污水处理费用分担,数学建模

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学建模课程设计报告题目:污水厂费用分担问题及其最优解决方案

姓名1: 陈琰炜学号:2

姓名2:曾亮学号:2

姓名3: 唐益学号:2

专业软件工程

班级1221811

指导教师:邱淑芳

建模小组联系电话

2014年6 月29 日

摘要

在当今资源稀缺得市场经济时代,如何优化配置各种有限资源对一个公司或国家来说越来越重要。谁能够找出合理最优得配置方案谁就有可能在激烈得市场竞争环境中生存下来。本案例针对问题8:费用分担问题提供出了一种合理得模型。

问题7中提供了2种方案,第一种方案就是每个城镇独立建污水处理厂,这种方案最简单,计算较为方便。直接利用常规数学知识就可以得出最后需要得费用。每个城镇最后得费用W[i]=C1*Q[i],(i=1,2,3)

即最后得总得费用M=W[1]+W[2]+W[3];由于每个城镇得污水量都有区别,所以每个城镇都独立建厂显然不能充分利用资源。所以我们考虑就是否可以采用第二种方案。

第二种方案,第二种方案又有4种可能:

1、三个城镇共用一个污水处理厂;

2、城镇一与城镇二共用一个;

3、城镇二与城镇三共用一个;

4、城镇一与城镇三共用一个;

针对这四种可能我们可以抽象用一种模型来处理,我们可以将其抽象为一个图得问题,在具体一点就就是一个求最短路径问题,那么我们就可以利用迪杰斯特拉(Dijkstra)算法就可以找出其最优解。进而就可以找出其最优方案。关键字:污水处理,污水厂选址,数学建模。

目录

1.摘要---------------------------------------------------------------------2

2.问题得重述与分析---------------------------------------------------4

3.基本假设---------------------------------------------------------------5

4.符号得约定------------------------------------------------------------6

5.原理与模型------------------------------------------------------------6

6.参考文献---------------------------------------------------------------13

7.评分表------------------------------------------------------------------14

费用分担问题及其最优解决方案

一、问题重述与分析

1、1 问题得重述

有三个位于某河流同旁得城镇城1、城 2、城3(如图)三城镇得污水必须经过处理后方能排入河中,她们既可以单独建立污水处理厂,也可以通过管道输送联合建厂。为了讨论方便起见,我们再假设污水

只能由上游往下游。

用Q表示污水量,单位为米3/秒,L表示管道

长度,单位为公里,则有经验公式:

已知三城镇得污水量分别为:Q1=5立方米/秒,

Q2=3立方米/秒,Q3=5立方米/秒,

问:

三城镇应怎样处理污水方可使总开支最少?每

一城镇负担得费用应各为多少?

1、2问题得分析

首先,从政府得角度出发,每年财政收入就是一定得,在针对环境治理污水处理这一块肯定就是以最少得费用达到最好得效果就是最好得。所以这里得资源得最优配置就就是资金得合理配置。其它类似资源得配置可根据本模型类似求解。

明白了本例中得资源配置下一步就要分析其中得决定因子,显然决定费用多少得决定因子有多种,但就是不可能就所有得决定因子进行讨论,所以必须进行必要及合理得假设。假设其由建厂费用C1,管道费用C2,维护运营费用C3及效益回报值P决定。

本例要解决得就就是怎样合理配置才能以较小代价达到比较理想得回报。其实种问题类似线性规划问题中得求最优界问题,但就是由于其中涉及得决定因子(变量)较多并且其中涉及到许多非线性问题,所以利用一般得线性规划已经无法解决。所以必须要找到一种能够表示多个因子或者说多个量间关系得模型,这个模型不仅能够表示出其中得复杂得关系同时也能进行一定得逻辑运算进而得出最优解。这就是我们得最终目得。因此我们由此联想到数据结构中得相关知识,利用数据结构中得图得模型就可以轻松解决该问题

二、基本假设

1.假设三个城镇距河流得距离相等;

2.假设如果分别独立建厂得话,每个厂得规模都相同且都能够满足需要;

3.假设每个城镇得污水量就是固定不变得;

4.假设污水处理厂得地址只能在三个城镇中选;

5.假设污水处理厂无论在那个城镇其运营费用都就是不变得;

6.假设无论哪个城镇其污水处理后得效益回报值就是一样得;

7.假设城镇承担得费用与其污水量间得比例呈线性关系;

三、符号得约定

C1: 污水处理厂得建厂费用;

L:污水管道长度;

C2:管道费用;

C3: 污水处理厂得运营费用;

P: 污水处理后得效益回报值;

W: 开支总费用;

W[i]: 第i个城镇建厂得费用;

Q[i]:第i个城镇得污水量;

A: 城镇1;

B: 城镇2;

C: 城镇3;

四、原理与模型

4、1 模型得建立与求解

这里可以将三个城镇A,B,C抽象为该模型得三个顶点,首先考虑第一种可能即三个城镇共用一个处理厂。且又根据假设可知处理厂只可能就是A,B,C中之一,即该模型即可实例化为以A,B,C为顶点得一个比较简单得图,而此时又有三种情况:

1.处理厂建在A点,此时有A点到B得路径及B点到C得路径分别为:

D[1]=C1+C2+C3-P;

C1=730*Q[1]^0、712(万元);

C2=6、6*Q[A][B]^0、51*L1;

L1=20(公里);Q[A][B]=(Q1+Q2)/2;

D[2]=C2-P;

C2=6、6*Q[B][C]^0、51*L2;

L2=38(公里);Q[B][C]=(Q2+Q3)/2;

即最后,总得费用为W1=D[1]+D[2];

相关文档
最新文档