广西南宁市九年级下学期数学第一次摸底考试

合集下载

广西南宁市九年级下学期数学第一次月考试卷

广西南宁市九年级下学期数学第一次月考试卷

广西南宁市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每题3分,共30分) (共10题;共29分)1. (3分) (2019九上·江阴期中) 根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A .B .C .D .2. (3分)如图,在Rt△ABC中,CD⊥AB于点D,表示sinB错误的是()A .B .C .D .3. (3分) (2018九上·桐乡期中) ⊙O的半径为4,点P是⊙O所在平面内的一点,且OP=5,则点P与⊙O的位置关系为()A . 点P在上B . 点P在外C . 点P在内D . 以上都不对4. (3分)(2017·平南模拟) 如图,AB是⊙O的直径,∠D=35°,则∠BOC的度数为()A . 120°B . 70°C . 100°D . 110°5. (2分)抛物线y=-x2的图象一定经过()A . 第一、二象限B . 第三、四象限C . 第一、三象限D . 第二、四象限6. (3分)如图,已知抛物线与x轴的一个交点A(1,0),对称轴是x=﹣1,则该抛物线与x轴的另一交点坐标是()A . (﹣3,0)B . (﹣2,0)C . x=﹣3D . x=﹣27. (3分)在平面直角坐标系中,将抛物线y=x2-4先向右平移2个单位,再向上平移2个单位,得到的抛物线解析式为()A . y=(x+2)2+2B . y=(x-2)2-2C . y=(x-2)2+2D . y=(x+2)2-28. (3分)已知∠C=75°,则∠A与∠B满足以下哪个选项才能构成△ABC()A . sinA= ,sinB=B . cosA= ,cosB=C . sinA= ,tanB=D . sinA= ,cosB=9. (3分) (2016九上·江夏期中) 如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A . 5B . 7C . 9D . 1110. (3分)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论:①当m=-3时,函数图象的顶点坐标是(,);②当m>0时,函数图象截x轴所得的线段长度大于;③当m<0时,函数在x>时,y随x的增大而减小;④当m≠0时,函数图象经过x轴上一个定点.其中正确的结论有()A . ①④B . ①③④C . ①②④D . ①②③④二、填空题:(每题4分,共40分) (共10题;共38分)11. (4分) (2018九上·宝应月考) 抛物线的顶点坐标是________.12. (4分)计算:sin2 60°+cos 60°-tan 45°=________13. (2分) (2019九上·台安月考) 如图,直径,点,是圆上两点,,则弧长为________.14. (4分)如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为________厘米.15. (4分)若函数是二次函数,则m的值为________16. (4分)(2017·松江模拟) 已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线________.17. (4分)(2017·河池) 如图是二次函数y1=ax2+bx+c(a≠0)和一次函数y2=mx+n(m≠0)的图象,当y2>y1 , x的取值范围是________.18. (4分) (2016九下·澧县开学考) 如图1,是工人将货物搬运上货车常用的方法,把一块木板斜靠在货车车厢的尾部,形成一个斜坡,货物通过斜坡进行搬运.根据经验,木板与地面的夹角为20°(即图2中∠ACB=20°)时最为合适,已知货车车厢底部到地面的距离AB=1.5m,木板超出车厢部分AD=0.5m,则木板CD的长度为________.(参考数据:sin20°≈0.3420,cos20°≈0.9397,精确到0.1m).19. (4分) (2016九上·金华期末) 如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是________ cm.20. (4分)一条弦把圆分成2:3两部分,那么这条弦所对的圆心角的度数为________ .三、解答题 (共2题;共30分)21. (15.0分)(2019·十堰) 如图,中,,以为直径的⊙ 交于点,点为延长线上一点,且 .(1)求证:是⊙ 的切线;(2)若,求⊙ 的半径.22. (15分)(2016·丹阳模拟) 已知点A(2,a)在抛物线y=x2上(1)求A点的坐标;(2)在x轴上是否存在点P,使△OAP是等腰三角形?若存在写出P点坐标;若不存在,说明理由.参考答案一、选择题(每题3分,共30分) (共10题;共29分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8、答案:略9-1、10-1、二、填空题:(每题4分,共40分) (共10题;共38分) 11-1、12-1、13-1、14-1、15-1、16、答案:略17-1、18-1、19-1、20-1、三、解答题 (共2题;共30分)21-1、21-2、22、答案:略。

