四川公务员考试:行程问题方法详解

合集下载

公考行程题型归纳

公考行程题型归纳

公考行程题型归纳一、行程问题概述行程问题是公务员考试中的重要题型之一,主要考查考生对运动学知识的理解和应用能力。

行程问题涉及到的知识点包括路程、速度、时间等,通过不同的组合和变化,形成多种复杂的题型。

二、基础行程模型基础行程模型是行程问题的基本模型,包括直线行程和曲线行程两种。

直线行程模型涉及到的知识点包括速度、时间和距离之间的关系,即速度=距离/时间。

曲线行程模型涉及到圆周运动和匀速圆周运动等知识点。

三、相对速度问题相对速度问题是行程问题中的难点之一,主要考查考生对相对速度概念的理解和应用能力。

在相对速度问题中,需要考虑两个物体之间的相对速度,即一个物体相对于另一个物体的速度。

这种题型需要考生对速度的合成和分解有深入的理解。

四、相遇与追及问题相遇与追及问题是行程问题中的常见题型之一,主要考查考生对运动学规律的理解和应用能力。

在相遇与追及问题中,两个物体在同一直线上运动,一个物体追赶另一个物体,或者两个物体在某一地点相遇。

这种题型需要考生对追及和相遇的条件有深入的理解。

五、环形跑道问题环形跑道问题是行程问题中的另一种常见题型,主要考查考生对环形运动规律的理解和应用能力。

在环形跑道问题中,两个或多个物体在圆形跑道上运动,它们可能迎面相遇,也可能背向而行。

这种题型需要考生对环形跑道的运动规律有深入的理解。

六、多次往返问题多次往返问题是行程问题中的一种复杂题型,主要考查考生对往返运动规律的理解和应用能力。

在多次往返问题中,两个物体在同一直线上运动,一个物体从起点出发,经过多次往返运动后回到起点。

这种题型需要考生对往返运动的规律有深入的理解。

七、火车过桥问题火车过桥问题是行程问题中的另一种特殊题型,主要考查考生对火车过桥运动规律的理解和应用能力。

在火车过桥问题中,火车从桥的一端驶向另一端,同时桥上的路灯或其他物体也在移动。

这种题型需要考生对火车过桥的运动规律有深入的理解。

八、时间与距离计算时间与距离计算是行程问题的核心知识点之一,主要考查考生对时间和距离计算方法的理解和应用能力。

公务员考试特训:行程问题专题详解

公务员考试特训:行程问题专题详解

公务员考试特训:行程问题专题详解发车问题(1)、一般间隔发车问题。

用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。

标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。

(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。

时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。

时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。

流水行船问题中的相遇与追及①两只船在河流中相遇问题,当甲、乙两船(甲在上游、乙在下游)在江河里相向开出:甲船顺水速度+乙船逆水速度=(甲船速+水速)+(乙船速-水速)=甲船船速+乙船船速②同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,与水速无关. 甲船顺水速度-乙船顺水速度=(甲船速+水速)-(乙船速+水速)=甲船速-乙船速也有:甲船逆水速度-乙船逆水速度=(甲船速-水速)-(乙船速-水速)=甲船速-乙船速.说明:两船在水中的相遇与追及问题同静水中的及两车在陆地上的相遇与追及问题一样,与水速没有关系.例题精讲:模块一发车问题【例 1】 某停车场有10辆出租汽车,第一辆出租汽车出发后,每隔4分钟,有一辆出租汽车开出.在第一辆出租汽车开出2分钟后,有一辆出租汽车进场.以后每隔6分钟有一辆出租汽车回场.回场的出租汽车,在原有的10辆出租汽车之后又依次每隔4分钟开出一辆,问:从第一辆出租汽车开出后,经过多少时间,停车场就没有出租汽车了?【解析】 这个题可以简单的找规律求解时间 车辆 4分钟 9辆 6分钟 10辆 8分钟 9辆 12分钟 9辆16分钟 8辆18分钟 9辆20分钟 8辆24分钟 8辆由此可以看出:每12分钟就减少一辆车,但该题需要注意的是:到了剩下一辆的时候是不符合这种规律的到了12*9=108分钟的时候,剩下一辆车,这时再经过4分钟车厂恰好没有车了,所以第112分钟时就没有车辆了,但题目中问从第一辆出租汽车开出后,所以应该为108分钟。

公务员考试之行程问题

公务员考试之行程问题

行程问题行程问题是研究物体在一定的条件、环境、范围内运动的问题,这类问题主要涉及到路程、速度、时间三个量之间的关系。

较复杂的行程问题还要注意理解“速度和”、“速度差”以及行程中两车的出发时间、出发地点、运动方向与运动结果等四大要素,行程问题根据运动方向的不同可分为三类:一、相遇问题两个物体由于相向运动而相遇,这就是相遇问题。

解答相遇问题的关键是求出两个运动物体的速度之和,其基本公式有:相遇时间=两地路程÷速度和速度和=两地路程÷相遇时间两地路程=速度和×相遇时间二、相离问题两个运动物体由于背向运动而相离,就是相离问题。

解答相离问题的关键是求出两个运动物体共同趋势的距离(速度和)。

基本公式有:两地距离=速度和×相离时间相离时间=两地距离÷速度和速度和=两地距离÷相离时间三、追及问题两个运动的物体同向而行,一快一慢,快车后,慢车前,经过一定的时间,快的追上慢的就是追及问题。

