2018东北三省四城市联考文数学
东北三省四市2018届高考第二次模拟数学试题(文)有答案
东北三省四市教研联合体2018届高三第二次模拟考试文科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}03,1ππ-==x x x B x x A ,则B A Y ( ) A .(-1,0) B .(0,1) C .(-1,3) D .(1,3) 2.若复数aiiz ++=11为纯虚数,则实数a 的值为( ) A .1 B .0 C .21-D .-1 3.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”取意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算.算筹是将几寸长的小竹棍摆在下面上进行运算.算筹的摆放形式有纵横两种形式(如下图所示).表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列.但各位数码的筹式要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示.以此类推.例如3266用箅筇表示就是,则8771用算筹可表示为( )中国古代的算筹数码 A .B .C .D .4.右图所示的程序框图是为了求出满足2822φn n -的最小偶数n ,那么在空白框内填入及最后输出的n 值分别是( )A .1+=n n 和6B .2+=n n 和6 C.1+=n n 和8 D .2+=n n 和8 5.函数xxx x f tan 1)(2++=的部分图像大致为( )A .B .C. D .6.等差数列{}n a 的公差不为零,首项11=a ,2a 是1a 和5a 的等比中项,则数列{}n a 的前9项之和是( ) A .9B .10C.81 D .907.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .34B .3310 C.32 D .3388.已知首项与公比相等的等比数列{}n a 中,满足),(*242N n m a a a n m ∈=,则nm 12+的最小值为( ) A .1 B .23 C.2 D .29 9.已知过曲线xe y =上一点),(00y x P 做曲线的切线,若切线在y 轴上的截距小于0时,则0x 的取值范围是( )A .),0(+∞B .),1(+∞eC.),1(+∞ D .),2(+∞10.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将ABC ∆折成直二面角C AD B --,则过D C B A ,,,四点的球的表面积为( )A .π3B .π4 C.π5 D .π611.将函数⎪⎭⎫⎝⎛+=32sin )(πx x f 的图像向右平移a 个单位得到函数()cos(2)4g x x π=+的图象,则a 的值可以为( ) A .512π B .712π C .924π1 D .4124π12.已知焦点在x 轴上的双曲线222211x y m m -=-的左右两个焦点分别为1F 和2F ,其右支上存在一点P 满足12PF PF ⊥,且12PF F ∆的面积为3,则该双曲线的离心率为( )ABC .2D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设实数x ,y 满足约束条件0,40,5,y x y x y ≥⎧⎪-≥⎨⎪+≤⎩则25z x y =++的最大值为.14.为了了解居民天气转冷时期电量使用情况,某调查人员由下表统计数据计算出回归直线方程为$ 2.1161.13y x =-+,现表中一个数据为污损,则被污损的数据为.(最后结果精确到整数位)15.已知函数()f x 满足(1)1()f x f x +=-,当(1)2f =时,)9()8(f f +的值为.16.已知菱形ABCD 的一条对角线BD 长为2,点E 满足21=,点F 为CD 的的中点.若2-=⋅则AF CD ⋅=.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知ABC ∆的内角C B A ,,的对边分别为c b a ,,,若2=b ,且A c C a B b cos cos cos 2+=. (I )求B 的大小;(II )求ABC ∆面积的最大值.18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(I )求出a 的值;(II )求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(III )现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.19.在如图所示的几何体中,四边形ABCD 是正方形,PA ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,1PA AB ==.(1)证明://EF 平面DCP ; (2)求平面EFC 与平面PDC 的距离.20.在平面直角坐标系中,椭圆C :22221(0)x y a b a b +=>>的离心率为12,点3(1,)2M 在椭圆C 上.(1)求椭圆C 的方程;(2)已知(2,0)P -与(2,0)Q 为平面内的两个定点,过(1,0)点的直线l 与椭圆C 交于A ,B 两点,求四边形APBQ 面积的最大值.21.已知函数)()(,ln )(R m m x x g x x f ∈+==. (I )若()f x )(x g ≤恒成立,求实数m 的取值范围;(II )已知21,x x 是函数)()()(x g x f x F -=的两个零点,且21x x π,求证:121πx x . 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C :cos 3ρθ=,曲线2C :4cos ρθ=(02πθ≤<).(I )求1C 与2C 交点的极坐标;(II )设点Q 在2C 上,23OQ QP =u u u r u u u r,求动点P 的极坐标方程.23.选修4-5:不等式选讲已知函数()|2||23|f x x x m =+++,m R ∈. (I )当2m =-时,求不等式()3f x ≤的解集; (II )对于(,0)x ∀∈-∞都有2()f x x x≥+恒成立,求实数m 的取值范围.数学(文科)试题参考答案一、选择题1-5:CDCDD 6-10: CBACC 11、12:CB 二、填空题13.14 14.38 15.3716.-7 三、解答题 17.解: (1)由正弦定理CCB b A a sin sin sin ==可得 B A C C A B B sin cos sin cos sin cos sin 2=+=∵0sin φB ,故21cos =B , ∵πππB 0,∴3π=B(2)由3,2π==B b ,由余弦定理可得422-+=c a ac ,由基本不等式可得4,42422≤-≥-+=ac ac c a ac , 而且仅当2==c a 时B ac S ABC sin 21=∆取得最大值323421=⨯⨯, 故ABC ∆的面积的最大值为3.18.解:(1)由10(0.0100.0150.0300.010)1a ⨯++++=,得0.035a =, (2)平均数为200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=岁; 设中位数为x ,则100.010100.015(35)0.0350.5x ⨯+⨯+-⨯=,∴42.1x ≈岁.(3)第1,2组抽取的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为32121,,,,b b b a a .设从5人中随机抽取3人,为(121,,b a a ),(221,,b a a ),(321,,b a a ),(211,,b b a ),(311,,b b a ),(321,,b b a ),(212,,b b a ),(312,,b b a ),(322,,b b a ),(321,,b b b ),共10个基本事件,其中第2组恰好抽到2人包含(211,,b b a ),(311,,b b a ),(321,,b b a ),(212,,b b a ),(312,,b b a ),(322,,b b a )共6个基本事件从而第2组抽到2人的概率53106==19.解:(1)取PC 中点M ,连接DM ,MF , ∵M ,F 分别是PC ,PB 中点,∴//MF CB ,12MF CB =,∵E 为DA 中点,ABCD 为矩形,∴//DE CB ,12DE CB =, ∴//MF DE ,MF DE =,∴四边形DEFM 为平行四边形, ∴//EF DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC , ∴//EF 平面PDC .(2)∵EF ∥平面PDC ,∴F 到平面PDC 的距离等于E 到平面PDC 的距离, ∵PA ⊥平面ABCD ,∴DA PA ⊥,∵1==AD PA ,在PAD Rt ∆中2=DP ,∵PA ⊥平面ABCD ,∴CB PA ⊥,∵A AB PA AB CB =⊥I ,,∴⊥CB 平面PAB ,∴⊥CB PB ,则3=PC ,∵222PC DC PD =+,∴PDC ∆为直角三角形,∴222121=⨯⨯=∆PDC S PDE C PDC E V V --=,设E 到平面PDC 的距离为h ,又∵A PA AD PA CD AD CD =⊥⊥I ,,,∴⊥CD 平面PAD 则2121131212131⋅⋅⋅⋅=⋅⋅⋅⋅h ∴42=h ∴F 到平面PDC 的距离为42 20.解:(1)∵12c a =,∴2a c =, 椭圆的方程为2222143x y c c+=,将3(1,)2代入得22191412c c+=,∴21c =, ∴椭圆的方程为22143x y +=. (2)设l 的方程为1x my =+,联立221,431,x y x my ⎧+=⎪⎨⎪=+⎩消去x ,得22(34)690m y my ++-=, 设点11(,)A x y ,22(,)B x y , 有122634m y y m -+=+,122934y y m -=+,有2212(1)||34m AB m +==+, 点P (2,0)-到直线l点(2,0)Q 到直线l从而四边形APBQ的面积222112(1)23434m S m m +=⨯=++(或121||||2S PQ y y =-)令t =,1t ≥, 有22431t S t =+2413t t=+,设函数1()3f t t t =+,21'()30f t t =->,所以()f t 在[1,)+∞上单调递增, 有134t t+≥,故2242461313t S t t t==≤++,所以当1t =,即0m =时,四边形APBQ 面积的最大值为6. 21.解:(1)令)0(ln )()()(φx m x x x g x f x F --=-=,有xxx x F -=-='111)(, 当1φx 时,0)(πx F ',当10ππx 时,0)(φx F ',所以)(x F 在(1,+∞)上单调递减,在(0,1)上单调递增,)(x F 在1=x 处取得最大值为m --1,若)()(x g x f ≤恒成立,则m --1≤0即1-≥m ,(2)由(1)可知,若函数)()()(x g x f x F -=有两个零点,则2110x x πππ 要证121πx x ,只需证121x x π,由于)(x F 在(1,+∞)上单调递减,从而只需证()⎪⎪⎭⎫ ⎝⎛121x F x F φ,由于()()1121ln ,0x x m x F x F -===,即证0ln 11ln 11ln111111πx x x x m x x -+-=-- 令01221)(),10(ln 21)(222φππx x x x x x x h x x x x x h +-=-+='-+-=, 有)(x h 在(0,1)上单调递增,0)1()(=h x h π,所以121πx x . 22.解:(1)联立cos 3,4cos ,ρθρθ=⎧⎨=⎩cos 2θ=±,∵02πθ≤<,6πθ=,ρ=∴所求交点的极坐标)6π.(2)设(,)P ρθ,00(,)Q ρθ且004cos ρθ=,0[0,)2πθ∈,由已知23OQ QP =u u u r u u u r ,得002,5,ρρθθ⎧=⎪⎨⎪=⎩∴24cos 5ρθ=,点P 的极坐标方程为10cos ρθ=,[0,)2πθ∈. 23.解:(1)当2m =-时,41,0,3()|2||23|21,0,2345,.2x x f x x x x x x ⎧⎪+≥⎪⎪=++-=-<<⎨⎪⎪--≤-⎪⎩当413,0,x x +≤⎧⎨≥⎩解得102x ≤≤;当302x -<<,13≤恒成立;当453,3,2x x --≤⎧⎪⎨≤-⎪⎩解得322x -≤≤-, 此不等式的解集为1|22x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)令233,0,22()()2353,,2x m x x g x f x x x x m x x ⎧--++-≤<⎪⎪=--=⎨⎪--+-≤-⎪⎩当302x -≤<时,22'()1g x x =-+,当0x ≤<时,'()0g x ≥,所以()g x在[0)上单调递增,当32x -≤≤时,'()0g x ≤,所以()g x在3[,2-上单调递减,所以min ()(g x g =30m =+≥,所以3m ≥-, 当32x ≤-时,22'()50g x x =-+<,所以()g x 在3(,]2-∞-上单调递减, 所以min 335()()026g x g m =-=+≥,所以356m≥-,综上,3m≥-.。
【衡水金卷】2018届四省名校高三第三次大联考文科数学试题(解析版)
【衡水金卷】2018届四省名校高三第三次大联考试题文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数满足(为虚数单位),则的虚部为()A. B. C. D.【答案】B【解析】分析:由已知等式变形得,再利用复数的四则运算法则求出z的代数形式,再写出虚部。
详解:由有,则z 的虚部为,故选B.点睛:本题主要考查了复数的四则运算以及复数的代数形式,属于容易题。
若复数,则复数的虚部为。
2. 某几何体的三视图是如图所示的三个直角三角形,若该几何体的体积为144,则()A. 14B. 13C. 12D. 11【答案】C【解析】分析:先根据已知的三视图还原得到直观图,再根据几何体的体积,利用体积计算公式,求出侧视图中一直角边的长。
详解:根据已知的三视图,作出直观图如下:由已知有平面BCD,且,且,由三棱锥的体积计算公式,求出,故选C.点睛:本题主要考查了三视图成直观图、三棱锥的体积计算公式,属于基础题。
解答本题的关键是由三视图还原成直观图。
3. 设集合,则()A. B.C. D.【答案】B【解析】分析:先由不等式求出的范围,写成集合即为N,再得出集合M,N之间的关系,最后得到正确的选项。
详解:由有,即,所以,根据全称命题的特点和子集的定义,得出正确选项为B.4. 《莱因德纸草书》()是世界上最古老的数学著作之一.书中有一道这样的题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的是较小的两份之和,则最小的一份为()A. B. C. D.【答案】C【解析】分析:根据已知条件,设等差数列的公差为,将已知条件转化为等式,求出等差数列的首项和公差,再得出答案。
详解:设等差数列的公差为,由已知有,解得,故最小一份是,选C.点睛:本题主要考查了等差数列的基本量的计算,属于容易题。
注意从已知的条件中找出数学等式。
东北三省四市2018届高考第二次模拟数学试题(文)及答案