2024年广西南宁市中考数学一模试卷及答案解析

2024年广西南宁市中考数学一模试卷及答案解析

2024年广西南宁市中考数学一模试卷一、选择题(共12小题,每小题3分,共36分.每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.(3分)下列各数中,最小的是()A.﹣3B.0C.1D.2.(3分)铜鼓是我国古代南方少数民族使用的打击乐器和礼器,世界上最重的铜鼓王出土于广西.如图是接铜鼓的实物图,它的左视图是()A.B.C.D.3.(3分)据统计,近五年来南宁市累计完成植树造林约1466000亩,在保护森林生态方面作出了积极贡献.数据“1466000”用科学记数法表示为()A.1.466×106B.1.466×107C.0.1466×107D.14.66×1054.(3分)将一副三角尺按如图所示的位置摆放,若∠1=70°,则∠2的度数是()A.10°B.15°C.20°D.25°5.(3分)不等式x<﹣2的解集在数轴上表示为()A.B.C.D.6.(3分)下列调查中,最适宜全面调查的是()A.检测某城市的空气质量B.检查一枚运载火箭的各零部件C.调查某款节能灯的使用寿命D.调查观众对春节联欢晚会的满意度7.(3分)已知蓄电池的电压U(单位:V)为定值,使用蓄电池时,电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,它的图象如图所示,则蓄电池的电压是()A.B.C.18V D.36V8.(3分)下列运算正确的是()A.3a2•a=3a3B.(a2)3=a5C.a3+a3=a6D.a6÷a2=a39.(3分)如图,将△ABC绕点A逆时针旋转一定的角度得到△AB'C',此时边AC′经过点B,若AB=4,AC=7,则BC′的长是()A.5B.4C.3D.210.(3分)中国古代数学专著《九章算术》第一章“方田”中记载了如下问题:“今有宛田,下周三十步,径十六步,问为田几何?”意思为:现有一块扇形的田,弧长是30步,其所在圆的直径是16步,则这块田的面积是()A.200平方步B.120平方步C.平方步D.平方步11.(3分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需时间与原计划生产450台机器所需时间相同,若设现在平均每天生产机器x台,根据题意可列分式方程为()A.B.C.D.12.(3分)如图1,先将一张长方形纸片对折,然后沿图2的虚线折叠得到图3,再按图3所示沿BC剪下△ABC.若展开后是图4所示的正五角星(每个锐角都是36°),则图3中∠ABC的度数是()A.108°B.114°C.126°D.144°二、填空题(本大题共6小题,每小题2分,共12分.)13.(2分)分解因式:x2﹣5x=.14.(2分)若在实数范围内有意义,则x的取值范围是.15.(2分)小楠一家计划“五一”假期出游,从北海银滩、乐业天坑、德天瀑布这三个景点中随机选择一个,恰好选中“德天瀑布”的概率是.16.(2分)直线y=x+1向上平移5个单位长度后与y轴交点坐标是.17.(2分)如图,无人机于空中A处探测到目标C,此时飞行高度AC=10m,从无人机上观测遥控点B 的俯角α=23°31',则点A与点B的距离是m.(结果保留整数,参考数据:sin23°31'≈0.40cos23°31=0.92,tan23°31'≈0.43).18.(2分)如图,已知正方形ABCD的顶点A,C在二次函数第一象限的图象上,当点B在y轴上时,设点A,C的横坐标分别为m,n,且m<n,则m,n满足的等量关系式是(用含m的式子表示n).三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:32÷(4﹣5)+6×.20.(6分)先化简,再求值:(a+b)2+b(2a﹣b),其中a=2,.21.(10分)如图,在Rt△ABC中,∠ACB=90°,点D为AB中点,连接CD.(1)作∠BCD的平分线交AB于点E(要求:尺规作图,不写作法,保留作图痕迹,标明字母);(2)若∠A=40°,求∠AEC的度数.22.(10分)某校想了解八年级学生对食品安全知识的掌握情况,随机抽取了部分学生进行测试,测试成绩(百分制)整理如下:信息一:抽取学生的测试成绩分布表组别成绩/分频数A90≤x≤100aB80≤x<9016C70≤x<808D x<704合计m信息二:B组的成绩(单位:分)分别为:80,80,82,82,84,85,85,85,85,85,85,86,86,88,88,89.请根据以上信息回答下列问题:(1)填空:m=,a=,n%=%;(2)本次所抽取学生成绩的平均分为83分,小邕说:“我的成绩是84分,比平均分高,所以我的成绩超过了一半的同学.”你认为他的说法正确吗?请说明理由;(3)成绩不低于80分的学生食品安全知识掌握情况良好,若八年级学生约有500人,试估计八年级食品安全知识掌握情况良好的学生人数.23.(10分)如图,点B,F,C,E在一条直线上,AB∥DE,AB=DE,BF=CE.(1)求证:△ABC≌△DEF;(2)若,FC=4,求四边形ACDF的面积.24.(10分)4月23日是“世界读书日”,小宁计划通过微信团购群为班级网购图书,他在两个团购群中看到同款图书出售:(1)团购群1中《儒林外史》和《简•爱》的单价分别是多少元?(2)小宁买15本《儒林外史》和15本《简•爱》,选择在哪一个团购群购买更合算?25.(10分)如图,已知AB经过⊙O上的点C,CA=CB.连接OA,OB分别交⊙O于点D,E,并且OA=OB.延长AO交⊙O于点F,连接FE并延长交AB于点G.(1)求证:AB是⊙O的切线;(2)若BE=2,AB=8,求EF的长.26.(10分)综合与实践【问题提出】某班开展课外锻炼,有7位同学组队参加跳长绳运动,如何才能顺利开展活动呢?【实践活动】在体育老师的指导下,队员们进行了以下实践:步骤一:收集身高数据如下:队员甲乙丙丁戊己庚身高/m 1.70 1.70 1.73 1.60 1.68 1.80 1.60步骤二:为增加甩绳的稳定度,确定两位身高较高且相近的甲、乙队员甩绳,其余队员跳绳;步骤三:所有队员站成一排,跳绳队员按照中间高、两端低的方式排列,同时7名队员每两人间的距离至少为0.5m才能保证安全;步骤四:如图1,两位甩绳队员通过多次实践发现,当两人的水平距离AC=4m,手离地面的高度AB =CD=1.2m,绳子最高点距离地面2m时,效果最佳;【问题解决】如图2,当绳子甩动到最高点时的形状近似看成一条抛物线,若以AC所在直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.(1)求抛物线的解析式;(2)最高的队员位于AC中点,其余跳绳队员对称安排在其两侧.①当跳绳队员之间正好保持0.5m的距离时,长绳能否高过所有跳绳队员的头顶?②在保证安全的情况下,求最左边的跳绳队员与离他最近的甩绳队员之间距离的取值范围.2024年广西南宁市中考数学一模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,共36分.每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑.)1.【分析】有理数大小比较的法则:(1)正数>0>负数;(2)两个负数比较大小,绝对值大的其值反而小,据此判断即可.【解答】解:∵﹣3<0<1<,∴其中最小的是﹣3.故选:A.【点评】此题主要考查了有理数大小比较的方法,解答此题的关键是掌握有理数大小比较方法.2.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:从左边看,可得选项B的图形.故选:B.【点评】本题主要考查了简单组合体的三视图.用到的知识点为:主视图指从物体的正面看,左视图是指从物体的左面看,俯视图是指从物体的上面看.准确掌握定义是解题的关键.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正整数,当原数绝对值<1时,n是负整数.【解答】解:1466000=1.466×106.故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】根据图形中的等量关系得:∠1+∠2=90°,再由∠1的度数,即可得出答案.【解答】解:∵图中为两个三角板,∴两个三角形是直角三角形,∵∠1=70°,∴∠2=180°﹣90°﹣∠1=20°.故选:C.【点评】本题考查了余角和补角,找准各角的关系是解题的关键.5.【分析】把解集表示在数轴上即可.【解答】解:不等式x<﹣2的解集在数轴上表示为,故选:D.【点评】此题考查了在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.6.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A.检测某城市的空气质量,适合抽样调查,故本选项不符合题意;B.检查一枚运载火箭的各零部件,适合全面调查,故本选项符合题意;C.调查某款节能灯的使用寿命,适合抽样调查,故本选项不符合题意;D.调查观众对春节联欢晚会的满意度,适合抽样调查,故本选项不符合题意.故选:B.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.7.【分析】根据题意,先列出反比例函数解析式I=,根据函数图象过(9,4)代入计算出U值即可.【解答】解:∵电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系,∴I=,由图象可知,当R=9时,I=4,∴U=I•R=4×9=36(v).答:蓄电池的电压是36v.故选:D.【点评】本题考查了反比例函数的应用,熟练掌握反比例函数的性质是关键.8.【分析】根据单项式乘单项式运算法则系数与系数相乘,相同字母的幂相乘,分析判断即可.【解答】解:A、3a2•a=3a3,原计算正确,符合题意;B、(a2)3=a6,原计算错误,不符合题意;C、不能合并,原计算错误,不符合题意;D、a6÷a2=a4,计算错误,不符合题意;故选:A.【点评】本题考查了单项式乘单项式,熟练掌握运算法则是关键.9.【分析】根据旋转的性质,得出AC′=AC,据此可解决问题.【解答】解:∵△AB′C′由△ABC绕点A逆时针旋转一定的角度得到,∴AC′=AC=7,∴BC′=AC′﹣AB=7﹣4=3.故选:C.【点评】本题考查旋转的性质,熟知图形旋转的性质是解题的关键.10.【分析】根据扇形的面积公式即可解决问题.【解答】解:由题知,扇形所在圆的直径是16步,所以半径为8步,又因为扇形的弧长为30步,=(平方步).所以S扇形故选:B.【点评】本题考查扇形面积的计算,熟知扇形的面积公式是解题的关键.11.【分析】根据现在生产600台机器所需时间与原计划生产450台机器所需时间相同,可以列出相应的方程.【解答】解:设现在平均每天生产机器x台,则原计划平均每天生产(x﹣50)台,由题意可得:,故选:C.【点评】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.12.【分析】根据剪纸的特点和多边形内角和定理解题.【解答】解:将A,B,C标在展开图中,连接AB,AC,如图,∵∠A==36°,∵正五角星的5个角都是36°,∴∠ACB=×36°=18°,∵三角形内角和为180°,∴∠ABC=180°﹣18°﹣36°=126°.故选:C.【点评】本题以剪纸为背景,考查多边形内角与外角,需要一定的空间现象能力,解题的关键是能灵活运用相关知识.二、填空题(本大题共6小题,每小题2分,共12分.)13.【分析】直接提取公因式x分解因式即可.【解答】解:x2﹣5x=x(x﹣5).故答案为:x(x﹣5).【点评】此题考查的是提取公因式分解因式,关键是找出公因式.14.【分析】根据被开方数大于等于0列式进行计算即可求解.【解答】解:根据题意得x﹣3≥0,解得x≥3.故答案为:x≥3.【点评】本题考查了二次根式有意义的条件,知识点为:二次根式的被开方数是非负数.15.【分析】直接由概率公式求解即可.【解答】解:∵从北海银滩、乐业天坑、德天瀑布这三个景点中随机选择一个,∴恰好选中“德天瀑布”的概率是,故答案为:.【点评】本题考查了概率公式:概率=所求情况数与总情况数之比.熟记概率公式是解题的关键.16.【分析】先求出直线y=x+1向上平移5个单位长度后的解析式,再令x=0,求出y的值即可.【解答】解:直线y=x+1向上平移5个单位长度后的函数解析式为y=x+1+5=x+6,∵当x=0时,y=6,∴直线与y轴交点坐标是(0,6).故答案为:(0,6).【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解题的关键.17.【分析】先利用平行线的性质得到∠B=α=23°31',然后利用∠B的正弦计算AB的长.【解答】解:如图,∠B=α=23°31′,在Rt△ABC中,∵sin B=,∴AB=≈=25(m).答:点A与点B的距离是25m.故答案为:25.【点评】本题考查了解直角三角形的应用﹣仰角俯角:仰角是向上看的视线与水平线的夹角;俯角是向下看的视线与水平线的夹角.解决此类问题要了解角之间的关系,找到与已知和未知相关联的直角三角形.18.【分析】依据题意,连接AC、BD交于点E,过点A作MN⊥y轴于点M,过点D作DN⊥MN于点N,先证明△AMB≌△DNA,得A(m,m2),C(n,n2),从而E(,),M(0,m2),设B(0,b),则D(m+n,),N(m+n,m2),又AM=ND,BM=AN,故b﹣m2=n,m=n2﹣b,则(n+m)(n﹣m)=m+n,再结合m+n≠0,进而可以判断得解.【解答】解:如图,连接AC、BD交于点E,过点A作MN⊥y轴于点M,过点D作DN⊥MN于点N,∵四边形ABCD是正方形,∴AC、BD互相平分,AB=AD,∠BAD=90°,∴∠BAM+∠DAN=90°,∠DAN+∠ADN=90°,∴∠BAM=∠ADN.∵∠BMA=∠AND=90°,BA=AD,∴△AMB≌△DNA(AAS).∴AM=ND,BM=AN.∵点A、C的横坐标分别为m、n,∴A(m,m2),C(n,n2).∴E(,),M(0,m2),设B(0,b),则D(m+n,),N(m+n,m2),∴BM=b﹣m2,AN=n,AM=m,DN=n2﹣b.又AM=ND,BM=AN,∴b﹣m2=n,m=n2﹣b.∴b=n2﹣m.∴n2﹣m﹣m2=n.∴(n+m)(n﹣m)=m+n.∵点A、C在y轴的同侧,且点A在点C的左侧,∴m+n≠0.∴n﹣m=2.∴n=m+2.故答案为:n=m+2.【点评】本题主要考查了二次函数的图象与性质、正方形的性质、全等三角形的判定与性质,解题时要熟练掌握并能灵活运用是关键.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.【分析】先算乘方,再算乘除法,然后计算加法即可.【解答】解:32÷(4﹣5)+6×=9÷(﹣1)+6×=﹣9+2=﹣7.【点评】本题考查有理数的混合运算,熟练掌握运算法则是解答本题的关键.20.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a,b的值代入化简后的式子进行计算,即可解答.【解答】解:(a+b)2+b(2a﹣b)=a2+2ab+b2+2ab﹣b2=a2+4ab,当a=2,时,原式=22+4×2×(﹣)=4+(﹣2)=2.【点评】本题考查了整式的混合运算﹣化简求值,完全平方公式,准确熟练地进行计算是解题的关键.21.【分析】(1)利用基本作图作∠BCD的平分线即可;(2)先利用斜边上的中线性质得到AD=CD,则∠ACD=∠A=40°,再利用互余计算出∠BCD=50°,接着根据角平分线的定义得∠DCE=25°,然后根据三角形内角和定理计算出∠AEC的度数.【解答】解:(1)如图,CE为所作;(2)∵∠ACB=90°,点D为AB中点,∴AD=CD,∴∠ACD=∠A=40°,∴∠BCD=∠ACB﹣∠ACD=90°﹣40°=50°,∵CE平分∠BCD,∴∠DCE=∠BCD=25°,∴∠ACE=40°+25°=65°,∵∠AEC+∠ACE+∠A=180°,∴∠AEC=180°﹣40°﹣65°=75°.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了直角三角形斜边上的中线性质.22.【分析】(1)根据C组的频数和所占是百分比求m,根据A组所占的百分比计算a的值,根据B组的频数计算n%即可;(2)根据中位数的定义求解即可;(3)用总人数乘以成绩不低于80分的学生所占的百分比即可.【解答】解:(1)m=8÷20%=40,a=40×30%=12,n%=×100%=40%;故答案为:40,12,40;(2)不正确,理由:这次测试成绩的中位数是第20、21个数据的平均数,所以这组数据的中位数是=85,因为小邕的成绩是84分低于中位数85分,所以小邕的成绩没有超过一半的同学;(3)500×(30%+40%)=350(人),答:估计八年级食品安全知识掌握情况良好的学生人数为350人.【点评】本题考查了统计表和扇形统计图的综合运用.读懂统计图表,从中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.也考查了中位数,利用样本估计总体.23.【分析】(1)由“SAS”可证△ABC≌△DEF;(2)先证四边形ACDF是菱形,可得AO=DO,AD⊥CF,CO=FO=2,由菱形的面积公式可求解.【解答】(1)证明:∵AB∥DE,∴∠B=∠E,∵BF=CE,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS);(2)解:如图,连接AD交CF于O,∵△ABC≌△DEF,∴AC=DF,∠ACB=∠DFE,∴AC∥DF,∴四边形ACDF是平行四边形,∵AF=DF,∴四边形ACDF是菱形,∴AO=DO,AD⊥CF,CO=FO=2,∴AO===3,∴AD=6,∴四边形ACDF的面积==12.【点评】本题考查了全等三角形的判定和性质,菱形的判定和性质,证明三角形全等是解题的关键.24.【分析】(1)设团购群1中《儒林外史》单价为x元,《简•爱》的单价为y元,根据团购群1中《儒林外史》和《简•爱》的出售信息,列出二元一次方程组,解方程组即可;(2)分别求出选择团购群1费用和选择团购群2费用,再比较即可.【解答】解:(1)设团购群1中《儒林外史》单价为x元,《简•爱》的单价为y元,由题意得:,解得:,答:团购群1中《儒林外史》单价为48元,《简•爱》的单价为32元;(2)小宁买15本《儒林外史》和15本《简•爱》,选择团购群1费用为:(48+32)×15×0.7=840(元),∵70×15=1050(元),=3.5,∴选择团购群2费用为:1050﹣3×40=930(元),∵840<930,∴选择在团购群1购买更合算,答:选择在团购群1购买更合算.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.【分析】(1)连接OC,由OA=OB,CA=CB,根据等腰三角形的“三线合一”证明OC⊥AB,即可证明AB是⊙O的切线;(2)设OD=OC=OE=OF=r,因为BE=2,AB=8,所以OB=r+2,CA=CB=AB=4,由勾股定理得r2+42=(r+2)2,得r=3,则OC=OF=3,OA=OB=5,AF=8,再证明∠F=∠AOC,则FG∥OC,所以∠EGB=∠FGA=90°,由==sin B=,==sin A=,求得EG=,FG=,则EF=.【解答】(1)证明:连接OC,∵OA=OB,CA=CB,∴OC⊥AB,∵OC是⊙O的半径,且AB⊥OC,∴AB是⊙O的切线.(2)解:设OD=OC=OE=OF=r,∵BE=2,AB=8,∴OB=r+2,CA=CB=AB=4,∵∠OCE=90°,∴OC2+CB2=OB2,∴r2+42=(r+2)2,解得r=3,∴OC=OF=3,OA=OB=3+2=5,∴AF=OA+OF=5+3=8,∵∠F=∠AOB,∠AOC=∠BOC=∠AOB,∴∠F=∠AOC,∴FG∥OC,∴∠EGB=∠OCB=90°,∠FGA=∠OCA=90°,∴==sin B=,==sin A=,∴EG=BE=×2=,∴FG=AF=×8=,∴EF=FG﹣EG=﹣=,∴EF的长是.【点评】此题重点考查等腰三角形的“三线合一”、切线的判定定理、勾股定理、圆周角定理、锐角三角函数与解直角三角形等知识,正确地作出辅助线是解题的关键.26.【分析】(1)用待定系数法可得抛物线的函数表达式为y=﹣x2+x+;(2)①求出当x=1时,当x=1.5时的函数值,再和队员身高比较即可;②求出y=1.6时,2+或x=2﹣,即可得到答案.【解答】解:(1)以AC所在直线为x轴,AB所在的直线为y轴,建立平面直角坐标系.如图:由已知可得,(0,1.2),(4,1.2)在抛物线上,且抛物线顶点坐标为(2,2),设抛物线解析式为y=ax2+bx+c,∴,解得,∴抛物线的函数表达式为y=﹣x2+x+;(2)①∵y=﹣x2+x+=﹣(x﹣2)2+2,∴抛物线的对称轴为直线x=2,5名同学,以直线x=2为对称轴,分布在对称轴两侧,对称轴左侧的2名队员所在位置横坐标分布是2﹣0.5=1.5,1.5﹣0.5=1,对称轴右侧的2名队员所在位置横坐标分布是2+0.5=2.5,2.5+0.5=3,当x=1时,y=﹣(1﹣2)2+2==1.8>1.73,当x=1.5时,y=﹣(1.5﹣2)2+2=1.95>1.73,∴长绳能高过所有跳绳队员的头顶;②当y=1.6时,﹣x2+x+=1.6,解得x=2+或x=2﹣,∴最左边的跳绳队员与离他最近的甩绳队员之间距离的最小值为2,∵两人的水平距离AC=4m,7名队员每两人间的距离至少为0.5m才能保证安全,∴最左边的跳绳队员与离他最近的甩绳队员之间距离的最大值为(4﹣4×0.5)÷2=1,∴最左边的跳绳队员与离他最近的甩绳队员之间距离的取值范围为2≤x≤1.【点评】本题是二次函数综合题,考查的是二次函数的实际应用,读懂题意,把二次函数同实际生活结合起来,建立坐标系求解函数解析式是解本题的关键。

