高压直流输电 直流控制与保护
高压直流输电控制保护系统功能及应用
Fu nc t i o n a nd App l i c a t i o n o f H VDC Tr a n s mi s s i o n Co nt r o l a nd Pr o t e c t i o n S y s t e m
WE N B o , XI A Yo n g — j u n ,Z HANG Ka n — j u n , L I He n g — x u a n
t e c t i o n s y s t e m f r o m t he b a s i c c o mp os i t i o n a nd f u nc t i o n,a l l o c a t i o n,t he ke y t e c h no l og y a nd i t s wo r k s t a t us o f HVDC t r a ns mi s s i o n c o nt r o l a nd pr o t e c t i o n s ys t e m e t c ,a nd i t s c o nf i gu r a t i o n ha s be e n d i s —
以及控 制 系统本 身 的相关 信息 l _ E ] 。 控 制 系统采 用分 层分 布式 结构 , 完全 冗余 配置 ,
其 层次 结构 ( 如图 1 ) 分 为 三层 : 站 控层 、 极 控 制 层 和
换 流器 层 。
扩大至 3 9个 , 输 送 容量将 达 到 1 8 7 . 4 5 GW , 最 高 电
Vol I 37 № 3
J u n . 2 0 1 3
湖 北 电 力
箜 2 0 1 3 鲞 年6 箜 塑 月
高压 直 流 输 电控 制 保 护 系统 功 能及 应 用
特高压直流输电控制与保护技术的探讨
特高压直流输电控制与保护技术的探讨摘要:随着特高压大电网、交直流并网等领域的不断发展,直流输电技术在实际工程中得到了越来越多的应用。
本文主要基于对直流输电技术和换流技术的深入研究,并结合±800 kV特高压直流输电工程,对其分层冗余结构、控制和保护技术进行了较为系统的阐述,以期更好地确保特高压大电网及交直流并网安全稳定运行提供良好技术支撑。
关键词:特高压;直流输电工程;换流技术;控制和保护技术引言在我国电网发展中,特高压直流输电起着举足轻重的作用。
其中,控制与保护是其中的关键,其能保证传输电源的正常运行,并能有效地保证传输电源的安全。
±800 kV特高压直流每极均采用串联、母线区连接方式,各电极工作方式灵活、完整,这对保证其工作性能将能够发挥良好的辅助作用。
1 直流输电简介1.1 直流输电系统当前直流输电系统通常采用两端直流传输的方式,包括整流站、直流线路和逆变站。
1.2 换流技术换流站的关键部件为换流器,它包括一个或几个换流器,其电路都是三相换流桥,主要材料为晶闸阀。
其基本工作原理是:通过对桥式阀门的触发时间进行控制,从而实现对直流电压瞬时值、电阻上直流电流、直流传输功率的调整。
同时,对各个桥式阀门的晶闸管单元进行同一触发脉冲控制。
2 特高压直流输电的特点特高压直流输电的特点具体包括:①增加传送能力,增加传送距离。
②节约了线路走廊和变电所的空间。
③有利于联网,简化网络结构,降低故障率。
3 直流输电控制系统分层冗余结构UHVDC是指超过600 kV的直流输电系统,它的控制和保护系统是分层、分布式、全冗余的。
本文以±800 kV特高压直流工程为例,将其按控制等级划分为三个层次:运行人员控制层、过程控制层和现场控制层。
4 为满足特高压交直流系统动态性能要求的控制技术4.1 降低和避免直流对交流系统的不良影响由于换流技术的机制存在着两个主要的问题:谐波和无功。
传统的方法是,安装合适的容量和数量的直流滤波器/电容,并采用多脉动式变流器。
高压直流输电系统的电力电子保护
高压直流输电系统的电力电子保护高压直流输电(HVDC)系统作为一种有效的电力传输方式,已经得到广泛应用。
然而,由于输电系统中存在复杂的电力电子设备,存在着各种潜在的故障和故障原因,因此必须采取有效的电力电子保护措施,以确保系统的安全可靠运行。
本文将深入探讨高压直流输电系统的电力电子保护技术。
一、高压直流输电系统的概述高压直流输电系统是一种基于半导体器件的电力传输系统,在长距离电力传输中具有一些独特的优势。
与交流输电系统相比,HVDC系统可以实现更高的电压等级、更远的传输距离和更低的传输损耗。
同时,HVDC系统还可以实现交流系统无法做到的某些功能,如无功控制和电力质量调节。
然而,由于高压直流输电系统中存在着许多电力电子设备,如换流器、逆变器等,因此需要采取一系列的电力电子保护措施,以确保系统的正常运行。
二、高压直流输电系统的电力电子保护技术1. 过电压保护:过电压是高压直流输电系统中常见的故障之一,常常由于故障开关或刹车装置故障引起。
为了防止过电压引起的损坏,需要在系统中设置过电压保护装置,及时切断故障电路。
2. 过电流保护:过电流是高压直流输电系统中的一种常见问题,常见于系统发生短路或负载故障时。
过电流保护装置需要根据系统的负荷特性和电流传感器的特性进行合理设置,以确保在过电流事件发生时及时切断电路。
3. 温度保护:高压直流输电系统中的电力电子设备在长时间运行后容易产生过热现象,可能导致设备损坏甚至引发火灾。
为了保护设备的安全运行,需要通过温度传感器监测设备温度,并设置相应的温度保护装置,及时切断电路以防止设备过热。
4. 短路保护:短路是高压直流输电系统中潜在的故障之一,常见于电力电子设备内部电路短路或外部线路短路。
为了防止短路故障对系统造成损害,需要设置短路保护装置,及时切断短路电路。
5. 地故障保护:地故障是高压直流输电系统中的另一个常见问题,常发生在设备绝缘性能不良或外部绝缘损坏的情况下。
直流输电控制保护-保护概述
直流开关场电流差动保护组 直流滤波器保护组
直流极母线差动保护 直流中性母线差动保护 直流极差保护