东北三省四市教研联合体2018届高三第二次模拟考试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}03,1 -==x x x B x x A ,则B A ( ) A .(-1,0) B .(0,1) C .(-1,3) D .(1,3) 2.若复数aiiz ++=11为纯虚数,则实数a 的值为( ) A .1 B .0 C .21-D .-1 3.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”取意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算.算筹是将几寸长的小竹棍摆在下面上进行运算.算筹的摆放形式有纵横两种形式(如下图所示).表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列.但各位数码的筹式要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示.以此类推.例如3266用箅筇表示就是,则8771用算筹可表示为( )中国古代的算筹数码 A .B .C .D .4.右图所示的程序框图是为了求出满足2822n n -的最小偶数n ,那么在空白框内填入及最后输出的n 值分别是( )A .1+=n n 和6B .2+=n n 和6 C.1+=n n 和8 D .2+=n n 和85.函数xxx x f tan 1)(2++=的部分图像大致为( )A .B .C. D .6.等差数列{}n a 的公差不为零,首项11=a ,2a 是1a 和5a 的等比中项,则数列{}n a 的前9项之和是( ) A .9B .10C.81 D .907.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .34B .3310 C.32 D .3388.已知首项与公比相等的等比数列{}n a 中,满足),(*242N n m a a a n m ∈=,则nm 12+的最小值为( ) A .1 B .23 C.2 D .29 9.已知过曲线x e y =上一点),(00y x P 做曲线的切线,若切线在y 轴上的截距小于0时,则0x 的取值范围是( )A .),0(+∞B .),1(+∞eC.),1(+∞ D .),2(+∞10.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将ABC ∆折成直二面角C AD B --,则过D C B A ,,,四点的球的表面积为( )A .π3B .π4 C.π5 D .π6 11.将函数⎪⎭⎫⎝⎛+=32sin )(πx x f 的图像向右平移a 个单位得到函数()cos(2)4g x x π=+的图象,则a 的值可以为( ) A .512π B .712πC .924π1 D .4124π12.已知焦点在x 轴上的双曲线222211x y m m -=-的左右两个焦点分别为1F 和2F ,其右支上存在一点P 满足12PF PF ⊥,且12PF F ∆的面积为3,则该双曲线的离心率为( )A.2B .72C .2D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设实数x ,y 满足约束条件0,40,5,y x y x y ≥⎧⎪-≥⎨⎪+≤⎩则25z x y =++的最大值为.14.为了了解居民天气转冷时期电量使用情况,某调查人员由下表统计数据计算出回归直线方程为2.1161.13y x =-+,现表中一个数据为污损,则被污损的数据为.(最后结果精确到整数位)15.已知函数()f x 满足(1)1()f x f x +=-,当(1)2f =时,)9()8(f f +的值为.16.已知菱形ABCD 的一条对角线BD 长为2,点E 满足ED AE 21=,点F 为CD 的的中点.若2-=⋅则AF CD ⋅=.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC ∆的内角C B A ,,的对边分别为c b a ,,,若2=b ,且A c C a B b cos cos cos 2+=. (I )求B 的大小;(II )求ABC ∆面积的最大值.18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(I )求出a 的值;(II )求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(III )现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.19.在如图所示的几何体中,四边形ABCD 是正方形,PA ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,1PA AB ==.(1)证明://EF 平面DCP ; (2)求平面EFC 与平面PDC 的距离.20.在平面直角坐标系中,椭圆C :22221(0)x y a b a b+=>>的离心率为12,点3(1,)2M 在椭圆C 上.(1)求椭圆C 的方程;(2)已知(2,0)P -与(2,0)Q 为平面内的两个定点,过(1,0)点的直线l 与椭圆C 交于A ,B 两点,求四边形APBQ 面积的最大值.21.已知函数)()(,ln )(R m m x x g x x f ∈+==.(I )若()f x )(x g ≤恒成立,求实数m 的取值范围;(II )已知21,x x 是函数)()()(x g x f x F -=的两个零点,且21x x ,求证:121 x x . 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C :cos 3ρθ=,曲线2C :4cos ρθ=(02πθ≤<).(I )求1C 与2C 交点的极坐标; (II )设点Q 在2C 上,23OQ QP =,求动点P 的极坐标方程. 23.选修4-5:不等式选讲已知函数()|2||23|f x x x m =+++,m R ∈. (I )当2m =-时,求不等式()3f x ≤的解集; (II )对于(,0)x ∀∈-∞都有2()f x x x≥+恒成立,求实数m 的取值范围.数学(文科)试题参考答案一、选择题1-5:CDCDD 6-10: CBACC 11、12:CB 二、填空题13.14 14.38 15.3716.-7 三、解答题 17.解: (1)由正弦定理CCB b A a sin sin sin ==可得 B AC C A B B sin cos sin cos sin cos sin 2=+=∵0sin B ,故21cos =B , ∵π B 0,∴3π=B(2)由3,2π==B b ,由余弦定理可得422-+=c a ac ,由基本不等式可得4,42422≤-≥-+=ac ac c a ac , 而且仅当2==c a 时B ac S ABC sin 21=∆取得最大值323421=⨯⨯, 故ABC ∆的面积的最大值为3.18.解:(1)由10(0.0100.0150.0300.010)1a ⨯++++=,得0.035a =, (2)平均数为200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=岁; 设中位数为x ,则100.010100.015(35)0.0350.5x ⨯+⨯+-⨯=,∴42.1x ≈岁.(3)第1,2组抽取的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为32121,,,,b b b a a .设从5人中随机抽取3人,为(121,,b a a ),(221,,b a a ),(321,,b a a ),(211,,b b a ),(311,,b b a ),(321,,b b a ),(212,,b b a ),(312,,b b a ),(322,,b b a ),(321,,b b b ),共10个基本事件,其中第2组恰好抽到2人包含(211,,b b a ),(311,,b b a ),(321,,b b a ),(212,,b b a ),(312,,b b a ),(322,,b b a )共6个基本事件从而第2组抽到2人的概率53106==19.解:(1)取PC 中点M ,连接DM ,MF , ∵M ,F 分别是PC ,PB 中点,∴//MF CB ,12MF CB =,∵E 为DA 中点,ABCD 为矩形,∴//DE CB ,12DE CB =, ∴//MF DE ,MF DE =,∴四边形DEFM 为平行四边形, ∴//EF DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC , ∴//EF 平面PDC .(2)∵EF ∥平面PDC ,∴F 到平面PDC 的距离等于E 到平面PDC 的距离, ∵PA ⊥平面ABCD ,∴DA PA ⊥,∵1==AD PA ,在PAD Rt ∆中2=DP ,∵PA ⊥平面ABCD ,∴CB PA ⊥,∵A AB PA AB CB =⊥ ,,∴⊥CB 平面PAB ,∴⊥CB PB ,则3=PC ,∵222PC DC PD =+,∴PDC ∆为直角三角形,∴222121=⨯⨯=∆PDC S PD E C PD C E V V --=,设E 到平面PDC 的距离为h ,又∵A PA AD PA CD AD CD =⊥⊥ ,,,∴⊥CD 平面PAD 则2121131212131⋅⋅⋅⋅=⋅⋅⋅⋅h ∴42=h ∴F 到平面PDC 的距离为42 20.解:(1)∵12c a =,∴2a c =, 椭圆的方程为2222143x y c c+=,将3(1,)2代入得22191412c c+=,∴21c =, ∴椭圆的方程为22143x y +=. (2)设l 的方程为1x my =+,联立221,431,x y x my ⎧+=⎪⎨⎪=+⎩消去x ,得22(34)690m y my ++-=, 设点11(,)A x y ,22(,)B x y , 有122634m y y m -+=+,122934y y m -=+, 有2222212112(1)||13434m m AB m m m ++=+=++,点P (2,0)-到直线l 21m+点(2,0)Q 到直线l 21m+从而四边形APBQ 的面积2222112(1)2412341m m S m m++=⨯=++(或121||||2S PQ y y =-)令t =1t ≥, 有22431t S t =+2413t t =+,设函数1()3f t t t =+,21'()30f t t =->,所以()f t 在[1,)+∞上单调递增, 有134t t+≥,故2242461313t S t t t==≤++,所以当1t =,即0m =时,四边形APBQ 面积的最大值为6. 21.解:(1)令)0(ln )()()( x m x x x g x f x F --=-=,有xxx x F -=-='111)(, 当1 x 时,0)( x F ',当10 x 时,0)( x F ',所以)(x F 在(1,+∞)上单调递减,在(0,1)上单调递增,)(x F 在1=x 处取得最大值为m --1,若)()(x g x f ≤恒成立,则m --1≤0即1-≥m ,(2)由(1)可知,若函数)()()(x g x f x F -=有两个零点,则2110x x 要证121 x x ,只需证121x x,由于)(x F 在(1,+∞)上单调递减,从而只需证()⎪⎪⎭⎫ ⎝⎛121x F x F ,由于()()1121ln ,0x x m x F x F -===,即证0ln 11ln 11ln111111 x x x x m x x -+-=-- 令01221)(),10(ln 21)(222 x x x x x x x h x x x x x h +-=-+='-+-=, 有)(x h 在(0,1)上单调递增,0)1()(=h x h ,所以121 x x . 22.解:(1)联立cos 3,4cos ,ρθρθ=⎧⎨=⎩3cos 2θ=±, ∵02πθ≤<,6πθ=,23ρ=∴所求交点的极坐标3,)6π.(2)设(,)P ρθ,00(,)Q ρθ且004cos ρθ=,0[0,)2πθ∈,由已知23OQ QP =,得002,5,ρρθθ⎧=⎪⎨⎪=⎩∴24cos 5ρθ=,点P 的极坐标方程为10cos ρθ=,[0,)2πθ∈. 23.解:(1)当2m =-时,41,0,3()|2||23|21,0,2345,.2x x f x x x x x x ⎧⎪+≥⎪⎪=++-=-<<⎨⎪⎪--≤-⎪⎩当413,0,x x +≤⎧⎨≥⎩解得102x ≤≤;当302x -<<,13≤恒成立;当453,3,2x x --≤⎧⎪⎨≤-⎪⎩解得322x -≤≤-, 此不等式的解集为1|22x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)令233,0,22()()2353,,2x m x x g x f x x x x m x x ⎧--++-≤<⎪⎪=--=⎨⎪--+-≤-⎪⎩当302x -≤<时,22'()1g x x=-+,当20x -<时,'()0g x ≥,所以()g x 在[2,0)-上单调递增,当322x -≤≤'()0g x ≤,所以()g x 在3[,2)2-上单调递减, 所以min ()(2)g x g =-2230m =+≥, 所以223m ≥-, 当32x ≤-时,22'()50g x x =-+<,所以()g x 在3(,]2-∞-上单调递减, 所以min 335()()026g x g m =-=+≥, 所以356m ≥-, 综上,223m ≥-.。
2018四省名校第三次大联考文数答案
1 # ! ! 1 5 '( ! $) %! # &4 c ( "(( 4$ ! ' 6 ) &" ( ! + + 1 ! * + , - . / 0 1 2 ( * 3 4 56 1 !! *! 56 & 0 %, ' &5 ' 6! ' ') 0 1 + + # # 7# $&# $) *! 1 # & , ,-,$,$&# . . !! + ! $) *! 1 -. * 9: ! !"# +! %! %& " ! && " ! % "& 1 # ! +*; # '(*(# 7' "! 0! 7'& 8 9 ! : + 1 8 % 9: ! $) %! / #'$% '$& # # $ # 1 & 8 9 !* 8 9 "& ( "(' / "(' +& : : + +槡 ! 1 1 ! ;< =>?@ABCD E ( 槡 .! 0! 1 ( # ( ! ( + 1 $) 0! (*! ( ( ( ( ( " " 1 #) !) +) .) 1 &# & ,+ ,+ H7 ,+ ,+ , + ,+ F G ( $ H %# 8 1# ( ( . 1 #! *! ;5&-6 5&7 - )-6 &7 ( ( ( & ( ( +) .) 1 #) ! 1 '2 ! , + , + , + , + , + , + 7 1 ) 7 6(7 - & #( 7 -) 7 . 5&87 + 1 ( " $&# " " # )# 1 & 1 $) 7# ( 1 ! 0! #& #( &8 %# & + + ( $ &! ( $ . ,+ # )#) 1 '2 #%. ! 7 # ) 7 . ! ` > X f 1 '- & + I J K % L M N O K P Q ( ) 1! %! ')*&" 1 # # ,+ . ,+ ,+ ,+ ,+ !". RS BTK) " ! ' )* &" % U V $ & 1 8& /7 5& 7 -) 7 .! 7 7 . -&' -& 1 + + + ! ! ! ! 7#) &+ &# / +& ) )#&. / ,& & 1 ! ( # ,+ ,+ + 槡 1 * ) )# 槡 H 1.-.7 & 7 7 . 5 ' 67& ' + /' *&槡 * ! . 1 $) %! !! 1 # ! # 3! . ,+ ! '*" &. /7 5 -& ') *) ' **" * - W X Y Z 1 [ \ ] ^ _ ` a D ( $ 3! 0! #1 $ # ! 2 1 D $4 . WXYZ 1 [\]^_ ` a D ( 2 -! !D 1 # ! # # ! # 3! # 3 3 ! # 3 3 # & ' ) * ) ! ' /! * ) & b9: W [^_%PG( - 1 / 1 -& $ # ! 2 $ # ! 2 1 ! ! ! 2 $($ # ) $ "($ # ) $ 1($ # # 3 ! ,+ ,+ ! &1! ! . W1[ 1 #' 8+ 8+ & * '&. 7 7 . -&. * 1 $ # 1 ! ^_%PG(/ 1 .& . ,+ 56 $) *! 7 5 ! < ' 6& 1 + ! ! ! ) ) ) 2 1(2 -! ! $ "(2 -! ! $ "(2 -! ! 1 & .% 0 1 !! 0! 9 % 1# ! ! c(/ 56 - W ^ _ d e f $ %b9 1 # !! 1 3 / -( . 1 : ghij,klmn[\]^_ $ 0bo 0 b 1 p qW r s t u cvwL[\]%`a^_( 1 1 $ #)2 1 $) 0! 1 &2 $ * b9: ! ! 1 1 1 # # !"# 2! 4! & &( ( 0 0 0 1 ! ! ! 1 + # # # ( !#' 8: ! -&' - )#& -& 槡 7 # ( &3! $1 , ( )# & (# &( ( ! ! ! ! ! 1 ) 4! 1 !槡 ! ! * 7 / TK 8 %PQ(*& ')# &. ' 1 + x y Q z $! 4! 1&# # 2&- 1&! " 2&$ 1& 1 #
