30°=∠B,∠MOP=∠MNP=90°,∴∠BOP=∠MOP=90°,∵OP=OP,∴△MOP≌△BOP,∴MO=BO=BM,∴MN=BM.【点评】本题考查翻折变换、矩形的性质、剪纸问题、等边三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会理由翻折变换添加辅助线,属于中考常考题型.21.(9分)(2017•)已知函数y=mx2﹣(2m﹣5)x+m﹣2的图象与x轴有两个公共点.(1)求m的取值范围,并写出当m取范围内最大整数时函数的解析式;(2)题(1)中求得的函数记为C1,①当n≤x≤﹣1时,y的取值范围是1≤y≤﹣3n,求n的值;②函数C2:y=m(x﹣h)2+k的图象由函数C1的图象平移得到,其顶点P落在以原点为圆心,半径为的圆内或圆上,设函数C1的图象顶点为M,求点P与点M距离最大时函数C2的解析式.【考点】HF:二次函数综合题.【分析】(1)函数图形与x轴有两个公共点,则该函数为二次函数且△>0,故此可得到关于m的不等式组,从而可求得m的取值范围;(2)先求得抛物线的对称轴,当n≤x≤﹣1时,函数图象位于对称轴的左侧,y 随x的增大而减小,当当x=n时,y有最大值﹣3n,然后将x=n,y=﹣3n代入求解即可;(3)先求得点M的坐标,然后再求得当MP经过圆心时,PM有最大值,故此的解析式.可求得点P的坐标,从而可得到函数C2【解答】解:(1)∵函数图象与x轴有两个交点,∴m≠0且[﹣(2m﹣5)]2﹣4m(m﹣2)>0,解得:m<且m≠0.∵m为符合条件的最大整数,∴m=2.∴函数的解析式为y=2x2+x.(2)抛物线的对称轴为x=﹣=﹣.∵n≤x≤﹣1<﹣,a=2>0,∴当n≤x≤﹣1时,y随x的增大而减小.∴当x=n时,y=﹣3n.∴2n2+n=﹣3n,解得n=﹣2或n=0(舍去).∴n的值为﹣2.(3)∵y=2x2+x=2(x+)2﹣,∴M(﹣,﹣).如图所示:当点P在OM与⊙O的交点处时,PM有最大值.设直线OM的解析式为y=kx,将点M的坐标代入得:﹣k=﹣,解得:k=.∴OM的解析式为y=x.设点P的坐标为(x,x).由两点间的距离公式可知:OP==,解得:x=2或x=﹣2(舍去).∴点P的坐标为(2,1).的解析式为y=2(x﹣2)2+1.∴当点P与点M距离最大时函数C2【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用一元二次方程根的判别式,二次函数的图象和性质,勾股定理的应用,待定系数法求一次函数的解析式,找出PM取得最大值的条件是解题的关键.22.(11分)(2017•)定义:点P是△ABC内部或边上的点(顶点除外),在△PAB,△PBC,△PCA中,若至少有一个三角形与△ABC相似,则称点P是△ABC 的自相似点.例如:如图1,点P在△ABC的内部,∠PBC=∠A,∠PCB=∠ABC,则△BCP∽△ABC,故点P是△ABC的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M是曲线y=(x>0)上的任意一点,点N是x轴正半轴上的任意一点.(1)如图2,点P是OM上一点,∠ONP=∠M,试说明点P是△MON的自相似点;当点M的坐标是(,3),点N的坐标是(,0)时,求点P的坐标;(2)如图3,当点M的坐标是(3,),点N的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M和点N,使△MON无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【考点】GB:反比例函数综合题.【专题】16 :压轴题.【分析】(1)由∠ONP=∠M,∠NOP=∠MON,得出△NOP∽△MON,证出点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,求出∠AON=60°,由点M和N的坐标得出∠MNO=90°,由相似三角形的性质得出∠NPO=∠MNO=90°,在Rt△OPN中,由三角函数求出OP=,OD=,PD=,即可得出答案;(2)作MH⊥x轴于H,由勾股定理求出OM=2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①作PQ⊥x轴于Q,由相似点的性质得出PO=PN,OQ=ON=1,求出P的纵坐标即可;②求出MN==2,由相似三角形的性质得出,求出PN=,在求出P的横坐标即可;(3)证出OM=2=ON,∠MON=60°,得出△MON是等边三角形,由点P在△MON的内部,得出∠PON≠∠OMN,∠PNO≠∠MON,即可得出结论.【解答】解:(1)∵∠ONP=∠M,∠NOP=∠MON,∴△NOP∽△MON,∴点P是△MON的自相似点;过P作PD⊥x轴于D,则tan∠POD=,∴∠AON=60°,∵当点M的坐标是(,3),点N的坐标是(,0),∴∠MNO=90°,∵△NOP∽△MON,∴∠NPO=∠MNO=90°,在Rt△OPN中,OP=ONcos60°=,∴OD=OPcos60°=×=,PD=OP•sin60°=×=,∴P(,);(2)作MH⊥x轴于H,如图3所示:∵点M的坐标是(3,),点N的坐标是(2,0),∴OM==2,直线OM的解析式为y=x,ON=2,∠MOH=30°,分两种情况:①如图3所示:∵P是△MON的相似点,∴△PON∽△NOM,作PQ⊥x轴于Q,∴PO=PN,OQ=ON=1,∵P的横坐标为1,∴y=×1=,∴P(1,);②如图4所示:由勾股定理得:MN==2,∵P是△MON的相似点,∴△PNM∽△NOM,∴,即,解得:PN=,即P的纵坐标为,代入y=得:=x,解得:x=2,∴P(2,);综上所述:△MON的自相似点的坐标为(1,)或(2,);(3)存在点M和点N,使△MON无自相似点,M(,3),N(2,0);理由如下:∵M(,3),N(2,0),∴OM=2=ON,∠MON=60°,∴△MON是等边三角形,∵点P在△MON的内部,∴∠PON≠∠OMN,∠PNO≠∠MON,∴存在点M和点N,使△MON无自相似点.【点评】本题是反比例函数综合题目,考查了相似三角形的性质、相似点的判定与性质、三角函数、坐标与图形性质、勾股定理、等边三角形的判定与性质、直线解析式的确定等知识;本题综合性强,有一定难度,熟练掌握相似点的判定与性质是解决问题的关键.。