电抗器过负荷保护 电容器不极引线与接地极保护区
双极中性线保护组 转换开关保护组 金属回线保护组 接地极引线保护组
交流开关场保护区
换流变差动保护组 换流变过应力保护组 换流变不平衡保护组 换流变本体保护组 交流开关场和交流滤波器保护组
对于双调谐滤波器,还应装设谐波过电流保护。
交流滤波器及并联电容器保护
在交流滤波器分组中发生过负载、接地故障或电 容器故障引起的保护跳闸,只应跳开此分组的断 路器,而过压保护动作则应跳开整组以及各分组 的断路器。
由于在交流滤波器中及在并联电容器组中都有大 量的电容器单元,少量的电容器单元故障对滤波 器特性的影响不大,往往并不需要立即切除相关 的滤波器分组,而可以根据损坏的电容器单元数 的多少,采取不同的保护措施。
不正常运行状态:电气元件正常工作遭破坏,但没有发 生故障。
过负荷,最常见的不正常运行状态 频率降低 系统振荡
电力系统保护
故障发生,必须迅速消除故障——保护 电力系统保护是利用故障发生时电力系统的异
常电压与电流等信息,判断故障的存在与否, 然后再采用相应的保护动作策略,完成隔离故 障区域的重要使命。 保护装置的原理结构
流系统,严格来说是一种系统后备保护。 当交流系统的电压过低,以至无法恢复交流系统
时,本保护动作出口,启动ESOF顺序,跳交流 开关。
直流低电压保护
保护区域是换流器 在通信系统故障或者在相关主保护拒动时,若逆
投旁通对
同时触发6脉动换流器接在交流同一相上的一对换流 阀
形成直流侧短路,快速降低直流电压到零,隔离交直 流回路,以便交流侧断路器快速跳闸
高压直流输电技术的关键问题分析
高压直流输电技术的关键问题分析在当今能源需求不断增长和能源分布不均衡的情况下,高压直流输电技术作为一种高效、可靠的输电方式,在电力系统中发挥着越来越重要的作用。
高压直流输电技术具有输电容量大、输电距离远、损耗低等优点,能够实现不同区域电网的互联,优化能源资源配置。
然而,在其应用过程中,也面临着一些关键问题需要解决。
一、换流器技术换流器是高压直流输电系统的核心设备,其性能直接影响着输电系统的可靠性和效率。
目前,常用的换流器主要有晶闸管换流器和绝缘栅双极型晶体管(IGBT)换流器。
晶闸管换流器技术相对成熟,成本较低,但存在换相失败的风险。
换相失败是指在换流器换相过程中,由于某些原因导致换相不能正常进行,从而引起直流电压下降、直流电流增大等问题,严重时可能会导致系统故障。
为了减少换相失败的发生,需要优化换流器的控制策略、提高交流系统的强度等。
IGBT 换流器具有开关速度快、可控性好等优点,但成本较高。
随着技术的不断进步和成本的降低,IGBT 换流器在高压直流输电领域的应用有望逐渐增加。
二、直流输电线路的绝缘问题高压直流输电线路的绝缘要求比交流输电线路更高。
这是因为直流电压下,绝缘子表面的积污更容易导致沿面放电,而且直流电场分布不均匀,容易引起局部放电。
为了解决绝缘问题,需要选用合适的绝缘子材料和结构。
目前,常用的绝缘子有瓷绝缘子、玻璃绝缘子和复合绝缘子。
复合绝缘子具有重量轻、耐污性能好等优点,但在长期运行中可能会出现老化问题。
此外,还需要对输电线路的电场分布进行优化设计,采用均压措施来减少局部电场集中。
三、直流输电系统的控制与保护高压直流输电系统的控制与保护是确保系统安全稳定运行的关键。
控制策略需要根据系统的运行状态实时调整直流电压、电流等参数,以实现功率的准确传输和系统的稳定运行。
在保护方面,需要快速准确地检测故障并采取相应的保护措施,如闭锁换流器、切除故障线路等。
同时,还需要考虑故障后的系统恢复策略,尽快恢复系统的正常运行。
高压直流输电系统控制保护整定技术规程
高压直流输电系统控制保护整定技术规程1. 引言高压直流输电系统是一种高效、稳定的输电方式,具有输送大容量、远距离、低损耗等优势。
为了确保高压直流输电系统的安全运行,需要制定一套科学、合理的控制保护整定技术规程。
本文将对高压直流输电系统的控制保护整定技术进行全面详细、完整深入的介绍。
2. 控制保护整定技术的重要性高压直流输电系统是电力系统中的重要组成部分,其稳定运行对于保障电力供应的可靠性至关重要。
控制保护整定技术的合理应用可以提高系统的稳定性,降低故障风险,确保系统的安全运行。
因此,制定一套科学、合理的控制保护整定技术规程对于高压直流输电系统的运行和管理具有重要意义。
3. 控制保护整定技术规程的编制原则制定高压直流输电系统控制保护整定技术规程时,需要遵循以下原则:•安全性原则:确保系统的安全运行是制定技术规程的首要原则。
规程中应包含可靠的控制保护措施,以保护系统免受故障和意外情况的影响。
•稳定性原则:保持系统的稳定运行是制定技术规程的核心原则。
规程中应包含合理的控制策略和整定参数,以确保系统在各种工况下都能保持稳定。
•经济性原则:合理利用资源,降低运行成本是制定技术规程的重要原则。
规程中应包含经济有效的控制保护方案,以最大程度地提高系统的运行效率。
•可操作性原则:规程应具备可操作性,方便运维人员实施。
规程中应包含清晰的操作指南和参数设置方法,以便于实际应用。
4. 控制保护整定技术规程的内容高压直流输电系统控制保护整定技术规程的内容应包括以下方面:4.1 控制策略•控制模式:规定高压直流输电系统的控制模式,包括整流侧和逆变侧的控制方式。
•调节策略:规定控制系统的调节策略,包括电流控制、电压控制、功率控制等。
•控制参数:规定各个控制参数的取值范围和整定方法,确保系统的稳定运行。
4.2 保护策略•故障检测:规定故障检测的方法和准则,包括过流保护、过压保护、短路保护等。
•故障定位:规定故障定位的方法和准则,包括故障测距、故障类型识别等。
直流输电工程控制保护系统总概精选全文
直流控制保护系统概况
Ø 控制位置要求:
– 远方调度中心、集控中心 – 换流站主控室 – 控制系统就地 – 设备就地
Ø 控制位置层次关系:
– 分层结构上越低的位置,其控制优先级越高
PPT文档演模板
直流输电工程控制保护系统总概
提纲