东北三省四市教研联合体2018届高三第二次模拟考试文科数学含答案
东北三省四市教研联合体2018届高三第二次模拟考试文科数学含答案work Information Technology Company.2020YEAR东北三省四市教研联合体2018届高三第二次模拟考试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}03,1 -==x x x B x x A ,则B A ( )A .(-1,0)B .(0,1)C .(-1,3)D .(1,3)2.若复数aiiz ++=11为纯虚数,则实数a 的值为( ) A .1 B .0 C .21- D .-13.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”取意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算.算筹是将几寸长的小竹棍摆在下面上进行运算.算筹的摆放形式有纵横两种形式(如下图所示).表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列.但各位数码的筹式要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示.以此类推.例如3266用箅筇表示就是,则8771用算筹可表示为( )中国古代的算筹数码 A . B . C .D .4.右图所示的程序框图是为了求出满足2822 n n -的最小偶数n ,那么在空白框内填入及最后输出的n 值分别是( )A .1+=n n 和6B .2+=n n 和6 C.1+=n n 和8 D .2+=n n 和8 5.函数xxx x f tan 1)(2++=的部分图像大致为( )A .B .C. D .6.等差数列{}n a 的公差不为零,首项11=a ,2a 是1a 和5a 的等比中项,则数列{}n a 的前9项之和是( )A .9B .10 C.81 D .907.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .34B .3310 C.32 D .3388.已知首项与公比相等的等比数列{}n a 中,满足),(*242N n m a a a n m ∈=,则nm 12+的最小值为( ) A .1 B .23 C.2 D .29 9.已知过曲线x e y =上一点),(00y x P 做曲线的切线,若切线在y 轴上的截距小于0时,则0x 的取值范围是( )A .),0(+∞B .),1(+∞eC.),1(+∞ D .),2(+∞10.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将ABC ∆折成直二面角C AD B --,则过D C B A ,,,四点的球的表面积为( ) A .π3 B .π4 C.π5 D .π611.将函数⎪⎭⎫ ⎝⎛+=32sin )(πx x f 的图像向右平移a 个单位得到函数的图象,则的值可以为( )A .B .C .D .12.已知焦点在轴上的双曲线的左右两个焦点分别为和,其右支上存在一点满足,且的面积为3,则该双曲线的离心率为( )()cos(2)4g x x π=+a 512π712π924π14124πx 222211x y m m -=-1F 2F P 12PF PF ⊥12PF F ∆ABC .D .第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设实数,满足约束条件则的最大值为 .14.为了了解居民天气转冷时期电量使用情况,某调查人员由下表统计数据计算出回归直线方程为,现表中一个数据为污损,则被污损的数据为 .(最后结果精确到整数位) 15.已知函数满足,当时,)9()8(f f +的值为 .16.已知菱形ABCD 的一条对角线BD 长为2,点E 满足21=,点F 为CD 的的中点.若2-=⋅则⋅= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC ∆的内角C B A ,,的对边分别为c b a ,,,若2=b ,且A c C aB b cos cos cos 2+=. (I )求B 的大小;(II )求ABC ∆面积的最大值.18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关23x y 0,40,5,y x y x y ≥⎧⎪-≥⎨⎪+≤⎩25z x y =++2.1161.13y x =-+()f x 1()(1)1()f x f x f x ++=-(1)2f =80%注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(I )求出a 的值;(II )求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(III )现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.19.在如图所示的几何体中,四边形是正方形,平面,,分别是线段,的中点,.(1)证明:平面; (2)求平面与平面的距离.20.在平面直角坐标系中,椭圆:的离心率为,点在椭圆上.(1)求椭圆的方程;[15,25)[25,35)[35,45)[45,55)[55,65)ABCD PA ⊥ABCD E F AD PB 1PA AB ==//EF DCP EFC PDC C 22221(0)x y a b a b +=>>123(1,)2M C C(2)已知与为平面内的两个定点,过点的直线与椭圆交于,两点,求四边形面积的最大值. 21.已知函数)()(,ln )(R m m x x g x x f ∈+==. (I )若)(x g ≤恒成立,求实数m 的取值范围;(II )已知21,x x 是函数)()()(x g x f x F -=的两个零点,且21x x ,求证:121 x x .请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线:,曲线:().(I )求与交点的极坐标;(II )设点在上,,求动点的极坐标方程.23.选修4-5:不等式选讲已知函数,. (I )当时,求不等式的解集; (II )对于都有恒成立,求实数的取值范围.(2,0)P -(2,0)Q (1,0)l C A B APBQ ()f x xOy x 1C cos 3ρθ=2C 4cos ρθ=02πθ≤<1C 2C Q 2C 23OQ QP =P ()|2||23|f x x x m =+++m R ∈2m =-()3f x ≤(,0)x ∀∈-∞2()f x x x≥+m数学(文科)试题参考答案一、选择题1-5: 6-10: CBACC 11、12:CB 二、填空题13.14 14.38 15.3716.-7 三、解答题 17.解: (1)由正弦定理CCB b A a sin sin sin ==可得 B A C C A B B sin cos sin cos sin cos sin 2=+= ∵0sin B ,故21cos =B , ∵π B 0,∴3π=B(2)由3,2π==B b ,由余弦定理可得422-+=c a ac ,由基本不等式可得4,42422≤-≥-+=ac ac c a ac , 而且仅当2==c a 时B ac S ABC sin 21=∆取得最大值323421=⨯⨯, 故ABC ∆的面积的最大值为3.18.解:(1)由,得, (2)平均数为岁; 设中位数为,则,∴岁. (3)第1,2组抽取的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为32121,,,,b b b a a . 设从5人中随机抽取3人,为(121,,b a a ),(221,,b a a ),(321,,b a a ),(211,,b b a ),(311,,b b a ),(321,,b b a ),(212,,b b a ),(312,,b b a ),(322,,b b a ),(321,,b b b ),共10个基本事件,CDCDD 10(0.0100.0150.0300.010)1a ⨯++++=0.035a =200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=x 100.010100.015(35)0.0350.5x ⨯+⨯+-⨯=42.1x ≈其中第2组恰好抽到2人包含(211,,b b a ),(311,,b b a ),(321,,b b a ),(212,,b b a ),(312,,b b a ),(322,,b b a )共6个基本事件 从而第2组抽到2人的概率53106==19.解:(1)取中点,连接,,∵,分别是,中点,∴,,∵为中点,为矩形,∴,,∴,,∴四边形为平行四边形, ∴,∵平面,平面, ∴平面.(2)∵EF ∥平面PDC ,∴F 到平面PDC 的距离等于E 到平面PDC 的距离, ∵PA ⊥平面ABCD ,∴DA PA ⊥,∵1==AD PA ,在PAD Rt ∆中2=DP , ∵PA ⊥平面ABCD ,∴CB PA ⊥,∵A AB PA AB CB =⊥ ,,∴⊥CB 平面PAB ,∴⊥CB PB ,则3=PC ,∵222PC DC PD =+,∴PDC ∆为直角三角形,∴222121=⨯⨯=∆PDC SPDE C PDC E V V --=,设E 到平面PDC 的距离为h ,又∵A PA AD PA CD AD CD =⊥⊥ ,,,∴⊥CD 平面PAD则2121131212131⋅⋅⋅⋅=⋅⋅⋅⋅h ∴42=h ∴F 到平面PDC 的距离为42 20.解:(1)∵,∴, 椭圆的方程为,PC M DM MF M F PC PB //MF CB 12MF CB =E DA ABCD //DE CB 12DE CB =//MF DE MF DE =DEFM //EF DM EF ⊄PDC DM ⊂PDC //EF PDC 12c a =2a c =2222143x y c c+=将代入得,∴, ∴椭圆的方程为. (2)设的方程为,联立消去,得, 设点,, 有,, 有,点到直线点到直线从而四边形的面积(或) 令,, 有,设函数,,所以在上单调递增,有,故,所以当,即时,四边形面积的最大值为6. 21.解:(1)令)0(ln )()()( x m x x x g x f x F --=-=,有xxx x F -=-='111)(, 3(1,)222191412c c+=21c =22143x y +=l 1x my =+221,431,x y x my ⎧+=⎪⎨⎪=+⎩x 22(34)690m y my ++-=11(,)A x y 22(,)B x y 122634m y y m -+=+122934y y m -=+2212(1)||34m AB m +==+P (2,0)-l (2,0)Q l APBQ 222112(1)23434m S m m +=⨯=++121||||2S PQ y y =-t =1t ≥22431t S t =+2413t t=+1()3f t t t =+21'()30f t t =->()f t [1,)+∞134t t +≥2242461313t S t t t==≤++1t =0m =APBQ当1 x 时,0)( x F ',当10 x 时,0)( x F ',所以)(x F 在(1,+∞)上单调递减,在(0,1)上单调递增,)(x F 在1=x 处取得最大值为m --1,若)()(x g x f ≤恒成立,则m --1≤0即1-≥m ,(2)由(1)可知,若函数)()()(x g x f x F -=有两个零点,则2110x x 要证121 x x ,只需证121x x ,由于)(x F 在(1,+∞)上单调递减,从而只需证()⎪⎪⎭⎫ ⎝⎛121x F x F ,由于()()1121ln ,0x x m x F x F -===, 即证0ln 11ln 11ln 111111 x x x x m x x -+-=-- 令01221)(),10(ln 21)(222 xx x x x x x h x x x x x h +-=-+='-+-=, 有)(x h 在(0,1)上单调递增,0)1()(=h x h ,所以121 x x .22.解:(1)联立, ∵,,∴所求交点的极坐标. (2)设,且,, 由已知,得 ∴,点的极坐标方程为,. cos 3,4cos ,ρθρθ=⎧⎨=⎩cos 2θ=±02πθ≤<6πθ=ρ=)6π(,)P ρθ00(,)Q ρθ004cos ρθ=0[0,)2πθ∈23OQ QP =002,5,ρρθθ⎧=⎪⎨⎪=⎩24cos 5ρθ=P 10cos ρθ=[0,)2πθ∈23.解:(1)当时,当解得;当,恒成立; 当解得, 此不等式的解集为. (2)令 当时,,当时,,所以在上单调递增,当时,,所以在上单调递减,所以, 所以,当时,,所以在上单调递减, 所以, 所以, 综上,.2m =-41,0,3()|2||23|21,0,2345,.2x x f x x x x x x ⎧⎪+≥⎪⎪=++-=-<<⎨⎪⎪--≤-⎪⎩413,0,x x +≤⎧⎨≥⎩102x ≤≤302x -<<13≤453,3,2x x --≤⎧⎪⎨≤-⎪⎩322x -≤≤-1|22x x ⎧⎫-≤≤⎨⎬⎩⎭233,0,22()()2353,,2x m x x g x f x x x x m x x ⎧--++-≤<⎪⎪=--=⎨⎪--+-≤-⎪⎩302x -≤<22'()1g x x=-+0x ≤<'()0g x ≥()gx [0)32x -≤≤'()0g x ≤()gx 3[,2-min ()(g x g =30m =+≥3m ≥-32x ≤-22'()50g x x =-+<()g x 3(,]2-∞-min 335()()026g x g m =-=+≥356m ≥-3m ≥-。
2018四省名校第三次大联考文数答案
s !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! \7
! #' / . &! ) 0!