根据所给的条件不同,可分两种:(1)直接给追及距离的(同时不同地的);(2)间接给追及距离的(同地不同时)。

解答追及问题的关键是确定或求出追及距离和速度差,基本公式有:追及时间=追及距离÷速度差追及距离=速度差×追及时间速度差=追及距离÷追及时间1.一条街上,一个骑车人和一个步行人同向而行,骑车人的速度是步行人的3倍,每个隔10分钟有一辆公交车超过一个行人。

每个隔20分钟有一辆公交车超过一个骑车人,如果公交车从始发站每隔相同的时间发一辆车,那么间隔几分钟发一辆公交车?A.6 B8 C 10 D122.一艘轮船从河的上游甲港顺流到达下游的丙港,然后调头逆流向上到达中游的乙港,共用了12小时。

已知这条轮船的顺流速度是逆流速度的2倍,水流速度是每小时2千米,从甲港到乙港相距18千米。

则甲、丙两港间的距离为( )A.44千米B.48千米C.30千米D.36千米3.甲、乙两人分别从A、B两地同时相向而行,甲的速度是乙的1.5倍,二人相遇后继续行进,甲到B地、乙到A地后立即返回。

公考行程问题技巧

公考行程问题技巧

公考行程问题技巧说起公考行程问题的技巧,我有一些心得想分享。

我刚开始备考公务员的时候,一遇到行程问题就头疼得不行。

就像走进了一个迷宫,绕来绕去找不到出口。

首先呢,咱们来说说最基本的公式:路程= 速度×时间,这个就像是做饭的基本食材一样,缺了它可不行。

比如说,有一道题是这样的,一辆汽车以每小时60千米的速度行驶了3小时,问行驶了多远?这就是直接套用公式的简单例子,这时候路程就等于60×3 = 180千米。

这种简单题就像是走路碰到一块小石头,轻松就能跨过去。

那要是复杂一点的呢?假如是相向而行或者相背而行的问题,这就像两个人面对面走路或者背对背走路。

两个人相向而行时,他们之间的距离减少的速度就是两人速度之和;相背而行时,距离增加的速度就是两人速度之和。

比如说,A、B两人,A的速度是每小时5千米,B的速度是每小时3千米,他们相向而行,一开始相距20千米,问多久能相遇?这时候就可以把A和B想象成两个合作的小蚂蚁,它们共同完成20千米的路程,二者速度和是5 + 3 = 8千米/小时,根据公式时间= 路程÷速度,那就是20÷8 = 小时就能相遇啦。

对于那些追击问题,就好比是两个人在赛跑,一个人在前面跑,一个人在后面追。

后面人的速度比前面人快,快出来的那部分速度就是用来缩短他们之间距离的关键。

比如说,甲速度是每小时8千米,乙速度是每小时6千米,乙先出发1小时,甲再出发追乙,甲追乙就是他们的距离在不断缩小,乙先走1小时就先走了6×1 = 6千米,甲每小时比乙多走8 - 6 = 2千米,那甲追上乙就需要6÷2 = 3小时。

对了,还有个事儿要说。

在解行程问题的时候,画图是个特别好的方法。

就像给你一堆乱线,你把它整理好画出来就清楚多了。

有时候单纯看题脑袋里乱糟糟的,但把图画出来,速度、路程和时间的关系就一目了然了。

但是,我得承认,这个画图法虽然好用,但也有局限性。

公务员考试行测技巧:数量关系之行程问题汇总

公务员考试行测技巧:数量关系之行程问题汇总

公务员考试行测技巧:数量关系之行程问题汇总近年来国考行测数量关系中的行程问题层出不穷、花样百出,例如相遇追及、队伍行程、流水行船、往返相遇等等一系列行程问题,让许多考生很是头疼。

不要怕,今天拯救你,给大家汇总了数量关系当中的行程问题的公式,通过归纳、整理、例题让各位各位考生更加清晰的掌握这些公式,从而解决实际问题。

行程问题(1)火车过桥核心公式:路程=桥长+车长(火车过桥过的不是桥,而是桥长+车长)(2) 相遇追及问题公式:相遇距离=(速度1+速度2)×相遇时间追及距离=(速度1-速度2)×追及时间(3)队伍行进问题公式:队首→队尾:队伍长度=(人速+队伍速度)×时间;队尾→队首:队伍长度=(人速-队伍速度)×时间(4)流水行船问题公式:顺速=船速+水速,逆速=船速-水速(5)往返相遇问题公式:两岸型两次相遇:S=3S1-S2,(第一次相遇距离A为S1,第二次相遇距离B为S2)单岸型两次相遇:S=(3S1+S2)/2,(第一次相遇距离A为S1,第二次相遇距离A为S2)左右点出发:第N次迎面相遇,路程和=(2N-1)×全程;第N 次追上相遇,路程差=(2N-1)×全程同一点出发:第N次迎面相遇,路程和=2N×全程;第N次追上相遇,路程差=2N×全程以上就是数量关系之行程问题的汇总,接下来给大家分享一道例题,来帮助大家巩固!【真题演练】小张和小王两人错过末班公交车,小王以60米/分钟的速度步行回家,与此同时小张以80米/分钟的速度沿反方向回家。