一.直流控制保护系统概况 二.直流控制保护系统构成 三.德宝工程控制保护设备配置情况 四.系统特点与主要技术改进 五.直流控制保护系统硬件简介
系统切换遵循如下原则:在任何时候运行的有效系统应是双重化系 统中较为完好的那一重系统
系统切换逻辑禁止以任何方式将有效系统切换至不可用系统。系统 切换总是从当前有效的系统来发出。这个切换原则可避免在备用系 统中的不当的操作或故障造成不希望的切换。另外,当另一系统不 可用时,系统切换逻辑将禁止该切换指令的执行。
5. 与远方控制中心的接口子系统
包括:远动系统,用于与网调、省调、直流集控中心等交换直流换流站的监 控数据并执行远方调度命令,由远动工作站、远动通讯设备等组成。
PPT文档演模板
直流输电工程控制保护系统总概
直流控制保护系统构成
Ø 典型系统解决方案:
PPT文档演模板
直流输电工程控制保护系统总概
•直流控制(极控)系统
•直流控制(极控)系统
➢ 极控制系统主要包括:
每个极的极控系统主机 分布式现场总线 分布式I/O等设备
PPT文档演模板
直流输电工程控制保护系统总概
•直流控制(极控)系统
➢ PCP控制主机:
– 完成对换流站内换流器、换流变压器、直流场 设备等的控制和监视功能。收集极控系统范围 内的“事件”并上传送入运行人员控制系统。
Ø 极控系统是整个换流站控制系统的核心,主要功 能是通过对整流侧和逆变侧触发角的调节,实现 系统要求的输送功率或输送电流。
混合多端高压直流输电运行与保护控制技术
混合多端高压直流输电运行与保护控制技术混合多端高压直流输电(HVDCT)是一种新型的输电技术,它能够有效解决传统交流输电系统存在的问题,并具有更高的能效和更好的稳定性。
本文将从混合多端高压直流输电的工作原理、保护控制技术以及应用前景等方面进行探讨。
混合多端高压直流输电是一种将直流电与交流电相结合的输电方式。
它通过将交流电转换为直流电,然后在输电过程中再将直流电转换为交流电,以实现电能的传输。
与传统的交流输电相比,混合多端高压直流输电具有以下优势。
混合多端高压直流输电可以减少输电损耗。
传统的交流输电系统存在电流损耗和电压损耗,而HVDCT系统则可以减少这些损耗,提高能源的利用效率。
其次,HVDCT系统具有更好的稳定性。
由于直流电的稳定性较好,可以减少电力系统的电压波动和频率波动,降低电力设备的故障率。
此外,HVDCT系统还具有较小的电磁辐射和电磁干扰,对环境和周围设备的影响较小。
为了保证混合多端高压直流输电系统的安全稳定运行,需要进行相应的保护控制。
保护控制技术是指通过对输电线路、变电站和终端设备进行监测和保护,实现对系统的安全控制和故障检测。
保护控制技术主要包括电流保护、电压保护、频率保护和故障检测等方面。
电流保护是HVDCT系统中最重要的保护控制技术之一。
它通过对输电线路中的电流进行监测和保护,及时发现和隔离电流异常,以防止电力设备的过载和短路。
电压保护主要是通过对输电线路和变电站的电压进行监测和保护,确保电压的稳定和安全。
频率保护则是对系统的频率进行监测和保护,避免频率异常导致的设备故障。
故障检测是保护控制技术中的重要环节,它通过对系统的状态进行监测和分析,及时发现和排除故障,保证系统的安全运行。
混合多端高压直流输电技术具有广阔的应用前景。
目前,HVDCT系统已经在国内外多个地区得到了广泛的应用。
比如在海上风电场的输电中,HVDCT系统可以有效减少输电损耗,提高风电场的发电效率。
此外,HVDCT系统还可以应用于大型能源互联网和智能电网的建设,以实现电力系统的高效、稳定和安全运行。
特高压直流输电控制系统与控制保护装置
特高压直流输电控制系统硬 件构造
40
特高压直流控制保护旳特点
• 2. 新增功能 • 适应多种运行方式 • 单个换流器投退控制 • 直流融冰控制
41
单个换流器旳投退控制
42
特高压直流控制保护旳特点
• 3. 技术进步 • WINTDC 云广 • DC800 向上 • 主机采用高性能计算机 最新Intel双核处理器,
关量信号 • TDM (Time Division Multiplexed) 用于串行传
播模拟量信号
23
葛站保护分区
24
直流保护区域划分(大地回线)
25
控制保护软件
• ABB技术 • 由MACH2 系统功能块编程,生成图形文献。
• 简朴旳点击、拖动、放下即完毕。再通过编 辑,生成对应代码,下载到对应存储器中。
Converter unit firing
control
Voltage measuring
system
Id
5
葛站直流控制保护系统
6
三常直流工程龙泉站直流控 制保护系统框图
7
国内常规直流控 制保护设备
• 两种类型旳直流控制保护系统
• ABB、南瑞、四方
•
MACH 2系统
• SIEMENS、许继
•
4.特高压直流输电控制系 统与控制保护装置
• 4.1 常规高压直流输电控制系统与控制保护 装置
• 4.2 特高压直流输电控制系统与控制保护装 置旳特点
1
换流站二次设备
1. 运行人员控制和SCADA系统 2. 直流控制 3. 直流保护 4. 交流保护 5. 通信系统 6. 调度自动化 7. 能量计费系统 8. 暂态故障录波器 9. 直流线路故障定位器 10. 站主钟系统
高压直流输电系统的稳定控制与保护
高压直流输电系统的稳定控制与保护引言高压直流输电系统是一种用于长距离电力传输的技术,具有传输能力强、输电损耗小、环境影响少等优势。
然而,高压直流输电系统在运行过程中也面临着一些挑战,例如稳定控制和保护问题。
本文将探讨高压直流输电系统的稳定控制与保护技术,旨在提供一种全面的了解。
一、高压直流输电系统的稳定控制高压直流输电系统的稳定控制是指对系统的电压、功率、频率等进行实时调节,以确保系统的稳定运行。
稳定控制可分为两个方面:电力稳定控制和频率稳定控制。
1. 电力稳定控制电力稳定控制是指根据负荷需求和传输能力,实时调整高压直流输电系统的电压和功率,以保证系统供电的稳定性。
为了实现电力稳定控制,可以采用频率反馈控制方法,通过自动控制装置调整换流变压器的触发角来控制电流。