1 ! 7 : :; ! $1 # - & & & & ! 1 7 . .% + - - ' ! . )# 1
/! ')
. ! ! $ 3 . +
1 # ! ! 1 5 '( ! $) %! # &4 c ( "(( 4$ ! ' 6 ) &" ( ! + + 1 ! * + , - . / 0 1 2 ( * 3 4 56 1 !! *! 56 & 0 %, ' &5 ' 6! ' ') 0 1 + + # # 7# $&# $) *! 1 # & , ,-,$,$&# . . !! + ! $) *! 1 -. * 9: ! !"# +! %! %& " ! && " ! % "& 1 # ! +*; # '(*(# 7' "! 0! 7'& 8 9 ! : + 1 8 % 9: ! $) %! / #'$% '$& # # $ # 1 & 8 9 !* 8 9 "& ( "(' / "(' +& : : + +槡 ! 1 1 ! ;< =>?@ABCD E ( 槡 .! 0! 1 ( # ( ! ( + 1 $) 0! (*! ( ( ( ( ( " " 1 #) !) +) .) 1 &# & ,+ ,+ H7 ,+ ,+ , + ,+ F G ( $ H %# 8 1# ( ( . 1 #! *! ;5&-6 5&7 - )-6 &7 ( ( ( & ( ( +) .) 1 #) ! 1 '2 ! , + , + , + , + , + , + 7 1 ) 7 6(7 - & #( 7 -) 7 . 5&87 + 1 ( " $&# " " # )# 1 & 1 $) 7# ( 1 ! 0! #& #( &8 %# & + + ( $ &! ( $ . ,+ # )#) 1 '2 #%. ! 7 # ) 7 . ! ` > X f 1 '- & + I J K % L M N O K P Q ( ) 1! %! ')*&" 1 # # ,+ . ,+ ,+ ,+ ,+ !". RS BTK) " ! ' )* &" % U V $ & 1 8& /7 5& 7 -) 7 .! 7 7 . -&' -& 1 + + + ! ! ! ! 7#) &+ &# / +& ) )#&. / ,& & 1 ! ( # ,+ ,+ + 槡 1 * ) )# 槡 H 1.-.7 & 7 7 . 5 ' 67& ' + /' *&槡 * ! . 1 $) %! !! 1 # ! # 3! . ,+ ! '*" &. /7 5 -& ') *) ' **" * - W X Y Z 1 [ \ ] ^ _ ` a D ( $ 3! 0! #1 $ # ! 2 1 D $4 . WXYZ 1 [\]^_ ` a D ( 2 -! !D 1 # ! # # ! # 3! # 3 3 ! # 3 3 # & ' ) * ) ! ' /! * ) & b9: W [^_%PG( - 1 / 1 -& $ # ! 2 $ # ! 2 1 ! ! ! 2 $($ # ) $ "($ # ) $ 1($ # # 3 ! ,+ ,+ ! &1! ! . W1[ 1 #' 8+ 8+ & * '&. 7 7 . -&. * 1 $ # 1 ! ^_%PG(/ 1 .& . ,+ 56 $) *! 7 5 ! < ' 6& 1 + ! ! ! ) ) ) 2 1(2 -! ! $ "(2 -! ! $ "(2 -! ! 1 & .% 0 1 !! 0! 9 % 1# ! ! c(/ 56 - W ^ _ d e f $ %b9 1 # !! 1 3 / -( . 1 : ghij,klmn[\]^_ $ 0bo 0 b 1 p qW r s t u cvwL[\]%`a^_( 1 1 $ #)2 1 $) 0! 1 &2 $ * b9: ! ! 1 1 1 # # !"# 2! 4! & &( ( 0 0 0 1 ! ! ! 1 + # # # ( !#' 8: ! -&' - )#& -& 槡 7 # ( &3! $1 , ( )# & (# &( ( ! ! ! ! ! 1 ) 4! 1 !槡 ! ! * 7 / TK 8 %PQ(*& ')# &. ' 1 + x y Q z $! 4! 1&# # 2&- 1&! " 2&$ 1& 1 #
2018届东北三省四市教研协作体高三联合考试文科数学试题及答案 精品
东北三省四市教研协作体2018届高三联合考试数学文一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知全集 =N ,集合P ={},6,4,3,2,1Q={}1,2,3,5,9则()P C Q = A .{}3,2,1 B .{}6,4 C .{}9,5 D {}6,4,3,2,12.如果映射f :A →B 满足集合B 中的任意一个元素在A 中都有原象,则称为“满射”.若集合A 中有3个元素,集合B 中有2个元素,则从A 到B 的不同满射的个数为 A .2B .4C .6D .8 3.设 ()212,11,1x x f x x x ⎧--≤⎪=⎨+>⎪⎩,则()()2f f = A .-2 B .2 C .5D . 264.某几何体的三视图如图,则该几何体的表面积为A.3+ B.8+C .6+D .8+5.如果一个几何体的三视图如图所示,则该几何体的表面积为A、21680+ B 、21664+ C 、96 D 、806.已知命题p :抛物线22x y =的准线方程为21-=y ;命题q :平面内两条直线的斜率相等是两条直线平行的充分不必要条件;则下列命题是真命题的是A 、q p ∧B 、()q p ⌝∧C 、()()q p ⌝∧⌝D 、q p ∨7.若函数R x x x x f ∈+=,cos sin )(ωω3,又02=-=)(,)(βαf f ,且βα-的最小值为43π,则正数ω的值是 A. 31 B. 32 C.34 D.238.已知)(x f 为定义在),(+∞-∞上的可导函数,且)()('x f x f < 对于任意R x ∈恒成立,则A. )0()2010(),0()2(20102f e f f e f ⋅>⋅>B. )0()2010(),0()2(20102f e f f e f ⋅>⋅<C. )0()2010(),0()2(20102f e f f e f ⋅<⋅>D. )0()2010(),0()2(20102f e f f e f ⋅<⋅<9.已知数列54321,,,,a a a a a 的各项均不等于0和1,此数列前n 项的和为n S ,且满足)51(22≤≤-=n a a S n n n ,则满足条件的数列共有A. 2个B. 6个C. 8个D. 16个10.抛物线px y 22=与直线04=-+y ax 交于A ,B 两点,其中A 点的坐标是),(21.该抛物线的焦点为F ,则=+||||FB FAA.7B.53C. 6D. 511.定义在R 上的奇函数()f x 满足(2)()f x f x -=,当[]0,1x ∈时,()f x =()cos2xg x π=,则集合{}|()()x f x g x =等于A .1|4,2x x k k z ⎧⎫=+∈⎨⎬⎩⎭B .1|2,2x x k k z ⎧⎫=+∈⎨⎬⎩⎭C .1|4,2x x k k z ⎧⎫=±∈⎨⎬⎩⎭D .{}|21,x x k k z =+∈12. 已知点)1,0(-A ,点B 在圆C :2222=-+y y x 上运动,则直线AB 斜率的取值范围是 A.]33,33[-B. ),33[]33,(+∞⋃--∞C. ]3,3[-D. ),3[]3,(+∞⋃--∞二、填空题:(本大题共4小题,每小题5分,共20分)13.已知等差数列{}n a 的前n 项和为n S ,且111634a a a +=-,则11S = 。
2018年东北三省四市高考数学二模试卷
2018年东北三省四市高考数学二模试卷(文科)一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U=R,集合A={x|x>0},B={x|x2﹣x﹣2<0},则A∩(∁U B)=()A.(0,2]B.(﹣1,2]C.[﹣1,2]D.[2,+∞)2.若复数z=,其中i为虚数单位,则复数z的虚部是()A.B.﹣C.﹣i D.i3.“直线y=x+b与圆x2+y2=1相交”是“0<b<1”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件4.函数f(x)=满足f(x)=1的x值为()A.1 B.﹣1 C.1或﹣2 D.1或﹣15.已知||=1,||=2,向量与的夹角为60°,则|+|=()A.B.C.1 D.26.已知抛物线x2=2y的焦点与椭圆+=1的一个焦点重合,则m=()A.1 B.2 C.3 D.7.已知函数y=Asin(ωx+φ)+m的最大值为4,最小值为0,两个对称轴间的最短距离为,直线是其图象的一条对称轴,则符合条件的解析式是()A.B.C.D.8.阅读程序框图,运行相应的程序,则输出i的值为()A.3 B.4 C.5 D.69.在△ABC中,a,b,c分别是角A,B,C的对边,若a=1,b=,B=60°,则△ABC的面积为()A.B.C.1 D.10.若正实数x,y满足x+2y+2xy﹣8=0,则x+2y的最小值()A.3 B.4 C.D.11.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.B.C.4+2πD.4+π12.函数f(x)的定义域为D,对给定的正数k,若存在闭区间[a,b]⊆D,使得函数f(x)满足:①f(x)在[a,b]内是单调函数;②f(x)在[a,b]上的值域为[ka,kb],则称区间[a,b]为y=f(x)的k级“理想区间”.下列结论错误的是()A.函数f(x)=x2(x∈R)存在1级“理想区间”B .函数f (x )=e x (x ∈R )不存在2级“理想区间”C .函数f (x )=(x ≥0)存在3级“理想区间”D .函数f (x )=tanx ,x ∈(﹣,)不存在4级“理想区间”二、填空题:本大题共4小题,每小题5分,共20分).13.某班级有50名同学,一次数学测试平均成绩是92,其中学号为前30名的同学平均成绩为90,则后20名同学的平均成绩为 . 14.若函数f (x )=e x •sinx ,则f'(0)= .15.等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4= . 16.F 为双曲线(a >b >0)的左焦点,过点F 且斜率为1的直线与两条渐近线分别交于A ,B 两点,若=,则双曲线的离心率为 .三、解答题:本大题共5小题,共70分.解答写出文字说明、证明过程或演算过程. 17.已知点P (,1),Q (cosx ,sinx ),O 为坐标原点,函数f (x )=•.(Ⅰ)求函数f (x )的最小正周期;(Ⅱ)若A 为△ABC 的内角,f (A )=4,BC=3,△ABC 的面积为,求△ABC的周长.18.某手机厂商推出一款6吋大屏手机,现对500名该手机使用者进行调查,对手机进行打分,打分的频数分布表如表: 女性用户:男性用户(Ⅰ)完成下列频率分布直方图,并比较女性用户和男性用户评分的波动大小(不要求计算具体值,给出结论即可);(Ⅱ)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,再从这20名用户中满足评分不低于80分的用户中任意抽取2名用户,求2名用户评分都小于90分的概率.19. 如图,四棱锥P ﹣ABCD 的底面ABCD为矩形,PA⊥底面ABCD ,AD=AP=2,AB=2,E 为棱PD 的中点.(Ⅰ)证明:PD ⊥平面ABE ;(Ⅱ)求三棱锥C ﹣PBD 外接球的体积.20.已知函数f (x )=ax ﹣lnx .(1)过原点O 作函数f (x )图象的切线,求切点的横坐标;(2)对∀x ∈[1,+∞),不等式f (x )≥a (2x ﹣x 2)恒成立,求实数a 的取值范围.21.已知椭圆C :+y 2=1(a >1),B 1,B 2分别是其上、下顶点,椭圆C 的左焦点F1在以B1B2为直径的圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)过点F1且不与坐标轴垂直的直线l交椭圆C于A,B两点,线段AB的垂直平分线与x轴交于点N,点N的横坐标的取值范围是(﹣,0),求线段AB 长的取值范围.从22、23题中任选一题作答.[选修4-4:坐标系与参数方程选讲]22.已知在平面直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,曲线C1的极坐标方程为ρ=4cosθ,直线l的参数方程为(t为参数).(1)求曲线C1的直角坐标方程及直线l的普通方程;(2)若曲线C2的参数方程为(α为参数),曲线C1上点P的极角为,Q为曲线C2上的动点,求PQ的中点M到直线l距离的最大值.[选修4-5:不等式选讲].23.已知a>0,b>0,函数f(x)=|x+a|+|2x﹣b|的最小值为1.(1)求证:2a+b=2;(2)若a+2b≥tab恒成立,求实数t的最大值.2018年东北三省四市高考数学二模试卷(文科)参考答案与试题解析一、选择题:本大题共12题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
东北三省四市2018届高考第二次模拟数学试题(文)含答案
