4.3汽车变速器设计理论与方法
变速箱设计与开发的理论与方法
变速箱设计与开发的理论与方法随着技术的不断发展,现代汽车越来越受到人们的关注和青睐。
越来越多的车辆采用了自动变速器技术,这是由多个机械部件以及控制系统协同工作的结果。
变速箱的设计和开发是汽车制造中至关重要的一部分,因为变速箱的性能直接关系到整个汽车的驾驶品质和乘坐舒适度。
本文将介绍变速箱设计和开发的理论和方法。
一、变速箱的概述变速箱是一种能够改变轮轴转速和扭矩输出的机械装置。
在传统的手动变速器中,车祸司机需要通过离合器来临时断开引擎和轮胎之间的连接,以实现换挡。
而自动变速箱使用液压、电子或机械式系统来实现半自动或全自动的换挡,这大大提高了驾驶的舒适性和安全性。
变速箱的基本组成部分包括齿轮、轴承、离合器、制动器、液压系统、控制单元等。
不同的设计和应用需要采用不同的变速箱类型和配置。
二、变速箱设计和开发的理论基础1. 齿轮设计:齿轮是负责传递动力的重要部件。
齿轮设计需要考虑许多因素,包括齿形、模数、压力角、精度等。
齿轮要保证传动效率高、噪音低、寿命长等。
2. 轴承设计:轴承是支持和转动齿轮的重要部件。
轴承设计需要考虑许多因素,包括轴承类型、材料、尺寸等。
轴承要保证承载能力高、摩擦力低、寿命长等。
3. 液压系统设计:液压系统是自动变速器中的重要组成部分,负责控制离合器、制动器和挡位选择。
液压系统设计需要考虑许多因素,包括液压元件的选择、工作压力、高低温性能等。
液压系统要保证响应速度快、能效高、稳定性好等。
4. 控制系统设计:控制系统是自动变速器的“大脑”,负责监测车速、油门开度、发动机转速等参数,以实现自动换挡和手动换挡等功能。
控制系统设计需要考虑许多因素,包括控制算法的选择、传感器的安装位置、仿真和测试等。
控制系统要保证可靠性高、响应速度快、易于升级和维修等。
三、变速箱设计和开发的方法1. 结构拓扑优化:运用拓扑优化方法,可以对变速箱结构进行优化设计,降低材料和成本等。
2. 理论计算和模拟仿真:在设计和开发阶段,可以采用计算机辅助工程技术,进行理论计算和模拟仿真。
变速器设计 (2)
变速器设计
变速器是一种用于控制引擎输出转速的机械装置。
其主要
作用是根据不同的路况和车速需求,将发动机的转速转化
为合适的车轮转速,以提供适合的力量和扭矩,并实现车
辆动力传递和行驶。
变速器设计的关键是根据车辆的使用要求和性能需求来选
择合适的齿轮比。
齿轮比是指驱动轴与驱动轮之间齿轮的
大小比例。
一般来说,低齿轮比可以提供更大的马力和扭矩,适用于起步和爬坡;高齿轮比可以提供更高的车速,
适用于平路和高速行驶。
另外,变速器设计还需要考虑以下几个因素:
1. 齿轮材料:齿轮应选择耐磨损、高强度和耐腐蚀的材料,以确保可靠性和寿命。
2. 齿轮配对:齿轮的齿形和齿数要进行合理设计,确保顺畅的齿轮传动和低噪音。
3. 润滑系统:变速器需要设计合理的润滑系统,以确保齿轮传动的平稳工作和降低摩擦损失。
4. 控制系统:现代变速器通常由电子控制单元(ECU)控制,需要设计合适的控制算法和传感器来实现自动控制和顺畅的换档。
5. 散热系统:由于变速器工作时会产生较大的热量,需要设计合适的散热系统,以维持变速器的正常工作温度。
综上所述,变速器设计需要综合考虑力量、扭矩、速度、可靠性和经济性等因素,以满足不同车辆使用需求和性能要求。
只有合理设计的变速器才能确保汽车的良好动力性能和可靠性。
变速器设计
变速器设计引言变速器是一种用于改变汽车或机械装置传递动力的装置。
它的主要功能是在不同工况下调整输出转速和输出扭矩,以提供适当的动力和效率。
在汽车工业、航空航天、工厂生产线等许多领域都广泛应用。
本文将介绍变速器的设计原理和常见的变速器类型。
变速器的设计原理变速器的设计原理基于传动比的变化。
传动比是输入轴与输出轴的转速之比,它决定了输出转速相对于输入转速的增益或减益。
传动比可以通过不同的齿轮组合来实现。
根据传动比的变化方式,变速器可分为手动变速器和自动变速器两种。
手动变速器通过手动操作换挡杆来改变齿轮组合,实现不同的传动比。
它通常采用常见的手动齿轮设计,其中包括主动齿轮、主动轴、同步器和尾轴等。
当换档时,同步器用于将输出轴与输入轴同步,以确保无顺挂、无冲击的换档操作。
自动变速器采用液力离合器或湿式多片离合器来实现换挡操作。
它通过传感器监测车辆速度、发动机转速等参数,并根据预设的程序自动选择适当的齿轮组合。
自动变速器提供了更高的驾驶舒适性和方便性,但相对于手动变速器来说更加复杂和昂贵。
变速器的类型手动变速器手动变速器是最常见的变速器类型之一。
它通常由多个齿轮组成,齿轮的数量和排列顺序决定了不同的传动比。
手动变速器有不同的档位,通常包括前进档、倒档和空档。
前进档用于正常行驶,倒档用于倒车,而空档则表示没有传动力传递。
手动变速器在使用过程中需要手动操作换档杆,通过将换挡杆移动到不同的档位来改变传动比。
在换挡时,需要使用离合器将发动机与变速器分离,以允许换挡操作的进行。
自动变速器自动变速器是一种能够自动选择适当的传动比的变速器。
它根据车辆的行驶状况和驾驶者的需求,自动进行换挡操作。
自动变速器采用液力离合器或湿式多片离合器来实现换档,并通过电子控制单元(ECU)监测和控制传动比的变化。
自动变速器根据结构和工作原理的不同,可以分为多种类型。
其中包括常规自动变速器、CVT(无级变速器)和双离合器变速器等。
每种类型都有其特点和适用范围,根据不同的需求和偏好可以选择合适的类型。
轿车变速器设计指导
i5=0.850
iR=3.170
3.1.2
中心距对变速器的尺寸,质量和体积都有直接影响,所选的中心距应能保证齿轮的强度。
初选中心距可以由发动机的最大转矩按照下式直接求出:
A= (2—1)
式中 按发动机最大扭矩 直接求A时的中心距系数,对轿车取8.9-9.3,对货车取8.6-9.6
其中 =121N·m, =3.455, =0.96,
则A=(8.6~9.6)
对A进行修正,初选A为66mm
3.1.3
齿轮参数的初步选择
1.初选齿轮模数m
齿轮模数选取的一般原则:
1)为了减少噪声应合理减小模数,同时增加齿宽;
2)为使质量小些,应该增加模数,同时减少齿宽;
3)从工艺方面考虑,各挡齿轮应该选用一种模数;
4)从强度方面考虑,各挡齿轮应有不同的模数。
两轴式变速器没有直接档,因此在高档工作时,齿轮和轴承均承载,因而噪声比较大,也增加了磨损,这是它的缺点。另外,低档传动比取值的上限(igⅠ=4.0~4.5)也受到较大限制,但这一缺点可通过减小各档传动比同时增大主减速比来取消。
图2-1两轴式变速器
1.第一轴;2.第二轴;3.同步器
2.三轴式变速器
三轴式变速器如图2-2所示,从结构外形看,三轴式变速器(中间轴式变速器)具有三根轴。变速器的第一轴和第二轴在一条直线上,经啮合套或者同步器将它们连接得到直接档。使用直接档,变速器的齿轮和轴承及中间轴均不承受载荷,发动机转矩经第一轴和第二轴直接输出。此时变速器的传动效率高,可达90%以上,噪音低,齿轮和轴承磨损减少。因为直接当的利用率高于其他档位,因此提高了变速器的使用寿命:在其他档位工作时,变速器传递的动力需要经过第一轴和第二轴上的两对齿轮传递,因此,在变速器的中间轴和第二轴之间的距离(中心距)不大的条件下,一档仍有较大的传动比:档位高的齿轮采用常啮合齿轮传动,档位低的齿轮(一档)可以采用或者不采用常啮合齿轮传动;多数传动方案中除一档外的其他档位的换挡机构,均采用同步器或者啮合套换挡。少数及其机构的一档也采用同步换挡。中间轴式变速器广泛用于前置后轮驱动的各类汽车上。
汽车变速器毕业设计
汽车变速器毕业设计汽车变速器毕业设计引言汽车变速器是汽车传动系统中至关重要的组成部分,它能够根据车辆的速度和负载情况,实现发动机输出转矩和车轮转速之间的匹配。
在现代汽车工业中,变速器的设计和优化一直是一个重要的研究领域。
本文将探讨汽车变速器的毕业设计,包括设计目标、设计流程和关键技术。
设计目标汽车变速器的设计目标是提高汽车的性能和燃油经济性。
性能包括加速性能、爬坡能力和最高速度等方面。
燃油经济性则是指在保证性能的前提下,尽可能降低油耗。
因此,在进行变速器设计时,需要考虑以下几个方面:1. 齿轮比的选择:齿轮比是决定车辆行驶性能的关键因素之一。
通过合理选择齿轮比,可以实现加速度和爬坡能力的提升,同时降低发动机负荷,提高燃油经济性。
2. 齿轮材料和制造工艺:齿轮的材料和制造工艺直接影响变速器的可靠性和寿命。
选择高强度、耐磨损的材料,并采用先进的制造工艺,可以提高变速器的使用寿命。
3. 润滑系统设计:润滑系统对变速器的正常运行至关重要。
合理设计润滑系统,确保齿轮和轴承的充分润滑,可以减少摩擦和磨损,提高变速器的效率和寿命。
设计流程汽车变速器的设计流程通常包括以下几个步骤:1. 确定设计要求:根据汽车的使用条件和性能要求,确定变速器的传动比范围、最大扭矩和最高转速等参数。
2. 齿轮设计:根据设计要求,选择合适的齿轮模数和齿轮比,进行齿轮的几何设计。
通过计算和仿真,优化齿轮的齿形和齿向,提高传动效率和静音性能。
3. 轴承设计:根据变速器的负载情况,设计合适的轴承布局和尺寸。
通过计算和有限元分析,确定轴承的载荷和寿命,确保变速器的可靠性。
4. 润滑系统设计:根据变速器的结构和工作条件,设计合适的润滑系统。
选择合适的润滑油和润滑方式,确保变速器的正常运行。
5. 性能评估和优化:通过试验和仿真,评估变速器的性能和燃油经济性。
根据评估结果,对设计进行优化,提高变速器的性能和燃油经济性。
关键技术在汽车变速器的设计过程中,有几个关键技术需要重点考虑:1. 齿轮传动技术:齿轮传动是汽车变速器的核心技术。
变速器的设计与分析
变速器的设计与分析变速器是一种机械装置,它通过改变传动比来调整发动机输出功率和车轮转速之间的关系,从而使车辆在不同工况下获得合适的动力传递。
变速器的设计与分析是汽车工程中的重要课题,它直接影响着汽车的性能、燃油经济性以及乘坐舒适性。
本文将就变速器的设计与分析展开探讨,并深入了解其各个方面的原理和特点。
一、变速器的基本原理与分类1. 基本原理:变速器的基本工作原理是通过齿轮传动的方式,实现不同传动比的切换。
其中,齿轮的尺寸、摩擦系数以及齿轮齿数的组合,决定了变速器的传递效率和换挡过程的平顺性。
2. 变速器分类:根据结构和传动方式的不同,变速器可以分为手动变速器和自动变速器。
手动变速器需要驾驶员通过操控离合器和换挡杆来实现换挡,而自动变速器则通过液压或电子控制系统来实现自动换挡。
二、手动变速器设计与分析1. 齿轮数量与传动比:手动变速器通常具有多个齿轮组以及一个反向齿轮组。
通过调整这些齿轮组的组合方式,可以实现不同的传动比。
传动比的选择要平衡动力输出和燃油经济性,同时还要考虑使用者的需求和行驶条件。
2. 离合器设计与分析:离合器是手动变速器中的关键部件,它通过连接和分离发动机与变速器,实现换挡操作。
离合器的设计要考虑离合片的摩擦特性、离合器的耐久性以及操作的舒适性。
3. 换挡机构设计与分析:手动变速器通过换挡机构来实现换挡操作。
换挡杆的设计要考虑符合人体工程学原理,使操作者方便快捷地进行换挡。
同时,换挡机构的设计也要保证换挡过程的平稳和可靠性。
三、自动变速器设计与分析1. 液压自动变速器:液压自动变速器通过液压控制系统来实现自动换挡。
液压油泵、离合器以及换挡阀体等部件的设计要考虑液压系统的工作压力、流量以及各部件的密封和耐磨性能。