3分钟后小张发现小王的身份证在自己包里,于是立即调头以180米/分钟的速度跑步追小王,但每跑1分钟休息1分钟,那么从两人分开到小张追上小王需要多长时间?(追上时,小王还没到家)A.14分钟B.20分钟C.17分钟D.11分钟【正确答案】A【解析】根据题意,两人分开3分钟后相距(80 + 60)x3 = 420米,此时小张开始追小王,每2分钟追180 - 60 x 2 = 60米,经过5次(10分钟)追赶,可以追上60 x 5 = 300米,最后还剩420 - 300= 120米,只需120/(180 - 60) = 1分钟,则追赶总时间为10 + 1 = 11分钟。

行程问题公考万能解题口诀

行程问题公考万能解题口诀

行程问题公考万能解题口诀行程问题啊,说白了就是考咱们的数学思维和速度感,特别是在公考的时候,简直就是必考的“常客”了。

看似简单,其实有点儿“套路”,如果不掌握个诀窍,真有可能被绕进去。

别怕,今天我就给大家来一套行程问题的“万能解题口诀”,帮你一招搞定,简单又高效,保证你考试不掉链子。

首先呢,行程问题大致就是考你如何算出“时间、速度和路程”之间的关系。

三者的关系呀,可以用一个经典的公式来表示,那就是:路程=速度×时间。

没错,就是这么简单的公式,三者之间就像铁三角,缺一不可。

听着容易,做起来可得看清楚题意。

别急,先稳住,接下来告诉你怎么把它拆开来用。

行程问题最常见的两种类型,第一种是“单一行程”,就是说你一个人出发,走一路,到达一个目的地。

你只需要知道你的速度和时间,直接套公式就行。

比如说,某人开车从A地到B地,开了3个小时,平均速度是60公里/小时,那你算一下,总共走了多少路?答案就很简单了,路程=速度×时间=60×3=180公里。

是不是简单?对吧,考场上遇到这种,基本就是几秒钟的事儿,大家心里有数了就行。

但是,如果题目稍微复杂点,开始给你两个人或者两种交通工具,哎呀,麻烦就大了。

不过别怕,给你个诀窍,先记住:“相遇”问题和“追及”问题是行程问题的两大主角。

这些题目出现时,不要慌,照着套路走。

举个例子,假如有两个小伙子,一个骑车从A地出发,另一个骑车从B地出发,两个人相向而行,问题是他们什么时候相遇,路程是多少。

哎呀,这个就需要注意一下啦。

相遇问题嘛,得想象一下,两个小伙子从不同地方出发,最终碰面。

这里有个小诀窍,速度加起来,时间嘛,再按照公式算。

别忘了,两个小伙伴的速度加起来就等于他们两个人“合力”的速度,时间就等于“合力速度”下两人相遇所需的时间。

比如说,A从A地出发,B从B地出发,A骑车的速度是10公里/小时,B骑车的速度是15公里/小时,两人相向而行,问多久会碰面?好啦,这时候你就可以先求出他们的“合力速度”,就是10+15=25公里/小时。

公务员行测考试数量关系:行程问题详解

公务员行测考试数量关系:行程问题详解

行程问题是国家公务员考试中数学运算的常考题型之一,涉及最多的是相遇问题与追及问题。

专家提醒各位考生,在复习数学运算的过程中,应重点掌握行程问题中的几种题型和解题方法。

一、行程问题知识要点(一)行程问题中的三量行程问题研究的是物体运动中速度、时间、路程三者之间的关系。

这三个量之间的基本关系式如下:路程=速度×时间;时间=路程÷速度;速度=路程÷时间。

上述三个公式可称为行程问题的核心公式,大部分的行程问题都可通过找出速度、时间、路程三量中的两个已知量后利用核心公式求解。

(二)行程问题中的比例关系时间相等,路程比=速度比;速度相等,路程比=时间比;路程一定,速度与时间成反比。

二、行程问题的主要题型(一)平均速度问题平均速度问题公式:(二)相遇问题1.相遇问题的特征(1)两人(物体)从不同地点出发作相向运动;(2)在一定时间内,两人(物体)相遇。

与基本的行程问题相比,专家认为,相遇问题涉及两个或多个运动物体,过程较为复杂。

一般借助线段图来理清出发时间、出发地点等基本量,进而利用行程问题核心公式解题。

2.相遇问题公式公式中的相遇路程指同时出发的两人所走的路程之和。

如果不是同时运动,要转化为标准的同时出发、相向运动的问题来套用相遇问题公式。

(三)追及问题1.追及问题的特征(1)两个运动物体同地不同时(或同时不同地)出发做同向运动。

后面的比前面的速度快。

(2)在一定时间内,后面的追上前面的。

与相遇问题类似,专家建议考生可通过线段图来理清追及问题的运动关系。

2.追及问题公式在追及问题中,我们把开始追及时两者的距离称为追及路程,大速度减小速度称为速度差。

由此得出追及问题的公式:(四)多次相遇问题相遇问题的复杂形式是多次相遇问题,多次相遇问题按照运动路线不同分为直线多次相遇和环形多次相遇两类。

多次相遇问题重要结论:1.从两地同时出发的直线多次相遇问题中,第n次相遇时,路程和等于第一次相遇时路程和的(2n-1)倍;每个人走的路程等于他第一次相遇时所走路程的(2n-1)倍。