东北三省四市教研联合体2018届高三第二次模拟考试文科数学 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}03,1 -==x x x B x x A ,则B A ( ) A .(-1,0) B .(0,1) C .(-1,3) D .(1,3)2.若复数aiiz ++=11为纯虚数,则实数a 的值为( ) A .1 B .0 C .21- D .-13.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”取意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算.算筹是将几寸长的小竹棍摆在下面上进行运算.算筹的摆放形式有纵横两种形式(如下图所示).表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列.但各位数码的筹式要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示.以此类推.例如3266用箅筇表示就是,则8771用算筹可表示为( )中国古代的算筹数码 A .B .C .D .4.右图所示的程序框图是为了求出满足2822n n -的最小偶数n ,那么在空白框内填入及最后输出的n 值分别是( )A .1+=n n 和6B .2+=n n 和6 C.1+=n n 和8 D .2+=n n 和85.函数xxx x f tan 1)(2++=的部分图像大致为( )A .B .C. D .6.等差数列{}n a 的公差不为零,首项11=a ,2a 是1a 和5a 的等比中项,则数列{}n a 的前9项之和是( ) A .9B .10C.81 D .907.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .34B .3310 C.32 D .3388.已知首项与公比相等的等比数列{}n a 中,满足),(*242N n m a a a n m ∈=,则nm 12+的最小值为( ) A .1 B .23 C.2 D .29 9.已知过曲线x e y =上一点),(00y x P 做曲线的切线,若切线在y 轴上的截距小于0时,则0x 的取值范围是( )A .),0(+∞B .),1(+∞eC.),1(+∞ D .),2(+∞10.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将ABC ∆折成直二面角C AD B --,则过D C B A ,,,四点的球的表面积为( ) A .π3 B .π4 C.π5 D .π6 11.将函数⎪⎭⎫⎝⎛+=32sin )(πx x f 的图像向右平移a 个单位得到函数()cos(2)4g x x π=+的图象,则a 的值可以为( ) A .512π B .712π C .924π1 D .4124π12.已知焦点在x 轴上的双曲线222211x y m m -=-的左右两个焦点分别为1F 和2F ,其右支上存在一点P 满足12PF PF ⊥,且12PF F ∆的面积为3,则该双曲线的离心率为( )A .2B .2C .2D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设实数x ,y 满足约束条件0,40,5,y x y x y ≥⎧⎪-≥⎨⎪+≤⎩则25z x y =++的最大值为 .14.为了了解居民天气转冷时期电量使用情况,某调查人员由下表统计数据计算出回归直线方程为 2.1161.13y x =-+,现表中一个数据为污损,则被污损的数据为 .(最后结果精确到整数位)15.已知函数()f x 满足1()(1)1()f x f x f x ++=-,当(1)2f =时,)9()8(f f +的值为 .16.已知菱形ABCD 的一条对角线BD 长为2,点E 满足21=,点F 为CD 的的中点.若2-=⋅则⋅= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知ABC ∆的内角C B A ,,的对边分别为c b a ,,,若2=b ,且A c C aB b cos cos cos 2+=.(I )求B 的大小;(II )求ABC ∆面积的最大值.18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(I )求出a 的值;(II )求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(III )现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.19.在如图所示的几何体中,四边形ABCD 是正方形,PA ⊥平面ABCD ,E ,F 分别是线段AD ,PB 的中点,1PA AB ==.(1)证明://EF 平面DCP ; (2)求平面EFC 与平面PDC 的距离.20.在平面直角坐标系中,椭圆C :22221(0)x y a b a b +=>>的离心率为12,点3(1,)2M 在椭圆C 上.(1)求椭圆C 的方程;(2)已知(2,0)P -与(2,0)Q 为平面内的两个定点,过(1,0)点的直线l 与椭圆C 交于A ,B 两点,求四边形APBQ 面积的最大值. 21.已知函数)()(,ln )(R m m x x g x x f ∈+==. (I )若()f x )(x g ≤恒成立,求实数m 的取值范围;(II )已知21,x x 是函数)()()(x g x f x F -=的两个零点,且21x x ,求证:121 x x . 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C :cos 3ρθ=,曲线2C :4cos ρθ=(02πθ≤<).(I )求1C 与2C 交点的极坐标; (II )设点Q 在2C 上,23OQ QP =,求动点P 的极坐标方程. 23.选修4-5:不等式选讲已知函数()|2||23|f x x x m =+++,m R ∈. (I )当2m =-时,求不等式()3f x ≤的解集; (II )对于(,0)x ∀∈-∞都有2()f x x x≥+恒成立,求实数m 的取值范围.数学(文科)试题参考答案一、选择题1-5:CDCDD 6-10: CBACC 11、12:CB 二、填空题13.14 14.38 15.3716.-7 三、解答题 17.解: (1)由正弦定理CCB b A a sin sin sin ==可得 B AC C A B B sin cos sin cos sin cos sin 2=+=∵0sin B ,故21cos =B , ∵π B 0,∴3π=B(2)由3,2π==B b ,由余弦定理可得422-+=c a ac ,由基本不等式可得4,42422≤-≥-+=ac ac c a ac ,而且仅当2==c a 时B ac S ABC sin 21=∆取得最大值323421=⨯⨯, 故ABC ∆的面积的最大值为3.18.解:(1)由10(0.0100.0150.0300.010)1a ⨯++++=,得0.035a =, (2)平均数为200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=岁; 设中位数为x ,则100.010100.015(35)0.0350.5x ⨯+⨯+-⨯=,∴42.1x ≈岁. (3)第1,2组抽取的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为32121,,,,b b b a a .设从5人中随机抽取3人,为(121,,b a a ),(221,,b a a ),(321,,b a a ),(211,,b b a ),(311,,b b a ),(321,,b b a ),(212,,b b a ),(312,,b b a ),(322,,b b a ),(321,,b b b ),共10个基本事件, 其中第2组恰好抽到2人包含(211,,b b a ),(311,,b b a ),(321,,b b a ),(212,,b b a ),(312,,b b a ),(322,,b b a )共6个基本事件从而第2组抽到2人的概率53106==19.解:(1)取PC 中点M ,连接DM ,MF ,∵M ,F 分别是PC ,PB 中点,∴//MF CB ,12MF CB =, ∵E 为DA 中点,ABCD 为矩形,∴//DE CB ,12DE CB =,∴//MF DE ,MF DE =,∴四边形DEFM 为平行四边形, ∴//EF DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC , ∴//EF 平面PDC .(2)∵EF ∥平面PDC ,∴F 到平面PDC 的距离等于E 到平面PDC 的距离, ∵PA ⊥平面ABCD ,∴DA PA ⊥,∵1==AD PA ,在PAD Rt ∆中2=DP , ∵PA ⊥平面ABCD ,∴CB PA ⊥,∵A AB PA AB CB =⊥ ,,∴⊥CB 平面PAB ,∴⊥CB PB ,则3=PC ,∵222PC DC PD =+,∴PDC ∆为直角三角形,∴222121=⨯⨯=∆PDC S PD E C PD C E V V --=,设E 到平面PDC 的距离为h ,又∵A PA AD PA CD AD CD =⊥⊥ ,,,∴⊥CD 平面PAD 则2121131212131⋅⋅⋅⋅=⋅⋅⋅⋅h ∴42=h ∴F 到平面PDC 的距离为42 20.解:(1)∵12c a =,∴2a c =, 椭圆的方程为2222143x y c c+=,将3(1,)2代入得22191412c c+=,∴21c =, ∴椭圆的方程为22143x y +=.(2)设l 的方程为1x my =+,联立221,431,x y x my ⎧+=⎪⎨⎪=+⎩消去x ,得22(34)690m y my ++-=, 设点11(,)A x y ,22(,)B x y , 有122634m y y m -+=+,122934y y m -=+,有2212(1)||34m AB m +==+, 点P (2,0)-到直线l点(2,0)Q 到直线l从而四边形APBQ的面积22112(1)234m S m +=⨯=+(或121||||2S PQ y y =-)令t =1t ≥,有22431t S t =+2413t t =+,设函数1()3f t t t =+,21'()30f t t =->,所以()f t 在[1,)+∞上单调递增,有134t t+≥,故2242461313t S t t t==≤++, 所以当1t =,即0m =时,四边形APBQ 面积的最大值为6. 21.解:(1)令)0(ln )()()( x m x x x g x f x F --=-=,有xxx x F -=-='111)(, 当1 x 时,0)( x F ',当10 x 时,0)( x F ',所以)(x F 在(1,+∞)上单调递减,在(0,1)上单调递增,)(x F 在1=x 处取得最大值为m --1,若)()(x g x f ≤恒成立,则m --1≤0即1-≥m ,(2)由(1)可知,若函数)()()(x g x f x F -=有两个零点,则2110x x 要证121 x x ,只需证121x x,由于)(x F 在(1,+∞)上单调递减,从而只需证()⎪⎪⎭⎫⎝⎛121x F x F ,由于()()1121ln ,0x x m x F x F -===,即证0ln 11ln 11ln111111 x x x x m x x -+-=-- 令01221)(),10(ln 21)(222 x x x x x x x h x x x x x h +-=-+='-+-=, 有)(x h 在(0,1)上单调递增,0)1()(=h x h ,所以121 x x . 22.解:(1)联立cos 3,4cos ,ρθρθ=⎧⎨=⎩cos θ=, ∵02πθ≤<,6πθ=,ρ=∴所求交点的极坐标)6π.(2)设(,)P ρθ,00(,)Q ρθ且004cos ρθ=,0[0,)2πθ∈,由已知23OQ QP =,得002,5,ρρθθ⎧=⎪⎨⎪=⎩∴24cos 5ρθ=,点P 的极坐标方程为10cos ρθ=,[0,)2πθ∈. 23.解:(1)当2m =-时,41,0,3()|2||23|21,0,2345,.2x x f x x x x x x ⎧⎪+≥⎪⎪=++-=-<<⎨⎪⎪--≤-⎪⎩当413,0,x x +≤⎧⎨≥⎩解得102x ≤≤;当302x -<<,13≤恒成立;当453,3,2x x --≤⎧⎪⎨≤-⎪⎩解得322x -≤≤-, 此不等式的解集为1|22x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)令233,0,22()()2353,,2x m x x g x f x x x x m x x ⎧--++-≤<⎪⎪=--=⎨⎪--+-≤-⎪⎩当302x -≤<时,22'()1g x x=-+,当0x ≤<时,'()0g x ≥,所以()g x在[上单调递增,当32x -≤≤'()0g x ≤,所以()g x在3[,2-上单调递减,所以min ()(g x g =30m =+≥,所以3m ≥-, 当32x ≤-时,22'()50g x x =-+<,所以()g x 在3(,]2-∞-上单调递减, 所以min 335()()026g x g m =-=+≥, 所以356m ≥-,综上,3m ≥-.。
2018年东北三省四市联考模拟文数答案
解: (Ⅰ)由 10 0.010 0.015 a 0.030 0.010 1 , 得 a 0.035 . ------------3 分 (Ⅱ)平均数为 20 0.1 30 0.15 40 0.35 50 0.3 60 0.1 41.5 岁; 数学(文科)试题参考答案及评分标准 第 3 页(共 14 页)
1 . 2
数学(文科)试题参考答案及评分标准 第 1 页(共 14 页)
因为 0 B ,所以 B (Ⅱ)因为 b 2, B
3
.
