(电磁学)计算题
(完整版)电磁学题库(附答案)
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.EqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p 的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRⅠⅡ Ⅲ dba 45︒cEσAσBA BOa θ0 q AR ∞∞O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λdd/2 d/226. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B 的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )1 m41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
高考物理模拟专题电磁学计算题(三十一)含答案与解析
高考物理电磁学计算题(三十一)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,直角坐标系xOy在竖直平面内,x轴沿水平方向,在第一、四象限区域内存在有匀强电场和匀强磁场,电场强度E=4.0×105N/C,方向沿y轴正方向,磁感应强度B=0.2T,方向与xoy平面垂直向外。
在x轴上的A点处有一足够长、与x轴垂直的荧光屏,交点A与坐标原点O的距离为40.0cm,在OA中点P处有一粒子发射枪(可看作质点),能连续不断的发射速度相同的带正电粒子,粒子质量m=6.4×10﹣27kg,电量q=3.2×10﹣19C.粒子发射枪向x轴方向发射的粒子恰能打到荧光屏的A点处。
若撤去电场,并使粒子发射枪在xoy平面内以角速度ω=2πrad/s逆时针转动(整个装置都处在真空中),求:(1)带电粒子的速度及在磁场中运动的轨迹半径;(2)荧光屏上闪光点范围的长度(结果保留两位有效数字);(3)荧光屏上闪光点从最低点移动到最高点所用的时间(结果保留两位有效数字)。
2.如图,上下放置的两带电金属板,相距为3l,板间有竖直向下的匀强电场E.距上板l 处有一带+q电的小球B,在B上方有带﹣6q电的小球A,他们质量均为m,用长度为l 的绝缘轻杆相连。
已知E=mg/q。
让两小球从静止释放,小球可以通过上板的小孔进入电场中(重力加速度为g)。
求:(1)B球刚进入电场时的速度v1大小;(2)A球刚进入电场时的速度v2大小;(3)B球是否能碰到下金属板?如能,求刚碰到时的速度v3大小。
如不能,请通过计算说明理由。
3.如图所示,质量为m、带电荷量为+q的小物块置于绝缘粗糙水平面上的A点。
首先在如图所示空间施加方向水平向右的匀强电场E,t=0时刻释放物块,一段时间后物块运动到B位置,同时将电场更换为方向水平向左的匀强电场E,物块运动到C点速度恰好减为零,已知A、B间距是B、C间距离的2倍,物块从B点运动到C点所需时间为t,求:(1)物块与水平面间的摩擦力;(2)物块从A点运动到C点的过程中克服摩擦力所做的功。
电磁学练习题电场强度与电势差计算题目
电磁学练习题电场强度与电势差计算题目电磁学练习题:电场强度与电势差计算题目在电磁学中,电场强度和电势差是两个基本概念,它们描述了电场中的电荷相互作用和能量转化的关系。
掌握计算电场强度和电势差的方法对于理解和解决实际问题非常重要。
本文将通过一系列练习题,帮助读者巩固和运用相关知识。
练习题一:均匀带电细杆的电场强度和电势差计算假设存在一根长度为L、线密度为λ的无限长均匀带电细杆,电势零点位于无穷远处。
我们需要求出在距离杆上不同位置的点A和点B处的电场强度和电势差。
解答:1. 电场强度的计算由于带电细杆是无限长的,我们可以假设它仅存在于x轴上。
考虑杆上一小段长度dx,它对点A处的电场强度贡献为dE,根据库仑定律,dE的大小可以表示为:\[ dE = \frac{1}{4πε_0} \frac{dq}{r^2} \]其中dq是这段长度dx上的电荷量,r是杆上的电荷到点A的距离。
根据线密度λ的定义(λ=Q/L,Q是细杆上的总电荷量),我们可以得到:\[ dq = λdx = \frac{Q}{L}dx \]将dq的表达式代入dE的计算公式,我们可以得到整根细杆对点A 处的电场强度E_A:\[ E_A = \frac{1}{4πε_0} \int \frac{Q}{L} \frac{dx}{x^2} \]进行积分计算,可得:\[ E_A = \frac{Q}{4πε_0L} \int \frac{dx}{x^2} = \frac{Q}{4πε_0L} \left( -\frac{1}{x} \right) \Bigg|_{-\infty}^{x} = \frac{Q}{4πε_0Lx} \]同样的方法,我们可以计算出点B处的电场强度E_B:\[ E_B = \frac{Q}{4πε_0Lx} \]2. 电势差的计算电势差是从参考点(电势零点)到某点的电势能增加的量。
在本题中,我们让电势零点位于无穷远处,所以点A和点B的电势差可以定义为:\[ V_{AB} = - \int_A^B E \cdot dl \]其中,E是电场强度,dl是微小位移矢量。
电磁学练习题电场和电势的计算和应用
电磁学练习题电场和电势的计算和应用电磁学练习题:电场和电势的计算和应用在电磁学中,电场和电势是两个基本概念。
电场描述了电荷周围的电力场景,而电势则表征了单位正电荷在电场中所具有的电势能。
了解电场和电势的计算和应用对于理解电磁现象和解决相关问题非常重要。
本文将通过一些练习题来展示电场和电势的计算和应用。
1. 计算电场强度假设有一电荷Q,在距离该电荷r处的电场强度E可以由库仑定律计算:E=kQ/r²,其中k为库仑常数。
例题1:一个正电荷Q=5μC位于原点O,求点A(2m, 0)处的电场强度。
解:根据库仑定律,我们可以计算得到A点处的电场强度:E=kQ/r²=k(5×10⁻⁶)/(2×2)²通过计算,我们可以得到A点处的电场强度。
2. 计算电势差电势差是指单位正电荷由一个位置移动到另一个位置所具有的电势能的变化。
电势差的计算可通过电势差公式ΔV=W/q得到,其中W是电场力所做的功,q表示电荷量。
例题2:一个电荷量为q=3μC的正电荷从点A(2m, 4m)移动到点B(6m, 8m),求电势差。
解:首先,我们需要计算电场力所做的功,而功可以通过电场力与位移的乘积来计算。
设A点的电势为VA,B点的电势为VB,则电势差ΔV=VB-VA。
根据电势差公式,我们可以计算出电势差ΔV。
3. 应用题:电场的应用电场不仅仅是一个理论概念,它在现实生活中有广泛的应用。
例题3:一导体球的半径为R=10cm,其中带电量为Q=8μC的电荷,求导体球表面的电场强度。
解:导体球内部,电荷分布均匀,电场强度为零。
导体球表面的电场强度可通过高斯定律计算。
通过高斯定律,我们可以得到导体球表面的电场强度。
4. 应用题:电势的应用电势的应用广泛,比如电势差可以用于计算电池的电动势、电路中的电压等。
例题4:一个由电势差为6V的电池组组成的电路,电池组内电阻为2Ω,求电路中的电流强度。
解:根据欧姆定律,电流I等于电势差ΔV除以电阻R。
2023北京各区初三二模物理汇编《电磁学计算题》
2023北京初三二模物理汇编电磁学计算题一、计算题1.(2023·北京朝阳·统考二模)如图甲所示的电路,闭合开关S,将滑动变阻器R的滑片P由A端移动到B端时,定值电阻0R的电功率P和电流I的关系图像如图乙所示。
假设电源电压保持不变,求:(1)滑动变阻器的滑片P在A端时,通过电路中的电流;(2)电源电压;(3)滑动变阻器的最大阻值。
2.(2023·北京丰台·统考二模)如图所示的是某款电饭锅的简化电路,1R、2R为阻值一定的电热丝。
该电饭锅开始焖烧米饭时,开关S和1S同时闭合,电饭锅处于高功率加热状态;经过一段时间后,开关1S自动断开,电饭锅处于低功率保温状态;再经过一段时间后,米饭完全成熟。
图为用该电饭锅焖熟一锅米饭的全过程中,功率随时间变化的图像。
已知电阻1R的阻值是88Ω,家庭电路的电压U是220V。
当该电饭锅正常工作时,求:(1)保温时的电流;(2)加热时电阻1R的功率;(3)焖熟一锅米饭的全过程消耗的电能。
3.(2023·北京平谷·统考二模)如图所示的电路,电源两端的电压为6V保持不变。
闭合开关S后,电压表的示数为2V,电阻2R的功率为0.8W。
求:(1)电阻1R的阻值;(2)通电10s电路消耗的电能。
4.(2023·北京西城·统考二模)如图所示是小洁设计的汽车油量表模拟电路。
其中R是滑动变阻器的电阻片,滑动变阻器的滑片P跟滑杆连接,滑杆可以绕固定轴O转动,另一端固定着一个浮子。
把电流表的刻度盘改为相应的油量体积数,可以直接读出油箱中的油量。