2022-2023学年广西南宁市中考数学一模试卷及答案

2022-2023学年广西南宁市中考数学一模试卷及答案

南宁市2023年初中毕业班第一次模拟测试数学试卷(考试时间:120分钟 满分:120分)第Ⅰ卷一、选择题(共12小题,每小题3分,共36分)1.-3的绝对值是( ) A .-3B .3C .13-D .132.服饰文化是我国传统文化的重要组成部分.下列传统服饰图纹是轴对称图形的是( )A .B .C .D .3.2023年2月28日国家统计局发布数据显示,2022年我国人均国内生产总值约为86000元.数据86000用科学记数法表示为( ) A .38610⨯ B .48.610⨯ C .58.610⨯ D .50.8610⨯ 4.已知点A 的坐标是()1,2,那么它关于原点对称的点A '的坐标是( )A .()2,1B .()1,2-C .()1,2-D .()1,2--5.下列调查中,适宜采用抽样调查的是( ) A .调查某批次汽车的抗撞击能力 B .企业招聘,对应聘人员进行面试 C .神舟飞船发射前对其零件进行检查D .选出某校九年级短跑最快的学生参加全市比赛6.如图,将一块三角板的顶点放在对边平行的纸条一边上.若150∠=︒,则2∠的度数是( )A .60°B .50°C .40°D .30° 7.有关部门对某乒乓球生产企业一批次产品进行抽样检测,结果如下表:A .0.97B .0.95C .0.94D .0.908.如图,AB 的垂直平分线MN 交AC 于点D ,10AC =,6BC =,则BCD △的周长为( )A .6B .10C .16D .189.下列运算正确的是( )A .235a a a +=B .842a a a ÷=C .()236a a = D .2222a a a ⋅=10.人体生命活动所需能量主要由食物中的糖类提供.如图是小南早餐后一段时间内血糖浓度变化曲线图.下列描述正确的是( )A .从9时至10时血糖呈下降状态B .10时血糖最高C .从11时至12时血糖呈上升状态D .这段时间有3个时刻血糖浓度达到7.0 mmol·L1-11.我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶和1个小桶可以盛酒3斛,1个大桶和5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶可以盛酒x 斛,1个小桶可以盛酒y 斛,根据题意,可列方程组为( ) A .5352x y x y +=⎧⎨+=⎩B .5352x y x y -=⎧⎨+=⎩C .5253x y x y +=⎧⎨+=⎩D .5253x y x y -=⎧⎨+=⎩12.学习《设计制作长方体形状的包装纸盒》后,小宁从长方形硬纸片上截去两个矩形(图中阴影部分),再沿虚线折成一个无盖的长方体纸盒.纸片长为30cm ,宽为18cm ,AD =2AB ,则该纸盒的容积为( )A .960 cm 3B .800 cm 3C .650 cm 3D .648 cm 3第Ⅱ卷二、填空题(本大题共6小题,每小题2分,共12分.)13=______. 14.分解因式:21x -=______.15.口袋里有7枚除颜色外都相同的围棋子,其中3枚是白色,4枚是黑色.从中随机摸出一枚棋子,颜色是黑色的概率是______.16.如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,大圆、小圆的半径分别为5和3,则AB =______.17.如图,一次函数11y k x b =+与反比例函数()220k y x x=>的图象交于()2,3A ,(),1B m 两点.当12y y >时,x 的取值范围是______.18.如图,在ABC △中,2C B ∠=∠,点D 是BC 的中点,AE 是BC 边上的高.若2AE =,1CE =,则DE =______.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(本题满分6分)计算:()()263214÷-+⨯-.20.(本题满分6分)解不等式组:215,3 2.xx+<⎧⎨->⎩①②21.(本题满分10分)如图,O是ABC△的外接圆,AB是直径.(1)尺规作图:作ACB∠的平分线交O于点D;(不写作法,保留作图痕迹)(2)在(1)的条件下,当O的半径为2时,求AD的长.22.(本题满分10分)联合国教科文组织将每年的3月14日定为“国际数学日”.某校九年级在三月份开展了以“数学文化”为主题的阅读活动,并随机抽查了部分学生在活动期间阅读相关文章的篇数.收集数据:15 12 15 13 15 15 12 18 1318 15 13 15 12 15 13 15 181 8整理数据:(1)直接写出....m的值及学生阅读篇数的中位数:(2)求本次调查学生阅读篇数的平均数;(3)若该年级大约有300名学生,请你估计该校九年级学生阅读关于“数学文化”的文章共多少篇?23.(本题满分10分)综合与实践【问题情境】龙象塔位于南宁市青秀山风景区,取“水行龙力大,陆行象力大”之意.某校数学实践小组利用所学数学知识测量龙象塔的高度.【实践探究】下面是两个方案及测量数据:【问题解决】(1)根据“方案一”的测量数据,直接写出....龙象塔AB 的高度; (2)根据“方案二”的测量数据,求出龙象塔AB 的高度;(参考数据:sin370.60≈︒,cos370.80≈︒,tan370.75︒≈,sin 26.50.45︒≈,cos26.50.89︒≈,tan 26.50.50︒≈)(3)请对本次实践活动进行评价(一条即可).24.(本题满分10分)老友粉入选广西非物质文化遗产名录.为满足消费者需求,某超市购进甲、乙两种品牌老友粉,已知甲品牌老友粉比乙品牌老友粉每袋进价少2元,用2700元购进甲品牌老友粉与用3300元购进乙品牌老友粉的数量相同.(1)求甲、乙两种品牌老友粉每袋的进价;(2)本次购进甲、乙品牌老友粉共800袋,均按13元出售,且购进甲品牌老友粉的数量不超过乙品牌老友粉数量的3倍.若该批老友粉全部售完,则该超市应购进甲、乙两种老友粉各多少袋才能获得最大利润?最大利润是多少? 25.(本题满分10分)如图1,抛物线21y x c =-+的图象经过()1,3.(1)求c 的值及抛物线1y 的顶点坐标;(2)当132x -≤≤时,求1y 的最大值与最小值的和; (3)如图2,将抛物线1y 向右平移m 个单位(0m >),再向上平移2m 个单位得到新的抛物线2y ,点N 为抛物线1y 与2y 的交点.设点N 到x 轴的距离为n ,求n 关于m 的函数关系式,并直接写出....当n 随m 的增大而减小时,m 的取值范围.26.(本题满分10分)【课本再现】(1)如图1,正方形ABCD 的对角线相交于点O ,点O 又是正方形111A B C O 的一个顶点.在实验与探究中,小州发现通过证明BOE COF ≌△△,可得OE OF =.请帮助小州完成证明过程:【类比探究】(2)如图2,若四边形ABCD 是矩形,O 为对角线BD 上任意一点,过O 作OF OA ⊥,交BC 于点F ,当2BC AB =时,求证:2OA OF =;【拓展提升】(3)如图3,若四边形ABCD 是平行四边形,O 为对角线BD 上任意一点,点F 在BC 上,且AOF BAD ∠=∠,求证:OF ABOA BC=.数学试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分)13.2;14.()()11x x +-;15.47;16.8;17.26x <<;18.2三、解答题(本大题共72分)19.(本题满分6分)解:原式()24321214=-+⨯-=--=-. 20.(本题满分6分)解:解不等式①,得2x <,解不等式②,得1x <,不等式组的解集1x <. 21.(本题满分10分) (1)如图所示,CD 为所求;(2)方法一:连接OD , ∵AB 是O 的直径,∴90ACB ∠=︒,∵CD 平分ACB ∠,∴1452ACD ACB ∠︒=∠=, ∴290AOD ACD ︒∠=∠=, ∴AD 的长为90π2π180⨯⨯=.方法二:连接OD ,由(1)得,ACD BCD ∠=∠.∴AOD BOD ∠=∠. ∴AD BD =.∴AD 的长为半圆的一半.∴AD 的长为12π2π22⨯⨯⨯=. 22.(本题满分10分) 解:(1)m 的值为4, 学生阅读篇数的中位数为15;(2)本次所调查学生阅读篇数的平均数为:12313415818514.93485x ⨯+⨯+⨯+⨯==+++,答:本次所调查学生阅读篇数的平均数是14.9篇; (3)30014.94470⨯=(篇),答:估计该校九年级学生这一周阅读关于“数学文化”的文章为4470篇. 23.(本题满分10分)(1)龙象塔AB 的高度为52米;(2)解:在Rt ABC △中,tan ABBCα=, ∴tan 37ABBC =︒.在Rt ABD △中,tan ABBDβ=, ∴tan 26.5ABBD =︒.∵35CD BD BC =-=,∴35tan 26.5tan 37AB AB -=︒︒,即42353AB AB -=. ∴52.5AB =米答:龙象塔AB 的高度为52.5米; (3)答案不唯一,合理即可.如:两种方案均可测量出龙象塔的高度;取平均值是减少误差的方式; 方案一易受天气影响. 24.(本题满分10分)(1)解:设甲品牌老友粉每袋x 元,则乙品牌老友粉每袋()2x +元, 由题意270033002x x =+,解得9x =. 检验:当9x =时,()20x x +≠,∴9x =是原分式方程的解 ∴211x +=,答:甲品牌老友粉每袋9元,乙品牌老友粉每袋11元 (2)解:设超市获得利润为y 元,购进甲种老友粉m 袋, 则购进乙种老友粉()800m -袋. ∵()3800m m ≤-,∴600m ≤,()()()139131180021600y m m m =-+--=+, ∵20k =>,∴y 随m 的增大而增大. ∴当600m =时,y 的值最大260016002800y =⨯+=最大乙种老友粉的数量800200m -=(袋).答:当购进甲种老友粉600袋,乙种老友粉200袋时获利最大, 最大利润为2800元 25.(本题满分10分)解:(1)抛物线21y x c =-+的图象经过()1,3, ∴当0x =时,2113y c =-+=,解得4c = ∴214y x =-+.顶点坐标为()0,4(2)∵10-<,∴抛物线开口向下. 当0x =时,1y 有最大值为4当3x =-时,()21345y =--+=-.当12x =时,21115424y ⎛⎫=-+= ⎪⎝⎭.∴当3x =-时,1y 有最小值为-5 ∴最大值与最小值的和为()451+-=-(3)由题意知,新抛物线2y 的顶点为(),42m m +, ∴()2242y x m m =--++.当12y y =时,()22424x m m x --++=-+, 化简得:2220mx m m -+=.又∵0m >,∴112x m =-.∴()2211142424y m m ⎛⎫=--+=--+ ⎪⎝⎭.当()212404m --+=时,解得12m =-;26m =, ∵104-<,∴抛物线开口向下.当06m <≤时,0y ≥;()221124344n m m m =--+=-++.当6m >时,0y <()221124344n y m m m =-=--=--. ∴2213,064 13,64m m m n m m m ⎧-++<≤⎪⎪=⎨⎪-->⎪⎩(或21(2)44n m =--+).当26m <<时,n 随m 的增大而减小.26.(本题满分10分)解:(1)证明:∵四边形ABCD ,111A B C O 是正方形,∴∠BOC =90°,∠EOF =90°,OB =OC ,∠OBE =∠OCF =45°. ∴∠BOE +∠BOF =90°.∴∠COF +∠BOF =90°.∴∠BOE =∠COF .在BOE △与COF △中,BOE COFOB OC OBE OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴BOE COF ≌△△(ASA ).∴OE =OF . (2)解法一:过点O 作OM BC ⊥于点M ,反向延长OM 交AD 于点N ,∵四边形ABCD 是矩形,∴CD =AB ,∠C =90°,AD BC ∥. ∵MN BC ⊥,∴MN AD ⊥.∴∠OMF =∠ANO =90°,BM =AN .∴∠OAN +∠AON =90°. ∵∠AOF =90°,∴∠FOM +∠AON =90°. ∴∠OAN =∠FOM .∴OAN FOM ∽△△. ∴OF OM OMOA AN BM==. 又∵在Rt DBC △中,1tan 2DC DBC BC ∠==, ∴在Rt OBM △中,1tan 2OM OBM BM ∠==.∴12OF CD OA BC ==.∴OA =2OF . 解法二:过O 作OG BD ⊥交BC 于点G ,∵四边形ABCD 是矩形,∴CD =AB ,∠C =90°. 由(1)得,∠AOB =∠FOG .∵∠ABF =∠AOF =90°,∴∠ABF +∠AOF =180°.∴∠OAB +∠OFB =180°. 又∵∠OFG +∠OFB =180°,∴∠OFG =∠OAB .∴OFG OAB ∽△△.∴OF OGOA OB=. 又∵∠BOG =∠C =90°,∠OBG 是公共角, ∴BOG BCD ∽△△.∴OG CD OB BC =.∴12OF CD OA BC ==.∴OA =2OF .(3)证明:过O 作∠BOG =∠AOF ,OG 交BC 于点G ,∵四边形ABCD 是平行四边形, ∴CD =AB ,∠C =∠BAD .∵∠BOG =∠AOF ,∴∠AOB =∠FOG .∵∠ABF +∠AOF =∠ABF +∠BAD =180°,∴∠OAB +∠OFB =180°.又∵∠OFG +∠OFB =180°,∴∠OFG =∠OAB .∴OFG OAB ∽△△.∴OF OGOA OB=. 又∵∠C =∠BAD ,∠OBG 是公共角,∴∠BOG =∠C .∴BOG BCD ∽△△. ∴OG CD OB BC =.∴OF CD OA BC =.∴OF AB OA BC=.。