2 2
5分
3
,所以,由余弦定理可得 ac a c 4 ,
2 2
8分
因为由基本不等式可得 ac a c 4 2ac 4 , 所以 ac 4 ,当且仅当 a c 时,“等号”成立. (没有说明等号成立条件的扣除 1 分) 从而 SABC 10 分
所以 ac
16 8 8 1 sin A sin C cos A C cos A C cos A C , 3 3 3 2
9分
因为 0 A
2 2 2 2 ,所以 , ,0 C AC 3 3 3 3
PA AD 1,在 Rt△PAD 中, DP 2 , PA 平面 ABCD , PA CB ,
数学(文科)试题参考答案及评分标准 第 5 页(共 14 页)
CB AB , PA AB A , CB 平面 PAB ,CB PB ,
则 PC 3,
设中位数为 x ,则 10 0.010 10 0.015 x 35 0.035 0.5, ------------7 分 x 42.1 岁. (Ⅲ)第 1,2,3 组的人数分别为 20 人,30 人,从第 1,2 组中用分层抽样的方法抽取 5 人, 则第 1,2 组抽取的人数分别为 2 人,3 人,分别记为 a1 , a2 , b1 , b2 , b3 . 设从 5 人中随机抽取 3 人,为 (a1 , a2 , b1 ),(a1 , a2 , b2 ),(a1, a2 , b3 ),(a1, b1, b2 ), ,
东北三省四市教研联合体2018届高三第二次模拟考试文科数学含答案
东北三省四市教研联合体2018届高三第二次模拟考试文科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}(){}03,1 -==x x x B x x A ,则B A ( ) A .(-1,0) B .(0,1) C .(-1,3) D .(1,3)2.若复数aiiz ++=11为纯虚数,则实数a 的值为( ) A .1 B .0 C .21- D .-13.中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”取意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算.算筹是将几寸长的小竹棍摆在下面上进行运算.算筹的摆放形式有纵横两种形式(如下图所示).表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列.但各位数码的筹式要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示.以此类推.例如3266用箅筇表示就是,则8771用算筹可表示为( )中国古代的算筹数码 A .B .C .D .4.右图所示的程序框图是为了求出满足2822 n n -的最小偶数n ,那么在空白框内填入及最后输出的n 值分别是( )A .1+=n n 和6B .2+=n n 和6 C.1+=n n 和8 D .2+=n n 和85.函数xxx x f tan 1)(2++=的部分图像大致为( )A .B .C. D .6.等差数列{}n a 的公差不为零,首项11=a ,2a 是1a 和5a 的等比中项,则数列{}n a 的前9项之和是( ) A .9B .10D .907.某几何体的三视图如图所示(单位:cm ),其俯视图为等边三角形,则该几何体的体积(单位:3cm )是( )A .34B .3310 C.32 D .3388.已知首项与公比相等的等比数列{}n a 中,满足),(*242N n m a a a n m ∈=,则nm 12+的最小值为( ) A .1 B .23 D .29 9.已知过曲线xe y =上一点),(00y x P 做曲线的切线,若切线在y 轴上的截距小于0时,则0x 的取值范围是( )A .),0(+∞B .),1(+∞eC.),1(+∞ D .),2(+∞10.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将ABC ∆折成直二面角C AD B --,则过D C B A ,,,四点的球的表面积为( ) A .π3 B .π4 C.π5 D .π6 11.将函数⎪⎭⎫⎝⎛+=32sin )(πx x f 的图像向右平移a 个单位得到函数的图象,则的值可以为( ) A .B .C .D .12.已知焦点在轴上的双曲线的左右两个焦点分别为和,其右支上存在一点满足,且的面积为3,则该双曲线的离心率为( )ABC .D .()cos(2)4g x x π=+a 512π712π924π14124πx 222211x y m m -=-1F 2F P 12PF PF ⊥12PF F ∆23第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设实数,满足约束条件则的最大值为 .14.为了了解居民天气转冷时期电量使用情况,某调查人员由下表统计数据计算出回归直线方程为,现表中一个数据为污损,则被污损的数据为 .(最后结果精确到整数位)15.已知函数满足,当时,)9()8(f f +的值为 .16.已知菱形ABCD 的一条对角线BD 长为2,点E 满足21=,点F 为CD 的的中点.若2-=⋅则⋅= .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知ABC ∆的内角C B A ,,的对边分别为c b a ,,,若2=b ,且A c C aB b cos cos cos 2+=.(I )求B 的大小;(II )求ABC ∆面积的最大值.18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.x y 0,40,5,y x y x y ≥⎧⎪-≥⎨⎪+≤⎩25z x y =++2.1161.13y x =-+()f x 1()(1)1()f x f x f x ++=-(1)2f =80%[15,25)[25,35)[35,45)[45,55)[55,65)(I )求出a 的值;(II )求出这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(III )现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.19.在如图所示的几何体中,四边形是正方形,平面,,分别是线段,的中点,.(1)证明:平面; (2)求平面与平面的距离.20.在平面直角坐标系中,椭圆:的离心率为,点在椭圆上.(1)求椭圆的方程;(2)已知与为平面内的两个定点,过点的直线与椭圆交于,两点,求四边形面积的最大值.21.已知函数)()(,ln )(R m m x x g x x f ∈+==. (I )若)(x g ≤恒成立,求实数m 的取值范围;ABCD PA ⊥ABCD E F AD PB 1PA AB ==//EF DCP EFC PDC C 22221(0)x y a b a b +=>>123(1,)2M C C (2,0)P -(2,0)Q (1,0)l C A B APBQ ()f x(II )已知21,x x 是函数)()()(x g x f x F -=的两个零点,且21x x ,求证:121 x x . 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线:,曲线:().(I )求与交点的极坐标; (II )设点在上,,求动点的极坐标方程. 23.选修4-5:不等式选讲已知函数,. (I )当时,求不等式的解集; (II )对于都有恒成立,求实数的取值范围.xOy x 1C cos 3ρθ=2C 4cos ρθ=02πθ≤<1C 2C Q 2C 23OQ QP =P ()|2||23|f x x x m =+++m R ∈2m =-()3f x ≤(,0)x ∀∈-∞2()f x x x≥+m数学(文科)试题参考答案一、选择题1-5: 6-10: CBACC 11、12:CB二、填空题15.37三、解答题17.解: (1)由正弦定理CCB b A a sin sin sin ==可得 B A C C A B B sin cos sin cos sin cos sin 2=+=∵0sin B ,故21cos =B , ∵π B 0,∴3π=B(2)由3,2π==B b ,由余弦定理可得422-+=c a ac ,由基本不等式可得4,42422≤-≥-+=ac ac c a ac ,而且仅当2==c a 时B ac S ABC sin 21=∆取得最大值323421=⨯⨯, 故ABC ∆的面积的最大值为3.18.解:(1)由,得, (2)平均数为岁; 设中位数为,则,∴岁. (3)第1,2组抽取的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为32121,,,,b b b a a .设从5人中随机抽取3人,为(121,,b a a ),(221,,b a a ),(321,,b a a ),(211,,b b a ),(311,,b b a ),(321,,b b a ),(212,,b b a ),(312,,b b a ),(322,,b b a ),(321,,b b b ),共10个基本事件, 其中第2组恰好抽到2人包含(211,,b b a ),(311,,b b a ),(321,,b b a ),(212,,b b a ),(312,,b b a ),(322,,b b a )共6个基本事件CDCDD 10(0.0100.0150.0300.010)1a ⨯++++=0.035a =200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=x 100.010100.015(35)0.0350.5x ⨯+⨯+-⨯=42.1x ≈从而第2组抽到2人的概率53106==19.解:(1)取中点,连接,,∵,分别是,中点,∴,, ∵为中点,为矩形,∴,,∴,,∴四边形为平行四边形, ∴,∵平面,平面, ∴平面.(2)∵EF ∥平面PDC ,∴F 到平面PDC 的距离等于E 到平面PDC 的距离, ∵PA ⊥平面ABCD ,∴DA PA ⊥,∵1==AD PA ,在PAD Rt ∆中2=DP ,∵PA ⊥平面ABCD ,∴CB PA ⊥,∵A AB PA AB CB =⊥ ,,∴⊥CB 平面PAB ,∴⊥CB PB ,则3=PC ,∵222PC DC PD =+,∴PDC ∆为直角三角形,∴222121=⨯⨯=∆PDC S PDE C PDC E V V --=,设E 到平面PDC 的距离为h ,又∵A PA AD PA CD AD CD =⊥⊥ ,,,∴⊥CD 平面PAD 则2121131212131⋅⋅⋅⋅=⋅⋅⋅⋅h ∴42=h ∴F 到平面PDC 的距离为42 20.解:(1)∵,∴, 椭圆的方程为,将代入得,∴, ∴椭圆的方程为. PC M DM MF M F PC PB //MF CB 12MF CB =E DA ABCD //DE CB 12DE CB =//MF DE MF DE =DEFM //EF DM EF ⊄PDC DM ⊂PDC //EF PDC 12c a =2a c =2222143x y c c+=3(1,)222191412c c+=21c =22143x y +=(2)设的方程为,联立 消去,得, 设点,, 有,, 有,点到直线点到直线从而四边形的面积(或) 令,, 有,设函数,,所以在上单调递增, 有,故, 所以当,即时,四边形面积的最大值为6. 21.解:(1)令)0(ln )()()( x m x x x g x f x F --=-=,有xxx x F -=-='111)(, 当1 x 时,0)( x F ',当10 x 时,0)( x F ',所以)(x F 在(1,+∞)上单调递减,在(0,1)上单调递增,)(x F 在1=x 处取得最大值为m --1,若)()(x g x f ≤恒成立,则m --1≤0即1-≥m ,l 1x my =+221,431,x y x my ⎧+=⎪⎨⎪=+⎩x 22(34)690m y my ++-=11(,)A x y 22(,)B x y 122634m y y m -+=+122934y y m -=+2212(1)||34m AB m +==+P (2,0)-l (2,0)Q l APBQ 222112(1)23434m S m m +=⨯=++121||||2S PQ y y =-t =1t ≥22431t S t =+2413t t =+1()3f t t t =+21'()30f t t =->()f t [1,)+∞134t t+≥2242461313t S t t t==≤++1t =0m =APBQ(2)由(1)可知,若函数)()()(x g x f x F -=有两个零点,则2110x x 要证121 x x ,只需证121x x,由于)(x F 在(1,+∞)上单调递减,从而只需证()⎪⎪⎭⎫⎝⎛121x F x F ,由于()()1121ln ,0x x m x F x F -===,即证0ln 11ln 11ln111111 x x x x m x x -+-=-- 令01221)(),10(ln 21)(222 xx x x x x x h x x x x x h +-=-+='-+-=, 有)(x h 在(0,1)上单调递增,0)1()(=h x h ,所以121 x x .22.解:(1)联立,∵,,,∴所求交点的极坐标.(2)设,且,,由已知,得∴,点的极坐标方程为,. 23.解:(1)当时,当解得;当,恒成立;cos 3,4cos ,ρθρθ=⎧⎨=⎩cos θ=02πθ≤<6πθ=ρ=)6π(,)P ρθ00(,)Q ρθ004cos ρθ=0[0,)2πθ∈23OQ QP =002,5,ρρθθ⎧=⎪⎨⎪=⎩24cos 5ρθ=P 10cos ρθ=[0,)2πθ∈2m =-41,0,3()|2||23|21,0,2345,.2x x f x x x x x x ⎧⎪+≥⎪⎪=++-=-<<⎨⎪⎪--≤-⎪⎩413,0,x x +≤⎧⎨≥⎩102x ≤≤302x -<<13≤11 当解得, 此不等式的解集为. (2)令 当时,,当时,,所以在上单调递增,当时,,所以在上单调递减, 所以,所以,当时,,所以在上单调递减, 所以, 所以, 综上,.453,3,2x x --≤⎧⎪⎨≤-⎪⎩322x -≤≤-1|22x x ⎧⎫-≤≤⎨⎬⎩⎭233,0,22()()2353,,2x m x x g x f x x x x m x x ⎧--++-≤<⎪⎪=--=⎨⎪--+-≤-⎪⎩302x -≤<22'()1g x x=-+0x ≤<'()0g x ≥()gx [0)32x -≤≤'()0g x ≤()gx 3[,2-min ()(g x g =30m =+≥3m ≥-32x ≤-22'()50g x x =-+<()g x 3(,]2-∞-min 335()()026g x g m =-=+≥356m ≥-3m ≥-。