2. 电子自动变速器:电子自动变速器采用电子控制系统来实现自动换挡。
电子控制系统通过传感器获取发动机转速、车速等信息,根据预设的换挡策略,控制液压或电动执行机构实现换挡操作。
汽车设计变速器的课程设计
汽车设计变速器的课程设计一、课程目标知识目标:1. 学生能理解变速器在汽车中的作用及其工作原理;2. 学生能掌握不同类型变速器(如手动变速器、自动变速器)的结构组成及特点;3. 学生能了解变速器设计的基本原则和关键参数。
技能目标:1. 学生具备运用CAD软件绘制变速器简易图纸的能力;2. 学生能通过小组合作,分析并解决变速器设计中的实际问题;3. 学生能运用数学和物理知识进行变速器关键参数的计算。
情感态度价值观目标:1. 学生培养对汽车工程设计和机械制造的热爱,激发创新意识;2. 学生通过课程学习,增强团队合作意识和解决问题的自信心;3. 学生认识到变速器设计在汽车产业中的重要性,关注汽车行业的可持续发展。
课程性质:本课程为高二年级汽车工程兴趣小组的选修课程,注重理论知识与实践操作的相结合。
学生特点:学生具备一定的物理和数学基础,对汽车工程感兴趣,具有较强的动手能力和探究精神。
教学要求:结合学生特点,注重培养学生的学习兴趣和动手能力,通过小组合作、实践操作等方式,提高学生的综合运用知识解决实际问题的能力。
在教学过程中,关注学生的情感态度价值观的培养,使学生在学习专业知识的同时,形成正确的价值观和人生观。
二、教学内容1. 理论知识:- 变速器的作用与工作原理;- 手动变速器与自动变速器的结构、原理及优缺点对比;- 变速器设计的基本原则及关键参数计算。
参考教材章节:第三章“汽车传动系统”,第5节“变速器”。
2. 实践操作:- 利用CAD软件绘制变速器简易图纸;- 小组合作,分析并解决变速器设计中的实际问题;- 变速器关键参数计算的实际应用。
3. 教学大纲安排:- 第一周:变速器作用、工作原理及结构组成的学习;- 第二周:手动变速器与自动变速器的对比学习;- 第三周:变速器设计原则及关键参数计算;- 第四周:实践操作,包括CAD绘图、问题分析和参数计算;- 第五周:总结与展示,学生分享学习成果。
教学内容注重科学性和系统性,结合教材章节内容,确保学生能够掌握变速器相关知识,并通过实践操作提高综合运用知识解决实际问题的能力。
汽车变速器工作原理
汽车变速器工作原理
汽车变速器是负责调节发动机转速和车轮转速之间的匹配关系,使车辆在不同的驾驶条件下能够保持适当的动力输出和车速。
汽车变速器主要由输入轴、输出轴、齿轮、离合器和滑块等组件组成。
当驾驶员踩下离合器踏板时,离合器与发动机的动力传递断开,输入轴不再接受发动机的转动力。
当驾驶员松开离合器踏板,离合器与发动机的动力传递连接,发动机的转动力通过输入轴传递到变速器的齿轮系统。
变速器的齿轮系统由不同规格的齿轮组成,这些齿轮安装在输入轴和输出轴上,并通过滑块的移动来选择不同的齿轮组合。
当滑块处于中立位置时,输出轴不运动,此时车辆处于空档状态。
当滑块被移动到某个特定位置时,它会使特定的齿轮组合锁定在输出轴上,从而改变输出轴的转速和扭矩传递比例。
这样,就可以通过改变齿轮组合来实现不同的挡位和速度调节。
在行驶过程中,当需要加速时,驾驶员可以通过换挡杆将滑块移动到更高的挡位,使输出轴转速增加,车辆获得更大的动力输出。
相反,当需要减速或者倒车时,滑块可以被移动到更低的挡位,使输出轴转速降低。
通过这种方式,汽车变速器能够根据驾驶员的需要和驾驶条件,自动或手动地选择合适的齿轮组合,使发动机的转速和车轮的转速保持匹配,从而实现平稳的加速和稳定的行驶。
变速器设计
变速器设计引言变速器是一种用于改变机械系统的输出速度和扭矩的装置。
它在各种机械和交通工具中起着至关重要的作用,例如汽车、船只、飞机等。
本文将介绍变速器的设计原理和常见的设计方法。
设计概述•变速器的主要功能是通过改变输入和输出的齿轮组合来改变传动比,从而实现不同的输出速度和扭矩。
•变速器通常由输入轴、输出轴和一组齿轮组成。
不同的齿轮组合会导致不同的传动比。
•变速器的设计需要考虑多个因素,包括传动比的范围、传动效率、噪音和可靠性等。
设计流程1.确定设计要求:根据应用需求确定变速器的传动比范围、承载能力、工作环境等。
2.选取合适的齿轮类型:常见的齿轮类型包括直齿轮、斜齿轮和行星齿轮等,根据需求选取合适的齿轮类型。
3.计算传动比:根据设计要求和齿轮类型计算出不同齿轮组合的传动比。
4.进行齿轮设计:根据计算得到的传动比,进行齿轮的几何和强度设计。
5.进行模拟和分析:使用计算机辅助设计(CAD)工具进行齿轮的模拟和分析,检查设计的合理性和可靠性。
6.制造和装配:根据最终的设计结果进行齿轮的制造和装配,确保变速器的性能和质量。
齿轮设计齿轮是变速器中最关键的组件之一,它们决定了传动比、噪音和传动效率等性能。
齿轮设计的关键要点如下:•齿轮的模数选择:齿轮的模数确定了齿轮尺寸的比例,并且对变速器的传动比和承载能力有重要影响。
•齿轮的齿数计算:根据传动比和齿轮模数计算出齿轮的齿数,确保齿轮的尺寸匹配和传动比准确。
•齿轮的强度设计:根据扭矩和转速等参数进行齿轮的强度设计,确保齿轮在工作时不会发生破裂或变形等失效。
模拟和分析通过使用计算机辅助设计(CAD)工具进行齿轮的模拟和分析,可以有效地评估设计的合理性和可靠性。
常见的模拟和分析方法包括:•齿轮接触分析:通过对齿轮的接触区域进行分析,评估齿轮的接触应力和接触疲劳寿命等参数。
•齿轮动力学分析:通过考虑齿轮的动力学特性,评估齿轮的振动、噪音和传动效率等性能。
•齿轮热力学分析:通过考虑齿轮的热传导和热膨胀等因素,评估齿轮的温升和热失效等情况。
变速器设计(详细过程完整版).