公务员考试行测一般行程问题、工程问题公式总结

公务员考试行测一般行程问题、工程问题公式总结

公务员考试行测一般行程问题、工程问题公式总结平均速度×时间=路程;路程÷时间=平均速度;路程÷平均速度=时间。

【反向行程问题公式】反向行程问题可以分为“相遇问题”(二人从两地出发,相向而行)和“相离问题”(两人背向而行)两种。

这两种题,都可用下面的公式解答:(速度和)×相遇(离)时间=相遇(离)路程;相遇(离)路程÷(速度和)=相遇(离)时间;相遇(离)路程÷相遇(离)时间=速度和。

【同向行程问题公式】追及(拉开)路程÷(速度差)=追及(拉开)时间;追及(拉开)路程÷追及(拉开)时间=速度差;(速度差)×追及(拉开)时间=追及(拉开)路程。

【列车过桥问题公式】(桥长+列车长)÷速度=过桥时间;(桥长+列车长)÷过桥时间=速度;速度×过桥时间=桥、车长度之和。

【行船问题公式】(1)一般公式:静水速度(船速)+水流速度(水速)=顺水速度;船速-水速=逆水速度;(顺水速度+逆水速度)÷2=船速;(顺水速度-逆水速度)÷2=水速。

(2)两船相向航行的公式:甲船顺水速度+乙船逆水速度=甲船静水速度+乙船静水速度(3)两船同向航行的公式:后(前)船静水速度-前(后)船静水速度=两船距离缩小(拉大)速度。

(求出两船距离缩小或拉大速度后,再按上面有关的公式去解答题目)。

【工程问题公式】(1)一般公式:工效×工时=工作总量;工作总量÷工时=工效,工作总量÷工效=工时。

(2)用假设工作总量为“1”的方法解工程问题的公式:1÷工作时间=单位时间内完成工作总量的几分之几;1÷单位时间能完成的几分之几=工作时间。

(注意:用假设法解工程题,可任意假定工作总量为2、3、4、5……。

特别是假定工作总量为几个工作时间的最小公倍数时,分数工程问题可以转化为比较简单的整数工程问题,计算将变得比较简便。

行程问题(公务员考试数学运算基础详解)

行程问题(公务员考试数学运算基础详解)

行程问题——基础学习基本题型2、相遇问题例1:同样走100米,小明要走180步,父亲要走120步。

父子同时同方向从同一点出发,如果每走一步所利用的时间相同,那么父亲走出450米后往回走,要走多少步才能遇到小明?()A.648 B.540 C.440 D.108【答案】D【解题关键点】父亲走出450米后共走了4.5×120=540步。

而小明只走540÷180×100=300米。

于是变为一个路程为150米的相遇问题。

父亲每步相当于米,小明每步相当于米。

两人相遇需要走150÷(+)=108步。

(共需要走108步每人走54步)【结束】3、相遇问题例2:甲、乙两车从A、B两地同时出发,相向而行,如果甲车提前一段时间出发,那么两车将提前30分相遇。

已知甲车速度是60千米/时,乙车速度是40千米/时,那么,甲车提前了多少分出发()分钟。

A. 30B. 40C. 50D. 60【答案】C【解题关键点】解析:本题涉及相遇问题。

方法1、方程法:设两车一起走完A、B两地所用时间为x,甲提前了y时,则有, (60+40)x=60[y+(x-30)]+40(x-30), y=50方法2、甲提前走的路程=甲、乙共同走30分钟的路程,那么提前走的时间为,30(60+40)÷60=50【结束】4、相遇问题例3:甲、乙二人同时从相距60千米的两地同时相向而行,6小时相遇。

如果二人每小时各多行1千米,那么他们相遇的地点距前次相遇点1千米。

又知甲的速度比乙的速度快,乙原来的速度为()A.3千米/时B.4千米/时C.5千米/时D.6千米/时【答案】B【解题关键点】原来两人速度和为60÷6=10千米/时,现在两人相遇时间为60÷(10+2)=5小时,采用方程法:设原来乙的速度为X千米/时,因乙的速度较慢,则5(X+1)=6X+1,解得X=4。

注意:在解决这种问题的时候一定要先判断谁的速度快。

四川公务员考试:基础行程问题考点总结

四川公务员考试:基础行程问题考点总结

四川公务员考试:基础行程问题考点总结华图教育王保国基础行程问题中,采用的解题方法主要是“赋值法”和“比例法”。

何时采用“赋值法”,又何时采用“比例法”,有一个简便的判断方法,通过题目中单位的数量来确定采用何种方法解题。

我们把单位分为三种:路程的单位、速度的单位和时间的单位。

1、当题目中出现一种单位或者没有单位时,采用“赋值法”:基础行程问题中的赋值法主要侧重于比例关系赋值,根据题目当中的比例关系设出相应的量,然后去解题。

赋值可以使题目更加具体化,避免过于抽象。

2、当题目中出现两种单位时,采用“比例法”,比例法主要考察:路程一定,速度与时间成反比;速度一定,路程与时间成正比;时间一定,路程与速度成正比。

【例1】某轮船计划用10小时从A地到B地,由于天气变好,速度加快了25%,可提前几小时到达?()A.4 B.3C.2 D.1【答案】C【解析】题目当中出现一种单位,采用“赋值法”。

依据“速度加快了25%”,可以设原计划速度为100,现在速度为125,又原计划10小时到达,说明路程为100×10=1000,现在速度为125.,需要1000÷125=8小时。