同时,还可以使用能量储备装置来补偿瞬间负荷变化引起的电力不平衡。
能量储备装置可以是电容器或电感器,通过储存电能或释放电能来调整系统的电力平衡。
此外,还可采用先进的预测控制算法,根据系统的实时运行情况,预测未来的负荷变化,进一步优化电力调控策略。
2. 频率稳定控制频率稳定控制是指在高压直流输电系统中,通过调节直流电流的大小和相位,以及调节换流变压器和直流系统的参数,来控制系统的频率变化。
频率稳定控制可以通过反馈控制的方法实现,根据系统的实时运行情况,调整直流电流和换流变压器的参数,以使系统的频率保持在设定范围内。
此外,还可以使用先进的自适应控制算法,通过监测和分析系统的频率变化,自动调整控制策略,提高系统的频率稳定性。
二、高压直流输电系统的保护技术高压直流输电系统的保护技术是指在系统故障或异常情况下,及时采取措施,限制故障范围和保护设备的安全运行。
保护技术主要包括故障检测、故障定位和故障隔离。
1. 故障检测故障检测是指通过监测高压直流输电系统的各种参数,如电压、电流、功率等,来检测故障的发生。
常用的故障检测方法包括差动保护、过流保护和电压保护等。
特高压直流输电控制与保护技术分析
特高压直流输电控制与保护技术分析摘要:与高压直流电相比,直流具有灵活多样的运行方式,在大功率长距离传输中表现出巨大的优势,在世界各地广泛应用,直流输电控制与保护技术是整个直流系统的大脑,在系统的运行中起着非常重要的作用,直接决定着直流工程的运行状态和安全性。
近年来,在科学技术和经济等各种因素的作用下,直流输电的控制和保护技术不断得到改进和发展,特别是在保护手段和设备方面。
为此,本文结合当前实际,分析了特高压直流输电的控制保护技术,探讨了其应用效果和价值,希望能够为我国电力系统的稳定发展提供一些理论上的参考。
关键词:特高压;直流输电;控制保护技术;应用分析现今,计算机技术的发展和用电需求的增加,直流输电技术提出了更高的要求,在这种情况下,直流输电控制保护技术也得到了发展,性能控制和保护策略,以持续改进,不断改进的转炉部件,设备和设备的性能改善等。
该技术的发展也为特高压直流输电系统的进展提供了基本条件.1直流输电的基本控制保护技术分析直流输电主要通过接入三相电压转换器元件,并为了完成交流电流,该工艺成为整流端,触发角度指的是换向元件及其连接的交流电压超过0点作为计算和预测数据结果的出发点,当交流系统参数为固定值时,触发角成为控制直流电压值的主要内容,将导致整个直流回路电流值的变化。
,影响了输电过程,因此可以分析转换元件的触发角是控制直流输电的最终变量。
另外,直流控制技术中最为重要的是Vd/Id曲线,这两条曲线描述了直流通电触发角和不同直流电压、电流的影响,是直接决定输电系统运行状态的重要参数。
当前,直流输电的基本控制技术可以概括为以下几点。
首先,确定触发角,根据上文提到的,触发角是直流电流的控制技术的关键参数,在取直流电流、电压和取逆变侧换流器的电流关闭和断开时刻,不同的控制策略形成了以电流调节器、逆变侧熄弧角调节器、电压调节器为主的经典控制三角。
其次,确定触发脉冲,触发脉冲如何发生,需要考虑到交流电压是否同步,以及是按照间距触发还是按相触发为主要方法。
直流输电控制保护系统
西门子公司在控制系统设计中采用了SIMADYN D
和SIMATIC S5两种控制硬件
(1)SIMADYN D
SIMADYN D是一种快速多微处理器可编程控制系
统,可适于高速(0.5ms~10ms)控制,具有多于
300种的标准功能块,可实现各种控制功能,
14
2) SIEMENS的SIMADYN D系 统
9
1)ABB公司的MACH2系统
ABB公司在控制保护系统设计中采用的主要接口板 有:
PS830系列计算机网络连接板;PS850系列数字量I/O
接口板;PS850系列模拟量I/O接口板;PS870系列通 讯接口板;PS890系列电源单元;PS900系列阀控单 元等。各种不同类型的接口板组合成不同的控制接 口柜来实现各种控制及测量功能。
(50m~300ms),具有模块化结构,并有事
故安全保证。
SIMATIC S5已广泛用于工业控制系统,直流
输电方面也有较多应用。
17
2) SIEMENS的SIMADYN D系统
西门子公司在SCADA系统设计中采用的部件有I/0单元
SU200,就地联锁控制装臵8TK,光纤接口单元0LM,光
纤,传感器和对时接口等。
MACH2硬件系统采用高可靠性的多处理器的工业PC作为 主计算机,是ABB公司在MACH系统的基础上发展起来的。
MACH2系统具有很高的集成度,可将所有的控制功能,
所有的保护(直流和交流),远方控制接口,暂态故障
记录,事件顺序记录和人机接口计算机连接功能集成在 整个系统内。
MACH2系统已广泛用于工业控制系统和直流输电工程
高压直流输电的控制和保护系统策略分析
高压直流输电的控制和保护系统策略分析2河南绿控科技有限公司,河南许昌461000摘要:近几年来连缕的雾猩天气,己成为我国当前社会发展和能源策咯选择面临的最迫切需要解决的环境问题,火力发电中燃煤是影响雾靈的主要污染成分PM2.5的一个重要因素。
治理雾靈,首先要控制燃煤排放。
经济发展需要电力能源,但目前燃煤发电仍旧是我国主要电力来源。
随着国内环境和能源的问题突出,对我国电网结构和能源布局提出新的要求。
高压直流输电有着输送能量大、距离远、损耗低、运行可靠、调节快速等优点,越来越被广泛应用。
这就需要对高压直流输电的控制和保护系统策略进行进一步分析,实现最优策略方案。
关键词:高压直流输电;控制;保护系统中图分类号:G31文献标识码:A1引言高压直流输电系统直流分压器传感器故障是导致直流电压波动的直接原因。
从2005年07月至今,高肇直流、天广直流、兴安直流、普侨直流等国内直流工程多次出现电压波动。
发生电压波动时,逆变侧直流电压测量值比实际值偏低,整流侧直流电压在直流控制系统作用下比电压参考值高。