变速器用齿轮有直齿圆柱齿轮和斜齿圆柱齿轮两种。
4、轴的结构分析
第一轴通常与齿轮做成一体,其长度决定于离合器总成的轴向尺寸。第一轴的花健尺寸与离合器从动盘毂的内花键统一考虑, 目前一般都采用齿侧定心的矩形花健,键齿之间为动配合。
第二轴制成阶梯式的以便于齿轮安装,从受力及合理利用材料来看,也是需要的。各截面尺寸不应相差悬殊,轴上供磨削用的 砂轮越程槽处的应力集中会引起轴断裂。[4]
-4本设计是针对黑豹HB1027变速器设计,为五档手动中间轴式机械式变速器,因此,初步选取传动比范围为 5.0,最高档为超 速档,次高档为直接挡,传动比为1.0。 2、变速器各挡传动比的确定 选择最低档传动比时,应根据汽车最大爬坡度、驱动车轮与路面的附着力、汽车的最低稳定车速以及主减速比和驱动车轮的滚 动半径等来综合考虑、确定。
Key Words Automotive engineering,Transmission,Design,Manual
- II -
XXX大学本科毕业论文(设计)
目录
摘要 ............................................................. I Abstract.......................................................... I I 第1章绪论 (1)
长期处于主导变速器市场的地位,各方面技术经过长期市场考验,通过逐步积累,技术已经相当成熟。
2.手动变速器传动效率较高,理论上比自动变速器更省油。
3.手动变速器结构简单,制造工艺成熟,市场需求大,能够产生生产规模效益,生产成本低廉。
4.维修方便,维修成本便宜。
5.可以给汽车驾驶爱好者带来更多的操控快感。[1]
教案:变速器
引出问题:汽车为什么要采用变速器?变速器有什么功用?提示:从变速器的名称,可以知道变速器应该具有变速的功能,但这还不全面,还应从发动机的特性来考虑。
13.1概述13.1.1变速器的功用变速器是汽车传动系中最主要的部件之一。
它的功用是:1.在较大范围内改变汽车行驶速度的大小和汽车驱动轮上扭矩的大小2.实现倒车行驶(倒挡)3.实现空挡4.驱动其他机构提问:如果没有变速器,车辆可否正常行驶?13.1.2变速器类型按传动比变化方式,汽车变速器可分为有级式、无级式和综合式三种。
有级式变速器应用最广泛。
它采用齿轮传动,具有若干个定值传动比。
按所用轮系形式不同,有普通变速器和行星齿轮变速器两种。
所谓变速器挡数即指其前进挡位数。
无级式变速器的传动比在一定的数值范围内可按无限多级变化,常见的有电力式和液力式(动液式)两种。
综台式变速器是指由液力变矩器和齿轮式有级变速器组成的液力机械式变速器。
按操纵方式不同,变速器又可分为三种:强制操纵式变速器、自动操纵式变速器、半自动操纵式变速器。
13.1.3变速器工作原理一对齿数不同的齿轮啮合传动时,若小齿轮为主动齿轮,带动大齿轮转动时,转速就降低。
若大齿轮驱动小齿轮时,转速升高。
这就是齿轮传动的变速原理。
汽车变速器就是根据这一原理利用若干大小不同的齿轮副传动而实现变速的。
1.变速原理提示:变速器的工作原理,可以用课件或者实物进行演示如图13—1所示,发动机的扭矩经输入轴I输入,经两对齿轮传动,由输出轴Ⅱ输出,其中第一对齿轮,1为主动齿轮,3为从动齿轮;第二对齿轮,3为主动轮,4为从动轮。
变速器设计ppt课件
完整版PPT课件
69
润滑油的发展趋势
全寿命油 降低成本 可回收 绿色
完整版PPT课件
70
实现倒车行驶,用来满足汽车倒退行驶的需 要。
中断动力传递,在发动机起动、怠速运转、汽车 换档或需要停车动力输出时,中断向驱动轮的动 力传递。
完整版PPT课件
3
第二节 变速器结构传动机构布置方案
两轴式:轿车 中间轴式:轻型、中型车辆 双中间轴式:重型车辆
完整版PPT课件
4
变速器的分类
有级式变速器 采用齿轮传动,具有若干个定值传动比
8
中间轴式变速器
完整版PPT课件
9
4档中间轴式变速器传动方案
完整版PPT课件
10
5档中间轴式变速器传动方案
完整版PPT课件
11
中间轴式变速器动力传递路线
完整版PPT课件
12
中间轴式变速器的特点
传动比大 直接档效率高 结构复杂,有时需要中间支撑
完整版PPT课件
13
倒档布置方案
完整版PPT课件
齿数、中心距,β角等。
完整版PPT课件
21
变速器齿轮的特点
硬齿面 7级精度 低碳合金钢+渗碳淬火
完整版PPT课件
22
第四节 变速器的设计与计算
齿轮 轴 壳体 润滑
完整版PPT课件
23
齿轮失效形式
弯曲强度:轮齿折断 接触强度:点蚀
完整版PPT课件
24
变速器设计流程图
确定设计参数:转矩、档位分布等 试算中心距 计算各档齿轮齿数和初步确定齿轮参数 调整螺旋角和变位系数 强度校核 修改齿轮参数或齿数 验算
变速器设计步骤
变速器设计步骤第⼀节概述变速器⽤来改变发动机传到驱动轮上的转矩和转速,⽬的是在原地起步,爬坡,转弯,加速等各种⾏驶⼯况下,使汽车获得不同的牵引⼒和速度,同时使发动机再最有利⼯况范围内⼯作。
变速器设有空挡和倒挡。
需要时变速器还有动⼒输出功能。
变速器由变速传动机构和操纵机构组成。
对变速器如下基本要求.1)保证汽车有必要的动⼒性和经济性。
2)设置空挡,⽤来切断发动机动⼒向驱动轮的传输。
3)设置倒档,使汽车能倒退⾏驶。
4)设置动⼒输出装置,需要时能进⾏功率输出。
5)换挡迅速,省⼒,⽅便。
6)⼯作可靠。
汽车⾏驶过程中,变速器不得有跳挡,乱挡以及换挡冲击等现象发⽣。
7)变速器应当有⾼的⼯作效率。
8)变速器的⼯作噪声低。
除此以外,变速器还应当满⾜轮廓尺⼨和质量⼩,制造成本低,维修⽅便等要求。
满⾜汽车有必要的动⼒性和经济性指标,这与变速器的档数,传动⽐范围和各挡传动⽐有关。
汽车⼯作的道路条件越复杂,⽐功率越⼩,变速器的传动⽐范围越⼤。
在原变速传动机构基础上,再附加⼀个副箱体,这就在结构变化不⼤的基础上,达到增加变速器挡数的⽬的。
近年来,变速器操纵机构有向⾃动操纵⽅向发展的趋势。
第⼆节变速器传动机构布置⽅案机械式变速器因具有结构简单,传动效率⾼,制造成本低和⼯作可靠等优点,在不同形式的汽车上得到⼴泛应⽤。
⼀.传动机构布置⽅案分析变速器传动机构有两种分类⽅法。
根据前进挡数的不同,有三,四,五和多挡变速器。
根据轴的形式不同,分为固定轴式和旋转轴式(常配合⾏星齿轮传动)两类。
固定轴式⼜分为两轴式,中间轴式,双中间轴式变速器。
固定轴式应⽤⼴泛,其中两轴式变速器多⽤于发动机前置前轮驱动的汽车上,中间轴式变速器多⽤于发动机前置后轮驱动的汽车上。
旋转轴式主要⽤于液⼒机械式变速器。
与中间轴式变速器⽐较,两轴式变速器有结构简单,轮廓尺⼨⼩,布置⽅便,中间挡位传动效率⾼和噪声低等优点。
因两轴式变速器不能设置直接挡,所以在⾼档⼯作时齿轮和轴承均承载,不仅⼯作噪声增⼤,且易损坏。
变速器原理图