所以提前了2小时。

因此答案选择C选项。

【例2】小王步行的速度比跑步慢50%,跑步的速度比骑车慢50%。

如果他骑车从A城去B城,再步行返回A城共需要2小时。

问小王跑步从A城去B城需要多少分钟?A. 45B. 48C. 56D. 60【答案】B【解析】题目当中出现一种单位,采用“赋值法”。

依据“步行的速度比跑步慢50%,跑步的速度比骑车慢50%”,可以设步行速度为50,跑步速度为100,骑车速度为200。

骑车从A城去B城,再步行返回A城共需要2小时,可得2250200220050AB创=+,所以AB=80,所以跑步需要时间为80÷100=0.8小时=48分钟。

因此答案选择B 选项。

【例3】有一列车从甲地到乙地,如果是每小时行100千米,上午11点到达,如果每小时行80千米是下午1点到达,则该车的出发时间是( )A .上午7点B .上午6点C .凌晨4点D .凌晨3点 【答案】D【解析】题目当中出现两种单位,采用“比例法”。

行测——行程问题解题原理及方法

行测——行程问题解题原理及方法

公务员考试数量关系之行程问题解题原理及方法两个速度不同的人或车,慢的先行(领先)一段,然后快的去追,经过一段时间快的追上慢的。

这样的问题一般称为追及问题。

有时,快的与慢的从同一地点同时出发,同向而行,经过一段时间快的领先一段路程,我们也把它看作追及问题,因为这两种情况都满足速度差×时间=追及(或领先的)路程追及(或领先的)路程÷时间=速度差追及(或领先的)路程÷速度差=时间对于有三个以上人或车同时参与运动的行程问题,在分析其中某两个的运动情况的同时,还要弄清此时此刻另外的人或车处于什么位置,他(它)与前两者有什么关系。

分析复杂的行程问题时,最好画线段图帮助思考理解并熟记下面的结论,对分析、解答复杂的行程问题是有好处的。

(3)甲的速度是a,乙的速度是b,在相同时间内,甲、乙一共行的At+bt=s t=s/a+b s甲=a*t=a*s/a+b S乙=b*t=b*s/a+b【例1】甲、乙两人分别从A、B两地同时出发,相向而行。

如果两人都按原定速度行进,那么4小时相遇;现在两人都比原计划每小时少走1千米,那么5小时相遇。

A、B两地相距多少千米?【分析】可以想象,如果甲、乙两人以现在的速度(比原计划每小时少走1千米)仍然走4小时,那么他们不能相遇,而是相隔一段路。

这段路的长度是多少呢?就是两人4小时一共比原来少行的路。

由于以现在的速度行走,他们5小时相遇,换句话说,再行1小时,他们恰好共同行完这段相隔的路。

这样,就能求出他们现在的速度和了。

【解】相隔路程:1×4×2行完相隔路程所需时间:(5-4)速度和4×2/(5-4)全程=40(千米)这道题属于相遇问题,它的基本关系式是:速度和×时间=(相隔的)路程。

但只有符合“同时出发,相向而行,经过相同时间相遇”这样的特点才能运用上面的关系式。

不过,当出现“不同时出发”或“没有相遇(而是还相隔一段路)”的情况时,应该通过转化条件,然后应用上面的关系式。

公务员考试:行程问题三个妙招

公务员考试:行程问题三个妙招

公务员行程问题三个妙招华图教育孙兆宸行程问题是公职考试中最重要的题型,几乎每个级别的考试都会涉及到行程问题,而且题型多样,复杂多变,因此,对于广大考生而言,并不容易掌握。

那么,对于行程问题我们应该从什么样的角度切入呢?在行程问题中,最本质的就是速度、时间、路程三者之间的关系。

只要把这三者的关系牢牢抓住了,所有的问题都会迎刃而解,因为行程问题所有的内容都是从这个基础演化而来的。

相信大家对行程问题的基本公式:路程=速度×时间,已经在熟悉不过了,而行程问题之所以称为国考、省考中的数量常考点、易考点和难考点,往往有很多考生见到行程问题就头大脑晕、不知所措,或者干脆主动放弃,之所以会这样,就在于很多考生都没有把握行程问题的本质,但是,只要我们把握了行程问题的本质——路程=速度×时间,然后再加上一些基本公式和技巧,那么解决行程问题绝不是难事。

大家一定要记住这个本质公式:路程=速度×时间。

在记住这个公式的基础上,大家还要掌握下面的三种方法:1、比例法:运用比例法的目的是为了将繁琐的数值简化为简单的数值来进行分析计算,同时比例法的实质也是抓住了数学的核心思想“相对关系”。

2、画图法:通过画简单行程图,迅速理清各物体运动轨迹和之间的相互关系。

3、公式法:特定模型应用特定公式,秒杀题目。

但是一定要记住每个公式的运用前提和它的特征。

但是要大家切记,在做行程问题时我们要用比例不用方程,用份数不用分数。

也许有很多考生会问:为什么用这三种方法而不用方程呢?是因为我们在日常学习中,解决行程问题常采取列方程的方式,这种方法虽然简便易学,但是在国考分秒必争的时间里,列方程这种方法并不能很好的解决在短时间内达到解决行程问题的目的,因此,我们采用比例方法来达到快速解题的目的!下面我们就通过几个例题来训练一下:例1甲每分钟走80米,乙每分钟走72米,两人同时从A地出发到B地,乙比甲多用4分钟,AB两地的距离为多少米()?(2010年福建)A.320B.288C.1440 D.2880【正确答案】D【思路点拨】思路一——方程法:设甲走了X分钟,则得出80X=72*(X+4),解出X。