2018东北三省三校一模联考数学(文)试题
东北三省三校2018 年高三第一次联合模拟考试文科数学试卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150 分,考试时间120 分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答题前,考生务必先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5 毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题共60 分)一.选择题:本大题共12 小题,每小题5 分,在每小题给出的四个选项中,只有一项是符合题目要求.1.已知集合A {0, b}, B { x Z x23x 0}, 若A B ,则b等于()A.1 B.2 C.3 D.1 或22i2.复数2 i()1 2iA.i B.i C.2( 2 i)D.1 i3.ABC的内角A、B、C的对边分别为a、b、c,则“ a b ”是“ cos2 A cos2 B”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件4.向量a,b满足a 1,b 2,(a b)(2a b), 则向量a与b的夹角为()A.45 B.60 C.90 D.1205.实数m是0,6 上的随机数,则关于x的方程x2mx 4 0 有实根的概率为()A.B.C.D.6.已知三棱锥的三视图,则该三棱锥的体积是f (x) lg(x 1) sin2 x 的零点个数为(A .63 B. 2 63C. 3 6 2 D. 622 7.椭圆 x y 2 4 1两个焦点分别是 F 1,F 2 , 任意一点,则 PF 1 PF 2 的取值范围是(点 P 是椭圆上A. 1,4 B. 1,3 C. 2,1D. 1,18.半径为1的球面上有四个点A,B ,C,D, 球 心 为 点 O , AB 过 点 O ,CA C B , DA DB , DC 1, 则三棱锥 A BCD 的体积为( ) B. C. 3 D. 已知数列 a n 满足 ln a 1 ln a 2 lna 325 8 a 10 =( )26A. e B 32 C. eD 9. e 35 29 e 3n 1 2 ln a n 3n 2 10.执行如图所示的程序框图,要使输出的 S 的值小于1, 则输入的 t 值不能是下面的( ) (n N ) ,则 A.8 B.9 C. 10 D. 11 11.若函数 f(x) 2x 3 3mx 2 6x 在区间 2, 上为增函数,则实数 m 的取值范围是 A.,2B. ,2C.52D.,5212.函数A.B.10 C.11 D.12 9第Ⅱ卷(非选择题 共 90 分)本卷包括必考题和选考题两部分 .第 13 题~第 21 题为必考题,每个试题考生都必须 做答,第 22题~第 24题为选考题,考生根据要求做答 . 二.填空题(本大题共 4小题,每小题 5 分.)13.若等差数列a n 中,满足 a 4 a 6 a 2010 a 2012 8 ,则 S 2015 = _________________________________ .3 2x y 914.若变量 x,y 满足约束条件,则 z x 2y 的最小值为6xy9下焦点的对称点分别为 A 、B ,点 Q 在双曲线 C 的上支上,点 P 关于点 Q 的对称点为 P 1,则P 1A P 1B = _______ .16.若函数 f(x)满足 : (ⅰ)函数 f (x)的定义域是 R ; (ⅱ)对任意 x 1,x 2 R 有3f(x 1 x 2) f(x 1 x 2) 2 f (x 1) f (x 2) ;(ⅲ) f(1) 23. 则下列命题中正确的是 __________________________写出所有正确命题的序号)①函数 f (x) 是奇函数;②函数 f (x) 是偶函数;③对任意 n 1,n 2 N ,若 n 1 n 2 ,则f (n 1) f (n 2);④ 对任意 x R ,有 f(x) 1.三. 解答题(解答应写出文字说明,证明过程或演算步骤)17.(本题满分 12 分)已知 ABC 的面积为 2, 且满足 0 AB AC 4, 设 AB 和 AC 的夹角为 . Ⅰ)求 的取值范围; Ⅱ)求函数 f( ) 2sin 2() 3cos2 的值域. 418.(本题满分 12 分)空气污染,又称为 大气污染 ,是指由于人类活动或自然过程引起某些物质进入大气中,呈现出足够的浓度, 达到足够的时间, 并因此危害了人体的舒适、 健康和福利或环境的 现象.全世界也越来越关注环境保护问题.当空气污染指数(单位:g /m 3)为 0~50时,空气质量级别为一级,空气质量状况属于优;当空气污染指数为50 ~ 100时,空气质量级别为二级,空气质量状况属于良;当空气污染指数为 100 ~150 时,空气质量 级别为三级,空气质量状况属于轻度污染;当空气污染指数为 150 ~ 200 时,空气质量 级别为四级, 空气质量状况属于中度污染; 当空气污染指数为 200 ~ 300 时,空气质量15.已知双曲线 C :2 y16 点 P 与双曲线 C 的焦点不重合.若点P关于双曲线C的上、2x4级别为五级, 空气质量状况属于重度污染; 当空气污染指数为 300 以上时, 空气质量级 别为六级,空气质量状况属于严重污染. 2018 年1月某日某省 x 个监测点数据统计如 Ⅰ)根据所给统计表和频率分布直方 图中的信息求出 x, y 的值,并完成频 率分布直方图; Ⅱ)若 A 市共有 5个监测点, 其中有 3 个监测点为轻度污染,2个监测点 为良.从中任意选取 2 个监测点,事 件 A “其中至少有一个为良”发生的 概率是多少?19.(本题满分 12 分)如图,多面体 ABCDEF 中,底面 ABCD 是菱形, BCD 60 ,四边形 BDEF 是正方形,且DE 平面 ABCD .( Ⅰ ) 求证 : CF // 平面 AED ;(Ⅱ)若AE 2 ,求多面体 ABCDEF 的体积V .20.(本题满分 12 分)在平面直角坐标系 xOy 中,已知动圆过点 (2,0) ,且被 y 轴所截得的弦长为 4.( Ⅰ ) 求动圆圆心的轨迹 C 1 的方程 ;(Ⅱ) 过点 P (1,2)分别作斜率为 k 1, k 2的两条直线 l 1,l 2 ,交C 1于A, B 两点(点 A,B 异于2 21空气污染指数( 单位: g/m 3)0,5050,100100,150150,200监测点个数1540y100.008 0.007 0.006 0.005频率 组距AB点P), 若k1 k2 0,且直线AB与圆C2:(x 2)2y2相切,求△ PAB的面积.21.(本题满分 12 分)已知实数 a 为常数,函数 f(x) xlnx ax 2.Ⅰ)若曲线 y f(x)在 x 1处的切线过点A (0, 2) ,求实数 a 值; Ⅱ)若函数 y f(x) 有两个极值点 x 1, x 2 ( x 1 x 2).11①求证:2 a 0 ;②求证: f(x 1) 0, f(x 2)2.请从下面所给的 22 , 23 , 24 三题中任选一题做答,并用 2B 铅笔在答题卡上将所选题目 对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所 答第一题评分。
东北三省三校2018届高三第三次联合模拟考试数学(文)试卷(含答案)
黑龙江省哈师大附中、东北师大附中、辽宁省实验中学2018届东北三省三校高三第三次联合模拟考试文科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合{}{}2=1,2,4,=2A B x R x ∈>则A B I =( )A .{}1B .{}4C .{}24,D .{}124,, 2.已知i 为虚数单位,()23i i i +=( )A .-3+2iB .3+2iC .3-2iD .-3-2i3..已知等差数列{}2357,2,15n a a a a a =++=,则数列{}n a 的公差=d ( ) A .0 B .1 C .-1 D .24.与椭园22:162y x C +=共焦点且渐近线方程为=y ±的双曲线的标准方程为( ) A .2213y x -= B .2213x y -= C.2213x y -= D .2213y x -= 5.已知互不相同的直线,,l m n 和平面,y αρ,,则下列命题正确的是( ) C 若 。
na= 1.pN 7- m 。
n y- n,l /r, 则 m 11 " ; D.若aLy.plLy.则a//p.A .若l 与m 为异面直线,,l m αβ⊂⊂,则//αβB .若 //,,l a m αββ⊂⊂.则//l m C.若,,,//l y m y n l αββαγ===I I I , 则 //m n D .若.a γβγ⊥⊥.则//a β 6.执行下面的程序框图,若0.9p =,则输出的n =( )A .5B .4 C.3 D .27.已知某几何体是一个平面将一正方体截去一部分后所得,该几何体三视图如图所示,则该几何体 的表面积为( )A .20+23.18+2318+3.20+38.设点()x y ,满足约束条件30510330x y x y x y -+≥⎧⎪--≤⎨⎪+-≤⎩,且,x Z y Z ∈∈,则这样的点共有( )个A .12B .11 C.10 D .99.动直线():22 0l x my m m R ++--∈与圆22:2440C x y x y +-+-=交于点,A B ,则弦AB最短为( )A .2B .25.4210.分形理论是当今世界十分风靡和活跃的新理论、新学科。
吉林省东北师范大学附中2018届高三三校联考文数试题 Word版含解析
吉林省东北师范大学附中2018届高三三校联考文数试题一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设全集{}8≤∈=x N x U ,集合{}7,3,1=A ,{}8,3,2=B ,则=)()(B C A C U U ( ) A .{}8,7,2,1 B .{}6,5,4 C .{}6,5,4,0 D .{}6,5,4,3,0 【答案】C考点:集合交、并、补的运算. 2.已知复数i z +=11,i z -=22,则=iz z 21( ) A .i 31- B .i 31+- C . i 21+ D .i 21- 【答案】A 【解析】试题分析:根据题意:()()()122123313i i i iz z i i i i i i +-++====-,故选A . 考点:复数的运算.3.若实数数列:81,,1a 成等比数列,则圆锥曲线122=+ay x 的离心率是( ) A .10 或322 B .3或36 C . 322 D . 31或10 【答案】A 【解析】试题分析:因为1,,81a 成等比数列,所以281a =,即9a =±.当9=a 时,圆锥曲线表示的是椭圆,所以离心率3c e a a ===;当9-=a 时,圆锥曲线表示的双曲线,1091=+=c ,所以离心率10==ace ,故选A . 考点:等比数列中项性质,椭圆和双曲线的离心率.4.函数2)(1-=-x a x f )1,0(≠>a a 的图象恒过定点A ,若点A 在直线01=--ny mx 上,其中0,0>>n m ,则nm 21+的最小值为( ) A .4 B .5 C .6 D .223+ 【答案】D考点:基本不等式.5.如图为某几何体的三视图,则该几何体的表面积为( ) A .π220+ B .π320+ C .π224+ D .π324+俯视图侧视图正视图12222【答案】B 【解析】试题分析:根据三视图的特征,得到该几何体是一个半圆柱和正方体的组合体.