变速器原理图变速器是汽车传动系统中的重要部件,它能够实现汽车的变速功能,使车辆在不同速度下拥有更好的动力输出和燃油经济性。
本文将介绍变速器的原理图及其工作原理,帮助读者更好地理解汽车变速器的结构和工作方式。
首先,我们来看一下变速器的原理图。
变速器通常由输入轴、输出轴、齿轮组、离合器和液压控制系统等部件组成。
输入轴连接发动机,输出轴连接车轮,齿轮组通过不同的组合来实现不同的速比,离合器用于断开发动机和变速器之间的连接,液压控制系统用于控制离合器和换挡机构的工作。
整个系统通过这些部件的协同工作来实现汽车的变速功能。
在变速器工作时,输入轴从发动机传递动力到齿轮组,齿轮组通过不同的组合来实现不同的速比,然后将动力传递到输出轴,最终驱动车轮。
当需要换挡时,离合器会断开发动机和变速器之间的连接,同时液压控制系统会控制换挡机构进行换挡操作,使车辆在不同速度下拥有更好的动力输出和燃油经济性。
变速器的原理图中还包括了一些辅助部件,比如油泵、油箱、散热器等。
油泵用于向变速器提供润滑油和液压控制所需的压力,油箱用于储存润滑油和冷却液,散热器用于散热润滑油和冷却液,保持变速器的正常工作温度。
这些辅助部件在变速器的正常工作中起着至关重要的作用。
总的来说,变速器的原理图展现了变速器的结构和工作原理,通过输入轴、输出轴、齿轮组、离合器和液压控制系统等部件的协同工作,实现了汽车的变速功能。
同时,辅助部件如油泵、油箱、散热器等也对变速器的正常工作起着重要的辅助作用。
通过本文的介绍,相信读者对变速器的结构和工作原理有了更清晰的认识,希望能够帮助读者更好地理解汽车变速器的工作方式,对汽车的维护和维修有所帮助。
同时,也希望读者能够在日常驾驶中更加注重汽车变速器的使用和保养,确保汽车的正常运行和安全驾驶。
轻型货车变速器设计
轻型货车变速器设计摘要随着国民经济的持续发展,机械⼯业也在不断地发展,各种设备都在不断地进步,创新。
特别是在汽车⽅⾯,轻型货车变速器得到⼴泛应⽤,在某些特定的场合,传统的轻型货车变速器得不到应⽤。
⽐如,传动精度不好控制,保养维护费⽤较⾼;同时在安全⽅⾯也存在⼀定的问题等等。
希望在保证安全的前提下,是⼯作⼈员更加舒适,⽅便的操作。
即便是传统轻型货车变速器传动效率较⾼,但是对于⼈们的经济能⼒,它的价格还让⼈难以接受。
所以研究⼀种新式轻型货车变速器势在必⾏!轻型货车变速器作为机动车辆中的核⼼部件的⼀种,它⼯作时,发动机通过V带传动带动轻型货车变速器转动,从⽽间接地带动了车轮的转动,这样车辆就可以⾏驶了。
本⽂介绍了轻型货车变速器的结构组成、⼯作原理以及主要零部件的设计中所必须的理论计算和相关强度校验,以及对其结构进⾏创新设计,该轻型货车变速器的优点是传动链短、效率⾼、易加⼯、使⽤和维护都很⽅便,较适合在恶劣的环境下⼯作,最主要的是其传动效率很⾼。
关键词:轻型货车变速器;扭矩;结构;校验AbstractWith the continuous development of national economy, machinery industry is in constant development, all sorts of equipment is in constant progress, innovation. Especially in the case of motor, transmission is widely used. In certain situations, the traditional transmission is very unpopular. Bad control precision and the maintenance cost is higher. At the same time there are also certain problems in security. Therefore, higher requirements for the safety of the whole machine, operation will also bring strong shock to the staff, makes the operation very uncomfortable. Although traditional gearbox transmission efficiency is higher, shifting effect is good, but the price is more expensive, general users are difficult to accept. So study a new type of transmission is imperative.According to the market survey, Gearbox must satisfy today's people to the automobile speed regulating the flexibility control requirements, such as can not change the engine torque and rotational speed, driving force and speed change gear box. Under the condition of the engine crankshaft rotating direction invariable, the gearbox forward or backward;Under the condition of the engine does not put out, can make the gearbox parking or fixed operations for a long time.Transmission as a core component of motor vehicle, it is working, engine driven by V belt transmission gearbox rotation, thus indirectly driven wheel rotation, so vehicles can drive.This paper introduces the structure of planetary gear type automatic shift gearbox in the composition, working principle and design of main components necessary to theoretical calculation and strength check, as well as the innovative design on its structure, The advantage of the gearbox transmission chain is short, high efficiency, easy processing, use and maintenance is very convenient, suitable for working under harsh environment, is the most important of its transmission efficiency is very high.Key words:Planetary gear type automatic transmission gearbox;Crankshaft;Processing craft;Fixture;⽬录第⼀章绪论 (1)1.1课题的来源及研究的⽬的和意义 ........................ 错误!未定义书签。