公务员考试中需要走过一段“行程”(一)

公务员考试中需要走过一段“行程”(一)

公务员考试中需要走过一“行程”(一)华图教育行程问题无论是在省考还是国考当中,都是会考到的,考察的范围很广,有基础行程问题、比例行程、火车过桥问题、扶梯问题、漂流瓶问题、多次相遇问题、环形运动问题等,而且每类行程问题都会有变形,所以这类题目是大部分考生最为头疼的一种题型,这类题目虽然复杂,也是有规律可循的,所以我们有必要好好研究下此类题目。

行程问题有个基础的核心公式就是s=vt,无论是上述的哪一种题型的考察,都离不开路程、时间、速度这个三个基础的等量关系,1.基础行程问题:解题核心抓住不变的量【例题1】有甲、乙、丙三人,甲每小时走80公里,乙每小时走70公里,丙每小时走60公里。

现在甲从A处出发,乙、丙两人从B处同时出发相向而行,在途中甲与乙相遇15分钟后,甲又与丙相遇。

求AB两地的距离。

( )A.315公里B.525公里C.465公里D.455公里此题都是从A到B,所以暗含的条件既是路程不变,所以我们按照这个条件来寻找等量关系。

设甲乙相遇时间是T,那么甲丙相遇时间就是T+1/4,利用相遇公式有(80+70)T=(80+60)(T+1/4)。

解得T=3.5,因此整个距离是525。

【例题2】小张和小王同时骑摩托车从A地向B地出发,小张的车速是每小时40公里,小王的车速是每小时48公里。

小王到达B地后立即向回返,又骑了15分钟后与小张相遇。

那么A地与B地之间的距离是多少公里?( )A.144B.136C.132D.128此题,小张和小王的路程明显是不一样的,小王的速度为48,到达B地后,又折返,所以折返的路程应该为48*15/60=12公里,所以以后在遇到类似的题目,看到同时出发,在某处相遇,即代表时间是一样的,我们可以拿时间做等量关系列式子。

则小王的路程是S+12,小张的路程是S-12,速度分别是48和40,那么用时间相等列式应该表示成:,解得S=132。

2.扶梯问题:掌握基本的公式,扶梯级数=(人速+扶梯速度)×顺行运动所需时间或是扶梯的级数=(1+v梯/v人)×人走的阶数扶梯级数=(人速-扶梯速度)×逆行运动所需时间或是扶梯的级数=(1-v梯/v人)×人走的阶数还有一个知识点需要掌握,如果题目中表述“自动扶梯有多少级露在外面”“当该扶梯静止时,可看到的扶梯梯级数”指得都是扶梯的级数。

2016四川公务员笔试行测解答技巧:逆推法解走走停停题

2016四川公务员笔试行测解答技巧:逆推法解走走停停题

2016四川公务员笔试行测解答技巧:逆推法解走走停停题四川公务员考试行政职业能力测验主要测查从事公务员职业必须具备的基本素质和潜在能力,通过测试选拔出能够胜任公共管理工作的优秀人才。

测试内容包括言语理解与表达能力、判断推理能力、数理能力、常识应用能力和综合分析能力。

在行测考试中,行程问题一直是考生的一个老大难,而行程问题中的走走停停题目更是很多考生的梦魇,甚至有些考生看到这一类问题就直接放弃,严重影响备考的积极性,本文就用逆推法解走走停停与各位考生进行分享。

例:甲乙两人计划从A地步行去B地,乙早上7:00出发,匀速步行前往,甲因事耽搁,9:00才出发。

为了追上乙,甲决定跑步前进,跑步速度是乙步行速度的2.5倍,但每跑半小时都需要休息半小时,那么甲什么时候能够追上乙?( )A.10:20B.12:10C.14:30D.16:10解析:何为逆推,就是解这类题目中可以去考虑清楚最后一个过程,之后再往前去逆推之前的一个周期。

在解决这道题,先利用一个特值法,因为甲的速度是乙的2.5倍,故可以设乙的速度为2,甲的速度为5,因为乙提前两个小时出发,故拉开了2×2=4的距离,甲想要追上,故只要追上落后的4的距离即可,但是甲的是追半个小时,休息半个小时,计算可得前半个小时,甲追上0.5×(5-2)=1.5,后半个小时又落后0.5×2=1,相当于一个小时只追上0.5.逆推过程:甲想要追上的话只能在前半个小时才能追上,故最后半个小时最多只能追上1.5,往前逆推,那么就可以算出之前一个周期结束时甲至少已经追了4-1.5=2.5,因为一个小时综合只追了0.5,追了2.5,需要5个小时,再算上最后一个半小时,故总共需要5.5个小时,故答案为C。

这一类题型是行程问题与交替合作中涉及负效率题型的结合,会有一定的难度,但是只要知道去逆推最后一个过程,算出之前周期结束时应该达到的效果,这其实就是行程问题中的“青蛙跳井”模型,理解好这个模型,就可以在以后备考过程中解题更具针对性。

行程问题解题技巧和思路

行程问题解题技巧和思路

行程问题解题技巧和思路
1. 哎呀呀,碰到行程问题别慌呀!你看,就像你要去一个好玩的地方,得先规划好路线一样。

比如说,从家到超市5 公里,你走路每小时3 公里,那算一下不就知道得走多久啦!解题时要抓住路程、速度和时间的关系,这可是关键哦!
2. 嘿,行程问题有时候挺绕人的,可咱不怕呀!比如说两辆车同时出发,一辆速度快,一辆速度慢,它们之间的距离变化不就是个有趣的事儿嘛。