精选南宁市初三中考数学第一次模拟试题【含答案】

精选南宁市初三中考数学第一次模拟试题【含答案】

精选南宁市初三中考数学第一次模拟试题【含答案】一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项.1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2,≥0,即△≥0,∴原方程有两个实数根,当k=2时,方程有两个相等的实数根.故选:B.6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y >0,图象位于第一象限,所以只有A符合要求.故选:A.9.(3分)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误.②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确.③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误.④根据根与系数的关系有:a+b=7,ab=7,∴a2+b2=(a+b)2﹣2ab=49﹣14=35,即:AB2=35,AB=∴AB边上的中线的长为.所以④正确.故选:C.10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y =x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+【解答】解:过P点作PE⊥AB于E,过P点作PC⊥x轴于C,交AB于D,连接P A.∵PE⊥AB,AB=2,半径为2,∴AE=AB=,P A=2,根据勾股定理得:PE==1,∵点A在直线y=x上,∴∠AOC=45°,∵∠DCO=90°,∴∠ODC=45°,∴△OCD是等腰直角三角形,∴OC=CD=2,∴∠PDE=∠ODC=45°,∴∠DPE=∠PDE=45°,∴DE=PE=1,∴PD=.∵⊙P的圆心是(2,a),∴a=PD+DC=2+.故选:B.二、填空题(本大题共6小题,每小题3分,共24分)11.(3分)化简:÷=.【解答】解:原式=•=.故答案为:12.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.13.(3分)从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.【解答】解:共有6种情况,在第四象限的情况数有2种,所以概率为.故答案为:.14.(3分)已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为80°.【解答】解:由翻折可得∠B′=∠B=60°,∴∠A=∠B′=60°,∵∠AFD=∠GFB′,∴△ADF∽△B′GF,∴∠ADF=∠B′GF,∵∠EGC=∠FGB′,∴∠EGC=∠ADF=80°.故答案为:80°.15.(3分)以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是﹣4≤a≤﹣2.【解答】解:当A、D两点重合时,PO=PD﹣OD=5﹣3=2,此时P点坐标为a=﹣2,当B在弧CD时,由勾股定理得,PO===4,此时P点坐标为a =﹣4,则实数a的取值范围是﹣4≤a≤﹣2.故答案为:﹣4≤a≤﹣2.16.(3分)如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是(2,0)或(4,0)或(2,0)或(﹣2,0)..【解答】解:(1)当点P在x轴正半轴上,①以OA为腰时,∵A的坐标是(2,2),∴∠AOP=45°,OA=2,∴P的坐标是(4,0)或(2,0);②以OA为底边时,∵点A的坐标是(2,2),∴当点P的坐标为:(2,0)时,OP=AP;(2)当点P在x轴负半轴上,③以OA为腰时,∵A的坐标是(2,2),∴OA=2,∴OA=OP=2,∴P的坐标是(﹣2,0).故答案为:(2,0)或(4,0)或(2,0)或(﹣2,0).三、(本大题共3个小题,每小题各6分,共18分)17.(6分)先化简,再求值:(﹣2),其中x=2.【解答】解:原式==×=,当x=2时,原式=﹣=﹣1.18.(6分)分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.【解答】解:(1)(2)如图所示:19.(6分)某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?【解答】解:(1)120×0.95=114(元),若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付114元;(2)设所付钱为y元,购买商品价格为x元,则按方案一可得到一次函数的关系式:y=0.8x+168,则按方案二可得到一次函数的关系式:y=0.95x,如果方案一更合算,那么可得到:0.95x>0.8x+168,解得:x>1120,∴所购买商品的价格在1120元以上时,采用方案一更合算.四、(本大题共2个小题,每小题8分,共16分)20.(8分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?【解答】解:(1)450﹣36﹣55﹣180﹣49=130(万人);(2)第五次人口普查中,该市常住人口中高中学历人数的百分比是:1﹣3%﹣17%﹣38%﹣32%=10%,人数是400×10%=40(万人),∴第六次人口普查中,该市常住人口中高中学历人数是55万人,∴第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是:×100%=37.5%.21.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.【解答】解:(1)连接OD.设⊙O的半径为r.∵BC切⊙O于点D,∴OD⊥BC.∵∠C=90°,∴OD∥AC,∴△OBD∽△ABC.∴=,即10r=6(10﹣r).解得r=,∴⊙O的半径为.(2)四边形OFDE是菱形.理由如下:∵四边形BDEF是平行四边形,∴∠DEF=∠B.∵∠DEF=∠DOB,∴∠B=∠DOB.∵∠ODB=90°,∴∠DOB+∠B=90°,∴∠DOB=60°.∵DE∥AB,∴∠ODE=60°.∵OD=OE.∴OD=DE.∵OD=OF,∴DE=OF.又∵DE∥OF,∴四边形OFDE是平行四边形.∵OE=OF,∴平行四边形OFDE是菱形.五、(本大题共2小题,每小题9分,共18分)22.(9分)如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.【解答】(1)证明:在△ACD与△ABE中,∵,∴△ACD≌△ABE,∴AD=AE.(2)答:直线OA垂直平分BC.理由如下:连接BC,AO并延长交BC于F,在Rt△ADO与Rt△AEO中,∴Rt△ADO≌Rt△AEO(HL),∴∠DAO=∠EAO,即OA是∠BAC的平分线,又∵AB=AC,∴OA⊥BC且平分BC.23.(9分)设,,,…,.若,求S(用含n的代数式表示,其中n 为正整数).【解答】解:∵,,,…,.∴S1=()2,S2=()2,S3=()2,…,S n=()2,∵,∴S=,∴S=1+,∴S=1+1﹣+1+﹣+…+1+,∴S=n+1﹣=.六、(本大题共2小题,每小题10分,共20分)24.(10分)在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.【解答】(1)解:∵∠BP A=90°,P A=PB,∴∠P AB=45°,∵∠BAO=45°,∴∠P AO=90°,∴四边形OAPB是正方形,∴P点的坐标为:(a,a).(2)证明:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,∵∠BPE+∠EP A=90°,∠EPB+∠FPB=90°,∴∠FPB=∠EP A,∵∠PFB=∠PEA,BP=AP,∴△PBF≌△P AE,∴PE=PF,∴点P都在∠AOB的平分线上.(3)解:作PE⊥x轴交x轴于E点,作PF⊥y轴交y轴于F点,则PE=h,设∠APE =α.在直角△APE中,∠AEP=90°,P A=,∴PE=P A•cosα=•cosα,又∵顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),∴0°≤α<45°,∴<h≤.25.(10分)在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.【解答】解:(1)根据题意知,P(1,2).若点E与点P重合,则k=xy=1×2=2;(2)①当0<k<2时,如图1所示.根据题意知,四边形OAPB是矩形,且BP=1,AP=2.∵点E、F都在反比例函数(k>0)的图象上,∴E(,2),F(1,k).则BE=,PE=1﹣,AF=k,PF=2﹣k,∴S△OEF=S矩形OAPB﹣S△OBE﹣S△PEF﹣S△OAF=1×2﹣××2﹣×(1﹣)×(2﹣k)﹣×1×k=﹣k2+1;②当k=2时,由(1)知,△OEF不存在;③当k>2时,如图2所示.点E、F分别在P点的右侧和上方,过E作x轴的垂线EC,垂足为C,过F作y轴的垂线FD,垂足为D,EC和FD相交于点G,则四边形OCGD 为矩形.∵PF⊥PE,∴S△FPE=PE•PF=(﹣1)(k﹣2)=k2﹣k+1,∴四边形PFGE是矩形,∴S△PFE=S△GEF,∴S△OEF=S矩形OCGD﹣S△DOF﹣S△GEF﹣S△OCE=•k﹣﹣(k2﹣k+1)﹣=k2﹣1;(3)当k>0时,存在点E使△OEF的面积为△PEF面积的2倍.理由如下:①如图1所示,当0<k<2时,S△PEF=×(1﹣)×(2﹣k)=,S△OEF=﹣k2+1,则×2=﹣k2+1,解得,k=2(舍去),或k=;②由(1)知,k=2时,△OEF与△PEF不存在;③如图2所示,当k>2时,S△PEF=﹣k2+k﹣1,S△OEF=k2﹣1,则2(﹣k2+k﹣1)=k2﹣1,解得k=(不合题意,舍去),或k=2(不合题意,舍去),则E点坐标为:(3,2).中学数学一模模拟试卷一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项.1.在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|2.下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b23.下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣34.如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+65.关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种6.某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定7.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折8.一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.9.下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个10.如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是()A.2B.2+C.2D.2+二、填空题(本大题共6小题,每小题3分,共24分)11.化简:÷=.12.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.13从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是.14.已知等边△ABC中,点D,E分别在边AB,BC上,把△BDE沿直线DE翻折,使点B 落在点Bˊ处,DBˊ,EBˊ分别交边AC于点F,G,若∠ADF=80°,则∠EGC的度数为.15.以数轴上的原点O为圆心,3为半径的扇形中,圆心角∠AOB=90°,另一个扇形是以点P为圆心,5为半径,圆心角∠CPD=60°,点P在数轴上表示实数a,如图.如果两个扇形的圆弧部分(和)相交,那么实数a的取值范围是.16.如图,点A的坐标是(2,2),若点P在x轴上,且△APO是等腰三角形,则点P的坐标是.三、(本大题共3个小题,每小题各6分,共18分)17.先化简,再求值:(﹣2),其中x=2.18.分别按下列要求解答:(1)在图1中.作出⊙O关于直线l成轴对称的图形;(2)在图2中.作出△ABC关于点P成中心对称的图形.19.某商店5月1日举行促销优惠活动,当天到该商店购买商品有两种方案,方案一:用168元购买会员卡成为会员后,凭会员卡购买商店内任何商品,一律按商品价格的8折优惠;方案二:若不购买会员卡,则购买商店内任何商品,一律按商品价格的9.5折优惠.已知小敏5月1日前不是该商店的会员.(1)若小敏不购买会员卡,所购买商品的价格为120元时,实际应支付多少元?(2)请帮小敏算一算,所购买商品的价格在什么范围时,采用方案一更合算?四、(本大题共2个小题,每小题8分,共16分)20.根据全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):解答下列问题:(1)计算第六次人口普查小学学历的人数,并把条形统计图补充完整;(2)第六次人口普查结果与第五次相比,该市常住人口中高中学历人数增长的百分比是多少?21.如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.(1)若AC=6,AB=10,求⊙O的半径;(2)连接OE、ED、DF、EF.若四边形BDEF是平行四边形,试判断四边形OFDE的形状,并说明理由.五、(本大题共2小题,每小题9分,共18分)22.如图,AB=AC,CD⊥AB于D,BE⊥AC于E,BE与CD相交于点O.(1)求证:AD=AE;(2)连接OA,BC,试判断直线OA,BC的关系并说明理由.23.设,,,…,.若,求S(用含n的代数式表示,其中n为正整数).六、(本大题共2小题,每小题10分,共20分)24.在平面直角坐标系xOy中,边长为a(a为大于0的常数)的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C、D都在第一象限.(1)当∠BAO=45°时,求点P的坐标;(2)求证:无论点A在x轴正半轴上、点B在y轴正半轴上怎样运动,点P都在∠AOB 的平分线上;(3)设点P到x轴的距离为h,试确定h的取值范围,并说明理由.25.在平面直角坐标系xOy中,直线l1过点A(1,0)且与y轴平行,直线l2过点B(0,2)且与x轴平行,直线l1与直线l2相交于点P.点E为直线l2上一动点,反比例函数(k>0)的图象过点E与直线l1相交于点F.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.请将△OEF的面积用k表示出来;(3)是否存在点E使△OEF的面积为△PEF面积的2倍?若存在,求出点E坐标;若不存在,请说明理由.参考答案一、选择题(本大题共10小题,每小题3分,共24分)每小题只有一个正确选项. 1.(3分)在实数0,﹣,,|﹣2|中,最小的是()A.B.﹣C.0D.|﹣2|【解答】解:|﹣2|=2,∵四个数中只有﹣,﹣为负数,∴应从﹣,﹣中选;∵|﹣|>|﹣|,∴﹣<﹣.故选:B.2.(3分)下列运算正确的是()A.﹣(﹣x+1)=x+1B.C.D.(a﹣b)2=a2﹣b2【解答】解:A、﹣(﹣x+1)=x﹣1,故本选项错误;B、=3﹣故本选项错误;C、|﹣2|=2﹣故本选项正确;D、(a﹣b)2=a2﹣2ab+b2故本选项错误;故选:C.3.(3分)下列四个多项式,哪一个是2x2+5x﹣3的因式()A.2x﹣1B.2x﹣3C.x﹣1D.x﹣3【解答】解:∵2x2+5x﹣3=(2x﹣1)(x+3),2x﹣1与x+3是多项式的因式,故选:A.4.(3分)如图,边长为(m+3)的正方形纸片,剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是()A.m+3B.m+6C.2m+3D.2m+6【解答】解:依题意得剩余部分为(m+3)2﹣m2=(m+3+m)(m+3﹣m)=3(2m+3)=6m+9,而拼成的矩形一边长为3,∴另一边长是=2m+3.故选:C.5.(3分)关于x的方程x2+kx+k﹣1=0的根的情况描述正确的是()A.k为任何实数,方程都没有实数根B.k为任何实数,方程都有两个实数根C.k为任何实数,方程都有两个相等的实数根D.根据k的取值不同,方程根的情况分为没有实数根、有两个不相等的实数根和有两个相等的实数根三种【解答】解:△=k2﹣4(k﹣1)=k2﹣4k+4=(k﹣2)2,∵(k﹣2)2,≥0,即△≥0,∴原方程有两个实数根,当k=2时,方程有两个相等的实数根.故选:B.6.(3分)某赛季甲、乙两名篮球运动员12场比赛得分情况用图表示如下:对这两名运动员的成绩进行比较,下列四个结论中,不正确的是()A.甲运动员得分的极差大于乙运动员得分的极差B.甲运动员得分的中位数大于乙运动员得分的中位数C.甲运动员的得分平均数大于乙运动员的得分平均数D.甲运动员的成绩比乙运动员的成绩稳定【解答】解:A、由图可知甲、乙运动员第一场比赛得分相同,第十二场比赛得分甲运动员比乙运动员得分高,所以甲运动员得分的极差大于乙运动员得分的极差,故A选项正确;B、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员得分的中位数大于乙运动员得分的中位数,故B选项正确;C、由图可知甲运动员得分始终大于乙运动员得分,所以甲运动员的得分平均数大于乙运动员的得分平均数,故C选项正确;D、由图可知甲运动员得分数据波动性较大,乙运动员得分数据波动性较小,乙运动员的成绩比甲运动员的成绩稳定,故D选项错误.故选:D.7.(3分)某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A.6折B.7折C.8折D.9折【解答】解:设可打x折,则有1200×﹣800≥800×5%,解得x≥7.即最多打7折.故选:B.8.(3分)一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是()A.B.C.D.【解答】解:因为x+y=k(矩形的面积是一定值),整理得y=﹣x+k,由此可知y是x的一次函数,图象经过第一、二、四象限,x、y都不能为0,且x>0,y >0,图象位于第一象限,所以只有A符合要求.故选:A.9.(3分)下列说法中①一个角的两边分别垂直于另一角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt△ABC中,∠C=90°,两直角边a、b分别是方程x2﹣7x+7=0的两个根,则AB边上的中线长为正确命题有()A.0个B.1个C.2个D.3个【解答】解:①一个角的两边垂直于另一个角的两边,这两个角互补或相等,所以①错误.②数据1,2,2,4,5,7,中位数是(2+4)=3,其中2出现的次数最多,众数是2,所以②正确.③等腰梯形只是轴对称图形,而不是中心对称图形,所以③错误.④根据根与系数的关系有:a+b=7,ab=7,∴a2+b2=(a+b)2﹣2ab=49﹣14=35,即:AB2=35,AB=∴AB边上的中线的长为.所以④正确.故选:C.10.(3分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y =x的图象被⊙P截得的弦AB的长为,则a的值是()。

广西2024届九年级下学期中考一模数学试卷(含解析)

广西2024届九年级下学期中考一模数学试卷(含解析)