2017年山东淄博市中考数学试卷(含答案解析版)

2017年山东淄博市中考数学试卷(含答案解析版)
第 1 页(共 30 页)
3 5 1 1 A. B. C. D. 8 8 4 2 11. (4 分)小明做了一个数学实验:将一个圆柱形的空玻璃杯放入形状相同的
无水鱼缸内,看作一个容器,然后,小明对准玻璃杯口匀速注水,如图所示,在 注水过程中,杯底始终紧贴鱼缸底部,则下面可以近似地刻画出容器最高水位 h 与注水时间 t 之间的变化情况的是( )

6. (4 分)若 a+b=3,a2+b2=7,则 ab 等于( A.2 B.1 C.﹣2 D.﹣1

7. (4 分)将二次函数 y=x2+2x﹣1 的图象沿 x 轴向右平移 2 个单位长度,得到的 函数表达式是( ) C.y=(x﹣1)2+2 D.y=(x﹣1)2﹣2
A.y=(x+3)2﹣2 B.y=(x+3)2+2
A.
B.
C

D. 12. (4 分)如图,在 Rt△ABC 中,∠ABC=90°,AB=6,BC=8,∠BAC,∠ACB 的 平分线相交于点 E,过点 E 作 EF∥BC 交 AC 于点 F,则 EF 的长为( )
5 A. 2
B.
8 3
C.
10 3
D.
15 4
二、填空题(本大题共 5 小题,每小题 4 分,共 20 分) 13. (4 分)分解因式:2x3﹣8x= .
23. (9 分)如图,将矩形纸片 ABCD 沿直线 MN 折叠,顶点 B 恰好与 CD 边上的 动点 P 重合(点 P 不与点 C,D 重合) ,折痕为 MN,点 M,N 分别在边 AD,BC 上,连接 MB,MP,BP,BP 与 MN 相交于点 F. (1)求证:△BFN∽△BCP; (2)①在图 2 中,作出经过 M,D,P 三点的⊙O(要求保留作图痕迹,不写做 法) ; ②设 AB=4,随着点 P 在 CD 上的运动,若①中的⊙O 恰好与 BM,BC 同时相切, 求此时 DP 的长.