汽车设计变速器设计说明书
第一章 根本数据选择1.1设计初始数据:〔方案二〕**:12;最高车速:m ax a U =110-12=98km/h ; 发动机功率:m ax e P =66-12/2=60kW ; 转矩:max e T =210-12×3/2=192Nm ; 总质量:m a =4100-12×2=4076kg ;转矩转速:n T =2100r/min ; 车轮:R16〔选205/55R16〕 ;r ≈R=16×2.54×10/2+0.55×205=315.95mm 。
2.1.1 变速器各挡传动比确实定1.初选传动比:设五挡为直接挡,则5g i =1m ax a U =0.377min i i r n g p式中:m ax a U —最高车速p n —发动机最大功率转速 r —车轮半径min g i —变速器最小传动比0i —主减速器传动比 max e T =9549×pe n P maxα 〔式中α=1.1~1.3〕所以,p n =9549×19260)3.1~1.1(⨯=3282.47~3879.28r/min取p n =3500r/minp n /T n =3500/2100=1.67在1.4~2.0围,符合要求0i =0.377×0max i i rn g p =0.377×981095.31535003-⨯⨯=4.25双曲面主减速器,当0i ≤6时,取η=90%,0i ›6时,η=85%。
轻型商用车1g i 在5.0~8.0围,g η=96%, T η=η×g η=90%×96%=86.4% ①最大传动比1g i 的选择: 满足最大爬坡度: 根据汽车行驶方程式dtdum Gi u A C Gf ri i T a D Tg δη+++=20emax 15.21〔1.1〕 汽车以一挡在无风、干砂路面行驶,公式简化为ααηsin cos 0emax G Gf ri i T Tg +=〔1.2〕即,()Ttq g i T f Gr i ηαα01sin cos +≥式中:G —作用在汽车上的重力,mg G =,m —汽车质量,g —重力加速度,mg G ==4076×9.8=39944.8N ;max e T —发动机最大转矩,max e T =192N .m ; 0i —主减速器传动比,0i =4.25;T η—传动系效率,T η=86.4%;r —车轮半径,r =0.316m ;f —滚动阻力系数,对于货车取f =0.02;α—爬坡度,取α=16.7°%4.8625.4192316.0)7.16sin 7.16cos 02.0(8.940761⨯⨯⨯︒+︒⨯⨯⨯≥)(g i =5.49②最小传动比1g i 的选择 满足附着条件:≤ri i T Tg η01emax z2F ·φ在沥青混凝土干路面,φ=0.7~0.8,取φ=0.75 即1g i ≤%4.8625.4192316.075.0%608.94076⨯⨯⨯⨯⨯⨯=8.055由①②得5.49≤1g i ≤8.055; 又因为轻型商用车1g i =5.0~8.0; 所以,取1g i =6.0 。
变速器设计
变速器设计第一步:需求分析在变速器设计之前,需要明确变速器的用途和要求。
例如,设计一个汽车变速器时,需要确定最大扭矩、最大转速、最小转速、理想传动效率等等。
同时,也需要考虑所使用的发动机的转速特性和动力要求。
第二步:设计参数确定设计参数的确定非常重要,包括传动比的选择、传动器件的类型等等。
传动比取决于所需的车速范围和所使用的发动机的转速特性。
传输装置可以是齿轮、链条、带传动等等,这取决于设计需求和空间限制。
第三步:齿轮设计齿轮设计是变速器设计中最复杂的部分之一、首先,需要根据所需的传动比和齿轮类型来确定齿轮的参数,例如齿轮模数、齿数、压力角等。
然后,利用齿轮模数、转速和所需传动比等信息,计算齿轮的尺寸和齿形。
第四步:经济性评估在设计过程中,需要考虑经济性因素。
这包括变速器制造成本、使用寿命、能源效率等等。
根据所设计的变速器方案,可以进行整体经济性评估,包括成本评估和能源效率评估。
如果经济性不满足要求,可能需要进行优化设计。
第五步:验证和测试设计完成后,需要对变速器进行验证和测试。
这可以通过计算机模拟、实验室测试和实际使用测试等方式来完成。
验证和测试的目的是确保设计满足要求,并进行必要的调整和改进。
最后,根据测试结果,可以对变速器进行进一步的改进和优化。
这个过程可能需要多次迭代,直到设计满足各项要求为止。
总结起来,变速器设计是一个复杂而繁琐的过程,需要考虑多个因素。
设计者需要通过需求分析确定设计参数,然后进行齿轮设计,并对设计进行经济性评估。
最后,通过验证和测试来确认设计的有效性,并进行必要的优化。
汽车变速器设计毕业设计
汽车变速器设计毕业设计一、引言汽车变速器是汽车传动系统中非常关键的部件之一,它的性能直接影响着汽车的动力性、燃油经济性以及驾驶舒适性。
在本次毕业设计中,我深入研究并设计了一款汽车变速器,旨在满足特定车型的性能需求,并提高汽车的整体性能。
二、汽车变速器的类型和工作原理(一)手动变速器手动变速器是通过驾驶员手动操作换挡杆来改变齿轮的组合,从而实现不同的传动比。
其结构相对简单,成本较低,但操作相对复杂,需要驾驶员具备较高的驾驶技能。
(二)自动变速器自动变速器则是根据车速、油门踏板位置等信号,由液压控制系统或电子控制系统自动换挡。
它操作简便,但结构复杂,成本较高,且燃油经济性相对较差。
(三)无级变速器无级变速器通过连续变化的传动比来实现动力传递,具有良好的燃油经济性和平顺性,但承载能力相对较弱。
三、设计目标和要求本次设计的目标是为一款中型轿车设计一款性能优越、结构合理、可靠性高的变速器。
具体要求包括:1、满足车辆的动力性和燃油经济性要求。
2、具备良好的换挡品质,减少换挡冲击。
3、结构紧凑,重量轻,便于安装和维护。
4、具有较高的可靠性和耐久性。
四、变速器主要参数的确定(一)传动比范围根据车辆的最高车速、最大爬坡度等性能指标,确定变速器的传动比范围。