2024年广西初中学业水平考试模拟卷(一)数学(考试时间:120分钟满分:120分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1. 下列图案是我国几家银行的标志,其中是中心对称图形的为( )A. B. C. D.答案:A解析:试题分析:根据中心对称图形的概念,观察可知,只有第1个是中心对称图形,其它三个都不是中心对称图形.故选A.考点:1.中心对称图形;2.生活中的旋转现象.2. 多么小的问题乘14亿,都会变得很大;多么大的经济总量,除以14亿都会变得很小.将1400000000用科学记数法表示为( )A. B. C. D.答案:C解析:解:将1400000000用科学记数法表示为,故选:C.3. 如图,在中,点在的延长线上,若,,则的度数是()A. B.C. D.答案:D解析:∵∠ACD是三角形ABC的一个外角∴∠ACD=∠A+∠B=100°故答案选择D.4. 若分式有意义,则的取值范围是()A. B. C. D.答案:C解析:解:由题意得:,解得:,故选:C.5. 下列各点中不在直线上的是( )A. B. C. D.答案:C解析:解:A、当时,,点在直线上;B、当时,,点在直线上;C、当时,,点不在直线上;D、当时,,点在直线上;故选:C.6. 下列调查中,适宜采用全面调查方式的是()A. 检测“神舟十四号”载人飞船零件的质量B. 检测一批LED灯的使用寿命C. 检测黄冈、孝感、咸宁三市的空气质量D. 检测一批家用汽车的抗撞击能力答案:A解析:解:A、检测“神舟十四号”载人飞船零件的质量,适宜采用全面调查的方式,故A符合题意;B、检测一批LED灯的使用寿命,适宜采用抽样调查的方式,故B不符合题意;C、检测黄冈、孝感、咸宁三市的空气质量,适宜采用抽样调查的方式,故C不符合题意;D、检测一批家用汽车的抗撞击能力,适宜采用抽样调查的方式,故D不符合题意.故选:A.7. 某射击运动员在同一条件下的射击成绩记录如下:射击次数20801002004001000“射中九环以上”的次数186882168327823“射中九环以上”的频率(结果保留两位小数)0900.850.820.840.820.82根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是( )A. 0.90B. 0.82C. 0.85D. 0.84答案:B解析:解:∵从频率的波动情况可以发现频率稳定在0.82附近,∴这名运动员射击一次时“射中九环以上”的概率是0.82.故选:B.8. 如图,一块四边形绿化园地,四角都做有半径为2的圆形喷水池,则这四个喷水池占去的绿化园地的面积为()A. B. C. D.答案:B解析:解:绿化园地为四边形,四边形的内角和为360°,阴影部分的面积和为一个圆面积,故这四个喷水池占去的绿化园地的面积为.故选B.9. 二次函数的顶点坐标是( )A. B. C. D.答案:B解析:解:∵∴顶点坐标为.故选:B.10. 我校图书馆三月份借出图书本,计划四、五月份共借出图书本,设四、五月份借出的图书每月平均增长率为,则根据题意列出的方程是()A. B.C. D.答案:B解析:解:设四、五月份借出的图书每月平均增长率为,则四月份借出图书本,五月份借出图书本,根据题意列出的方程是,故选:B.11. 唐代李皋发明了“桨轮船”,这种船是原始形态轮船,是近代明轮航行模式之先导,如图,某桨轮船的轮子被水面截得的弦长,轮子的吃水深度为,则该浆轮船的轮子半径为( )A. B. C. D.答案:D解析:解:设半径为,则在中,有,即解得故选:D12. 如图,在等边中,,点,分别在边,上,且,连接,交于点,在点D从点B运动到点C的过程中,图中阴影部分的面积的最小值为( )A. B. C. D.答案:B解析:解:如图,是等边三角形,,,,,,,∴,又,,,,点的运动轨迹是为圆心,为半径的弧上运动,连接交于,当点与重合时,的面积最大,则阴影部分的面积的值最小,此时点是等边的中心,∴阴影部分的面积的最小值为,故选:B.二、填空题(本大题共6小题,每小题2分,共12分)13. 化简:______.答案:3解析:解:因为32=9,所以=3.故答案为:3.14. 分解因式:________.答案:解析:原式=.故答案为15. 从1﹣9的数字卡片中,任意抽一张,抽到奇数的可能性是__.答案:解析:∵1﹣9的数字卡片中奇数有1,3,5,7,9,共5个数,则抽到奇数的可能性是.故答案为:.16. 如图,函数的图象过点,则不等式的解集是_______.答案:##解析:观察图象得:当时,,即,∴不等式的解集为.故答案为:17. 若一条抛物线的开口向下,且与y轴交于,则该抛物线的解析式可能是___________(答案不唯一).答案:解析:解:开口向下,并且与y轴交于点的抛物线的表达式为,故答案为:(答案不唯一).18. 如图,在边长为6的正方形中,E,F分别是边上的点,且,,连接,于点G,交于点H,则___________.答案:##解析:解:延长到,使,连接,∵四边形是正方形,∴,,∴,∴,∵边长为6的正方形中,,,∴,,,∴,,即,∴,∴,∵,∴,∴,∵,∴,∴,∴,故答案为:.三、解答题(本大题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤)19. 计算:.答案:解析:解:.20. 先化简,再求值:,其中.答案:,3解析:解:原式=,当时,原式.21. 如图,在平面直角坐标系内,三个顶点的坐标分别为,,.(1)平移,使点B移动到点,画出平移后的,并写出点,的坐标;(2)画出关于原点O对称的;(3)线段的长度为___________.答案:21. 画图见解析,点,.22. 画图见解析23.小问1解析:解:平移后的如图所示,点,.小问2解析:解:关于原点O对称的如图所示.,小问3解析:解:∵,,.故答案为:22. 近年来,未成年人遭电信网络诈骗的案例呈现增长趋势,为了提高学生防范电信网络诈骗安全意识,某学校八年级480名同学参加了防范电信网络诈骗安全知识竞赛(满分100分).现随机抽取八(2)、八(3)两班各15名同学的测试成绩(设为x)进行整理分析,结果如下:收集数据八(2)班抽取的测试成绩为:78,83,89,97,98,85,100,94,87,90,93,92,99,95,100.八(3)班抽取的测试成绩中,的成绩为:91,92,94,90,93.整理数据:班级八(2)班11346八(3)班12354根据以上信息,解答下列问题:(1)八(2)班成绩的众数为___________,八(3)班成绩的中位数为___________;(2)若规定测试成绩在92分及其以上为优秀,请估计该校八年级学生中成绩为优秀的人数;(3)根据以上数据,若八(3)班平均分为90分,方差为50.2,你认为哪个班学生掌握防范电信网络诈骗安全知识的整体水平较好?请说明理由(写出一个理由即可).答案:22. ,23. 名学生中成绩为优秀的学生共有人24. 八(2)班的学生掌握防范电信网络诈骗安全知识的整体水平较好小问1解析:解:八(2)班名学生的测试成绩出现次数最多的是,出现了2次,∴八(2)班成绩的众数为,∵八(3)班成绩中位数是第位同学的成绩,第位同学的成绩在阶段(成绩从小到大排列)的第二名同学,即,,,,,∴八(3)班成绩的中位数是,故答案为:,;小问2解析:解:八(2)班成绩在分及其以上的人数有人,八(3)班成绩在分及其以上的人数有(人),∴成绩在分及其以上的人数有(人),∴(人),∴名学生中成绩为优秀的学生共有人;小问3解析:解:八(2)班的学生掌握防范电信网络诈骗安全知识的整体水平较好,理由如下:八(2)班学生竞赛成绩的平均分为(分),八(2)班学生竞赛成绩的方差为,∵八(2)班的平均分为分,方差是,八(3)班的平均分为90分,方差是,∴八(2)班学生竞赛成绩的平均分高于八(3)班的平均分,八(2)班学生竞赛成绩的方差低于八(3)班的方差,∴八(2)班学生竞赛成绩更好,八(2)班的学生掌握防范电信网络诈骗安全知识的整体水平较好;综上所述,八(2)班的学生掌握防范电信网络诈骗安全知识的整体水平较好.23. 如图,已知是的直径,是的弦,延长到C,使,连接,过点D 作,垂足为E.(1)求证:是的切线;(2)若的半径为6,,求.答案:(1)证明见解析(2)小问1解析:证明:如图1,连接,∵,∴为的中点,∵为的中点,∴是的中位线,∴,∵,∴,又∵是半径,∴是的切线;小问2解析:解:如图2,过作于,则四边形是矩形,∴,∵,∴,∴,由勾股定理得,,∴,∴的长为.24. 某中学计划将该校足球场改造为元旦晚会举办场地.改造方案如下:撤除足球场球门,在原球门处布置舞台,舞台占地为长度为40m,宽度为18m的矩形,师生观众席规划在足球场区域中距离舞台10m的隔离栏外.已知足球场宽度为72m,长度为105m(观众席不一定要占满球场宽度),以隔离栏为一边,其他三边利用总长为140m的移动围栏围成一个矩形的观众席,并在观众席内按行、按列摆放单人座椅,要求每个座位占地面积为1m(如图所示),且矩形观众席内都安排了座位.(1)若观众席内有x行座椅,用含x代数式表示每行的座椅数,并求x的最小值.(2)若全校师生共2400人,座位是否足够?请说明理由.答案:(1)每行的座椅数为个,x的最小值为34;(2)若全校师生共2400人,那么座位够坐.小问1解析:解:移动围栏的总长为,且观众席内有行座椅,每行的座椅数为个.,,的最小值为34;小问2解析:解:座位够坐,理由如下:依题意得:,整理得:,解得:(不符合题意,舍去),,若全校师生共2400人,那么座位够坐.25. 为了进一步探究三角形中线的作用,数学兴趣小组合作交流时,小丽在组内做了如下尝试:如图1,在中,是边上的中线,延长到,使,连接.(1)探究发现图1中与的数量关系是___________,位置关系是___________;(2)初步应用如图2,在中,是边上的中线,若,,,判断的形状;(3)探究提升如图3,在中,若,,D为边上的点,且,求的取值范围.答案:(1),(2)是直角三角形;(3).小问1解析:解:延长到,使,连接.是的中线,,在和中,,,,,,故答案为:,;小问2解析:解:如图2,延长到,使,连接,由(1)可知,,,,,在中,,,∴,∴是直角三角形,且,∴,∴是直角三角形;小问3解析:解:延长到,使得,连接,则,∵,,∴,且,∴,∴,∴,即,∴.26. 如图,已知抛物线交x轴于,两点,交y轴于点C,P是抛物线上一点,连接、.(1)求抛物线的解析式;(2)连接,,若,求点P的坐标;(3)若,直接写出点P的坐标.答案:(1)(2)点P的坐标为或;(3)点P的坐标为或.小问1解析:解:将,两点代入,,解得,;小问2解析:解:令,则,,,,,,,,设,,,,解得或,∴点P的坐标为或;小问3解析:解:设交y轴于点,∵,,,∴,,∵,∴,∴,即,∴,设直线的解析式为,∴,解得,∴直线的解析式为,联立,解得或,∴点P的坐标为;当直线经过点关于原点的对称点时,也符合题意,同理求得直线的解析式为,联立,解得或,∴点P的坐标为;综上,点P的坐标为或.。