电压波动幅度越大对直流系统造成的影响越严重,甚至会造成整流侧电压幅值达到部分直流保护的电压定值,如直流低电压保护(27DC)或过电压保护(59/37DC),导致直流闭锁。
因此,研究直流电压控制原理,改进直流电压稳定控制方法,降低电压波动对直流系统稳定性的影响,具有十分重要的意义。
2高压直流输电系统电气回路接线方式2.1单极大地回线方式单极大地回线方式是利用整流站和逆变站的同一个极、同一极直流线路、两侧接地极线路和大地构成直流回路。
在此种接线方式下,大地相当于直流回路中的一根导线,流经大地的电流与流经直流线路的电流大小相等,为直流输电系统的运行电流。
这种方式下直流输电过程中的损耗与双极回线方式下一个极的损耗相比要偏大,因为增加了直流电流流经接地极线路和大地的损耗。
如果直流输电系统接地极长期通过比较大的入地电流,将造成极址附近金属设施的电腐蚀,还会导致中性点接地变压器铁芯磁饱和。
高压直流输电系统的保护与控制
高压直流输电系统的保护与控制随着能源需求的不断增长和可再生能源的快速发展,高压直流输电系统作为一种高效、可靠的能源传输方式正逐渐受到广泛关注和应用。
本文将探讨高压直流输电系统的保护与控制措施,以期提高其安全性和稳定性。
一、高压直流输电系统的概述和应用高压直流输电系统是一种以直流电流传输能量的系统,在能量传输距离远、输电损耗小、控制方便等方面具有优势。
它通常由换流站、输电线路和接收站组成,可以广泛应用于远距离、大容量的能源传输,如跨越海洋、山区等地形复杂的区域。
二、高压直流输电系统的保护措施保护措施是高压直流输电系统不可或缺的一部分,它主要包括过电压保护、过电流保护和过温保护等。
过电压保护是指在高压直流输电系统中,当系统中出现电压异常升高的情况时,通过采取相应的保护措施来保护系统的安全运行。
其中,最常见的一种保护方法是安装过电压保护器,它可以有效限制电流的上升速度,避免电流超过设定值。
过电流保护是指在高压直流输电系统中,当系统中出现电流异常升高的情况时,通过采取相应的保护措施来保护系统的设备和电源。
在实际应用中,通常会采用电流保护器、熔断器等设备,当系统中的电流超过设定值时,这些保护装置将迅速切断电路,避免设备受损。
过温保护是指在高压直流输电系统中,当系统中的温度异常升高时,通过采取相应的保护措施来保护系统的设备和人员安全。
一般情况下,会在关键设备上安装温度传感器,当温度超过设定阈值时,保护装置将切断电路,以防止设备过热。
三、高压直流输电系统的控制措施高压直流输电系统的控制措施主要包括稳压控制、防止电弧故障和故障诊断等。
稳压控制是指通过控制换流站的换流变压器和逆变器的工作方式,以保持系统中的电压稳定。
通过使用先进的控制算法和自动化设备,可以实时监测系统中的电压变化,并根据需求调节换流站的工作状态,以确保稳定的电压输出。
防止电弧故障是高压直流输电系统中一个重要的控制环节。
电弧故障是指当系统中的电压或电流超过一定阈值时,导致电路中发生弧光放电。
1000kv特高压直流输电控制与保护设备技术导则
1000kv特高压直流输电控制与保护设备技术导则一、背景介绍在现代社会中,电力输送是至关重要的基础设施之一。
而1000kv特高压直流输电控制与保护设备技术则是这一领域中的重要一环。
本文将从深度和广度的角度,对这一技术进行全面评估,并撰写一篇有价值的文章,进行探讨与总结。
二、1000kv特高压直流输电的定义与意义1000kv特高压直流输电是指在1000千伏电压等级下进行的直流输电。
这是一项十分先进并具有前瞻性的技术,其意义在于提高了电力输送的效率和可靠性,同时有助于减少能源损耗、降低成本,对于解决长途输电和跨区域输电等问题具有重要意义。
三、1000kv特高压直流输电控制与保护设备技术概述1. 控制技术在1000kv特高压直流输电中,控制技术是至关重要的一环。
这涉及到对输电系统的运行状态、功率调节、电压调节等方面的控制,需要借助先进的控制设备和技术手段来实现。
2. 保护设备技术与控制技术相似,1000kv特高压直流输电的保护设备技术也是不可忽视的。
它涉及到对输电系统的故障检测、故障隔离、设备保护等方面,需要确保输电系统的安全稳定运行。
四、深入探讨1000kv特高压直流输电控制与保护设备技术1. 控制技术深入在实际控制技术中,我们需要考虑到电压、功率、电流等多方面的因素。
如何通过先进的控制算法和设备,实现对输电系统的精准控制,是一个值得探讨的话题。
2. 保护设备技术深入在保护设备技术方面,我们需要深入探讨如何通过先进的保护装置,实现对输电系统的智能保护和故障定位。
这涉及到对设备的性能、可靠性等方面的要求,以及与控制技术的协同工作等内容。
五、对1000kv特高压直流输电控制与保护设备技术的个人观点和理解在我看来,1000kv特高压直流输电控制与保护设备技术是一个十分复杂而又具有挑战性的技术领域。
它不仅需要我们拥有扎实的专业知识,更需要我们具备创新意识和解决问题的能力。
只有不断地进行研究和实践,才能不断地推动这一领域的发展,并为实现更高效、更安全的电力输送贡献自己的力量。
浅述高压直流输电系统故障和保护
浅述高压直流输电系统故障和保护摘要:随着高压特高压电网在我国的开展,直流输电技术在实际工程逐渐得到广泛应用。
本文叙述了高压直流输电系统各种故障,包括换流器故障(阀体或与其相关的设备故障、逆变失败和换流器内部短路)、各种情况下的换相失败和外部(交流系统和直流输电线路)故障等以及向对应的保护措施(过电流保护),并提出了直流输电工程中存在的问题和解决方案。
关键词:直流输电换流器故障过电流保护通过所学的电力系统继电保护和高压直流输电所知,在交流系统中,我们用继电保护和断路器来检测和消除故障,直流输电系统的换流站与交流系统相连,因此基本保护思想与交流系统有着密切联系。
同时,直流输电系统本身固有的特性也决定了保护思想与传统保护思想有所不同。
主要特征有:直流断路器的限制,直流输电系统换流器控制速度和换流装置的顺序连接等。
因此直流系统中发生的故障常常是通过对换流器的控制来消除的,有些故障可以通过自身的调节功能来恢复。