2017年山东省东营市中考数学试卷(解析版)

2017年山东省东营市中考数学试卷(解析版)

2017年山东省东营市中考数学试卷(解析版)2017年山东省东营市中考数学试卷一、选择题(本大题共 10小题,每小题 3分,共 30分)1.下列四个数中,最大的数是()A . 3B .C . 0D . π【分析】根据在数轴上表示的两个实数,右边的总比左边的大可得答案. 【解答】解:0<<3<π,故选:D .【点评】此题主要考查了实数的比较大小, 关键是掌握利用数轴也可以比较任意两个实数的大小, 即在数轴上表示的两个实数, 右边的总比左边的大, 在原点左侧,绝对值大的反而小.2.下列运算正确的是()A .(x ﹣ y ) 2=x2﹣ y 2B . |﹣ 2|=2﹣C . ﹣ =D . ﹣ (﹣ a+1) =a+1【分析】根据完全平方公式,二次根式的化简以及去括号的法则进行解答. 【解答】解:A 、原式 =x2﹣ 2xy+y2,故本选项错误;B 、原式 =2﹣ ,故本选项正确;C 、原式 =2﹣ ,故本选项错误;D 、原式 =a﹣ 1,故本选项错误;故选:B .【点评】本题综合考查了二次根式的加减法, 实数的性质, 完全平方公式以及去括号,属于基础题,难度不大.3.若 |x2﹣ 4x+4|与互为相反数,则 x+y的值为()A . 3B . 4C . 6D . 9【分析】根据相反数的定义得到 |x2﹣ 4x+4|+=0, 再根据非负数的性质得 x 2﹣ 4x+4=0, 2x ﹣ y ﹣ 3=0,然后利用配方法求出 x ,再求出 y ,最后计算它们的和即可.【解答】解:根据题意得 |x2﹣ 4x+4|+=0,1所以 |x2﹣ 4x+4|=0, =0,即(x ﹣ 2) 2=0, 2x ﹣ y ﹣ 3=0,所以 x=2, y=1,所以 x+y=3.故选 A .【点评】本题考查了解一元二次方程﹣配方法:将一元二次方程配成(x+m)2=n的形式, 再利用直接开平方法求解, 这种解一元二次方程的方法叫配方法. 也考查了非负数的性质.4.小明从家到学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,小明从家到学校行驶路程 s (m )与时间 t (min )的大致图象是()A .B .C .D .【分析】根据题意判断出 S 随 t 的变化趋势,然后再结合选项可得答案. 【解答】解:小明从家到学校,先匀速步行到车站,因此 S 随时间 t 的增长而增长, 等了几分钟后坐上了公交车,因此时间在增加, S 不增长,坐上了公交车, 公交车沿着公路匀速行驶一段时间后到达学校, 因此 S 又随时间 t 的增长而增长,故选:C .【点评】此题主要考查了函数图象, 关键是正确理解题意, 根据题意判断出两个变量的变化情况.5.已知a ∥ b ,一块含30°角的直角三角板如图所示放置,∠ 2=45°,则∠ 1等于()2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