已知:电源两端电压为12V且保持不变,电流表的量程为0~0.6A。
闭合开关S,当油箱内为满油量时,滑动变阻器的滑片P滑动到电阻片的一端,电流表指针指在“0.6A”处;当油箱内空箱时,滑动变阻器的滑片P滑动到电阻片的另一端,电流表指针指在“0.15A”处。
求:(1)电路中的保护电阻R0;(2)滑动变阻器的电阻片的最大阻值R;(3)当油箱内为一半油量时,滑片P恰好滑动到电阻片中点,此时对应的电流表的示数I。
电磁学期末考试题及答案
电磁学期末考试题及答案一、选择题(每题2分,共20分)1. 以下哪项是电流的单位?A. 牛顿B. 库仑C. 安培D. 伏特答案:C2. 电磁波的传播速度在真空中是恒定的,其值是:A. 299,792,458 m/sB. 300,000,000 m/sC. 3.00 x 10^8 m/sD. 3.00 x 10^5 m/s答案:C3. 根据麦克斯韦方程组,以下哪项描述了电场与磁场之间的关系?A. 高斯定律B. 法拉第电磁感应定律C. 欧姆定律D. 安培环路定理答案:B4. 一个点电荷在电场中受到的力与以下哪个因素无关?A. 电荷量B. 电场强度C. 电荷的正负D. 电荷的质量答案:D5. 以下哪个选项是描述磁场的基本物理量?A. 电势B. 磁通C. 磁感应强度D. 电场强度答案:C6. 一个闭合电路中的感应电动势与以下哪个因素有关?A. 磁场强度B. 导线长度C. 导线运动速度D. 所有以上因素答案:D7. 根据洛伦兹力定律,一个带电粒子在磁场中运动时受到的力与以下哪个因素无关?A. 粒子的电荷量B. 粒子的速度C. 磁场的强度D. 粒子的质量答案:D8. 电磁波的波长与频率的关系是:A. 波长与频率成正比B. 波长与频率成反比C. 波长与频率无关D. 波长与频率的乘积是常数答案:B9. 以下哪种材料最适合用于制作超导磁体?A. 铁B. 铜C. 铝D. 铌钛合金答案:D10. 电磁感应现象是由以下哪位科学家发现的?A. 牛顿B. 法拉第C. 麦克斯韦D. 欧姆答案:B二、填空题(每题2分,共20分)1. 电磁波的传播不需要______。
答案:介质2. 电流通过导线时,导线周围会产生______。
答案:磁场3. 根据欧姆定律,电流I等于电压V除以电阻R,即I=______。
答案:V/R4. 电荷的定向移动形成了______。
答案:电流5. 电磁波的传播速度在真空中是______。
答案:3.00 x 10^8 m/s6. 电磁波的波长、频率和波速之间的关系是______。
初中物理中考电磁学专项练习(计算题)201-300(含答案解析)
初中物理中考电磁学专项练习(计算题)201-300(含答案解析) 学校:___________姓名:___________班级:___________考号:___________一、计算题1.如图甲所示,电源电压恒定,R0为定值电阻.将滑动变阻器的滑片从a端滑到b端的过程中,电压表示数U与电流表示数I间的关系图象如图乙所示.求:(1)滑动变阻器R的最大阻值;(2)R0的阻值及电源电压;(3)当滑片滑到滑动变阻器的中点时,电阻R0消耗的功率.2.如图所示的电路中,只闭合S1时,通过R2的电流是1.5 A,R1=30 Ω,R2=20 Ω.求:(1)电源电压是多大;(2)只闭合S2时,通电20 s电流通过R1产生的电热是多少;(3)使开关通断情况发生变化,整个电路消耗的最小电功率P和最大电功率P′之比是多少.3.如图所示的电路中,小灯泡上标有“6V 3.6W”字样,滑动变阻器R1的最大电阻为40Ω.当只闭合S、S2,滑动变阻器的滑片P在中点时,小灯泡正常发光;当所有开关都闭合,滑片滑到A端时,A1、A2的示数之比是3:1(灯的电阻保持不变).求:(1)电源电压.(2)当只闭合S 、S 2,滑动变阻器的滑片P 在A 端时,小灯泡两端的实际电压.(3)小灯泡消耗的最小电功率(不能为0).4.小明将规格为“220 V 1 210 W”的电热水器单独接入电路中,测得在2 min 内电能表的转盘转过40转(电能表表盘上标有1 200 r/ kW·h 字样),求: (1)该电热水器的实际功率;(2)电路中的实际电压;(3)若该电热水器加热效率为90%,求在该电压下将5 kg 、25 ℃的水加热到55 ℃需要的时间.5.如图甲所示,滑动变阻器R 2标有“50Ω 1A”字样,电源电压为8V 且保持不变。
当开关S 闭合时,电流表A 1和A 2的指针偏转情况如图乙所示。
求:(1)电阻R 1的阻值(2)通电100s ,电流通过电阻R 1产生的热量;(3)再次移动滑动变阻器R 2的滑片P ,使两电流表指针偏离零刻度的角度相同,此时滑动变阻器R 2消耗的电功率P 2。
电磁学练习题(毕奥—萨伐尔定律 )
磁感应强度,毕奥—萨伐尔定律、磁感应强度叠加原理1. 选择题1. 两条无限长载流导线,间距厘米,电流10A ,电流方向相同,在两导线间距中点处磁场强度大小为:( )(A )0 (B )πμ02000(C )πμ04000 (D )πμ0400 答案:(A )2.通有电流J 的无限长直导线弯成如图所示的3种形状,则P 、Q 、O 各点磁感应强度的大小关系为( )A .PB >Q B >O B B .Q B >P B >O BC . Q B >O B >P BD .O B >Q B >P B 答案:D^3.在一个平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流相等,方向如图所示。
问那个区域中有些点的磁感应强度可能为零:( )A .仅在象限1B .仅在象限2C .仅在象限1、3D .仅在象限2、4 答案:D4.边长为a 的一个导体方框上通有电流I ,则此方框中心点的磁场强度( ) A .与a 无关 B .正比于2a C .正比于a D .与a 成反比 答案:D }5.边长为l 的正方形线圈,分别用图示两种方式通以电流I ,图中ab 、cd 与正方形共面,在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为( )A .01=B ,02=B B .01=B ,lIB πμ0222=C .l I B πμ0122=,02=BD .l I B πμ0122=, lIB πμ0222= 答案:C6.载流的圆形线圈(半径1a )与正方形线圈(边长2a )通有相同的电流强度I 。
若两个线圈中心1O 、2O 处的磁感应强度大小相同,则1a :2a =( ) A .1:1 B .π2:1 C .π2:4 D .π2:8 答案:D\7.如图所示,两根长直载流导线垂直纸面放置,电流A I 11=,方向垂宜纸面向外;电流A I 22=,方向垂直纸面向内。
则P 点磁感应强度B 的方向与X 抽的夹角为( )A .30°B .60°C .120°D .210°答案:A8.四条相互平行的载流长直导线电流强度均为I ,方向如图所示。
电磁学练习题电场与电势能计算题目
电磁学练习题电场与电势能计算题目1. 两点电荷的电场计算假设存在两个点电荷,电荷量分别为Q1和Q2,它们之间的距离为r。
我们需要计算它们产生的电场。
根据库仑定律,两点电荷之间的电场强度E可以表示为:E = k * |Q1 * Q2| / r^2其中,k为库仑常数,约等于9 × 10^9 N·m^2/C^2。
2. 电场中带电粒子的受力计算已知点电荷Q1产生的电场强度为E1,带电粒子Q2的电荷量为q2,我们需要计算Q2在Q1的电场中受到的力。
根据库仑定律,电荷在电场中受到的力F可以表示为:F = q2 * E13. 点电荷沿电势梯度移动的能量变化计算假设存在一个点电荷Q,在电势为V1的位置移动到电势为V2的位置。
我们需要计算电荷Q在移动的过程中电势能的变化。
根据电势能的定义,电势能U可以表示为:U = Q * (V2 - V1)4. 电荷分布体系的电势能计算假设存在一个电荷分布体系,我们需要计算该体系的总电势能。
如果电荷分布体系是由离散点电荷组成的,总电势能U可以表示为:U = Σ(Qi * Vi),其中,Qi为第i个离散点电荷的电荷量,Vi为该点电荷在该体系中的电势。
如果电荷分布体系是由连续分布的电荷产生的,总电势能U可以表示为:U = ∫(ρ * V)dτ,其中,ρ为电荷密度,V为在某点上的电势,dτ为电荷密度的微元。
以上是关于电场与电势能的一些计算题目,通过应用电磁学的公式和定律,我们可以计算出电场、电势能以及电荷受力等相关物理量。
这些题目可以帮助我们加深对电磁学的理解和应用能力。
在解答这些题目时,需要注意单位的转换和计算的精度,以确保结果的准确性。
希望以上内容对你的学习有所帮助。
电磁学复习计算题(附问题详解)