一、换流站可能经受的基本故障类型在直流输电的实际工程中,直流控制系统是保护的重要组成部分,系统装置误动,换相失败,由雷电或污秽引起的绝缘失效等都将引起换流站故障和扰动。
结合换流站的过电流和过电压两个主保护功能,分析换流站可能经受的基本故障类型有:1、换流器故障换流器故障类型可以粗略分为三种:a、阀体或与其相关联的设备的故障。
对于晶闸管阀体,主要故障类型包括:为触发和误触发两种。
b、逆变失败。
该故障是逆变器最常见的故障类型,而且该故障通常有其他内部或外部故障引起。
c、换流器内部短路。
未触发指的是根据导通顺序某一阀体应该被触发而未被触发的故障;而误触发指的是根据导通顺序某一阀体不应被触发而被触发。
如果阀体触发故障发生在逆变电路,则其影响要大于整流电路。
但如果在整流电路中。
阀体触发故障反复出现,则可能引起直流输电系统的电压和电流崩溃。
逆变失败是指在逆变电路中,应该关断的阀体没有及时完全关断,从而导致应该开通的阀体不能及时承载系统电流所引起的故障。
控制系统与直流保护介绍
龙泉换流站控制系统与直流保护介绍一、高压直流输电系统的基本介绍1、高压直流输电工程的组成部分:交流开关场、换流变、换流阀、直流开关场及直流输电线路。
2、特点适合大功率、远距离输电;输电线路相对于交流输电线路要经济的多;为全国大范围联网提供了便利的条件;填补了我国直流输电技术的空白。
直流设备对环境的要求较高;我国在直流输电方面起步较晚,主要依靠国外技术支持,因此现阶段直流输电设备较昂贵。
3、前景随着我国充分利用丰富的水利资源,大力发展水电建设,直流输电将发挥其重大的经济及社会效益。
二、控制与保护系统设备介绍(按位置及控制区域)1、盘柜介绍:PCP pole control and protectionBCP bipole control and protectionACP ac control and protectionAFP ac filter control and protectionDFT dc field terminationBFT bipole field terminationAFT ac field terminationASI Auxiliary system interfaceTFT Transformer Field TerminationATI auto transformer interfaceCP control pulseCRC cyclic redundancy checkDCOCT dc optical current transducerDPM digital signal processorGWS gate workstationOWS operator workstationEWS ENGINERRING WORKSTA TIONERCS electronic reactive control systemFP fire pulseI/O input/outputLAN local area networkCAN Control Area NetworkTDM Time Division MultiplexLFL line fault recorderMACH2 Modular Advanced Control HVDC(High V oltage Direct Current) and SVC(Static Reactive Power Compensation) 2nd editionDOCT digital optical current transducerOIB optical interface boardRPC reactive power controlSCM Station Control monitoringTHM thyristor monitoringVCU valve control unitCCP cooling control and protectionCFC Converter Firing ControlETCS Electronic Transformer Control SystemHDLC High-level Data Link ControlPCI Peripheral(外围设备)Component Interconnection SCADA Station Control and Data Acquisition(获得)TCC Tap Changer ControlACS自动监视系统COMM通讯程序(主计算机的软件部分)DSP数字信号处理器ETCS电力变压器控制系统GUI图形用户界面GWS网关站(远控)I/O输入/输出MACHMC1(2)主计算机EWS工程师工作站OWS操作员工作站PC个人电脑P IS设备信息系统SUP监视器TFR故障录波VSS软件库ESD静电释放PCB印刷电路板2、板卡介绍:PS801 高性能的DSP板(6个DSP板)PS820 HDLC通讯与监控板(6个DSP板)PS830 I/O处理板PS831 CAN/HDLC光桥PS832 CAN/CAN桥PS841 交流电压测量板PS842 交流电压测量板PS844 电压分配板PS8451A 电流测量板PS850 控制I/O板PS851 110V数字输入板PS853 数字量输入板PS860 高性能的输入/输出板PS862A 隔离模拟测量板PS868 PT100与4-20mA输入板(小电流/电压测量板)PS870 总线连接板PS871 I/O总线连接板PS872 时间同步板(从主时钟分配一个秒脉冲同步信号到最多五个本地用户)PS873 总线延伸与终端板PS876 TDM光通讯板PS877 VCU传输/接收板PS880 21槽底版PS891A 电源板PS900 阀控中央处理单元PS906 阀控16通道光通道输入/输出板控制系统三、控制主要包含的内容控制系统主要包括——ACP控制:断路器、隔离刀闸的顺序控制,主变的分接头控制等。
与高压交流输电相比,高压直流输电有哪些优势?高压直流输电的系统结构是怎样的?