【3套试卷】南宁市中考第一次模拟考试数学精选含答案

【3套试卷】南宁市中考第一次模拟考试数学精选含答案

中考第一次模拟考试数学试题含答案一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cos A的值是()A.B .C.D.2.下列运算正确的是()A.2a3+5a 2=7a5B.3﹣=3C.(﹣x2)•(﹣x3)=﹣x5D.(m﹣n )(﹣m﹣n)=n2﹣m23.如图所示的工件,其俯视图是()A.B.C.D.4.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542每天加工零件数的中位数和众数为()A.6,5B.6,6C.5,5D.5,65.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=6.关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥17.反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.8.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是()A.30B.36C.54D.729.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450B.300(1+2x)=450C.300(1+x)2=450D.450(1﹣x)2=30010.反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.B.2C.3D.1二.填空题(共6小题)11.计算:2cos60°+tan45°=.12.点D是线段AB的黄金分割点(AD>BD),若AB=2,则BD=.13.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离为9m,则AB与CD间的距离是m.14.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P 与点B之间的距离为.三.解答题(共9小题)17.计算:4cos30°﹣3tan60°+2sin45°•cos45°.18.解方程:x(x﹣2)+x﹣2=0.19.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字﹣1和3;乙袋中有三个完全相同的小球,分别标有数字1、0和﹣3.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点A的坐标为(x,y).(1)请用表格或树状图列出点A所有可能的坐标;(2)求点A在反比例函数y=图象上的概率.20.如图所示,点O是矩形ABCD对角线AC的中点,过点O作EF⊥AC,交BC交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.21.小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.22.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛B位于它的北偏东30°方向,且与航母相距80海里再航行一段时间后到达C处,测得小岛B位于它的西北方向,求此时航母与小岛的距离BC的长.23.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.24.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.25.如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P 从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒lcm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=9时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;(3)当t为何值时,△EOP与△BOA相似.参考答案与试题解析一.选择题(共10小题)1.在Rt△ABC中,∠C=90°,BC=4,AC=3,则cos A的值是()A.B.C.D.【分析】首先利用勾股定理计算出斜边长,再根据锐角A的邻边b与斜边c的比叫做∠A 的余弦,记作cos A进行计算即可,【解答】解:∵∠C=90°,BC=4,AC=3,∴AB==5,∴cos A=,故选:B.2.下列运算正确的是()A.2a3+5a2=7a5B.3﹣=3C.(﹣x2)•(﹣x3)=﹣x5D.(m﹣n)(﹣m﹣n)=n2﹣m2【分析】根据合并同类项,以及同类二次根式,平方差公式,逐一判断.【解答】解:A、2a3和5a2不是同类项不能合并,故选项错误;B、3﹣=2,故选项错误;C、(﹣x2)•(﹣x3)=x5,故选项错误;D、(m﹣n)(﹣m﹣n)=n2﹣m2,故选项正确.故选:D.3.如图所示的工件,其俯视图是()A.B.C.D.【分析】根据从上边看得到的图形是俯视图,可得答案.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:C.4.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542每天加工零件数的中位数和众数为()A.6,5B.6,6C.5,5D.5,6【分析】根据众数、中位数的定义分别进行解答即可.【解答】解:由表知数据5出现了6次,次数最多,所以众数为5;因为共有20个数据,所以中位数为第10、11个数据的平均数,即中位数为=6,故选:A .5.如图,下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACB B.∠ADB=∠ABC C.AB2=AD•AC D.=【分析】根据有两个角对应相等的三角形相似,以及根据两边对应成比例且夹角相等的两个三角形相似,分别判断得出即可.【解答】解:A、∵∠ABD=∠ACB,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;B、∵∠ADB=∠ABC,∠A=∠A,∴△ABC∽△ADB,故此选项不合题意;C、∵AB2=AD•AC,∴=,∠A=∠A,△ABC∽△ADB,故此选项不合题意;D、=不能判定△ADB∽△ABC,故此选项符合题意.故选:D.6.关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥1【分析】根据判别式的意义得到△=(﹣6)2﹣4×9k>0,然后解不等式即可.【解答】解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选:A.7.反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.【分析】因为k的符号不确定,所以应根据k的符号及一次函数与反比例函数图象的性质解答.【解答】解:当k<0时,﹣k>0,反比例函数y=的图象在二,四象限,一次函数y =kx﹣k的图象过一、二、四象限,选项C符合;当k>0时,﹣k<0,反比例函数y=的图象在一、三象限,一次函数y=kx﹣k的图象过一、三、四象限,无符合选项.故选:C.8.如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD 的面积是()A.30B.36C.54D.72【分析】求▱ABCD的面积,就需求出BC边上的高,可过D作DE∥AM,交BC的延长线于E,那么四边形ADEM也是平行四边形,则AM=DE;在△BDE中,三角形的三边长正好符合勾股定理的逆定理,因此△BDE是直角三角形;可过D作DF⊥BC于F,根据三角形面积的不同表示方法,可求出DF的长,也就求出了BC边上的高,由此可求出四边形ABCD的面积.【解答】解:作DE∥AM,交BC的延长线于E,则ADEM是平行四边形,∴DE=AM=9,ME=AD=10,又由题意可得,BM=BC=AD=5,则BE=15,在△BDE中,∵BD2+DE2=144+81=225=BE2,∴△BDE是直角三角形,且∠BDE=90°,过D作DF⊥BE于F,则DF==,∴S▱ABCD=BC•FD=10×=72.故选:D.9.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x,则下列方程中,正确的是()A.300(1+x)=450B.300(1+2x)=450C.300(1+x)2=450D.450(1﹣x)2=300【分析】设快递量平均每年增长率为x,根据我国2016年及2018年的快递业务量,即可得出关于x的一元二次方程,此题得解.【解答】解:设快递量平均每年增长率为x,依题意,得:300(1+x)2=450.故选:C.10.反比例函数y=与y=在第一象限的图象如图所示,作一条平行于x轴的直线分别交双曲线于A、B两点,连接OA、OB,则△AOB的面积为()A.B.2C.3D.1【分析】分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C为垂足,再根据反比例函数系数k的几何意义分别求出四边形OEAC、△AOE、△BOC的面积,进而可得出结论.【解答】解:分别过A、B作x轴的垂线,垂足分别为D、E,过B作BC⊥y轴,点C 为垂足,∵由反比例函数系数k的几何意义可知,S四边形OEAC=6,S△AOE=3,S△BOC=,∴S△AOB=S四边形OEAC﹣S△AOE﹣S△BOC=6﹣3﹣=.故选:A.二.填空题(共6小题)11.计算:2cos60°+tan45°=2.【分析】直接利用特殊角的三角函数值代入求出即可.【解答】解:2cos60°+tan45°=2×+1=2.故答案为:2.12.点D是线段AB的黄金分割点(AD>BD),若AB=2,则BD=3﹣.【分析】根据黄金分割点的定义和AD>BD得出AD=AB,代入数据即可得出BP 的长度.【解答】解:由于D为线段AB=2的黄金分割点,且AD>BD,则AD=×2=﹣1,∴BD=AB﹣AD=2﹣(﹣1)=3﹣.故答案为:3﹣.13.如图,电灯P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离为9m,则AB与CD间的距离是6m.【分析】作PE⊥CD于E,交AB于F,如图,则PF=9,利用AB∥CD可判断△P AB∽△PCD,利用相似比计算出PF,然后计算出EF即可.【解答】解:作PE⊥CD于E,交AB于F,如图,则PF=9,∵AB∥CD,∴PF⊥CD,△P AB∽△PCD,∴=,即=,∴PF=3,∴EF=PE﹣PF=9﹣3=6.∴AB与CD间的距离是6m.故答案为6.14.若关于x的一元二次方程x2+mx+m2﹣19=0的一个根是﹣3,则m的值是﹣2或5.【分析】将x=﹣3代入方程可得m2﹣3m﹣10=0,解之即可.【解答】解:将x=﹣3代入方程可得:9﹣3m+m2﹣19=0,即m2﹣3m﹣10=0,解得:m=﹣2或m=5,故答案为:﹣2或5.15.如图,E,F是正方形ABCD的对角线AC上的两点,AC=8,AE=CF=2,则四边形BEDF的周长是8.【分析】连接BD交AC于点O,则可证得OE=OF,OD=OB,可证四边形BEDF为平行四边形,且BD⊥EF,可证得四边形BEDF为菱形;根据勾股定理计算DE的长,可得结论.【解答】解:如图,连接BD交AC于点O,∵四边形ABCD为正方形,∴BD⊥AC,OD=OB=OA=OC,∵AE=CF=2,∴OA﹣AE=OC﹣CF,即OE=OF,∴四边形BEDF为平行四边形,且BD⊥EF,∴四边形BEDF为菱形,∴DE=DF=BE=BF,∵AC=BD=8,OE=OF==2,由勾股定理得:DE==2,∴四边形BEDF的周长=4DE=4×2=8,故答案为:8.16.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB的中点,点P是直线BC上一点,将△BDP沿DP所在的直线翻折后,点B落在B1处,若B1D⊥BC,则点P 与点B之间的距离为或5.【分析】分点B1在BC左侧,点B1在BC右侧两种情况讨论,由勾股定理可AB=5,由平行线分线段成比例可得,可求BE,DE的长,由勾股定理可求PB的长.【解答】解:如图,若点B1在BC左侧,∵∠C=90°,AC=3,BC=4,∴AB==5∵点D是AB的中点,∴BD=BA=∵B1D⊥BC,∠C=90°∴B1D∥AC∴∴BE=EC=BC=2,DE=AC=∵折叠∴B1D=BD=,B1P=BP∴B1E=B1D﹣DE=1∴在Rt△B1PE中,B1P2=B1E2+PE2,∴BP2=1+(2﹣BP)2,∴BP=如图,若点B1在BC右侧,∵B1E=DE+B1D=+,∴B1E=4在Rt△EB1P中,B1P2=B1E2+EP2,∴BP2=16+(BP﹣2)2,∴BP=5故答案为:或5三.解答题(共9小题)17.计算:4cos30°﹣3tan60°+2sin45°•cos45°.【分析】原式利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=4×﹣3×+2××=1﹣.18.解方程:x(x﹣2)+x﹣2=0.【分析】把方程的左边分解因式得到(x﹣2)(x+1)=0,推出方程x﹣2=0,x+1=0,求出方程的解即可【解答】解:x(x﹣2)+x﹣2=0,(x﹣2)(x+1)=0,x﹣2=0,x+1=0,∴x1=2,x2=﹣1.19.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字﹣1和3;乙袋中有三个完全相同的小球,分别标有数字1、0和﹣3.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点A的坐标为(x,y).(1)请用表格或树状图列出点A所有可能的坐标;(2)求点A在反比例函数y=图象上的概率.【分析】(1)画出树状图,根据图形求出点A所有可能的坐标即可;(2)只有(﹣1,﹣3),(3,1)这两点在反比例函数y=图象上,于是得到其概率.【解答】解:(1)画树状图得:则点A可能出现的所有坐标:(﹣1,1),(﹣1,0),(﹣1,﹣3),(3,1),(3,0),(3,﹣3);(2)∵点A(x,y)在反比例函数y=图象上的有(﹣1,﹣3),(3,1),∴点A(x,y)在反比例函数y=图象上的概率为:=.20.如图所示,点O是矩形ABCD对角线AC的中点,过点O作EF⊥AC,交BC交于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形.【分析】由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE =CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论.【解答】证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形21.小明、小聪参加了100m跑的5期集训,每期集训结束时进行测试,根据他们的集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?小聪5次测试的平均成绩是多少?(2)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,说说你的想法.【分析】(1)根据图中的信息可以求得这5期的集训共有多少天和小聪5次测试的平均成绩;(2)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【解答】解:(1)这5期的集训共有:5+7+10+14+20=56(天),小聪5次测试的平均成绩是:(11.88+11.76+11.61+11.53+11.62)÷5=11.68(秒),答:这5期的集训共有56天,小聪5次测试的平均成绩是11.68秒;(2)从集训时间看,集训时间不是越多越好,集训时间过长,可能造成劳累,导致成绩下滑,如图中第4期与前面两期相比;从测试成绩看,两人的最好的平均成绩是在第4期出现,建议集训时间定为14天.22.由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛B位于它的北偏东30°方向,且与航母相距80海里再航行一段时间后到达C处,测得小岛B位于它的西北方向,求此时航母与小岛的距离BC的长.【分析】过点B作BD⊥AC于点D,根据题意得到∠BAD=60°,∠BCD=45°,AB=80,解直角三角形即可得到结论.【解答】解:过点B作BD⊥AC于点D,由题意,得:∠BAD=60°,∠BCD=45°,AB=80,在Rt△ADB中,∠BAD=60°,∴BD=AB=40,在Rt△BCD中,∠BCD=45°,∴BD=CD=40,∴BC=BD=40,答:BC的距离是40海里.23.某汽车专卖店经销某种型号的汽车.已知该型号汽车的进价为15万元/辆,经销一段时间后发现:当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆.(1)当售价为22万元/辆时,求平均每周的销售利润.(2)若该店计划平均每周的销售利润是90万元,为了尽快减少库存,求每辆汽车的售价.【分析】(1)根据当该型号汽车售价定为25万元/辆时,平均每周售出8辆;售价每降低0.5万元,平均每周多售出1辆,即可求出当售价为22万元/辆时,平均每周的销售量,再根据销售利润=一辆汽车的利润×销售数量列式计算;(2)设每辆汽车降价x万元,根据每辆的盈利×销售的辆数=90万元,列方程求出x的值,进而得到每辆汽车的售价.【解答】解:(1)由题意,可得当售价为22万元/辆时,平均每周的销售量是:×1+8=14,则此时,平均每周的销售利润是:(22﹣15)×14=98(万元);(2)设每辆汽车降价x万元,根据题意得:(25﹣x﹣15)(8+2x)=90,解得x1=1,x2=5,当x=1时,销售数量为8+2×1=10(辆);当x=5时,销售数量为8+2×5=18(辆),为了尽快减少库存,则x=5,此时每辆汽车的售价为25﹣5=20(万元),答:每辆汽车的售价为20万元.24.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于A、B两点,其中点A的坐标为(﹣1,4),点B的坐标为(4,n).(1)根据图象,直接写出满足k1x+b>的x的取值范围;(2)求这两个函数的表达式;(3)点P在线段AB上,且S△AOP:S△BOP=1:2,求点P的坐标.【分析】(1)根据一次函数图象在反比例图象的上方,可求x的取值范围;(2)将点A,点B坐标代入两个解析式可求k2,n,k1,b的值,从而求得解析式;(3)根据三角形面积相等,可得答案.【解答】解:(1)∵点A的坐标为(﹣1,4),点B的坐标为(4,n).由图象可得:k1x+b>的x的取值范围是x<﹣1或0<x<4;(2)∵反比例函数y=的图象过点A(﹣1,4),B(4,n)∴k2=﹣1×4=﹣4,k2=4n∴n=﹣1∴B(4,﹣1)∵一次函数y=k1x+b的图象过点A,点B∴,解得:k1=﹣1,b=3∴直线解析式y=﹣x+3,反比例函数的解析式为y=﹣;(3)设直线AB与y轴的交点为C,∴C(0,3),∵S△AOC=×3×1=,∴S△AOB=S△AOC+S△BOC=×3×1+×4=,∵S△AOP:S△BOP=1:2,∴S△AOP=×=,∴S△COP=﹣=1,∴×3•x P=1,∴x P=,∵点P在线段AB上,∴y=﹣+3=,∴P(,).25.如图,在平面直角坐标系中,A、B两点的坐标分别为(20,0)和(0,15),动点P 从点A出发在线段AO上以每秒2cm的速度向原点O运动,动直线EF从x轴开始以每秒lcm的速度向上平行移动(即EF∥x轴),分别与y轴、线段AB交于点E、F,连接EP、FP,设动点P与动直线EF同时出发,运动时间为t秒.(1)求t=9时,△PEF的面积;(2)直线EF、点P在运动过程中,是否存在这样的t使得△PEF的面积等于40cm2?若存在,请求出此时t的值;若不存在,请说明理由;(3)当t为何值时,△EOP与△BOA相似.【分析】(1)由于EF∥x轴,则S△PEF=•EF•OE.t=9时,OE=9,关键是求EF.易证△BEF∽△BOA,则=,从而求出EF的长度,得出△PEF的面积;(2)假设存在这样的t,使得△PEF的面积等于40cm2,则根据面积公式列出方程,由根的判别式进行判断,得出结论;(3)如果△EOP与△BOA相似,由于∠EOP=∠BOA=90°,则只能点O与点O对应,然后分两种情况分别讨论:①点P与点A对应;②点P与点B对应.【解答】解:(1)∵EF∥OA,∴∠BEF=∠BOA又∵∠B=∠B,∴△BEF∽△BOA,∴=,当t=9时,OE=9,OA=20,OB=15,∴EF==8,∴S△PEF=EF•OE=×8×9=36(cm2);(2)∵△BEF∽△BOA,∴EF===(15﹣t),∴×(15﹣t)×t=40,整理,得t2﹣15t+60=0,∵△=152﹣4×1×60<0,∴方程没有实数根.∴不存在使得△PEF的面积等于40cm2的t值;(3)当∠EPO=∠BAO时,△EOP∽△BOA,∴=,即=,解得t=6;当∠EPO=∠ABO时,△EOP∽△AOB,∴=,即=,解得t=.∴当t=6或t=时,△EOP与△BOA相似.中考模拟考试数学试卷含答案姓名:得分:日期:一、选择题(本大题共10 小题,共30 分)1、(3分) 《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若收入60元记作+60元,则-20元表示A.收入20元B.收入40元C.支付40元D.支出20元2、(3分) 已知一个几何体如图所示,则该几何体的左视图是()A.B.C. D.3、(3分) 金堂县毗河城区河道整治工程长度为6.3km,起于毗河三桥,止于毗河与中河汇口处,机械清淤量为64万方,人工清淤量为0.5万方,沿线土方开挖3.5万方;该工程于2018年12月5日开工,预计竣工日期为2019年4月30日,则64万用科学记数法表示为()A.0.64×106 B.6.4×106 C.64×103 D.6.4×1054、(3分) 下列计算错误的是()A.a2÷a0•a2=a4B.a2÷(a0 •a2)=1C.(a+b)2•(a+b)3 =a5+b5D.(a+b)•(a-b)=a2-b25、(3分) 若代数式有意义,则实数x的取值范围是()A.x≠1B.x≥0C.x>0D.x≥0且x≠16、(3分) 如图,AB∥CD,射线AE平分∠CAB.若∠ACD=100°,则∠CEA的度数为()A.35°B.40°C.70°D.80°7、(3分) 某同学统计了4月份某天全国8个城市的空气质量指数,并绘制了折线统计图(如图),则这8个城市的空气质量指数的中位数是()A.57B.40C.73D.658、(3分) 关于x的一元二次方程式x2-ax-2=0,下列结论一定正确的是()A.该方程有两个相等的实数根B.该方程有两个不相等的实数根C.该方程没有实数根D.无法确定9、(3分)将抛物线向右平移3个单位,再向下平移2个单位,得到抛物线解析式为()A. B. C.D.10、(3分) 如图,正方形ABCD的正三角形AEF都内接于⊙O,则∠DAF的度数是()A.45°B.30°C.15°D.10°二、填空题(本大题共9 小题,共36 分)11、(4分) 因式分解:xy2-9x=______.12、(4分) 已知关于x的方程的增根是2,则a=______.13、(4分) 如图,直线y=mx和y=nx+2交于点(1,m),则不等式mx<nx+2的解集为______.14、(4分) 如图,在Rt△ABC中,∠BAC=90°,AB=1,tanC=,以点A为圆心,AB长为半径作弧交AC于D,分别以B、D为圆心,以大于BD长为半径作弧,两弧交于点E,射线AE与BC于F,过点F作FG⊥AC于G,则FG的长为______.15、(4分) 已知有理数a,b,c在数轴上的位置如图所示,简化:|a+b+c|-=______.16、(4分) 已知实数m满足x2-3x+1=0,则代数式的值等于______.17、(4分) 现有7张下面分别标有数字-2,-1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使得关于x的二次函数y=x2-2x+m-2与x轴有交点,且交于x的分式方程有解的概率为______ .18、(4分) 如图,在△ABC中,∠B=90°,AB=BC,∠BCM是△ABC的外角,∠BAC、∠BCM的平分线交于点D,AD与BC交于点E,若BE=2,则AE•DE=______.19、(4分) 如图,在平面直接坐标系中,将反比例函数的图象绕坐标原点O逆时针旋转45°得到的曲线l,过点的直线与曲线l相交于点C、D,则sin∠COD=______ .三、解答题(本大题共7 小题,共56 分)20、(8分) (1)计算:(2)解不等式组:并求出它的整数解.21、(8分) 为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏.如图,工程人员在高架上的车道 M 处测得某居民楼顶的仰角∠ABC的度数是 20°,仪器 BM 的高是 0.8m,点M 到护栏的距离 MD 的长为 11m,求需要安装的隔音屏的顶部到桥面的距离 ED 的长(结果保留到 0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)22、(8分) 结合书香成都全民阅读活动,金堂在全县中小学推广普及中华经典诵读,让孩子掌握国学经典作品“读、诵、吟”等基本方法,培养中华经典诵读活动的爱好者、传播者,营造浓郁的文化氛围.2018年9月某初中学校开展了国学金典诵读活动,林老师对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有1名来自七年级,有2名来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加县级国学经典诵读大赛,请用列表或画树状图的方法求所选出的两人中既有七年级又有八年级同学的概率.23、(8分) 如图,直线y1=-x+4与双曲线y=(k≠0)交于A、B两点,点A的坐标为(1,m),经过点A直线y2=x+b与x轴交于点C.(1)求反比例函数的表达式以及点C的坐标;(2)点P是x轴上一动点,连接AP,若△ACP是△AOB的面积的一半,求此时点P的坐标.24、(8分) 为了迎接“五•一”小长假的购物高峰.某服装专卖店老板小王准备购进甲、乙两种夏季服装.其中甲种服装每件的成本价比乙种服装的成本价多20元,甲种服装每件的售价为240元比乙种服装的售价多80元.小王用4000元购进甲种服装的数量与用3200元购进乙种服装的数量相同.(1)甲种服装每件的成本是多少元?(2)要使购进的甲、乙两种服装共200件的总利润(利润=售价-进价)不少于21100元,且不超过21700元,问小王有几种进货方案?25、(8分) 在矩形ABCD中,G为AD上一点,连接BG,CG,过作CE⊥BG于点E,连接ED交GC于点F.(1)如图1,若点G为AD的中点,则线段BG与CG有何数量关系?请说理由.(2)如图2,若点E恰好为BG的中点,且AB=3,AG=k(0<k<3)求的值(用含k的代数式表示);(3)在(2)有条件下,若M、N分别为GC、EC上的任意两点,连接NF、NM,当k=时,求NF+NM的最小值.26、(8分) 如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a<0)经过点A(-1,0)、B(4,0)与y轴交于点C,tan∠ABC=.(1)求抛物线的解析式;(2)点M在第一象限的抛物线上,ME平行y轴交直线BC于点E,连接AC、CE,当ME取值最大值时,求△ACE的面积.(3)在y轴负半轴上取点D(0,-1),连接BD,在抛物线上是否存在点N,使∠BAN=∠ACO-∠OBD?若存在,请求出点N的坐标;若不存在,请说明理由.四、计算题(本大题共 2 小题,共12 分)27、(6分) 化简:28、(6分) 如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC 的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tanE;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.2019年四川省成都市金堂县中考数学二诊试卷【第 1 题】【答案】D【解析】解:根据题意,收入60元记作+60元,则-20元表示支出20元.故选:D.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.【第 2 题】【答案】D【解析】解:观察图形可知,该几何体的左视图是.故选:D.利用左视图的观察角度,进而得出视图.此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.【第 3 题】【答案】D【解析】解:64万=6.4×105.故选:D.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10-n,其中1≤|a|<10,确定a与n 的值是解题的关键.【第 4 题】【答案】C【解析】解:A、a2÷a0•a2=a4,正确,不合题意;B、a2÷(a0•a2)=1,正确,不合题意;C、(a+b)2•(a+b)3=(a+b)5,错误,符合题意;D、(a+b)•(a-b)=a2-b2,正确,不合题意;故选:C.直接利用整式的混合运算法则以及同底数幂的乘除运算法则分别计算得出答案.此题主要考查了整式的混合运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.【第 5 题】【答案】D【解析】解:根据题意得:,解得:x≥0且x≠1.故选:D.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.【第 6 题】【答案】B【解析】解:∵AB∥CD,∠ACD=100°,∴∠BAC=180°-100°=80°,又∵射线AE平分∠CAB,∴∠BAE=∠BAC=40°,∵AB∥CD,∴∠AEC=∠BAE=40°,故选:B.依据平行线的性质以及角平分线的定义,即可得到∠CEA的度数.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.【第7 题】【答案】A【解析】解:把这些数从小到大排列为:29,36,40,57,57,73,77,81,最中间两个数的平均数是:(57+57)÷2=57,∴这8个城市的空气质量指数的中位数是:57,故选:A.根据中位数的定义先把这些数从小到大排列,再找出最中间两个数的平均数,即可得出答案.本题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.【第8 题】【答案】B【解析】解:因为△=(-a)2-4×1×(-2)=a2+8>0,所以方程有两个不相等的实数根.故选:B.计算判别式得到△=a2+8,利用非负数的性质得到△>0,从而可判断方程根的情况.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.【第9 题】【答案】C【解析】解:∵抛物线的顶点坐标为(-1,0),∴向右平移3个单位,再向下平移2个单位后的顶点坐标是(2,-2)∴所得抛物线解析式是.故选:C.求出原抛物线的顶点坐标,再根据向左平移横坐标间,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.本题考查了二次函数图象与几何变换,利用顶点的变化确定抛物线解析式的变化更简便.。