就好像跑步比赛,谁跑得快,不就更容易领先嘛,这里面的窍门可得搞清楚咯!
3. 哇塞,行程问题的思路其实不难找呢!就像你找宝藏,得有线索呀。

比如知道了总路程和两人的速度比,那就能算出各自走的路程啦。

好比分蛋糕,按比例来嘛,这样一想是不是就简单多啦?
4. 哟呵,行程问题里还藏着好多小秘密呢!比如说相遇问题,两个人相向而行,就跟你和朋友约好见面,想想怎么才能碰面最快嘛。

这不就是实际生活中的事儿嘛,可有意思啦!
5. 哈哈,解决行程问题可得仔细着点!就像走路要一步一步稳着来。

比如给你一段路程,中间休息了一会儿,那时间可得单独算呀。

就好比做一件事,中间停了会儿,总得把时间分清楚不是?
6. 呀,行程问题也不是那么难搞嘛!比如说知道了速度和时间,那路程不就呼之欲出啦。

这就像你知道每天跑多少,跑了几天,一共跑了多远不就清楚啦,是不是很好理解呀?
7. 哼,行程问题可难不倒我!就像爬山,虽然过程有点累,但到了山顶就超有成就感。

遇到难题别怕,一点点分析,总能找到答案的!
我的观点结论就是:只要掌握好方法和思路,行程问题绝对能轻松拿下!。

(word完整版)2020四川省考公务员考试行测题解法及技巧(1.8)

(word完整版)2020四川省考公务员考试行测题解法及技巧(1.8)

2020四川省考公务员考试行测题解法及技巧(1.8)四川公务员考试行测考试内容涉及言语理解与表达、常识判断、数量关系、判断推理、资料分析等。

[行测题解法]一、流水行船问题(一)问题描述在江河里航行时,除了本身的前进速度外,还受到流水的推送或顶逆,在这种情况下计算船只的航行速度、时间和所行的路程,叫做流水行船问题.(二)基本公式顺水速度=船速+水速;逆水速度=船速—水速;在这其中,船速是指船本身的速度,也就是在静水中单位时间里所走过的路程;水速,是指水在单位时间里流过的路程;顺水速度和逆水速度分别指顺流航行时和逆流航行时船在单位时间里所行的路程。

(三)解题方法转化为行程问题考虑。

两船在水中的相遇问题与两车在陆地上的相遇问题一样,与水速没有关系。

同样道理,如果两只船,同向运动,一只船追上另一只船所用的时间,也只与路程差和船速有关,与水速无关。

例1.某船在静水中的速度是每小时15千米,它从上游甲地开往下游乙地共花去了8小时,水速每小时3千米,问从乙地返回甲地需要多少时间?()A.6 B。

8 C。

10 D.12【答案】 D解析:从甲地到乙地,顺水速度=15+3=18(千米/小时),甲乙两地路程: 18×8=144(千米),从乙地到甲地的逆水速度=15—3=12(千米/小时),返回时逆行用的时间:144÷12=12(小时).例 2.长江上游的 A 港与下游 S 港相距 270 千米,一轮船以恒定速度从 A 港到 S 港需6。

75 小时,返回需 9 小时,如果一只漂流瓶从 A 港顺水漂流到 S 港,则需要的时间是:()。

A。

84 小时 B.50 小时C.54 小时 D。

81 小时【答案】C解析:漂流瓶的速度为水速,根据水速=(顺水速度—逆水速度)÷2,可得水速为(270÷6.75—270÷9)÷2=5千米/小时,漂流瓶从 A 港到 S 港需要 270÷5=54 小时。

行测行程问题解题方法

行测行程问题解题方法

行测行程问题解题方法
行测中的行程问题通常都是与时间、距离、速度等相关的运动问题,常见类型有相向出发、相遇、交错等。

针对这些问题,以下是一些解题方法:
1. 画图法
在解题时可以根据题目要求,绘制出相应的图形,以便更好地理解和解决问题。

比如相向而行问题,可以画出两人相向而行的图形,标上相对速度,根据两人之间的距离和时间来计算出两人相遇的时间点;而对于相遇问题,则需要画出两人的运动轨迹,通过交点来确定两人相遇的时间和位置。