与高压交流输电相比,高压直流输电有哪些优势?高压直流输电的系统结构是怎样的?与高压交流输电相比,高压直流(High Voltage Direct Current,HVDC)输电具有以下优势:1.增大输电距离:高压直流输电可以在长距离上输送电力,相比之下,高压交流输电受到传输距离的限制,因为交流系统会导致更大的传输损耗。
2.降低传输损耗:由于高压直流输电系统几乎没有电感耦合和电容耦合,传输损耗更低。
这是由于在直流系统中,电流只流向负载方向,没有电流回路,从而减少了传输线上的电流损耗。
3.提高输电功率密度:高压直流输电系统的输电线路可采用较小的导线截面积,因为它不像高压交流输电系统那样受到电流容量限制。
这使得高压直流输电可以实现更高的输电功率密度。
4.灵活性和可控性:高压直流输电系统具有灵活的功率控制能力,可以根据负载变化和电网状况调整输电功率。
此外,高压直流输电还可以跨越不同频率和相位的电网连接,实现异步电网的互联。
高压直流输电系统结构一般由以下几个主要组件组成:1.整流站(Rectifier Station):整流站将交流电源转换为高压直流电源。
整流站通常由变压器、整流器和滤波设备组成。
2.输电线路(Transmission Line):输电线路负责将高压直流电源传输到目标地点。
这些线路通常使用高绝缘性和低电阻的导线来最大程度地减少电流损耗。
3.逆变站(Inverter Station):逆变站将高压直流电源转换为交流电源,以便在目标地点供应交流负载。
逆变站通常由逆变器和滤波设备组成。
4.控制与保护系统(Control and Protection System):该系统负责监测和控制整个高压直流输电系统的运行。
它包括监视设备、保护设备、控制器和通信系统等。
总的来说,高压直流输电系统的核心是将交流电源转换为高压直流电源,然后通过输电线路将电力传输到目标地点,再经过逆变站将电能转换为交流电源供应负载。
现代高压直流输电技术在电能传输中的应用
现代高压直流输电技术在电能传输中的应用随着社会经济的发展和人们生活水平的提高,对电力的需求也越来越大。
但是,在电力传输过程中,电能损失比例较高,而且传输距离往往较远,为此,人们提出了现代高压直流输电技术,这种技术具有输电距离远、输电效率高、节能环保等诸多优点。
本文将从技术概述、发展历程、优势特点、应用领域等方面对现代高压直流输电技术作简述。
一、技术概述高压直流输电技术是指将交流电转换为直流电,由变流变压器变换电压、变换电流,在送、接电站之间通过直流电线路进行输电的技术。
高压直流输电技术主要包含直流输电线路、直流输电变电站和控制及保护系统三大部分。
直流输电线路由直流送电及接电线路组成,采用在输电线路上增加多个换流器,通过纵联方式连接,在某种条件下可以快速减小各路电流,使其工作在合理的电流范围内。
直流输电变电站可以将交流电源升高、变为直流电,也可以将直流电源升压降压后变为所需的直流电。
直流输电变电站是高压直流输电系统中重要的组成部分,其稳定性、可靠性直接影响到整个系统的运行效果。
控制及保护系统是高压直流输电系统的重要组成部分,主要负责高压直流输电系统的监测、控制、保护和故障处理等方面的工作。
二、发展历程早在20世纪初期,高压直流输电技术就开始应用于传输较长距离的电力。
20世纪30年代时,静电耦合直流输电技术得到了广泛应用,可以传输跨越十几公里的输电距离。
20世纪50年代,随着场效应晶体管和晶闸管的出现,高压直流输电技术开始有了较大发展,提高了系统的效率,并且可以传输更远的距离。
20世纪70年代,高压直流输电技术得到了更大的发展,新推出的换流器采用多级换流技术,传输距离更远、输电效率更高、节能环保、线路损耗更小等优点得到了广泛应用。
三、优势特点1.输电距离远与交流输电技术相比,高压直流输电技术可以传输更远的距离。
交流输电的长度一般限制在几百公里以内,而高压直流输电技术可以传输1500公里以上的距离,这对于跨海、跨山传输电力有很大的优势。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
chap.5 直流控制与保护
5.3.5.1 正常启动控制顺序
正常启动时间
一般为几秒几十分钟
受端系统越弱,正常启动时间越长
双极方式HVDC原理图
2017/2/16
25
chap.5 直流控制与保护
5.3.5.2 正常停运控制顺序
BPP法的主要步骤
逐渐减小电流指令,降低直流电流; 使 α=12001500 ,延时20-40ms后,闭锁整流器;
双极方式HVDC原理图, 定γ 等效电路,定β 等效电路
2017/2/16
9
chap.5 直流控制与保护
5.2 直流控制原理
直流控制手段
触发脉冲相位控制:调节α(或β) 换流变分接头控制:调节换流变分接头
两类控制手段比较
项 目 调节范围 触发脉冲相位控制 换流变分接头控制 宽 窄
调节速度 调节平稳性
VDCOL静态特性
chap.5 直流控制与保护
5.4 改善直流控制特性的其他控制
2、电流裕度平滑转移(Amax 控制) 3、电流裕度补偿控制(CMR)
Amax控制
2017/2/16
35
chap.5 直流控制与保护
5.4 改善直流控制特性的其他控制
控制特性方程: Udi Ud 0i cos d xi I d
特点
关于 γ的下倾的直 线簇 下平移
U d 0i cos 1
U di
1
2
γ增加,直线向 U d 0i cos 2
通常
U d 0i cos 3
tan d xi
150 ~ 180
2017/2/16 13
整流站:定电流、定αmin控制 逆变站:定关断角、定电流控制 稳态运行工作点 HVDC系统特性: 静态稳定
换相失败风险低 弱受端系统时可 能出现换流母线 电压不稳定
直流基本控制特性
Δ Id
两站控制协调配合方式1
2017/2/16
17
chap.5 直流控制与保护
5.3 直流基本控制及其控制特性
15 2.5
0
0
U d 0 r cos 3
o
12
tan d xr
3
控制特性曲线
min 30 ~ 50
2017/2/16
Id
chap.5 直流控制与保护