2024年广西南宁市中考数学一模试卷及参考答案

2024年广西南宁市中考数学一模试卷及参考答案

2024年广西南宁市中考数学一模试卷一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1.(3分)下列各数中,最大的是()A.﹣3B.0C.2D.|﹣1|2.(3分)下列四个图片表述的是宪法赋予我们的基本权利,其图标为中心对称图形的是()A.男女平等B.受教育权C.宗教信仰权D.人身自由权3.(3分)中国古代数学名著《九章算术注》中记载:“邪解立方,得两堑堵.”意即把一长方体沿对角面一分为二,这相同的两块叫做“堑堵”.如图是“堑堵”的立体图形,它的左视图为()A.B.C.D.4.(3分)下列说法中,正确的是()A.了解一批口罩的质量情况适合全面调查B.要反映南宁市一周内每天的最高气温的变化情况宜采用条形统计图C.“经过有交通信号灯的路口,遇到绿灯”是必然事件D.“任意画一个三角形,其内角和是360°”是不可能事件5.(3分)如图,直线CD,EF被射线OA,OB所截,CD∥EF,若∠1=107°,则∠2的度数为()A.63°B.73°C.83°D.107°6.(3分)下列运算正确的是()A.4a+b=4ab B.a2•a3=a5C.3a2﹣2a2=1D.(a﹣b)2=a2﹣b27.(3分)关于x的一元二次方程x2+mx﹣4=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根8.(3分)如图,某水库堤坝横断面迎水坡的坡角为α,sinα=,堤坝高BC=15m,则迎水坡面AB的长度为()A.20m B.25m C.30m D.35m9.(3分)在平面直角坐标系中,将二次函数y=x2的图象向右平移2个单位长度,再向下平移1个单位长度,所得抛物线对应的函数表达式为()A.y=(x+2)2+1B.y=(x+2)2﹣1C.y=(x﹣2)2﹣1D.y=(x﹣2)2+110.(3分)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=35°,则∠BPC的度数是()A.35°B.45°C.55°D.65°11.(3分)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是()A.150(1+x)2=96B.150(1﹣2x)=96C.150(1﹣x2)=96D.150(1﹣x)2=9612.(3分)如图,在△ABC中,∠C=90°,AC=BC=4,P为边AB上一动点,作PD⊥BC于点D,PE⊥AC于点E,则DE的最小值为()A.B.C.D.二、填空题(本题共计6小题,每小题2分,共计12分,请将答案填在答题卡上)13.(2分)当x=时,分式=0.14.(2分)因式分解:2x2﹣18=.15.(2分)在数学这个英语单词“maths”中,随机选中一个字母是t的概率为.16.(2分)不等式组的解集是.17.(2分)一个圆锥的母线长为6,底面圆的直径为8,那么这个圆锥的侧面积是.18.(2分)如图,在平面直角坐标系内,四边形OABC是矩形,四边形ADEF是正方形,点A,D在x轴的负半轴上,点F在AB上,点B,E均在反比例函数的图象上,若点B的坐标为(﹣1,6),则正方形ADEF的周长为.三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤)19.(6分)计算:.20.(6分)解分式方程:.21.(10分)在格点图中,已知△ABC的三个顶点A,B,C均在格点上.(1)将△ABC向上移五格,得到△A1B1C1;(2)用直尺作出△ABC的外接圆圆心O.(保留作图痕迹)22.(10分)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题:抽取的学生脊柱健康情况统计表类别检查结果人数A正常170B轻度侧弯C中度侧弯7D重度侧弯(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.23.(10分)已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为10,求AE的长.24.(10分)2010年秋冬北方严重干旱,凤凰社区人畜饮用水紧张.每天需从社区外调运饮用水120吨,有关部门紧急部署,从甲、乙两水厂调运饮用水到社区供水点,甲厂每天最多可调出80吨,乙厂每天最多可调出90吨.从两水厂运水到凤凰社区供水点的路程和运费如下表:到凤凰社区供水点的路程(千米)运费(元/吨•千米)甲厂2012乙厂1415(1)若某天调运水的总运费为26700元,则从甲、乙两水厂各调运了多少吨饮用水?(2)设从甲厂调运饮用水x吨,总运费为W元.试写出W关于与x的函数关系式,怎样安排调运方案才能使每天的总运费最省?25.(10分)已知二次函数y=﹣(x﹣2)2+7.(1)写出该函数图象的对称轴.(2)求出该函数图象与x轴的交点坐标.(3)当﹣1≤x≤3时,求y的取值范围.26.(10分)综合与实践问题情境:“综合与实践”课上,老师将图1中的矩形纸片沿对角线剪开,得到两个全等的三角形纸片,表示为△ABC和△DFE,∠ACB=∠DEF=90°,其中∠A=∠D,之后,将△ABC和△DFE按图2所示方式摆放,其中点B与点F重合(标记为点B),当∠ABE =∠A时,延长DE交AB于点H,交AC于点G.(1)试判断图2中的四边形BCGE的形状,并说明理由.(2)在图2中,若AC=6,BC=4,求出HE的长.(3)如图3,当∠ABE=∠BAC时,过点A作AM⊥BE,AM交BE的延长线于点M,BM与AC交于点N.试猜想线段AM和BE的数量关系,并加以证明.2024年广西南宁市中考数学一模试卷参考答案一、选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)1.C;2.A;3.C;4.D;5.B;6.B;7.A;8.B;9.C;10.C;11.D;12.A二、填空题(本题共计6小题,每小题2分,共计12分,请将答案填在答题卡上)13.1;14.2(x+3)(x﹣3);15.;16.﹣1≤x<5;17.24π;18.8三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤)19.﹣2.;20.x=﹣2.;21.作图见解析.;22.20;3;23.10.;24.;25.直线x=2;26.(1)矩形BCGE为正方形,理由详见解答;(2)HE的长为;(3)AM=BE,证明详见解答.。

广西南宁市九年级下学期数学第一次月考试卷

广西南宁市九年级下学期数学第一次月考试卷

广西南宁市九年级下学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)的平方根是()A . 6B . ±6C .D . ±2. (2分)(2011·宁波) 下列计算正确的是()A . a6÷a2=a3B . (a3)2=a5C .D .3. (2分)下列计算正确的是()A . (2ab3)•(﹣4ab)=2a2b4B . (m+2)(m﹣3)=m2﹣5m﹣6C . (y+4)(y﹣5)=y2+9y﹣20D . (x+1)(x+4)=x2+5x+44. (2分) (2019八上·瑞安月考) 不等式3(x-2)<7的正整数解有()A . 2个B . 3个C . 4个D . 5个5. (2分)一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,98,85,98.关于这组数据说法错误的是()A . 极差是20B . 中位数是91C . 众数是98D . 平均数是916. (2分)下列各点在反比例函数的图象上的是()A . (-1,-2)B . (-1,2)C . (-2,-1)D . (2,1)7. (2分)(2018·罗平模拟) 如图,⊙O的半径为5,弦AB=8,M是弦AB上的动点,则OM不可能为()A . 2B . 3C . 4D . 58. (2分)已知3是关于x的方程2x﹣a=1的解,则a的值为()A . -5B . 5C . 7D . -79. (2分) (2019九上·天河期末) 将二次函数y=2x2的图象向左平移1个单位,则平移后的函数解析式为()A . y=2x2﹣1B . y=2x2+1C . y=2(x﹣1)2D . y=2(x+1)210. (2分)如图,△ABC中,下面说法正确的个数是()个.①若O是△ABC的外心,∠A=50°,则∠BOC=100°;②若O是△ABC的内心,∠A=50°,则∠BOC=115°;③若BC=6,AB+AC=10,则△ABC的面积的最大值是12;④△ABC的面积是12,周长是16,则其内切圆的半径是1.A . 1B . 2C . 3D . 411. (2分)如图,菱形ABCD中,∠B=60°,AB=2.若点P是菱形ABCD内部一点,满足△PBC是等腰三角形,则线段PD的长不可能是()A . 错误!请输入数字。

2024年广西壮族自治区南宁市部分学校九年级一模考试数学(讲评课件)

2024年广西壮族自治区南宁市部分学校九年级一模考试数学(讲评课件)



返回至目录
(2)如图,在三角板DEB旋转的过程中连接A当四边形C是矩(1)请直接写出图中线段AD的值;试卷讲评课件【问题应用】 【答案】AD=4; 形时,求t值;【答案】t=12;
返回至目录
试卷讲评课件【问题探究】(3)如图,在三角板DEB旋转过程中取A的点G连接C是否存最大值?若请求出并直写此时t:若不存在,请说明理由.【答案】存在,CG最大值为6此时t的24.
”数量的2倍.
(1)求购买一个“美
”和

各需多少元?
【答案】
分别
120
,8
10 234




12

23 456
22

1678
返回至目录
(2)为满足顾客需求,商场从厂家一次性购买“壮”和美共10个要的总费用不超过元最多可以少?
1 2345
10
21
345

19
1678

试卷讲评课件 【答案】75个 12
一、选择题(共12小,每3分6给出的四个项中只有是符合要求用B铅笔把答卡上对应目案标号1.204年月日,某地记录到四个时刻的气温(单位:℃)分别为-3D.-2 10 234523 456
C. 1 9 22
72
1,-2其中最低的气温是() 19
1678 B.0 44
试卷讲评课件 涂黑.) M.-3