《电磁学》计算题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量.10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯EqLq P面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧ABR ,试求圆心O 点的场强.18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:dσAσBA Bq ∞∞ -λ +λ(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点). (2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr=10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线均匀分布.试在图示的坐标系中求出xdd/2 d/2轴上两导线之间区域]25,21[a a 磁感强度的分布. 27. 如图所示,在xOy 平面(即纸面)有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F 和da F的大小和方向.28. 如图所示,在xOy 平面(即纸面)有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T的均匀磁场中,B方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ∆和2F∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F 和cd F的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F 和da F 的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.32. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆a b c dO RR x yI I 30° 45° I ∆l 1 I ∆l 2 a bc d O RR x yI I 30° 45° I ∆l 1I ∆l 2心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.33. 横截面为矩形的环形螺线管,圆环外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面,由实线表示),R EF AB ==,大圆弧BC的半径为R ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B的大小和方向.38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B的大小.39.地球半径为R =6.37×106 m .μ0=4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p与电子轨道运动的动量矩L 大小之比,并指出m p和L 方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB1 mI是铝导线,铝线电阻率为ρ1 =2.50×10-8 Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8 Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A) 42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I 对电流元22d l I的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
高考物理电磁学计算题(三十三)含答案与解析
高考物理电磁学计算题(三十三)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,质量为m,带电量为+q的带电粒子由静止开始经电压为U0的加速电场加速后沿平行于极板的方向从靠近上极板的位置射入偏转电场,极板间电压为U,上极板带正电荷,极板长度和极板间距均为L,粒子从另一侧射出偏转电场,进入紧邻的匀强磁场,磁感应强度为B,磁场方向垂直于纸面向外,磁场只存在于MN右侧的某个正三角形区域内,MN为磁场的一条边界,忽略电场和磁场间的距离,不计带电粒子的重力。
(1)粒子进入偏转电场时的速度;(2)当偏转电压U=0时,若带电粒子最终从MN边界离开磁场,求磁场区域的最小面积S1;(3)当偏转电压U=2U0时,若带电粒子最终从MN边界离开磁场,此时磁场区域的最小面积为S2,求。
2.如图所示为一列简谐波在t1=0时刻的图象,此时波中质点M的运动方向沿y轴负方向,且t2=0.7s时质点M恰好第二次到达y轴正方向最大位移处,试求:①该波的传播方向;②该波的波速③从t1=0至t3=1s时间内质点M经过的路程。
3.如图所示在y轴与虚线间存在着方向沿y轴负方向的匀强电场,一质量为m、带电量为q的带电粒子从坐标原点O以速度v0沿x轴射入电场中,从图中P点离开电场区域,P 点离x轴的距离为L,带电粒子重力不计。
(1)若在区域内再加上垂直xOy平面的匀强磁场,粒子仍从O点以原来的速度射入,粒子沿x轴射出区域,求磁感应强度的大小及方向;(2)若去掉电场,保留(1)的磁场,粒子仍从O点以原来的速度射入,求粒子射出区域时离x轴的距离。
4.如图所示,倾角为θ=37°的绝缘斜面上端与绝缘的水平面相接,一电荷量为+q、质量为m的小物块(可视为质点)置于斜面上,斜面部分处于一水平向右的匀强电场中。
已知重力加速度为g,sin37°=0.6,cos37°=0.8。
(1)若斜面光滑,要使小物块静止在斜面上,求匀强电场的场强大小;(2)若小物块与斜面间的动摩擦因数μ=0.5,小物块能静止在写明上,求匀强电场的场强大小的范围;(3)若斜面与水平面均粗糙,小物块与它们之间的动摩擦因数均为μ=0.5,且匀强电场的场强E=.小物块在斜面上运动位移l后到达斜面顶端,在斜面顶端处有一特殊装置,该装置瞬间可使小物块速度方向变为沿水平面向右、速度大小不变。
电磁学练习题电容与电势能计算题目
电磁学练习题电容与电势能计算题目电磁学练习题:电容与电势能计算简介:本练习题旨在通过计算电容以及电势能的相关问题,帮助读者巩固和加深对电磁学基础知识的理解。
本文将提供清晰、详细的解题步骤,通过实例演示如何计算电容和电势能,并给出一些常见的电容与电势能计算问题。
1. 两个平行金属板间有一电容器。
两金属板间的空气被抽空,沿法向加有10 V 电压。
电容器的两金属板间距为2 cm,面积为5 cm^2,求该电容器的电容。
解答:根据电容器的基本公式 C = Q / V,其中 C 为电容,Q 为电容器上的电荷量,V 为电容器的电压。
因为电容器的两金属板间的空气被抽空,所以可以忽略掉介质电容。
根据高斯定理,平行金属板间的电场强度为 E = V / d,其中 E 为电场强度,V 为电容器的电压,d 为两金属板间的距离。
因此,电容器上的电荷量可以表示为 Q = E * A,其中 Q 为电容器上的电荷量,E 为电场强度,A 为金属板的面积。
将以上公式代入电容器的基本公式,可得:C = Q / V = (E * A) / V = (V / d * A) / V = A / d将题目提供的数值代入,即可得到电容的值:C = 5 cm^2 / 2 cm = 2.5 cm所以该电容器的电容为 2.5 cm。
2. 一个带电的平行金属板电容器上的电荷量为3 μC,两金属板间的电场强度为 500 V/m。
已知平行金属板的面积为 10 cm^2,两板间距为1 mm,求该电容器的电势能。
解答:电容器的电势能可以通过公式 U = (1/2) * C * V^2 计算,其中 U 为电势能,C 为电容,V 为电容器的电压。
根据题目提供的数据,电容C = Q / V = (3 μC) / (500 V/m * 10 cm^2 * 1 mm),将该值代入公式中,同时将单位统一转换,可以得到:U = (1/2) * (3 * 10^-6 C) / [(500 V/m) * (10 * 10^-4 m^2) * (1 * 10^-3 m)] * (500 V/m)^2化简,可得:U ≈ 3000 J所以该电容器的电势能为 3000 J。
高考物理模拟电磁学计算题(三十六)
高考物理模拟电磁学计算题(三十六)一.计算题(共40小题)1.如图,一列简谐横波沿x轴传播,实线为t l=0时刻的波形图,虚线为t2=0.05s时的波形图。
(i)若波沿x轴正方向传播且2T<t2﹣t1<3T(T为波的周期),求波速v:(ii)若波速v=260m/s,则从t l=0时刻起x=2m处的质点第三次运动到波谷所需的时间。
2.如图,PQ分界线的右侧空间有一垂直纸面向里、磁感应强度为B的匀强磁场。
一质量为m、电荷量为q的粒子以速度v0沿AC方向由A点射入。