5.3.2 定关断角控制
关断角可直接测量,但不可直接控制。
cos cos (3 2I dLr ) /(3U1 )
双极方式HVDC原理图, BPP电路
2017/2/16
27
chap.5 直流控制与保护
5.3.5.4 自动再启动控制顺序
目的:直流线路瞬时故障后,迅速恢复送电 主要步骤
整流器紧急移相
经过100-500ms的弧道去游离时间,按正常启动
恢复HVDC的运行
双极方式HVDC原理图,
2017/2/16
28
3 2
直流电流
或
其中,理想空载直流电压:
Ud 0
2017/2/16
U1 1.35U1
8
定γ 等效电路,定β 等效电路
chap.5 直流控制与保护
5.2 直流控制原理
直流功率
Pdr U dr I d Pdi U di I d
意味着可以通过改变角度(α或β)和
交流电压(U1 )数值来调节直流电流和功率。
Ud Udref
选Ud为控制对象的原因:
减少逆变站发生电压不稳定的几率
配合整流站的定电流控制,实现对直流功率的
控制
协调控制2, 控制配置, 三交点不稳定
2017/2/16
19
chap.5 直流控制与保护
5.3 直流基本控制及其控制特性
两站控制协调配合方式2
整流站:定电流、定αmin控制 逆变站:定电压、定电流控制、定关断角 稳态运行工作点 HVDC系统特性:
2017/2/16
11
chap.5 直流控制与保护
5.3.1 定触发角控制
控制特性方程: 特点
关于α 的下倾
U dr U d 0r cos d xr I d
U dr
定αmin控制
1
2
的直线簇
α增加,直线 向下平移
U d 0r cos 1 U d 0 r cos 2
通常
N
I dr I d I di I di I d I dr
Idref
O
2)控制系统自动调节
I di
A
Id
潮流反转示意图
双极方式HVDC原理图,
2017/2/16
30
chap.5 直流控制与保护
5.3.6.2 阀闭锁方式潮流反转
实现方法: 先停运,后启动
功率方向 (+) / MW 需要设置新的功率方向 新的功率变化速率 MW / Min 新的功率电流定值 -XMW
控制原则:考虑数秒延时
2017/2/16
32
chap.5 直流控制与保护
5.4 改善直流控制特性的其他控制
包含:
低压限流( VDCOL )控制 电流裕度平滑转移控制(Amax 控制) 电流裕度补偿控制(CMR)
各种限制环节: 如αmin、 αmax 、 Idmin 、 Idmax
2017/2/16
2017/2/16
14
chap.5 直流控制与保护
5.3.3 定电流控制
配合原则
整流站定电流控制为主 逆变站定电流控制为辅
逆变站定电流控制目的
当Id下降过多时,协助整 流站定电流控制,使 Id 迅 速恢复正常值。
Δ Id
2017/2/16
15
chap.5 直流控制与保护
5.3.3 定电流控制
2017/2/16 7
U di U d 0i cos d xi I d
chap.5 直流控制与保护
5.2 直流控制原理
U dor cos U doi cos Id d xr Rd d xi U dor cos U doi cos Id d xr Rd d xi
合两侧直流线路开关,使直流线路与换流器相连; 以 α=1800 的角度解锁逆变器,建立直流电压 (0.7~0.8p.u.); 以α=1500 的角度解锁整流器;
同时减小两侧α ,建立直流电流。
2017/2/16
23
chap.5 直流控制与保护
5.3.5.1 正常启动控制顺序
2、正常启动控制方法2(先建电流,后建电压又 称“BPP法/旁通对启动法”)的控制顺序
直流控制保护系统的重要性
直流输电运行性能、保护均极大地依赖于控制系
统。
直流控制保护系统的基本功能
起停控制
直流功率大小及方向控制
抑制HVDC不正常运行及对所连交流电网的干扰
故障保护
2017/2/16 3
chap.5 直流控制与保护
第五章 直流控制与保护
直流控制保护系统的特点
分层结构 多重化设计
2017/2/16
4
chap.5 直流控制与保护
5.1 直流控制系统的配置
分层结构。两端直流输电控制系统一般分
为6个层次等级 高层
可合并
系统控制级 双级控制级 极控制级
可合并
慢
换流器控制级
快
低层
2017/2/16
换流阀控制级
双极方式HVDC原理图
单独控制级
5
chap.5 直流控制与保护
5.2 直流控制原理
进行。
2017/2/16 21
chap.5 直流控制与保护
5.3.5.1 正常启动控制顺序
正常启动控制类型
先建电压,后建电流
先建电流,后建电压
2017/2/16
22
chap.5 直流控制与保护
5.3.5.1 正常启动控制顺序
1、正常启动控制方法1(先建电压,后建电流)的 控制顺序
合两侧交流断路器,使换流变压器和换流器带电;
chap.5 直流控制与保护
5.3.6 潮流反转控制
每侧控制系统均具有“三段式组合控制”
常用方法
阀不闭锁方式 阀闭锁方式
Ud
O
Idref
Id
组合控制特性
2017/2/16 29
chap.5 直流控制与保护
5.3.6.1 阀不闭锁方式潮流反转
实现方法
1)反置裕度整定
新逆变器: 新整流器:
Ud
高压直流输电
Chap.5 直流控制与保护
2017/2/16
chap.5 直流控制与保护
课程安排
第五章 直流控制与保护
5.1 直流控制系统的配置
5.2 直流控制原理
5.3 直流基本控制及其控制特性
5.4 改善直流控制特性的其他控制
2017/2/16
2
chap.5 直流控制与保护
第五章 直流控制与保护
HVDC等效电路-1
整流器等效电路
逆变器等效电路
外特性方程: U dr U d 0r cos d xr I d
2017/2/16 6
Udi Ud 0i cos d xi I d
chap.5 直流控制与保护
5.2 直流控制原理
HVDC等效电路-2
整流器等效电路
逆变器等效电路
外特性方程: U dr U d 0r cos d xr I d
稳态运行工作点
极弱受端系统时可能出现另一种电压不稳定—
“三交点不稳定” 其中,