菏泽市二O一七年初中学业水平考试(中考)
数学试题
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.213-⎛⎫ ⎪⎝⎭的相反数是( ) A .9 B .9- C .19 D .19
- 2.生物学家发现了一种病毒,其长度约为0.00000032mm ,数据0.00000032用科学记数法表示正确的是( )
A .73.210⨯
B .83.210⨯
C .73.210-⨯
D .8
3.210-⨯
3.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( ) A . B . C . D .
4.某兴趣小组为了解我市气温变化情况,记录了今年1月份连续6天的最低气温(单位:℃):
7,4,2,1,2,2----.关于这组数据,下列结论不正确的是( )
A .平均数是2-
B .中位数是2- C.众数是2- D .方差是7
5.如图,将t ABC ∆R 绕直角顶点C 顺时针旋转90o ,得到''A B C ∆,连接'AA ,若125∠=o
,则'BAA ∠的度数是( )
A .55o
B .60o C.65o D .70o
6.如图,函数x y 21-=与32+=ax y 的图象相交于点)2,(m A ,则关于x 的不等式32+>-ax x 的解集是( )
A .2>x
B .2<x C. 1->x D .1-<x
7.如图,矩形ABOC 的顶点A 的坐标为)5,4(-,D 是OB 的中点,E 是OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )
A .)34,0(
B .)35,0( C.)2,0( D .)310,
0( 8.一次函数b ax y +=和反比例函数x
c y =在同一个平面直角坐标系中的图象如图所示,则二次函数c bx ax y ++=2的图象可能是( )
A .
B .
C. D .
二、填空题(每题3分,满分18分,将答案填在答题纸上)
9.分解因式:=-x x 3________.
10.关于x 的一元二次方程06)1(22=-++-k k x x k 的一个根式0,则k 的值是_______.
11.菱形ABCD 中,ο60=∠A ,其周长为cm 24,则菱形的面积为____2cm .
12.一个扇形的圆心角为ο100,面积为215cm π,则此扇形的半径长为______.
13.直线)0(>=k kx y 与双曲线x y 6=交于)
,(11y x A 和),(22y x B 两点,则122193y x y x -的值为 .
14.如图,y AB ⊥轴,垂足为B ,将ABO ∆绕点A 逆时针旋转到11O AB ∆的位置,使点B 的对应点1B 落在直线x y 3
3-=上,再将11O AB ∆绕点1B 逆时针旋转到111O B A ∆的位置,使点1O 的对应点2O 落在直线x y 3
3-=上,依次进行下去......若点B 的坐标是)1,0(,则点12O 的纵坐标为 .
三、解答题 (本大题共10小题,共78分.解答应写出文字说明、证明过程或演算步骤.)
15.计算:)2
2131054520171----
o . 16.先化简,再求值: 231111x x x x -⎛⎫+÷ ⎪+-⎝⎭,其中x 是不等式组11210
x x x --⎧->⎪⎨⎪->⎩的整数解. 17.如图,E 是ABCD Y 的边AD 的中点,连接CE 并延长交BA 的延长线于F ,若6CD =,求BF 的长.
18.如图,某小区①号楼与○11号楼隔河相望,李明家住在①号楼,他很想知道○11号楼的高度,于是他做了一些测量.他先在B 点测得C 点的仰角为60°,然后到42米高的楼顶A 处,测得C 点的仰角为30°,请你帮李明计算○11号楼的高度CD .
19.列方程解应用题:
某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?
20.如图,一次函数y kx b =+与反比例函数a y x
=的图象在第一象限交于A 、B 两点,B 点的坐标为)2,3(,连接OA 、OB ,过B 作BD y ⊥轴,垂足为D ,交OA 于C ,若OC CA =.
(1)求一次函数和反比例函数的表达式;
(2)求△AOB 的面积.
21.今年5月,某大型商业集团随机抽取所属的部分商业连锁店进行评估,将抽取的各商业连锁店按照评估成绩分成了A 、B 、C 、D 四个等级,并绘制了如下不完整的扇形统计图和条形统计图.
根据以上信息,解答下列问题:
(1)本次评估随机抽取了多少家商业连锁店?
(2)请补充完整扇形统计图和条形统计图,并在图中标注相应数据;
(3)从A 、B 两个等级的商业连锁店中任选2家介绍营销经验,求其中至少有一家是A 等级的概率.
22.如图,AB 是⊙O 的直径,PB 与⊙O 相切于点B ,连接PA 交⊙O 于点C .连接BC .
(1)求证:CBP BAC ∠=∠;
(2)求证:PA PC PB ⋅=2;
(3)当3,6==CP AC 时,求PAB ∠sin 的值.
23.正方形ABCD 的边长为cm 6,点M E 、分别是线段AD BD 、上的动点,连接AE 并延长,交边BC 于F ,过M 作AF MN ⊥,垂足为H ,交边AB 于点N .
(1)如图1,若点M 与点D 重合,求证:MN AF =;
(2)如图2,若点M 从点D 出发,以s cm /1的速度沿DA 向点A 运动,同时点E 从点B 出发,以s cm /2的速度沿BD 向点D 运动,运动时间为ts .
①设ycm BF =,求y 关于t 的函数表达式;
②当AN BN 2=时,连接FN ,求FN 的长.
24.如图,在平面直角坐标系中,抛物线12++=bx ax y 交y 轴于点A ,交x 轴正半轴于点)0,4(B ,与过A 点的直线相交于另一点)2
5
,3(D ,过点D 作x DC ⊥轴,垂足为C .
(1)求抛物线的表达式;
(2)点P 在线段OC 上(不与点O 、C 重合),过P 作x PN ⊥轴,交直线AD 于M ,交抛物线于点N ,连接CM ,求PCM ∆面积的最大值;
(3)若P 是x 轴正半轴上的一动点,设OP 的长为t ,是否存在t ,使以点N D C M 、、、为顶点的四边形是平行四边形?若存在,求出t 的值;若不存在,请说明理由.。

相关文档
最新文档