粒子经D点时速度的偏向角(偏离原方向的夹角)θ=60°.(不计重力)(1)试求AD间的距离;(2)若去除磁场,改为纸平面内垂直于AC方向的匀强电场,要想由A射入的粒子仍然能经过D点,试求该电场的强度的大小及方向;粒子此时经D点时速度的偏向角比60°角大还是小?为什么?3.如图所示,一静止的电子经过电压为U的电场加速后,立即射入偏转匀强电场中,射入方向与偏转电场的方向垂直,射入点为A,最终电子从B点离开偏转电场。
已知偏转电场的电场强度大小为E,方向竖直向上(如图所示),电子的电荷量为e,质量为m,重力忽略不计。
求:(1)电子进入偏转电场时的速度v0;(2)若将加速电场的电压提高为原来的2倍,使电子仍从B点经过,则偏转电场的电场强度E1应该变为原来的多少倍?(3)若在偏转电场区域加上垂直纸面向外的匀强磁场,使电子从A点射入该相互垂直的电场和磁场共同存在的区域沿直线运动,求所加磁场的磁感应强度大小。
4.如图(甲)所示,平行光滑金属导轨水平放置,两轨相距L=0.4m,导轨一端与阻值R =0.4Ω的电阻相连,导轨电阻不计。
导轨x>0一侧存在沿x方向均匀增大的恒定磁场,其方向垂直导轨平面向下,磁感应强度B随位置x变化如图(乙)所示。
一根电阻不计的金属棒垂直置于导轨上,棒在外力作用下从x=0处以初速度v0=2m/s沿导轨向右变速运动。
初中物理中考电磁学专项练习(计算题)701-800(含答案解析)
初中物理中考电磁学专项练习(计算题)701-800(含答案解析) 学校:___________姓名:___________班级:___________考号:___________一、计算题1.甲、乙两个家用电热器接入如图所示的家庭电路中,当两电键都闭合时,干路中的电流为4.5安,通过甲用电器的电流为0.3安.求:(1)通过乙电热器的电流;(2)甲电热器在10秒内电流做的功.2.在如图所示的电路中,电源电压和小灯泡的阻值均保持不变,电源电压 U=6V,小灯泡 L 上标有“6V 3W”字样,电流表的量程为 0~0.6A,电压表的量程为 0~3V,滑动变阻器 R2的最大阻值为20Ω.(1)只闭合开关 S1和 S2时,电路消耗的功率为 6W,则闭合开关 S1、S2和 S3时,电路的总电阻 R=_____?(2)在不损坏各元件的情况下,只闭合开关 S1时,R1消耗的最大功率为 P1,只闭合开关 S3时,L 消耗的最小功率为 P3,则 P1:P3=______?3.如图所示电路中,电源电压恒定,电阻R0=5Ω,滑动变阻器的最大阻值为R P,闭合开关,移动滑片,当接入电路的有效阻值为R P/4 时电流表A 的示数为0.45A,当接入电路的有效阻值为R P/5时电流表A 的示数为0.5A,试求:(1)变阻器的最大阻值R P(2)若电流表的量程为0﹣0.6A,电压表的量程为0﹣3V,为了不损坏两个电表,求滑动变阻器可连入电路的阻值范围.4.如图甲所示,是某种电热饮水机的简化电路示意图.图乙是它的有关参数.它有加热和保温两种工作状态(由机内温控开关自动控制),试问:(1)和的电阻值各是多大?(2)在用电高峰期,该饮水机的实际工作电压只有,加热效率为80%,若将装满水箱的水从20℃加热至,需要多长时间?(,,忽略温度对电阻的影响)5.养生壶是一种用于养生保健的可以烹饮的容器,类似于电水壶,其最大的特点是釆用一种新型的电加热材料,通过髙温把电热膜电子浆料(金属化合物)喷涂在玻璃表面形成面状电阻,在两端制作银电极,通电后产生热量把壶内的水加热.小明家买了一个养生壶(图甲),其铭牌如表所示.(1)该养生壶正常工作时,面状电阻的阻值多少?(2)若壶内装有2L温度为20℃的水,在一个标准大气压下,将水烧开,此过程中水吸收的热量是多少?[c水=4.2×l03J/(kg•℃),lL=1×10﹣3m3](3)小明关闭了家中的其他所有用电器,只用该壶在加热过程中家用电能表(图乙)的转盘5min内转了300转,此过程中养生壶消耗的电能和实际电功率各是多少?6.如图所示,电源电压恒为18V,小灯泡L标有“6V 3W”字样,滑动变阻器R标有“100Ω 1A”字样,电压表使用的量程为0~15V,电流表使用的量程为0~0.6A,R0为一定电阻;当闭合开关S、S1,断开S2时,灯泡L恰好正常发光;不计温度对灯丝电阻的影响.求:(1)小灯泡L的电阻;(2)闭合开关S、S1,断开S2时,通电1min,电流通过定值电阻R0所做的功;(3)当闭合开关S、S2,断开S1时,在保证电表不超量程、灯泡L两端的电压不超额定电压的情况下,滑动变阻器R功率的变化范围.7.某同学设计了一个简易电子秤,其原理如图甲所示,电源两端的电压恒为6V,R1是阻值为20Ω的电阻,R2是长6cm阻值为30Ω的均匀电阻丝,电压表量程为0﹣3V,电流表量程为0﹣0.6A.图中CD固定不动,当秤钩不挂物体时,滑动变阻器的滑片恰好位于R2最上端,当秤钩上挂物体时,弹簧会被压缩,滑动变阻器的滑片随着AB部分一起下移,弹簧长度的变化量△L与弹簧受到的压力F的关系如图乙所示.(取g=10N/kg)(1)为了使被测物体质量增大时电子秤的示数也增大,应该将_____表改装成电子秤的表盘.(2)当被测物体质量增大时,电路的总功率_____.(3)根据图甲、乙可知,该电子秤能测量的最大质量为_____kg.8.如图所示电路中,电源电压不变,R 1=20,滑动变阻器R2的最大阻值为60,小灯泡L的额定电压为5V,电流表的量程(0~0.6A或0~3A).只闭合S2时,电流表的示数为0.4A;只闭合S3,且变阻器的滑片P在正中点时,电流表的示数为0 .3A.(不考虑温度对灯丝电阻的影响)(1)电源电压和灯丝电阻.(2)只闭合S3时,要使小灯泡L正常发光,变阻器R2连入电路的阻值.(3)闭合S1、S2、S3,为保证不损坏电流表,变阻器R2的阻值可调范围和电流表的变化范围.9.一只标有“2.5V 0.5A”的小灯泡和一只规格为“10Ω 1A”的滑动变阻器串联接在电压为3V的电源上,如图所示.求(1)正常发光时滑动变阻器接入电路中的阻值.(2)滑片滑动时,灯泡功率的变化范围.(3)若小灯泡的实际功率为0.8W,求滑动变阻器接入电路中的电阻.10.如图所示是小明家热水器的电路图,己知电热丝R1位于水中,起加热作用,其阻值R1=22Ω,R2起控制作用,R2=198Ω(1)只闭合S1时,处于保温状态,求保温时的电流?(2)当闭合S2时,处于加热状态,求此时的加热功率?(3)如果该热水器的效率为96%,需要把60kg水加热升高40℃所需要的时间是多少.11.如图甲是一种家用电熨斗,额定电压为220V,其简化电路如图乙,虚线框内为底板加热电路,R0是定值电阻,R是可变电阻,当滑片在两端点之间滑动时(可以滑动到两个端点),可以调控电熨斗底板的温度.该电熨斗温度最高时的电功率为484W,电阻R0在温度最高时与温度最低时的电功率之比为4:1,求:(1)温度最高时,通过电熨斗的电流为多少A;(2)电熨斗温度最低时,应将R的阻值调为多少Ω;(3)假定电熨斗每秒钟消耗的电能W跟电熨斗底板温度与环境温度的温度差△t的关系如图丙,如果在温度为20℃的房间使用该电熨斗来熨烫衬衫,要求熨斗底板温度为220℃,且保持不变,应将R的阻值调为多少Ω.12.如图所示,(1)当S1闭合、S2和S3都断开时电流表A1的示数为1A,求电流表A2和A3的示数各为多少?(2)当S2和S3闭合、S1断开时,电流表A3和A2的示数分别为2.5A和1.2A,求电流表A1的示数为多少?(3)若将S1、S2和S3同时闭合会发生什么现象?13.如图所示电路,电源电压U=6V恒定,电流表的量程为0﹣0.6A,电压表的量程为0﹣3V,灯A上标有“6V 1.8W”,灯B上标有“6V 1.2W”,滑动变阻器R上标有“50Ω 1.5A”,设灯丝电阻为额定状态时的电阻,且不计温度对灯丝电阻的影响.求:(1)滑动变阻器的滑片P放在a端时,闭合所有开关后,电压表和电流表的读数分别是在多少?(2)如果只允许两盏灯中的一盏工作,且要求电路中各元件安全使用,在滑片P移动过程中,求整个电路消耗的最小电功率.14.如图所示,电源电压为20V,且保持不变,已知滑动变阻器的最大阻值为25Ω,定值电阻R0为20Ω,小灯泡上标有“12V 12W”字样,电流表量程为0~3A.求:(1)灯泡正常工作时的电阻是多少?(2)当S闭合,S1、S2都断开时,要使灯泡正常发光,滑动变阻器连入电路中的阻值为多大? 滑动变阻器在lmin内消耗的电能是多少?(3)当S、S1、S2都闭合时,调节滑动变阻器滑片到阻值为多少时,整个电路消耗的总功率最小?这个最小功率是多少?(4)当S、S1、S2都闭合时,为了不损坏电流表,且使整个电路消耗的总功率最大,滑动变阻器接入电路的阻值为多少?这个最大功率是多少?15.如图所示电路,R0的阻值为6Ω,R2的阻值为R1的2倍.只闭合开关S0时,电流表的示数为1A;开关都闭合时电流表的示数为3A.求:(1)只闭合S0时R0两端的电压;(2)开关都闭合时R1的电功率.16.