(二)中心距中心距的大小直接影响变速器的尺寸和质量,需要综合考虑齿轮强度、轴的刚度等因素来确定。
(三)齿轮参数包括模数、齿数、压力角等,这些参数的选择需要满足强度要求,并考虑加工工艺和成本。
五、变速器结构设计(一)齿轮布置方案根据传动比的要求,确定合理的齿轮布置方案,如两轴式、三轴式等。
(二)换挡机构设计选择合适的换挡方式,如手动换挡、自动换挡或手自一体换挡,并设计相应的换挡机构,确保换挡准确、迅速、平稳。
(三)轴和轴承的设计根据受力情况,对轴进行强度和刚度计算,选择合适的轴承类型和规格。
六、变速器零部件的强度校核(一)齿轮强度校核运用相关公式和软件,对齿轮的接触强度和弯曲强度进行校核,确保齿轮在工作过程中不会发生失效。
变速器多学科优化设计方法
变速器多学科优化设计方法变速器多学科优化设计方法变速器是汽车等机械设备的重要组件,它通过调整发动机的输出转速和扭矩,实现车辆的不同速度和力矩要求。
为了提高变速器的性能和效率,采用多学科优化设计方法是十分重要的。
下面将逐步介绍变速器多学科优化设计的步骤。
第一步:确定设计目标在进行多学科优化设计之前,需要明确设计目标。
这包括提高变速器的效率、降低能量损失、减小尺寸和重量、提高可靠性等。
明确的设计目标有助于指导后续的优化过程。
第二步:建立模型在进行多学科优化设计时,需要建立适当的模型来描述变速器的工作原理和性能。
这可以通过理论分析和实验测试来实现。
建立准确的模型是进行优化的基础,它可以帮助设计人员深入了解变速器的特性和限制。
第三步:选择设计变量设计变量是指在优化过程中可以进行调整和改变的参数。
在变速器的多学科优化设计中,设计变量可以包括齿轮比、摩擦材料、齿轮的大小和形状等。
选择合适的设计变量对于优化结果的准确性和可行性至关重要。
第四步:制定优化策略在进行多学科优化设计时,可以采用不同的优化策略。
常见的优化方法包括遗传算法、模拟退火算法、粒子群优化算法等。
根据实际情况选择适合的优化策略,以便在搜索设计空间时能够找到最优解。
第五步:进行优化计算根据建立的模型和选择的优化策略,进行优化计算。
通过不断迭代和调整设计变量,寻找最优解。
优化计算的过程需要考虑到变速器的多个性能指标,并进行综合权衡。
第六步:评估优化结果在优化计算完成后,需要对优化结果进行评估。
这可以通过模拟计算、实验验证和对比分析来实现。
评估优化结果的准确性和可行性对于后续的设计和改进至关重要。
第七步:进行优化改进根据评估结果,对优化结果进行改进。
可以通过进一步调整设计变量,重新进行优化计算,以实现更好的性能和效果。
优化改进是一个循环不断的过程,直到满足设计要求为止。
综上所述,变速器的多学科优化设计方法可以通过明确设计目标、建立模型、选择设计变量、制定优化策略、进行优化计算、评估优化结果和进行优化改进等步骤来实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.3 汽车变速箱设计理论与方法现代汽车的动力装置,几乎都采用往复活塞式内燃机。
它具有相当多的优点,如体积小,质量轻,工作可靠,使用方便等。
但其性能与汽车的动力性和经济性之间存在着较大的矛盾。
如在坡道上行驶时,所需的牵引力往往是发动机所能提供的牵引力的数倍。
而且一般发动机如果直接与车轮相连,其输出转速换算到对应的汽车车速上,将达到现代汽车极限速度的数倍。
上述发动机牵引力、转速与汽车牵引力、车速要求之间的矛盾,单靠现代汽车内燃机本身是无法解决的。
因此就出现了车用变速箱和主减速器。
它们的共同努力使驱动轮的扭矩增大到发动机扭矩的若干倍,同时又可使其转速减小到发动机转速的几分之一。
另外,现代汽车的使用条件极为复杂,在不同场合下有不同的要求。
往往要受到如载运量、道路坡度、路面好坏及交通是否通畅等条件的影响。
这就要求汽车的牵引力和车速能在较大范围内变化,以适应使用的要求。
在条件良好的平直路面上要能以高速行驶,而在路面不平和有较大坡度时能提供较大的扭矩。
变速箱的多档位选择就能满足这些需求。
此外,发动机在不同工况下,燃油的消耗量也是不一样的。
驾驶员可以根据具体情况,选择变速箱的某一档位,来减少燃油的消耗。
在某些情况下,汽车还需要能倒向行驶。
发动机本身是不可能倒转的,只有靠变速箱的倒档齿轮来实现。
在车辆中途暂停行驶或变速箱是由变速传动机构和操纵机构组成。
根据前进档数的不同,变速箱有三、四、五和多档几种。
根据轴的不同类型,分为固定轴式和旋转轴式两大类。
而前者又分为两轴式、中间轴式和多中间轴式变速箱。
4.3.1 两轴式和三轴式变速箱:现代汽车大多数都采用三轴式变速箱,而发动机前置前轮驱动的轿车,若变速箱传动比小,则常采用两轴式变速箱。
在设计时,究竟采用哪一种方案,除了汽车总布置的要求外,主要考虑以下四个方面:1.结构工艺性:两轴式变速箱输出轴与主减速器主动齿轮做成一体且当发动机纵置时,主减速器可用螺旋圆锥齿轮或准双曲面齿轮,而发动机横置时用圆柱齿轮,因而简化了制造工艺。
2.变速箱的径向尺寸:两轴式变速箱的前进档均为一对齿轮副,而三轴式变速箱则有两对齿轮副。
因此,对于相同的传动比要求,三轴式变速箱的径向尺寸可以比两轴式变速箱小得多。
3.变速箱齿轮的寿命:两轴式变速箱的低档齿轮副,大小相差悬殊,小齿轮工作循环次数比大齿轮要高得多,因此小齿轮寿命比大齿轮短。
三轴式变速箱的各前进档,均为常啮合斜齿轮传动,大小齿轮径向尺寸相差较小,因此寿命较接近。
在直接档时,齿轮只是空转,不影响齿轮的寿命。
4.变速箱的传动效率:两轴式变速箱,虽然可以有等于1的传动比,但仍要有一对齿轮进行传动,因而有功率损失。
而三轴式变速箱,可将输入轴和输出轴直接相连,得到直接档,因而传动效率较高,磨损小,噪声也较小。
轿车,尤其是微型汽车,采用两轴式变速箱比较多,而中、重型载货汽车则多采用三轴式变速箱。
4.3.2 多中间轴结构:在通常的三轴式变速箱中,发动机的转矩由第一轴传至第二轴,只经过一根中间轴。
这种变速箱在装上转矩高于1200-1300Nm的大功率的柴油机时,其齿轮、轴和轴承都要承受很大的载荷,这会导致过早被损坏。
所以对于一些重型汽车,一般采用多中间轴的结构。
这种变速箱具有2-3根中间轴,在传递同样转矩的情况下,变速箱齿轮的宽度和质量可分别减少40%和20%,变速箱的整体质量和轴向尺寸也减少很多。
4.3.3 倒档型式:由于倒档使用率不高,一般常采用直齿滑动齿轮方案换入倒档。
为实现倒档传动,有些利用在前进档的传动路线中,加入一个中间传动齿轮的方案,也有利用两个联体齿轮的方案。
前者虽然结构简单,但是中间传动齿轮的轮齿,是在最不利的正、负交替对称变化的弯曲应力状态下工作,而后者是在较为有利的单向循环弯曲应力状态下工作,并且使倒档传动比略有增加。
4.3.4 齿轮型式:变速箱使用斜齿圆柱齿轮和直齿圆柱齿轮。
斜齿圆柱齿轮虽然制造时稍为复杂,且工作时会有轴向力,但因其使用寿命长,传动平稳和噪声小而得到广泛使用,直齿圆柱齿轮多用于低档和倒档。