2. 路程、速度、时间图
在解题时可以采用路程、速度、时间图的方法,将三者之间的关系用图形表现出来。

比如相向出发问题,可以将两人行程的路程距离、速度和时间用图表来表示,将两者之间的距离表示为一条线段,两人相遇的点为交点,从而计算出两人相遇的时间。

交错问题也可以用同样的方法解决。

3. 解方程法
对于一些比较复杂的行程问题,可以采用解方程的方法来求解。

首先需要根据问题中所给的条件列方程,然后化简、代入、消元,在数学上求解出问题的答案。

这种方法需要一定的数学基础和运算能力,但对于一些比较复杂的问题,是一种有效的解题方法。

综上所述,行测中的行程问题需要注意细节问题,例如要注意两人相遇的时间点还是距离、速度在题目中是否有单位等。

无论采用哪种方法解答,都需要对题目中所给出的条件进行仔细分析,清晰表达,逐步推导出正确的答案。

同时,练习过程中建议多做一些类似题目,加强理解和运算能力,提高解题效率。

国家公务员:行程问题解题技巧

国家公务员:行程问题解题技巧

国家公务员:行程问题解题技巧行程问题在近几年国家公务员考试中几乎都有考查,而在国考中行程问题的难度较其他地方公务员考试较大。

因此,我们在准备国考的过程中,在熟练掌握行程问题的常考公式的基础上,也需要增加一些解答行程问题的答题技巧,这样可以在考试时间紧迫的情况下提高解题的效率。

接下来为大家介绍一个关于行程问题的答题技巧—比例法。

该方法需要建立在对行程问题基础公式理解透彻的前提,方可灵活运用,在做题的过程中点中要害。

比例法:即根据行程问题的基本公式s=vt,如果s相同时,vt成反比;如果v相同时,st成正比;如果t相同时,sv成正比。

比例法的内容看起来简单,但在做题的过程中可能有些题目给出的条件不是那么明显,需要我们根据题干挖掘出隐含的内在条件,然后在根据比例法快速的解答出来。

下面我们通过几道题给大家介绍一下比例法的优势所在。

【例1】如图,在长方形的跑道上,甲、乙两人分别从A 处和C 处同时出发,均按顺时针方向沿跑道匀速奔跑。

已知甲的速度为5 米/秒,且甲第一次追上乙时,甲恰好跑了5圈回到A 处,则乙的速度为()。

A. 4.8 米/秒B. 4.5 米/秒C. 4 米/秒D. 5 米/秒【解析】方法1:由题意可知,甲在第一次追上乙时,恰好跑了5 圈,则甲追乙所用的时间为:5×(20+12)×2÷5=64(秒)。

设乙的速度为x,根据追及时间=追及路程÷速度差,有64=32÷(5-x),解得x=4.5。

方法2:根据题意甲、乙两人分别从A 处和C 处同时出发,最终追上时甲跑了5圈,那么乙跑了4.5圈,有根据甲跑了5圈甲追上乙两人跑的时间相同,SV成正比,则S甲:S乙=V甲:V乙=5:4.5,已知甲的速度为5则乙的速度为4.5。

因此,本题答案为B。

【例2】甲和乙在长400 米的环形跑道上匀速跑步,如两人同时从同一点出发相向而行,则第一次相遇的位置距离出发点有150 米的路程;如两人同时从同一点出发同向而行,问跑得快的人第一次追上另一人时跑了多少米?()A. 600B. 800C. 1000D. 1200【解析】方法1:由“第一次相遇的位置距离出发点有150 米的路程”,可知两个人分别跑了250 米和150 米,两人相差250-150=100(米)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川公务员考试:行程问题方法详解
四川华图曾龙
行程问题是行测考试中最为重要的题型之一,也是难度最大的一类,因此众多考生在面对行程问题的时候几乎都是放弃。

其实行程问题并没有考生所认为的那样难,也不应该看见此类题型就放弃。

那么在考试的时候究竟应该怎样来选择做与不做以及该怎么来做呢?下面我们就对这类问题进行详解。

行程问题在考试中出现的形式有很多,比如我们常见的基础行程问题、追击相遇问题、流水行程问题等,并且这些细分的问题也能衍生成各种各样的小题型,所以在面对行程问题的时候很多同学根本就不知道什么题型该用什么方法。

针对这样的疑问,我们对其进行了有效的方法分类,其中在考试中用的频率最高的两类即是:比例法与赋值法。

下面我们就对这两种方法通过真题来讲解。

第一种比例法
比例法在考试中是一种快速有效的解题方法,其计算复杂程度远远小于方程法,而且比例法也是一种易于掌握的方法。

当题目中有两个完整的运动过程时,我们均可采用比例法,我们知道行程问题最基本的公式就是速度=时间*路程,我们用字母表示为S=V*T,这三个量我们任意知道两个的比值,那么第三个量的比值我们也就能算出。

具体我们通过下题来说明。

【例题1】甲、乙两辆清洁车执行东、西城间的公路清扫任务,甲车单独清扫需要6小时,乙车单独清扫需要9小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫15千米,问东、西两城相距多少千米?()
A.60千米 B.75千米
C.90千米 D.135千米
【解析】根据甲乙单独清扫的时间我们可以得到,甲乙的速度之比为3:2,两者同时出发并同时相遇则时间一样,可知甲乙的时间之比为1:1,那么甲乙的路程之比为3:2,通过比值我们知道甲乙的路程相差1份,1份就等于15km,而东、西两城距离即为5份,一共为75km,故选B。

第二种赋值法
赋值法是数学运算中即为重要的方法,在行程问题中赋值法同样具有重要的作用。

当题
中当中只出现一个单位或者没有一个单位的时候,一般就可以采用赋值法,而在行程问题中一般是把路程赋为一个特殊整数,此特殊整数即为时间或者速度的最小公倍数。

然后根据所赋的路程进行后续验算即可。

【例题2】一艘轮船从上游甲地开往下游乙地需要5个小时,以同样的功率从乙地开往甲地需要6个小时。

如在甲地放下一无动力竹排,它到达乙地需要多长时间?()
A.5小时
B.15小时
C.30小时
D.60小时
【解析】题目当中只有一个单位,即时间单位,因此把总路程赋为5与6的最小公倍数30,那么我们便知顺行的速度为6,逆行的速度为5,而顺水速度与泥水速度只差为水速的2倍,因此水速为1/2,时间极为30/(1/2)=60,故选D。

相关文档
最新文档