如图甲是某品牌电压力锅,图乙所示是它的简化电路图.R1、R2是定值电阻,闭合开关S1,开关S2与触点b接通,电压力锅处于加热状态,此时电压力锅的功率P1=1000W,通过R1的电流为I1;当锅内的气压达到设定值时,S2自动与触点b断开并与触电a接通,S1仍闭合,电压力锅处于保压状态,此时电压力锅的功率为P2,通过R2的电流为I2.图是表示做好某次饭的过程中,电压力锅从加热到保压消耗的电功率与时间的关系.已知I1=5I2.求:(1)电压力锅处于加热状态时,通过电阻R1的电流.(2)电压力锅处于保压状态时的功率P2 .(3)用电高峰期,电路的实际电压为210V,电压力锅做好同样一次饭,处于加热过程实际需要的时间.(不考虑能量损失)17.在如图所示的电路中,电源电压为20伏,电阻R1的阻值为15欧,滑动变阻器标有“50Ω 1A”的字样,电压表的量程为“0~15V”.闭合电键后,电路正常工作.求:(1)当电压表V的示数为14伏时,电路中的电流.(2)在滑片左右移动的过程中,求电路中电流的变化范围.(3)若在电路中再串联一个电流表(电流表选用0~0.6A的量程),在确保电路各元件安全的条件下,求滑动变阻器连入电路的阻值范围.18.LED(发光二极管简称LED)是人类继爱迪生发明白炽灯之后最伟大的发明之一,它是一种新型节能、环保的光源产品.如图甲是一种常见的LED手电筒,发光元件由5个发光二极管并联组成,每个发光二极管的额定电流为30mA,它的能量是由可反复充电使用的电池提供,且LED 灯发光的颜色会随电压的变化而变化,如图丙表格所示.请回答下列问题:(1)这种LED手电筒正常工作时的总电流为多少?(2)图乙是一个LED与50Ω的定值电阻R串联,已知电源电压为4.2V保持不变,闭合开关S,毫安表(为读数更精确的电流表)的读数为20mA,通过计算说明此时LED 灯发出什么颜色的光?(3)若图乙中,闭合开关S,R的实际功率为0.08W,求此时LED灯通电10min消耗的电能是多少焦耳?19.如图所示电路,电源电压不变,R1=24Ω,小灯泡标有“6V6W”(电阻不变).求:(1)只断开S2时,电压表示数为12V,则电源电压为多大____?(2)只闭合S1时,电流表的示数是多少_____?(3)当S1、S2、S3都闭合时,将滑片P移动到b端,若此时电流表的示数为0.8A,则滑动变阻器的最大阻值是多少_____?20.在相距20 km的甲、乙两地之间有两条输电线,已知输电线每米长的电阻为0.01 Ω.现输电线在某处发生短路,为了确定短路位置,检修员利用电压表、电流表和电源接成如图所示电路进行测量.当电压表的示数为1.5 V时,电流表的示数为30 mA,则可确定短路位置离甲地_______km.21.如图甲所示电路,电源电压恒为1.5V,闭合开关后,把滑动变阻器R2的滑片P从最右端向左移动.由于滑动变阻器某处发生断路,滑片P向左移动一段距离后,电流表才有读数,此时电压表的示数为1.35V.且电流表读数I与滑片P移动的距离x的关系如图乙所示.求:(1)当电流表开始有读数时,滑片P移动的距离x的值和R2接入电路的阻值;(2)电阻R1的阻值;(3)当滑片P移到x等于10cm处时,R2消耗的电功率.22.如图所示的电路中,变阻器R0的滑片P在移动过程中,电压表的示数变化范围是0~4伏,电流表的示数范围是0.5安培~1安培,求电阻R的值?变阻器R0的最大阻值和电源电压U?23.电压力锅以其自动控压、自动控温,高效省电、安全、节能等优点备受人们的亲睐。
电磁学考研试题及答案解析
电磁学考研试题及答案解析一、选择题(每题3分,共30分)1. 一个带正电的点电荷Q,放入电场中某点,测得其受到的电场力为F,那么该点的电场强度大小为:A. F/QB. Q/FC. F*QD. F2. 在静电场中,电场线的方向规定为:A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 任意方向D. 与电荷运动方向相同3. 电容器的电容定义式为:A. C=Q/UB. U=Q/CC. Q=C*UD. U=C*Q4. 一个电路中包含一个电阻R和一个电感L串联,当交流电源频率增加时,电路的总阻抗将:A. 增加B. 减少C. 不变D. 先增加后减少5. 根据法拉第电磁感应定律,闭合电路中的感应电动势的大小与:A. 磁通量的变化率成正比B. 磁通量的大小成正比C. 磁通量的方向有关D. 电路的电阻有关6. 麦克斯韦方程组中,描述磁场的两个方程是:A. 高斯定律和安培环路定律B. 高斯定律和法拉第电磁感应定律C. 安培环路定律和法拉第电磁感应定律D. 高斯定律和位移电流定律7. 一个导体棒在垂直于它的方向上的磁场中以速度v匀速运动,产生的电动势大小为:A. B*L*vB. B*v*LC. B*v/LD. L*B*v8. 根据电磁波理论,电磁波在真空中传播的速度是:A. 光速B. 声速C. 光速的一半D. 无限大9. 两个频率相同的电磁波在真空中传播,它们的:A. 波速相同,波长也相同B. 波速不同,波长也不同C. 波速相同,波长不同D. 波速不同,波长相同10. 一个均匀带电的绝缘球壳,其内部没有净电荷,那么球壳内部的电场强度为:A. 不为零B. 零C. 无法确定D. 取决于球壳的厚度二、简答题(每题10分,共20分)11. 请简述电磁感应中的楞次定律及其应用。
12. 解释什么是电磁波,以及电磁波的产生和传播机制。
三、计算题(每题20分,共40分)13. 一个平行板电容器的板间距离为d,板面积为A,两板间的电介质为相对介电常数为ε_r的均匀介质。
高考物理电磁学计算题(三十)含答案与解析
高考物理电磁学计算题(三十)含答案与解析评卷人得分一.计算题(共40小题)1.如图,倾角为θ的斜面粗糙且绝缘,在虚平面下方区域有一垂直斜面向上的匀强电场。
一质量为m、电荷量为q的带负电的小物块(可视为质点),从斜面上A点以速度v0沿斜面匀速下滑,进入电场区域滑行距离L后停止。
求:(1)小物块与斜面间的动摩擦因数μ;(2)匀强电场场强E的大小;(3)在电场中滑行L的过程中,带电小物块电势能的变化量。
2.如图,一带正电小球质量m=0.1kg,置于光滑绝缘水平面上的A点,空间存在着斜向上与水平成37°的匀强电场。
该小球从静止开始沿水平面做匀加速直线运动,当运动到B 点时,测得其速度v B=4m/s,此时小球的位移S=4m。
重力加速度g取10m/s2,sin37°=0.6,cos37°=0.8.求:(1)小球沿水平面运动的加速度大小;(2)小球对地面的压力大小;(3)小球从A点运动到B点,电势能的变化量。
3.如图1所示,半径为r的金属细圆环水平放置,环内存在竖直向上的匀强磁场,磁感应强度B随时间t的变化关系为B=kt(k>0,且为已知的常量)。
(1)已知金属环的电阻为R.根据法拉第电磁感应定律,求金属环的感应电动势E感和感应电流I;(2)麦克斯韦电磁理论认为:变化的磁场会在空间激发一种电场,这种电场与静电场不同,称为感生电场或涡旋电场。
图1所示的磁场会在空间产生如图2所示的圆形涡旋电场,涡旋电场的电场线与金属环是同心圆。
金属环中的自由电荷在涡旋电场的作用下做定向运动,形成了感应电流。
涡旋电场力F充当非静电力,其大小与涡旋电场场强E的关系满足F=qE.如果移送电荷q时非静电力所做的功为W,那么感应电动势E感=。
a.请推导证明:金属环上某点的场强大小为E=kr;b.经典物理学认为,金属的电阻源于定向运动的自由电子与金属离子(即金属原子失去电子后的剩余部分)的碰撞。
在考虑大量自由电子的统计结果时,电子与金属离子的碰撞结果可视为导体对电子有连续的阻力,其大小可表示为f=bv(b>0,且为已知的常量)。
高考物理模拟专题电磁学计算题(二十一)含答案与解析
高考物理电磁学计算题(二十一)含答案与解析评卷人得分一.计算题(共40小题)1.如图所示,一足够大的光滑绝缘水平桌面上建一直角坐标系xOy,空间存在垂直桌面向下的匀强磁场。
一带电小球A(可视为质点)从坐标原点O以速度v沿着x轴正方向向射,沿某一轨迹运动,从(0,d)坐标向左离开第I象限。
若球A在第I象限的运动过程中与一个静止、不带电的小球B(可视为质点)发生弹性正碰,碰后两球电量均分,不论球B初始置于何处,球A碰后仍沿原轨迹运动。
球A、B的质量之比为3:1,不计两球之间的库仑力。
(1)判断带电小球A的电性;(2)若两球碰后恰好在(﹣,)坐标首次相遇,求球B在第I象限初始位置的坐标;(3)若将球B置于(,)坐标处,球A、B碰后,在球B离开第I象限时撤去磁场,再过时间恢复原磁场,要使得两球此后的运动轨迹没有交点,求△t的最小值。
2.如图所示,左侧两平行金属板上、下水平放置,它们之间的电势差为U、间距为L,其中有匀强磁场;右侧为“梯形”匀强磁场区域ACDH,其中,AH∥CD.AH=L0.一束电荷量大小为q、质量不等的带电粒子(不计重力、可视为质点),从小孔S1射入左侧装置,恰能沿水平直线从小孔S2射出,接着粒子垂直于AH、由AH的中点M射入“梯形”区域,最后全部从边界AC射出。