其底面积的面积:22282S ππ⎛⎫=⨯+=+ ⎪⎝⎭;底面周长:6C π=+;侧面面积:()62122ππ+⨯=+.所以几何体的表面积:()()8123203πππ+++=+,故选B . 考点:三视图的识别,几何体的表面积计算.6.气象意义上从春季进入夏季的标志为:“连续5天每天日平均温度不低于C ︒22”,现有甲、乙、 丙三地连续5天的日平均温度的记录数据(记录数据都是正整数,单位C ︒) ①甲地:5个数据的中位数为24,众数为22; ②乙地:5个数据的中位数为27,平均数为24;③丙地:5个数据中有一个数据是32,平均数为26,方差为2.10.则肯定进入夏季的地区有( ) A .0个 B .1个 C .2个 D .3 【答案】C考点:中位数、平均数、众数的概念及运用.7.已知条件p :3-=k ,条件q :直线2+=kx y 与圆122=+y x 相切,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】A 【解析】试题分析:条件q :直线2+=kx y 与圆122=+y x 相切,1=,得k =,所以p q ⇒,但是q p ≠>,所以p 是q 的充分不必要条件. 考点:充要条件.8.平面α截球O 所得的截面圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( )A .π6B .C .π64D .π36【答案】B 【解析】试题分析:根据题意可得:球的半径R =334433rV ππ===.考点:球的体积.9.若如图所示的程序框图输出的S 是126,则条件①可为( ) A .?5≤n B .?6≤n C .?7≤n D .?8≤n【答案】B考点:程序框图. 10.若函数2(2)()m xf x x m-=+的图象如图所示,则m 的范围为( )A .)1,(--∞B .)2,1(-C .)2,0(D .)2,1(【答案】D考点:函数图象.【方法点晴】本题主要考查的是根据函数图象,求函数的性质,进而求参数范围.属于中档题.解决这类问题,主要是观察函数图象,根据函数图象推断出函数的性质,比如:函数过特殊点、函数的奇偶性、在某段上函数值的符号以及函数的单调性.11.过双曲线)0,0(12222>>=-b a by a x 的左焦点1F ,作圆222a y x =+的切线交双曲线右支于点P ,切点为T ,1PF 的中点M 在第一象限,则以下结论正确的是( )A .MT MO a b -=-B .MT MO a b ->-C .MT MO a b -<-D .MT MO a b +=- 【答案】A 【解析】试题分析:因为T 是切点,所以连接OT ,则1OT PF ⊥,在TO F 1∆中,1TF b =. 连接2PF ,在12PF F ∆中,O 、P 分别是12F F 、1PF 的中点,所以212OM PF =,2111122MO MT PF PF TF ⎛⎫∴-=-- ⎪⎝⎭()()2111222PF PF b a b b a =-+=-+=-,故选A . 考点:双曲线的定义,直线与圆相切.【思路点晴】本题主要考查的是双曲线的定义、直线与圆相切的性质和三角形中位线的综合运用,属于难题.解题的关键是根据相切,得到1OT PF ⊥,再根据双曲线的性质,求出1TF b =;又因为M 点是中点,在焦点三角形12PF F ∆中,运用中位线定理得212OM PF =,再结合双曲线定义122PF PF a -=,最终求出答案.12.已知函数)(x f 定义在R 上的奇函数,当0<x 时,()(1)x f x e x =+,给出下列命题:①当0>x 时,()(1)xf x e x =- ②函数)(x f 有2个零点③0)(>x f 的解集为),1()0,1(+∞- ④R x x ∈∀21,,都有2)()(21<-x f x f , 其中正确的命题是( )A .①③B .②③C .③④D .②④ 【答案】C考点:函数性质.【方法点晴】本题主要综合考查奇函数的性质,属于难题.①求奇函数在()0,x ∈+∞的解析式,关键是令()0,x ∈+∞,再利用奇函数的性质()()f x f x =--求出()0,x ∈+∞的解析式;在奇函数的性质中当0属于定义域是一定会有()00f =,这是最容易遗忘的.第Ⅱ卷(非选择题共90分)二、填空题(本大题共4小题,每题5分,满分20分.)13.向量1=a ,2=b ,)2()(b a b a -⊥+,则向量a 与b的夹角为 .【答案】2π 【解析】试题分析: )2()(-⊥+,∴()(2)0a b a b +⋅-=,即222cos ,0a a b a b b +⋅-= ,∴cos ,0a b = ,即向量a 与b 的夹角为2π.考点:向量的乘积运算. 14.已知0θπ<<,1tan()47πθ+=,那么sin cos θθ+= . 【答案】15-考点:同角三角函数基本关系和辅助角公式.15.若y x ,满足条件⎪⎩⎪⎨⎧≤-≥+≤-2212x y y x y x ,目标函数y x z 23+-=的最小值为 .【答案】1- 【解析】试题分析:不等式组⎪⎩⎪⎨⎧≤-≥+≤-2212x y y x y x 表示的可行域如图ABC ∆,当目标函数y x z 23+-=经过()1,1A 有最小值,且最小值是31211-⨯+⨯=-.考点:线性规划求目标函数的最值.【方法点晴】本主要考查线性规划中已知可行域求目标函数的最值,属于容易题.本题关键是在坐标系上画出可行域,然后利用数形结合的方法求出目标函数的最大值,如果可行域是一个封闭的图形,目标函数的最值一般在交点处取得,分别把交点求出来,代入目标函数中就可以.在直角坐标系画可行域时要注意“直线定界,点定域”的原则.16..若X 是一个集合,τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,空集∅属 于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓 扑.已知集合{,,}X a b c =,对于下面给出的四个集合τ:① {,{},{},{,,}}a c a b c τ=∅; ② {,{},{},{,},{,,}}b c b c a b c τ=∅; ③ {,{},{,},{,}}a a b a c τ=∅; ④ {,{,},{,},{},{,,}}a c b c c a b c τ=∅. 其中是集合X 上的一个拓扑的集合τ的所有序号是 . 【答案】②④考点:集合包含关系的判定及应用.【方法点晴】本题主要考查的关于集合的新定义题型,属于基础题.需要准确的把握集合包含的判定方法,及集合的子集间的交并补的关系.本题关键是需要学生准确理解集合X 上的一个拓扑τ所要满足的三个条件,需要学生认真分析题干,准确把握信息.对于这种开放性题目,需要考生准确理解和快速掌握新知识的能力.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,面积为S ,已知b A c C a 252cos 22cos 222=+. (Ⅰ)求证:b c a 3)(2=+; (Ⅱ)若41cos =B ,15=S ,求b . 【答案】(I )证明见解析;(II )4=b .考点:正弦定理和余弦定理的运用.【方法点晴】本题主要考查解三角形,正弦定理和余弦定理得综合运用,属于基础题.解三角形中,常用的的技巧“边化角”或者“角化边”,特别是当遇到题干有每项都含有边的齐次式的等式时,多选择边化角.题上出现三角形面积时要合理利用公式111sin sin sin 222ABC S ab C bc A ac B ∆===. 18.(本小题满分12分)如图所示,该几何体是由一个直三棱柱BCF ADE -和一个正四棱锥ABCD P -组合而成,AF AD ⊥,2==AD AE .(Ⅰ)证明:平面⊥PAD 平面ABFE ;(Ⅱ)求正四棱锥ABCD P -的高h ,使得该四棱锥的体积是三棱锥ABF P -体积的4倍.E【答案】(Ⅰ)证明见解析(Ⅱ)2=h .考点:面面垂直,锥体的体积.9甲乙 7 8 9 7 5 22 0 5 0 5 5 【方法点晴】证明面面垂直问题时要主要转化成线面垂直去证明;三棱锥是一个比较特殊的几何体,三个面都可以作为底面,特别是在求三棱锥体积时,一定要选择容易找出三棱锥高的面作为我们的底面;有时几何体的面积直接求比较困难时,需要我们转化成间接的方式求.19.(本小题满分12分)甲、乙两位学生参加某项竞赛培训,在培训期间,他们参加的5项预赛成绩的茎叶图记录如下:(Ⅰ)从甲、乙两人的成绩中各随机抽取一个,求甲的成绩比乙高的概率;(Ⅱ)现要从中选派一人参加该项竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?说明理由.【答案】(Ⅰ)1225;(Ⅱ)派甲参赛比较合适. (Ⅱ)派甲参赛比较合适.理由如下: 85=甲x ,85=乙x ,6.312=甲s ,502=乙s=甲x 乙x ,<2甲s 2乙s甲的成绩较稳定,派甲参赛比较合适………………………………12分考点:茎叶图、概率和方差.20.本小题满分12分)椭圆1C 与2C 的中心在原点,焦点分别在x 轴与y 轴上,它们有相同的离心率22=e ,并且2C 的短轴 为1C 的长轴,1C 与2C 的四个焦点构成的四边形面积是22.(Ⅰ)求椭圆1C 与2C 的方程;(Ⅱ)设P 是椭圆2C 上非顶点的动点,P 与椭圆1C 长轴两个顶点A ,B 的连线PA ,PB 分别与椭圆1C 交于点E ,F .(1)求证:直线PA ,PB 斜率之积为常数;(2)直线AF 与直线BE 的斜率之积是否为常数?若是,求出该值;若不是,说明理由.【答案】(Ⅰ)1C :1222=+y x ,2C :14222=+y x ;(Ⅱ)(1)证明见解析;(2)18-.考点:椭圆标准方程、直线与椭圆相交.21.(本小题满分12分) 设函数1ln )(-+=x a x x f (0>a ). (Ⅰ)当301=a 时,求函数)(x f 的单调区间; (Ⅱ)当21≥a ,),1(+∞∈x 时,求证:11ln >-+x a x . 【答案】(Ⅰ)函数单调增区间为:)65,0(,),56(+∞,单调减区间为:)1,65(,)56,1(;(Ⅱ)证明见解析.且当x ∈(1,0x ),)(x g '<0;当x ∈(0x ,+∞),)(x g '>0.∴)(x g 在(1,0x )递减,在(0x ,+∞)递增…………10分()()11ln 12)()(000min +--==x x x g x g =()1111200+⎪⎪⎭⎫ ⎝⎛--x x =)1(2500x x +- ∵()2,10∈x ∴251200<+<x x ∴0)(min >x g ∴11ln >-+x a x 成立…………12分 考点:利用导函数求单调区间,函数不等式的证明.请考生在第22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.解答时请写清题号.22.本题满分10分)选修4——1 几何证明选讲如图,P 是圆O 外一点,PA 是圆O 的切线,A 为切点,割线PBC 与圆O 交于B ,C ,PA PC 2=, D 为PC 中点,AD 的延长线交圆O 于点E ,证明:(Ⅰ)EC BE =;(Ⅱ)22PB DE AD =⋅.P【答案】(I )证明见解析;(II)证明见解析.试题解析:(Ⅰ)证明:连接AB ,AC ,由题设知PD PA =,故PDA PAD ∠=∠因为:DCA DAC PDA ∠+∠=∠,PAB BAD PAD ∠+∠=∠,考点:圆的性质.23.本题满分10分)选修4——4 坐标系与参数方程在直角坐标系中,曲线C 的参数方程为⎩⎨⎧==ϕϕsin 15cos 5y x ,(ϕ为参数),直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 23321,(t 为参数).以原点为极点,x 轴的正半轴为极轴建立极坐标系,点P 的极坐标为)2,3(π. (Ⅰ)求点P 的直角坐标,并求曲线C 的普通方程;(Ⅱ)设直线l 与曲线C 的两个交点为A ,B ,求PB PA +的值. 【答案】(Ⅰ))3,0(P ,115522=+y x ;(Ⅱ)6. 【解析】试题分析:(Ⅰ)根据点的极坐标化直角坐标的公式,求出点P;结合参数方程得到cos sin φφ⎧=⎪⎪⎨⎪=⎪⎩,再根据22cos sin 1φφ+=求出曲线C 的普通方程;(Ⅱ)点P 在直线上,联立直线的参数方程代入曲线C 的普通方程求解.考点:坐标系与参数方程,直线与曲线相交.24.(本题满分10分)选修4——5 不等式选讲 已知函数5)(++-=x a x x f .(Ⅰ)若1=a ,解不等式:52)(+≥x x f ;(Ⅱ)若8)(≥x f 恒成立,求a 的取值范围.【答案】(Ⅰ){}2-≤x x ;(Ⅱ)3≥a 或13-≤a .【解析】试题分析:(Ⅰ)当1=a 时,写出不等式,运用零点分区间的方法,讨论当3≥x 时,当21≤x 时,当321<<x时,去掉绝对值解不等式,然后取并集;(Ⅱ)因为55+≥++-a x a x ,所以将8)(≥x f 转化85≥+a 就可以解出来.试题解析:(Ⅰ)当1=a 时,0)51)(42(5152)(≥---+⇔+≥-⇒+≥x x x x x x x f 解得:2-≤x ,所以原不等式解集为{}2-≤x x ………5分 (Ⅱ)5)5(5)(+=+--≥++-=a x a x x a x x f ,若8)(≥x f 恒成立, 只需:85≥+a解得:3≥a 或13-≤a ………10分 考点:不等式求解.。