4.3.5 同步器换档型式:目前大多数的变速箱都采用同步器换档。
使用同步器能保证迅速、无冲击、无噪声换档,而与操作技术的熟练程度无关,从而提高了汽车的加速性、经济性和行车安全性。
但是它也有结构复杂、制造精度要求高、轴向尺寸大、同步环使用寿命短等缺点。
4.3.6 轴承型式:以前变速箱的支承广泛采用滚珠轴承、滚柱轴承和滚针轴承。
现在变速箱的设计趋势是增大其传递功率与质量之比,并要求它有更大的容量和更好的性能,而上述轴承型式已不能满足对变速箱可靠性和寿命所提出的要求,故使用圆锥滚柱轴承的在逐渐增多。
其主要优点如下:圆锥滚柱轴承的直径较小,宽度较大,因而容量大,可承受高负荷;其锥体、外圈和滚子间基本的几何关系使滚子能正确对中,确保轴承的可靠性,使用寿命长;圆锥滚柱轴承的接触线长,如果锥角和配合选择合适,可提高轴和齿轮的刚度,降低齿轮噪声,减少自动脱档的可能,并大幅度提高其寿命;采用圆锥滚柱轴承的变速箱,一般将变速箱壳体设计成沿纵向平面分开或沿中心线所在平面分开,这样可使装拆和调整轴承方便。
4.3.7 其它设计经验:因为变速箱在低档工作时作用有较大的力,所以一般变速箱的低档都布置在靠近轴的后支承处,然后按照从低档到高档顺序布置各档位齿轮。
这样做既能使轴有足够大的刚性,又能保证装配容易。
变速箱整体结构刚性与轴和壳体的结构有关系。
一般通过控制轴的长度即控制档数,来保证变速箱有足够的刚性。
4.3.8变速箱总体尺寸的确定:1 变速箱齿轮中心距的确定:变速箱齿轮的中心距是变速箱很重要的参数,它对变速箱的整体尺寸、体积和质量有很大的影响。
通常根据经验公式初选中心距A(单位m): 式中:k —— 中心距系数,对轿车,k=8.9~9.3,对货车,k=8.6~9.6;Miemax —— 变速箱在一档时,第二轴输出的转矩,Miemax = Memax ·i1·ηg ,单位Nm ;Memax —— 发动机的最大输出转矩,单位Nm ;i1 —— 变速箱一档传动比;ηg —— 变速箱传动效率,取0.96。
此外,变速箱的中心距还要受到齿轮接触强度、几何参数和结构要求等的制约。
2 变速箱轴向尺寸的确定:货车变速箱壳体的轴向尺寸与其档数有关,可参照下列数据选用:四档 (2.2~2.7)A 五档 (2.7~3.0)A 六档(3.2~3.5)A轿车四档变速箱壳体轴向尺寸为(3.0~3.4)A 。
3maxie M k A ⋅=3 变速箱档数的确定:不同类型的汽车,具有不同的传动系档位数,其原因在于它们的使用条件不同;对整车性能要求的不同;汽车本身的比功率不同。
而传动系的档位数与汽车的动力性、燃油经济性又有着密切的关系。
就动力性而言,档位数多,增加了发动机发挥最大功率附近高功率的机会,提高了汽车的加速与爬坡能力。
就燃油经济性而言,档位数多,增加了发动机在低燃油消耗率区工作的可能性,降低了油耗。
所以增加档位数会改善汽车的动力性和燃油经济性。
档数多少还影响到档与档之间的传动比比值。
比值过大会造成换档困难。
一般认为比值不宜大于 1.7 1.8。
因此如最大传动比与最小传动比之比值愈大,档位数也应愈多。
对于轿车而言,由于其行驶车速高,比功率大,最高档的后备功率也大,即最高档的动力因素大,所以其最高档与起动档的动力因素间的变化范围较小。
因此在过去轿车常用三档或四档变速箱。
近年来,为了进一步节省燃油,装有手动变速箱的轿车多已采用五档变速箱。
对于轻型货车和中型货车而言,由于比功率小,所以一般采用五档变速箱。
而重型货车的比功率更小,使用条件也更复杂,所以一般采用六档至十几个档的变速箱,以适应复杂的使用条件,从而使汽车具有足够的动力性和良好的燃油经济性。
4.3.9 各档传动比的确定:1 最高档传动比的选择:汽车大多数时间是以最高档行驶的,即用最小传动比的档位行驶的。
因此最小传动比的选定是很重要的。
传动系的总传动比是传动系中各部件传动比的乘积,即it=ig·i0·ic式中ig——变速箱的传动比;i0——主减速器的传动比;ic——分动器或副变速箱的传动比;普通的汽车由于没有分动器或副变速箱,而变速箱的最小传动比通常为1,所以传动系的最小传动比就是i0。
因此确定最高档传动比其实就是选择主减速器的传动比i0。
主减速器的传动比是从汽车功率平衡图来选择的,在功率平衡图上将传动比i0划分为三个区域:i01(大传动比)是使得最高车速uamax大于发动机最大功率时的车速up,它的优点在于汽车的后备功率最大,即动力性最好,但是燃油经济性最差;i02(中传动比)是使得最高车速uamax等于发动机最大功率时的车速up,它的优点是最高车速最大,且动力性和经济性均居中;i03(小传动比)是使得最高车速uamax小于发动机最大功率时的车速up,它的优点是发动机功率利用率最高,即燃油经济性最好,但是汽车的后备功率最小,即汽车动力性最差。
以前,多数汽车将主减速器传动比选择为大传动比i01或中传动比i02,但是随着近年来不断要求提高汽车燃油经济性,使得主减速器的传动比开始偏向于小传动比i03。
这里对主减速器传动比的选择只是一个初步的选择,计算汽车经济性和动力性来优化主传动比的方法,以精确地确定主减速器的传动比。
2 最低档传动比的选择:确定最低档传动比时,要考虑下列因素:汽车最大爬坡度,驱动轮与路面附着力,汽车最低稳定车速及主传动比等。
下面假设主传动比已经确定。
(1) 根据最大爬坡度确定一档传动比:汽车在最大上坡路面行驶时,最大驱动力应能克服轮胎与路面间滚动阻力及上坡阻力。
由于汽车上坡行驶时,车速不高,故忽略空气阻力。
式中:F kmax —— 最大驱动力;F f —— 滚动阻力;F imax —— 最大上坡阻力;又式中:M emax —— 发动机最大扭矩;i 1—— 变速器一档传动比;i 0—— 主传动比;η—— 汽车传动系总效率;m —— 汽车总质量;g —— 重力加速度;ψ—— 道路最大阻力系数;r —— 驱动轮滚动半径;f —— 滚动阻力系数;αmax —— 道路最大上坡角。
(2) 根据驱动轮与地面的附着力确定一档传动比:汽车行驶时,为了使驱动轮不打滑,必须使驱maxmax i f k F F F +≥Θri i M F e f η01max max =Θmax cos αfmg F f =max max sin αmg F i =ψααηmg f mg ri i M e =+≥∴)sin cos (max max 01max ηψ0max 1i M rmg i e ≥(1-1)动力等于或小于驱动轮与路面间的附着力。
式中: φ—— 道路附着系数,取φ=0.5~0.6;N —— 驱动力垂直反力,用下列公式计算: 其中:X 、S —— 后轮驱动时,X = a ,S = +1;前轮驱动时,X = b ,S = -1; 四轮驱动时,X = L ,S = 0; α—— 路面坡度角;a 、b —— 重心至前后轴距离;L —— 轴距;h g —— 满载时重心高度。