若两个区域的磁场方向均垂直于纸面向里、磁感应强度大小均为B,“梯形”宽度。
MN=L,忽略电场、磁场的边缘效应及粒子间的相互作用。
(1)求出粒子速度的大小;判定粒子的电性(2)这束粒子中,粒子质量最小值和最大值各是多少。
3.如图所示,竖直平面内,两竖直线MN、PQ间(含边界)存在竖直向上的匀强电场和垂直于竖直平面向外的匀强磁场,MN、PQ间距为d,电磁场上下区域足够大.一个质量为m、电量为q的带正电小球从左侧进入电磁场,初速度v与MN夹角θ=60°,随后小球做匀速圆周运动,恰能到达右侧边界PQ并从左侧边界MN穿出.不计空气阻力,重力加速度为g.求:(1)电场强度大小E;(2)磁场磁感应强度大小B;(3)小球在电磁场区域运动的时间t.4.如图所示,两平行导轨间距L=1m,足够长粗糙的倾斜部分和粗糙的水平部分圆滑连接,动摩擦因数μ相同,倾斜部分与水平面的夹角θ=37°,垂直斜面方向向上磁感应强度B =1T,水平部分没有磁场。
高考物理电磁学计算题(二十八)含答案与解析
高考物理电磁学计算题(二十八)含答案与解析评卷人得分一.计算题(共40小题)1.如图1所示,MN、PQ为水平放置的足够长的平行光滑导轨,导轨间距L为0.5m,导轨左端连接一个阻值为R=2.5Ω的定值电阻R.将一质量为0.2kg的金属棒cd垂直放置在导轨上,且与导轨接触良好,金属棒cd的电阻r=1.5Ω,导轨电阻不计,整个装置处于垂直导轨平面向下的匀强磁场中,磁感应强度B=2T.若金属棒以1m/s的初速度向右运动,同时对棒施加一个水平向右的拉力F,并保持拉力的功率恒为4W,从此时开始计时,经过2s金属棒的速度稳定不变,试求:(1)金属棒cd的电流方向,并分析金属棒的加速度变化情况;(2)金属棒稳定后速度是多少?此时电阻R上消耗的电功率是多少?(3)金属棒速度为2m/s时的加速度大小,并画出整个运动过程中大致的v﹣t图象,并标出t=0,t=2s时坐标。
2.如图甲所示,一边长L=2.5m、质量m=0.5kg的正方形金属线框,放在光滑绝缘的水平面上,整个装置放在方向竖直向上、磁感应强度B=0.8T的匀强磁场中,它的一边与磁场的边界MN重合。
在水平力F作用下由静止开始向左运动,经过5s线框被拉出磁场。
测得金属线框中的电流随时间变化的图象如乙图所示,在金属线框被拉出的过程中。
(1)求通过线框导线截面的电量及线框的总电阻(2)分析线框运动性质并写出水平力F随时间变化的表达式(3)已知在这5s内力F做功1.92J,那么在此过程中,线框产生的焦耳热是多少3.如图甲所示,绝缘水平面上固定着两根足够长的光滑金属导轨PQ、MN,相距为L=0.5m,ef右侧导轨处于匀强磁场中,磁场方向垂直导轨平面向下,磁感应强度B的大小如图乙变化。
开始时ab棒和cd棒锁定在导轨如图甲位置,ab棒与cd棒平行,ab棒离水平面高度为h=0.2m,cd棒与ef之间的距离也为L,ab棒的质量为m1=0.2kg,有效电阻R1=0.05Ω,cd棒的质量为m2=0.1kg,有效电阻为R2=0.15Ω.(设a、b棒在运动过程始终与导轨垂直,两棒与导轨接触良好,导轨电阻不计)。
电磁学题库(附答案)知识分享
《电磁学》练习题(附答案)1. 如图所示,两个点电荷+q 和-3q ,相距为d . 试求:(1) 在它们的连线上电场强度0=E ϖ的点与电荷为+q 的点电荷相距多远?(2) 若选无穷远处电势为零,两点电荷之间电势U =0的点与电荷为+q 的点电荷相距多远?2. 一带有电荷q =3×10-9 C 的粒子,位于均匀电场中,电场方向如图所示.当该粒子沿水平方向向右方运动5 cm 时,外力作功6×10-5 J ,粒子动能的增量为4.5×10-5 J .求:(1) 粒子运动过程中电场力作功多少?(2) 该电场的场强多大?3. 如图所示,真空中一长为L 的均匀带电细直杆,总电荷为q ,试求在直杆延长线上距杆的一端距离为d 的P 点的电场强度.4. 一半径为R 的带电球体,其电荷体密度分布为ρ =Ar (r ≤R ) , ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.5. 若电荷以相同的面密度σ均匀分布在半径分别为r 1=10 cm 和r 2=20 cm 的两个同心球面上,设无穷远处电势为零,已知球心电势为300 V ,试求两球面的电荷面密度σ的值. (ε0=8.85×10-12C 2/ N ·m 2 )6. 真空中一立方体形的高斯面,边长a =0.1 m ,位于图中所示位置.已知空间的场强分布为: E x =bx , E y =0 , E z =0.常量b =1000 N/(C ·m).试求通过该高斯面的电通量.7. 一电偶极子由电荷q =1.0×10-6 C 的两个异号点电荷组成,两电荷相距l =2.0 cm .把这电偶极子放在场强大小为E =1.0×105 N/C 的均匀电场中.试求: (1) 电场作用于电偶极子的最大力矩.(2) 电偶极子从受最大力矩的位置转到平衡位置过程中,电场力作的功.8. 电荷为q 1=8.0×10-6 C 和q 2=-16.0×10-6 C 的两个点电荷相距20 cm ,求离它们都是20 cm 处的电场强度. (真空介电常量ε0=8.85×10-12 C 2N -1m -2 )9. 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E ϖϖϖ300200+= .试求穿过各面的电通量.E ϖqLq P10. 图中虚线所示为一立方形的高斯面,已知空间的场强分布为: E x =bx , E y =0, E z =0.高斯面边长a =0.1 m ,常量b =1000 N/(C ·m).试求该闭合面中包含的净电荷.(真空介电常数ε0=8.85×10-12 C 2·N -1·m -2 )11. 有一电荷面密度为σ的“无限大”均匀带电平面.若以该平面处为电势零点,试求带电平面周围空间的电势分布.12. 如图所示,在电矩为p ϖ的电偶极子的电场中,将一电荷为q 的点电荷从A 点沿半径为R 的圆弧(圆心与电偶极子中心重合,R >>电偶极子正负电荷之间距离)移到B 点,求此过程中电场力所作的功.13. 一均匀电场,场强大小为E =5×104 N/C ,方向竖直朝上,把一电荷为q = 2.5×10-8 C 的点电荷,置于此电场中的a 点,如图所示.求此点电荷在下列过程中电场力作的功.(1) 沿半圆路径Ⅰ移到右方同高度的b 点,ab =45 cm ; (2) 沿直线路径Ⅱ向下移到c 点,ac =80 cm ;(3) 沿曲线路径Ⅲ朝右斜上方向移到d 点,ad =260 cm(与水平方向成45°角).14. 两个点电荷分别为q 1=+2×10-7 C 和q 2=-2×10-7 C ,相距0.3 m .求距q 1为0.4 m 、距q 2为0.5 m 处P 点的电场强度. (41επ=9.00×109 Nm 2 /C 2) 15. 图中所示, A 、B 为真空中两个平行的“无限大”均匀带电平面,A 面上电荷面密度σA =-17.7×10-8 C ·m -2,B 面的电荷面密度σB =35.4 ×10-8 C ·m -2.试计算两平面之间和两平面外的电场强度.(真空介电常量ε0=8.85×10-12 C 2·N -1·m -2 )16. 一段半径为a 的细圆弧,对圆心的张角为θ0,其上均匀分布有正电荷q ,如图所示.试以a ,q ,θ0表示出圆心O 处的电场强度.17. 电荷线密度为λ的“无限长”均匀带电细线,弯成图示形状.若半圆弧AB 的半径为R ,试求圆心O 点的场强.ABRϖⅠⅡ Ⅲ dba 45︒cEϖσAσBA BOa θ0 q AR ∞∞ O18. 真空中两条平行的“无限长”均匀带电直线相距为a ,其电荷线密度分别为-λ和+λ.试求:(1) 在两直线构成的平面上,两线间任一点的电场强度(选Ox 轴如图所示,两线的中点为原点).(2) 两带电直线上单位长度之间的相互吸引力.19. 一平行板电容器,极板间距离为10 cm ,其间有一半充以相对介电常量εr =10的各向同性均匀电介质,其余部分为空气,如图所示.当两极间电势差为100 V 时,试分别求空气中和介质中的电位移矢量和电场强度矢量. (真空介电常量ε0=8.85×10-12 C 2·N -1·m -2)20. 若将27个具有相同半径并带相同电荷的球状小水滴聚集成一个球状的大水滴,此大水滴的电势将为小水滴电势的多少倍?(设电荷分布在水滴表面上,水滴聚集时总电荷无损失.) 21. 假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电.(1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功? (2) 使球上电荷从零开始增加到Q 的过程中,外力共作多少功?22. 一绝缘金属物体,在真空中充电达某一电势值,其电场总能量为W 0.若断开电源,使其上所带电荷保持不变,并把它浸没在相对介电常量为εr 的无限大的各向同性均匀液态电介质中,问这时电场总能量有多大?23. 一空气平板电容器,极板A 、B 的面积都是S ,极板间距离为d .接上电源后,A 板电势U A =V ,B 板电势U B =0.现将一带有电荷q 、面积也是S 而厚度可忽略的导体片C 平行插在两极板的中间位置,如图所示,试求导体片C 的电势.24. 一导体球带电荷Q .球外同心地有两层各向同性均匀电介质球壳,相对介电常量分别为εr 1和εr 2,分界面处半径为R ,如图所示.求两层介质分界面上的极化电荷面密度.25. 半径分别为 1.0 cm 与 2.0 cm 的两个球形导体,各带电荷 1.0×10-8 C ,两球相距很远.若用细导线将两球相连接.求(1) 每个球所带电荷;(2) 每球的电势.(22/C m N 1094190⋅⨯=πε)-λ +λ26. 如图所示,有两根平行放置的长直载流导线.它们的直径为a ,反向流过相同大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.27. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcd a ,其中bc 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向为沿abcd a 的绕向.设线圈处于B = 8.0×10-2T ,方向与a →b 的方向相一致的均匀磁场中,试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ϖ∆和2F ϖ∆的方向和大小,设∆l 1 =∆l 2 =0.10 mm ;(2) 线圈上直线段ab 和cd 所受的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受的安培力bc F ϖ和da F ϖ的大小和方向.28. 如图所示,在xOy 平面(即纸面)内有一载流线圈abcda ,其中b c 弧和da 弧皆为以O 为圆心半径R =20 cm 的1/4圆弧,ab 和cd 皆为直线,电流I =20 A ,其流向沿abcda 的绕向.设该线圈处于磁感强度B = 8.0×10-2 T 的均匀磁场中,B ϖ方向沿x 轴正方向.试求:(1) 图中电流元I ∆l 1和I ∆l 2所受安培力1F ϖ∆和2F ϖ∆的大小和方向,设∆l 1 = ∆l 2=0.10 mm ;(2) 线圈上直线段ab 和cd 所受到的安培力ab F ϖ和cd F ϖ的大小和方向;(3) 线圈上圆弧段bc 弧和da 弧所受到的安培力bc F ϖ和da F ϖ的大小和方向.29. AA '和CC '为两个正交地放置的圆形线圈,其圆心相重合.AA '线圈半径为20.0 cm ,共10匝,通有电流10.0 A ;而CC '线圈的半径为10.0 cm ,共20匝,通有电流 5.0 A .求两线圈公共中心O 点的磁感强度的大小和方向.(μ0 =4π×10-7 N ·A -2)30. 真空中有一边长为l 的正三角形导体框架.另有相互平行并与三角形的bc 边平行的长直导线1和2分别在a 点和b 点与三角形导体框架相连(如图).已知直导线中的电流为I ,三角形框的每一边长为l ,求正三角形中心点O 处的磁感强度B ϖ.31. 半径为R 的无限长圆筒上有一层均匀分布的面电流,这些电流环绕着轴线沿螺旋线流动并与轴线方向成α 角.设面电流密度(沿筒面垂直电流方向单位长度的电流)为i ,求轴线上的磁感强度.a b c dO RR x yI I 30° 45° I ∆l 1 I ∆l 2a bc d O RR xyI I 30° 45° I ∆l 1 I ∆l 232. 如图所示,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B ϖ的大小及其方向.33. 横截面为矩形的环形螺线管,圆环内外半径分别为R 1和R 2,芯子材料的磁导率为μ,导线总匝数为N ,绕得很密,若线圈通电流I ,求. (1) 芯子中的B 值和芯子截面的磁通量. (2) 在r < R 1和r > R 2处的B 值.34. 一无限长圆柱形铜导体(磁导率μ0),半径为R ,通有均匀分布的电流I .今取一矩形平面S (长为1 m ,宽为2 R ),位置如右图中画斜线部分所示,求通过该矩形平面的磁通量.35. 质子和电子以相同的速度垂直飞入磁感强度为B ϖ的匀强磁场中,试求质子轨道半径R 1与电子轨道半径R 2的比值.36. 在真空中,电流由长直导线1沿底边ac 方向经a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点沿平行底边ac 方向从三角形框流出,经长直导线2返回电源(如图).已知直导线的电流强度为I ,三角形框的每一边长为l ,求正三角形中心O 处的磁感强度B ϖ.37. 在真空中将一根细长导线弯成如图所示的形状(在同一平面内,由实线表示),R EF AB ==,大圆弧BCR ,小圆弧DE 的半径为R 21,求圆心O 处的磁感强度B ϖ的大小和方向. 38. 有一条载有电流I 的导线弯成如图示abcda 形状.其中ab 、cd 是直线段,其余为圆弧.两段圆弧的长度和半径分别为l 1、R 1和l 2、R 2,且两段圆弧共面共心.求圆心O 处的磁感强度B ϖ的大小.39.地球半径为R =6.37×106 m .μ0 =4π×10-7 H/m .试用毕奥-萨伐尔定律求该电流环的磁矩大小. 40. 在氢原子中,电子沿着某一圆轨道绕核运动.求等效圆电流的磁矩m p ϖ与电子轨道运动的动量矩L ϖ大小之比,并指出m p ϖ和L ϖ方向间的关系.(电子电荷为e ,电子质量为m )41. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB 上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)42. 一根很长的圆柱形铜导线均匀载有10 A 电流,在导线内部作一平面S ,S 的一个边是导线的中心轴线,另一边是S 平面与导线表面的交线,如图所示.试计算通过沿导线长度方向长为1m 的一段S 平面的磁通量.(真空的磁导率μ0 =4π×10-7 T ·m/A ,铜的相对磁导率μr ≈1)43. 两个无穷大平行平面上都有均匀分布的面电流,面电流密度分别为i 1和i 2,若i 1和i 2之间夹角为θ ,如图,求: (1) 两面之间的磁感强度的值B i . (2) 两面之外空间的磁感强度的值B o . (3) 当i i i ==21,0=θ时以上结果如何?44. 图示相距为a 通电流为I 1和I 2的两根无限长平行载流直导线.(1) 写出电流元11d l I ϖ对电流元22d l I ϖ的作用力的数学表达式;(2) 推出载流导线单位长度上所受力的公式.45. 一无限长导线弯成如图形状,弯曲部分是一半径为R 的半圆,两直线部分平行且与半圆平面垂直,如在导线上通有电流I ,方向如图.(半圆导线所在平面与两直导线所在平面垂直)求圆心O 处的磁感强度.46. 如图,在球面上互相垂直的三个线圈 1、2、3,通有相等的电流,电流方向如箭头所示.试求出球心O 点的磁感强度的方向.(写出在直角坐标系中的方向余弦角)47. 一根半径为R 的长直导线载有电流I ,作一宽为R 、长为l 的假想平面S ,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必须要会做作业题1、(10分)载有电流的I 长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直。
半圆环的半径为b ,环心O 与导线相距a 。
设半圆环以速度 v 平行导线平移,求半圆环内感应电动势的大小和方向以及MN 两端的电压U M - U N 。
解:动生电动势⎰⋅⨯=MNd )v (lB MeNε为计算简单,可引入一条辅助线MN ,构成闭合回路MeNM , 闭合回路总电动势0=+=NM MeN εεε总MN NM MeN εεε=-= 2分x x I l B b a ba MNd 2v d )v (0MN ⎰⎰⋅+-π-=⨯=μεb a b a I -+π-=ln 20v μN负号表示MNε的方向(N →M ) 4分 b a b a I MeN-+π-=ln2v 0με方向N →M 2分ba ba I U U MN N M -+π=-=-ln2v0με 2分2、(10分)两根相互平行的“无限长”均匀带正电直线1、2,相距为d ,其电荷线密度分别为1λ和2λ,则场强等于零的点与直线1相距为多少?解: (1) 作以带正电直线为中心轴、横截面半径为r 、高为l 的封闭圆柱形高斯面。
由高斯定理00εq S d E s=∙⎰⎰ 得:02ελπl l r E =⨯⨯故无限长均匀带电直线的场强为5分 (2) 设场强等于零的点与直线1的相距为x ,则0)(220201=--=x d x E πελπελrE 02πελ=211λλλ+=d x 5分4、(10分)如图,一半径为R 的均匀带电圆环,电荷总量为q 。
(1)求轴线上离环中心O 为x 处的场强E (已知q 、R 、 x)(2)轴线上什么地方的场强最大?其值是多少?(已知q 、R)解: (1)设圆环轴线为x 轴,204r dqdE πε=dlR qdl dq πλ2==由于对称性整个圆环在P 点处的电场沿x 方向,⎰αcos E d E =2122)(cos x R r rx +==ααππεπcos 241220r l d R q E R⎜⎠⎛=1qx απεcos 4120r q=6分(2)4分5、(10分)如图所示,球形金属腔带电量为Q>0,内半径为a ,外半径为b ,腔内距球心O 为r 处有一点电荷q ,求球心O 的电位。
(提示:金属腔内表面带的总电量为q -)ix R xq E 23220)(4+=πε时0=dxdE2R x=2023220max 362(42R q R R qRE E πεπε=+==解: 金属腔内表面a S 带总电量为q -,由电荷守恒,金属腔外表面b S 带电量为Q q +2分∴ 球心电位0q q Q qu u u u-+=++ ⎰⎰++=b dsa ds r qb a 000444πεσπεσπε4分000444q qQ qr a b πεπεπε-+=++0011144q Q r a b b πεπε⎛⎫=-++⎪⎝⎭ 4分6、(10分)如图所示,AB 、CD 为长直导线,BC 为圆心在O 点的一段圆弧形导线,其半径为R 。
若通以电流I ,求O 点的磁感应强度。
解:如题图所示,O 点磁场由AB 、C B、CD 三部分电流产生.其中AB产生01=B 3分CD 产生RIB 1202μ=,方向垂直向里3分CD 段产生)231(2)60sin 90(sin 24003-πμ=-πμ=︒︒R I R I B , 或)231(2)180cos 150(cos 24003-=-=︒︒R I R IB πμπμ 方向垂直向里3分∴)6231(203210ππμ+-=++=R I B B B B ,方向垂直向里. 1分7、(10分)如图所示,两条平行长直导线和一个矩形导线框共面。
且导线框的一个边与长直导线平行,它到两长直导线的距离分别为r 1、r 2, 已知两导线中电流都为I=I 0sinωt ,其中I o 和ω为常数,t 为时间。
导线框长为a 宽为b ,求导线框中的感应电动势。
解:两个载同向电流的长直导线在如图所示坐标x 处所产生的磁场为01211()2B x x r r μπ=+-+ 2分 选顺时针方向为线框回路正方向,则:1111012(2r br br r Iadx dx BdS xx r r μφπ++==+-+⎰⎰⎰3分01212ln(2Ia r b r b r r μπ++=⋅) 2分01212()()ln[]2a r b r b d dI dt r r dt μφεπ++=-=-001212()()ln[]cos 2I a r b r b tr r μωωπ++=- 3分1.求一均匀带电球体的场强和电势分布,并画出)(r E E =和)(r ϕ=ϕ曲线。
设球的半径是R ,带电量为Q 。
(12分)解:若电球体的电荷休密度为334R Q π=ρ根据高斯定理0Sq E dS ε⋅=⎰当R r <时,在球内取同心球面作高斯面得33021343414r R Q r E π⋅πε=πre R QrE ˆ4301πε= 当R r >时,在球外取同心球面作高斯面得r erQ E ˆ4202πε=()r E E =的曲线如图1所示根据电势与场强的积分关系得 当r<R⎰⎰∞⋅+⋅=ϕRRrrd E r d E 211∞πε-πε=R R r r Q r R Q |1ln 4|2140230 R QR Qr R Q 03020488πε+πε-πε=3020883R Qr R Q πε-πε= ⎪⎪⎭⎫⎝⎛-πε=32038R r R QEϕ当r>R∞∞πε-=⋅=ϕ⎰rrr Q r d E |14022r Q04πε=()r ϕϕ=的曲线如图2所示2、 一圆柱形的长直导线,截面半径为R ,稳恒电流均匀通过导线的截面,电流为I ,求导线内和导线外的磁场分布。
(12分)解:假定导线是无限长的,根据对称性,可以判定磁感强度B的大小只与观察点到圆柱体轴线的距离有关,方向沿圆周的切线,如图3所示。
在圆柱体内部,以r R <为半径作一圆,圆心位于轴线上圆面与轴线垂直。
把安培环路定理用于这圆周,有图3在圆柱体外部,以 为半径作一圆,圆心亦位于轴线上,把安培环路定理用于这一圆周有圆柱体内外磁感强度B 分布规律如图所示。
3、半径分别为1R 和2R 的两个同心球面都均匀带电,带电量分别为1Q 和2Q ,两球面把空间分划为三个区域,求各区域的电势分布并画出r -ϕ曲线。
(12分)解:根据高斯定理0ε=⋅⎰⎰qS d E S ;得三个区域如图所示,场强变化规律是0=I E21041r Q E II πε=221041r Q Q E III +=πε根据电势与场强的积分关系式得图r R >022rB I R μπ=02C B dl B r I πμ⋅=⋅=⎰022rB I R μπ=2200222C I r B dl B r r I R R πμπμπ⋅=⋅=⋅=⎰⎰⎰⎰⎰∞++=⋅=2211321R R R R rI drE dr E dr E r d E ϕ⎪⎪⎭⎫ ⎝⎛++-πε=22212211041R Q R Q R Q R Q ⎪⎪⎭⎫ ⎝⎛+πε=2211041R Q R Q⎪⎪⎭⎫ ⎝⎛++-=+=⎰⎰∞22212110324122R Q R Q R Q r Q dr E dr E R R r II πεϕ ⎪⎪⎭⎫ ⎝⎛+πε=221041R Q r Q r Q Q dr E r III02134πεϕ+==⎰∞电势分布曲线如图所示图4、同轴电缆由一导体圆柱和一它同轴的导体圆筒所构成。
使用时,电流I 从一导体流入,从另一导体流出,设导体中的电流均匀地分布在横截面上。
圆柱的半径为r 1,圆筒的内外半径分别为r 2和r 3,试求空间各处的磁感应强度。
(12分) 解:根据对称性和安培环路定理得:当:0≤r ≤r 12102210222r IrB r r I r B l d B πμ=π⋅π⋅μ=π⋅=⋅⎰当:r 1≤r≤r 2同理:I r B 02μ=π⋅ r I B πμ=20 当:r 2≤r≤r 3 222322302222223022r r r r r I B r r r r I I r B --⋅πμ=⎥⎦⎤⎢⎣⎡-π⋅-π-μ=π⋅)((当:r>r 3 B = 05、半径为R 的无限长直圆柱体内均匀带电,体电荷密度为ρ,求场强和电势的分布(以圆柱体的中心轴线作为电势的零参考点),并画出)(r E E =和)(r ϕ=ϕ曲线。
(12分)12《电磁学》期末考试试卷(A 卷)第 11 页 共 6 页解:由对称性和高斯定理,求得圆柱体内外的场强为r<R 02112ε⋅π⋅ρ=⋅⋅π=⋅⎰⎰l r E l r S d Ere r E 012ερ= r>R 02222ε⋅π⋅ρ=⋅⋅π=⋅⎰⎰l R E l r S d E 图 re r R E 0222ερ=场强的变化规律如图所示,由电势与场强的 关系求得圆柱体的内外的电势为r<R 020001|42rr r e rdr e r d E ε-=ε-=⋅=ϕ⎰⎰204rερ=图200200020224ln 222Rr R R dr r dr r R Edr dr E R RrRrRερερερερϕ+-=--=--=⎰⎰⎰⎰⎪⎭⎫ ⎝⎛+περ=R r R ln 21402电势的变化规律如图所示6、如图所示,两个均匀带电的金属同心球壳,内球壳半径为1R ,带电1q ,外球壳半径为2R ,带电2q ,试求两球壳之间任一点12()P R r R <<的场强与电势?(12分)解: 由高斯定理 ⎰⎰∑=⋅sq S d E 0ε,选择半径为r 的球面为高斯面, 则24q E rπε∙=∑,当12R r R <<时,1q q =∑,1304q E r rπε=,121200244q q U U U rR πεπε=+=+=12214()q q r R πε+。
7、一半径为R 的均匀无限长圆柱载流直导线,设其电流强度为I ,试计算距轴线为r处的磁感应强度B 。
(12分)E rϕr22q《电磁学》期末考试试卷(A 卷)第 12 页 共 6 页解: 应用环路定理 0lB d l I μ∙=∑⎰, 以轴线为心,r 为半径选一圆周为积分回路,则在内部, 20022r B r I I Rπμμ∙==∑ 022()r B I r R R μπ∴=在外部,02B r I I πμ∙==∑, 02()IB r R rμπ∴= , B 的方向由右螺旋法则判定。