【答案】
(3)若另一名滑雪爱好者小张在
李出发5秒后沿着道B

两条
互相平,且起点
同直线上
他的
距离y单位:m
与滑时间x(
s)可近似地看成二次函数 =32+d当小李

南宁市初三中考数学一模模拟试卷【含答案】

南宁市初三中考数学一模模拟试卷【含答案】

南宁市初三中考数学一模模拟试卷【含答案】一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.(3分)﹣3的相反数是()A.3B.﹣3C.±3D.2.(3分)下列计算正确的是()A.2a+3b=5ab B.=±6C.a2b÷2ab=a2D.(2ab2)3=8a3b63.(3分)如图,图1是一个底面为正方形的直棱柱;现将图1切割成图2的几何体,则图2的俯视图是()A.B.C.D.4.(3分)一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差5.(3分)如图,AB是⊙O的直径,直线P A与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠ABC的度数为()A.20°B.25°C.40°D.50°6.(3分)如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2C.D.7.(3分)已知实数x、y满足:x﹣y﹣3=0和2y3+y﹣6=0.则﹣y2的值为()A.0B.C.1D.8.(3分)如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,当y<0时x的取值范围是()A.x>2B.0<x<4C.﹣1<x<4D.x<﹣1 或x>4二、填空题(本大题共10小题,每小题3分,共30分.)9.(3分)“五一”小长假期间,扬州市区8家主要封闭式景区共接待游客528600人次,同比增长20.56%.用科学记数法表示528600为.10.(3分)若有意义,则x的取值范围是.11.(3分)分解因式:mx2﹣4m=.12.(3分)若方程x2+kx+9=0有两个相等的实数根,则k=.13.(3分)一个圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为cm2.14.(3分)如图,点A是反比例函数y=的图象上的一点,过点A作AB⊥x轴,垂足为B.点C为y轴上的一点,连接AC,BC.若△ABC的面积为4,则k的值是.15.(3分)把一块等腰直角三角尺和直尺如图放置,如果∠1=30°,则∠2的度数为.16.(3分)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.17.(3分)如图,曲线AB是顶点为B,与y轴交于点A的抛物线y=﹣x2+4x+2的一部分,曲线BC是双曲线y=的一部分,由点C开始不断重复“A﹣B﹣C”的过程,形成一组波浪线,点P(2018,m)与Q(2025,n)均在该波浪线上,则mn=.18.(3分)如图,⊙O的直径AB=8,C为弧AB的中点,P为弧BC上一动点,连接AP、CP,过C作CD⊥CP交AP于点D,连接BD,则BD的最小值是.三、解答题(本大题有10小题,共96分.)19.(8分)(1)计算:|﹣3|﹣tan30°+20180﹣()﹣1;(2)化简:(1+a)(1﹣a)+a(a﹣2).20.(8分)央视热播节目“朗读者”激发了学生的阅读兴趣,某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“文史类、社科类、小说类、生活类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了名学生;(2)将条形统计图补充完整;(3)图2中“小说类”所在扇形的圆心角为度;(4)若该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数.21.(8分)若关于x的分式方程=1的解是正数,求m的取值范围.22.(8分)小明在上学的路上要经过多个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到信号灯是相互独立的.(1)如果有2个路口,求小明在上学路上到第二个路口时第一次遇到红灯的概率.(请用“画树状图”或“列表”等方法写出分析过程)(2)如果有n个路口,则小明在每个路口都没有遇到红灯的概率是.23.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6m的B处安置高为1.5m的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE的长.(结果保留根号)24.(10分)如图,在平行四边形ABCD中,点E、F分别在AB、CD上,且ED⊥DB,FB ⊥BD.(1)求证:△AED≌△CFB;(2)若∠A=30°,∠DEB=45°,求证:DA=DF.25.(10分)观察下表:我们把某一格中所有字母相加得到的多项式称为特征多项式,例如:第1格的“特征多项式”为x+4y.回答下列问题:(1)第4格的“特征多项式”为,第n格的“特征多项式”为;(2)若第1格的“特征多项式”的值为2,第2格的“特征多项式”的值为﹣6.①求x,y的值;②在①的条件下,第n格的“特征多项式的值”随着n的变化而变化,求“特征多项式的值”的最大值及此时n值.26.如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,E为BC的中点,连接DE.(1)求证:DE为⊙O的切线;(2)如果⊙O的半径为3,ED=4,延长EO交⊙O于F,连接DF,与OA交于点G,求OG的长.27.(12分)在平面直角坐标系中,点O为原点,点A的坐标为(﹣8,0).如图1,正方形OBCD的顶点B在x轴的负半轴上,点C在第二象限.现将正方形OBCD绕点O顺时针旋转角α得到正方形OEFG.(1)如图2,若α=45°,OE=OA,求直线EF的函数表达式;(2)如图3,若α为锐角,且tanα=,当EA⊥x轴时,正方形对角线EG与OF相交于点M,求线段AM的长;(3)当正方形OEFG的顶点F落在y轴正半轴上时,直线AE与直线FG相交于点P,是否存在△OEP的两边之比为:1?若存在,求出点P的坐标;若不存在,试说明理由.28.如图,已知抛物线y=ax2﹣2ax﹣9a与坐标轴交于A,B,C三点,其中C(0,3),∠BAC的平分线AE交y轴于点D,交BC于点E,过点D的直线l与射线AC,AB分别交于点M,N.(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△P AD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,+均为定值,并求出该定值.参考答案与试题解析一、选择题(每小题3分,共24分.在每小题给出的四个选项中,有且只有一项是正确的.)1.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是﹣(﹣3)=3.故选:A.2.【分析】直接利用合并同类项法则以及算术平方根、整式的除法运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、2a+3b无法计算,故此选项错误;B、=6,故此选项错误;C、a2b÷2ab=a,故此选项错误;D、(2ab2)3=8a3b6,正确.故选:D.3.【分析】俯视图是从物体上面看到的图形,应把所看到的所有棱都表示在所得图形中.【解答】解:从上面看,图2的俯视图是正方形,有一条对角线.故选:C.4.【分析】依据平均数、中位数、众数、方差的定义和公式求解即可.【解答】解:A、原来数据的平均数是3,添加数字3后平均数仍为3,故A与要求不符;B、原来数据的众数是3,添加数字3后众数仍为3,故B与要求不符;C、原来数据的中位数是3,添加数字3后中位数仍为3,故C与要求不符;D、原来数据的方差==,添加数字3后的方差==,故方差发生了变化.故选:D.5.【分析】利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠P AO的度数,然后利用圆周角定理来求∠ABC的度数.【解答】解:如图,∵AB是⊙O的直径,直线P A与⊙O相切于点A,∴∠P AO=90°.又∵∠P=40°,∴∠POA=50°,∴∠ABC=∠POA=25°.故选:B.6.【分析】求出AB=3,由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵AH=2,HB=1,∴AB=AH+BH=3,∵l1∥l2∥l3,∴==.故选:A.7.【分析】根据x﹣y﹣3=0和2y3+y﹣6=0,可以得到x与y的关系和y2﹣的值,从而可以求得所求式子的值.【解答】解:∵x﹣y﹣3=0和2y3+y﹣6=0,∴x=y+3,y2+﹣=0,∴y2﹣=﹣∴﹣y2==1+=1﹣(﹣)=1+=,故选:D.8.【分析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【解答】解:∵y3=(kx+b)(mx+n),y<0,∴(kx+b)(mx+n)<0,∵y1=kx+b,y2=mx+n,即y1•y2<0,有以下两种情况:(1)当y1>0,y2<0时,此时,x<﹣1;(2)当y1<0,y2>0时,此时,x>4,故选:D.二、填空题(本大题共10小题,每小题3分,共30分.)9.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:528600=5.286×105,故答案为:5.286×10510.【分析】分母为零,分式无意义;分母不为零,分式有意义.【解答】解:根据题意,得:x﹣2≠0,解得:x≠2.故答案是:x≠2.11.【分析】首先提取公因式m,进而利用平方差公式分解因式即可.【解答】解:mx2﹣4m=m(x2﹣4)=m(x+2)(x﹣2).故答案为:m(x+2)(x﹣2).12.【分析】根据根判别式△=b2﹣4ac的意义得到△=0,即k2﹣4×1×9=0,然后解方程即可.【解答】解:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±6.故答案为±6.13.【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.【解答】解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=2π•5=10π,∴圆锥的侧面积=•10π•2=10π(cm2).故答案为:10π.14.【分析】连结OA,如图,利用三角形面积公式得到S△OAB=S△ABC=4,再根据反比例函数的比例系数k的几何意义得到|k|=4,然后去绝对值即可得到满足条件的k的值.【解答】解:连结OA,如图,∵AB⊥x轴,∴OC∥AB,∴S△OAB=S△ABC=4,而S△OAB=|k|,∴|k|=4,∵k<0,∴k=﹣8.故答案为:﹣8.15.【分析】根据平行线的性质可得出∠3=∠4+∠5,结合对顶角相等可得出∠3=∠1+∠2,代入∠1=30°、∠3=45°,即可求出∠2的度数.【解答】解:给各角标上序号,如图所示.∵∠3=∠4+∠5,∠1=∠4,∠2=∠5,∴∠3=∠1+∠2.又∵∠1=30°,∠3=45°,∴∠2=15°.故答案为:15°.16.【分析】由在4×4正方形网格中,任选取一个白色的小正方形并涂黑,共有13种等可能的结果,使图中黑色部分的图形构成一个轴对称图形的有5种情况,直接利用概率公式求解即可求得答案.【解答】解:如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:.故答案为:.17.【分析】依据题意可得,A,C之间的水平距离为6,点Q与点P的水平距离为7,A,B之间的水平距离为2,双曲线解析式为y=,依据点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,即可得到mn的值.【解答】解:由图可得,A,C之间的水平距离为6,2018÷6=336…2,由抛物线y=﹣x2+4x+2可得,顶点B(2,6),即A,B之间的水平距离为2,∴点P'、点B离x轴的距离相同,都为6,即点P的纵坐标m=6,由抛物线解析式可得AO=2,即点C的纵坐标为2,∴C(6,2),∴k=2×6=12,∴双曲线解析式为y=,2025﹣2018=7,故点Q与点P的水平距离为7,∵点P'、Q“之间的水平距离=(2+7)﹣(2+6)=1,∴点Q“的横坐标=2+1=3,∴在y=中,令x=3,则y=4,∴点Q“、点Q'离x轴的距离相同,都为4,即点Q的纵坐标n=4,∴mn=6×4=24,故答案为:24.18.【分析】以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,依据∠ADC=135°,可得点D的运动轨迹为以Q为圆心,AQ为半径的,依据△ACQ中,AQ=4,【解答】解:如图所示,以AC为斜边作等腰直角三角形ACQ,则∠AQC=90°,连接AC,BC,BQ.∵⊙O的直径为AB,C为的中点,∴∠APC=45°,又∵CD⊥CP,∴∠DCP=90°,∴∠PDC=45°,∠ADC=135°,∴点D的运动轨迹为以Q为圆心,AQ为半径的,又∵AB=8,C为的中点,∴△ACB是等腰直角三角形,∴AC=4,∴△ACQ中,AQ=4,∴BQ==4,∵BD≥BQ﹣DQ,∴BD的最小值为4﹣4.故答案为:4﹣4.三、解答题(本大题有10小题,共96分.)19.【分析】(1)根据实数的混合计算解答即可;(2)根据整式的混合计算解答即可.【解答】解:(1)原式==﹣1.(2)原式=1﹣a2+a2﹣2a=1﹣2a20.【分析】(1)根据文史类的人数以及文史类所占的百分比即可求出总人数;(2)根据总人数以及生活类的百分比即可求出生活类的人数以及小说类的人数;(3)根据小说类的百分比即可求出圆心角的度数;(4)利用样本中喜欢社科类书籍的百分比来估计总体中的百分比,从而求出喜欢社科类书籍的学生人数;【解答】解:(1)∵喜欢文史类的人数为76人,占总人数的38%,∴此次调查的总人数为:76÷38%=200人,故答案为:200;(2)∵喜欢生活类书籍的人数占总人数的15%,∴喜欢生活类书籍的人数为:200×15%=30人,∴喜欢小说类书籍的人数为:200﹣24﹣76﹣30=70人,如图所示:(3)∵喜欢社科类书籍的人数为:24人,∴喜欢社科类书籍的人数占了总人数的百分比为:×100%=12%,∴喜欢小说类书籍的人数占了总分数的百分比为:100%﹣15%﹣38%﹣12%=35%,∴小说类所在圆心角为:360°×35%=126°;(4)由样本数据可知喜欢“社科类”书籍的学生人数占了总人数的12%,∴该校共有学生2000人,估计该校喜欢“社科类”书籍的学生人数:2000×12%=240人.21.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,由分式方程的解为正数确定出m的范围即可.【解答】解:去分母得:1+m=x﹣2,解得:x=m+3,由分式方程的解为正数,得到m+3>0,且m+3≠2,解得:m>﹣3且m≠﹣1.22.【分析】(1)画树状图列出所有等可能结果,从中找到到第二个路口时第一次遇到红灯的结果数,根据概率公式计算可得.(2)根据在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2可得答案.【解答】解:(1)画树状图如下:由树状图知,共有9种等可能结果,其中到第二个路口时第一次遇到红灯的结果数为2,所以到第二个路口时第一次遇到红灯的概率为;(2)∵在第1个路口没有遇到红灯的概率为,到第2个路口还没有遇到红灯的概率为=()2,∴到第n个路口都没有遇到红灯的概率为()n,故答案为:()n.23.【分析】由题意可先过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.【解答】解:过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH•tan∠CAH,∴CH=AH•tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2 +1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米),答:拉线CE的长约为(4+)米.24.【分析】(1)由四边形ABCD为平行四边形,利用平行四边形的性质得到对边平行且相等,对角相等,再由垂直的定义得到一对直角相等,利用等式的性质得到一对角相等,利用ASA即可得证;(2)过D作DH垂直于AB,在直角三角形ADH中,利用30度所对的直角边等于斜边的一半得到AD=2DH,在直角三角形DEB中,利用斜边上的中线等于斜边的一半得到EB=2DH,易得四边形EBFD为平行四边形,利用平行四边形的对边相等得到EB=DF,等量代换即可得证.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD=CB,∠A=∠C,AD∥CB,AB∥CD,∴∠ADB=∠CBD,∵ED⊥DB,FB⊥BD,∴∠EDB=∠FBD=90°,∴∠ADE=∠CBF,在△AED和△CFB中,,∴△AED≌△CFB(ASA);(2)作DH⊥AB,垂足为H,在Rt△ADH中,∠A=30°,∴AD=2DH,在Rt△DEB中,∠DEB=45°,∴EB=2DH,∵ED⊥DB,FB⊥BD.∴DE∥BF,∵AB∥CD,∴四边形EBFD为平行四边形,∴FD=EB,∴DA=DF.25.【分析】(1)利用已知表格中x,y个数变化规律得出第2格的“特征多项式”以及第n 格的“特征多项式”;(2)①利用(1)中所求得出关于x,y的等式组成方程组求出答案;②利用二次函数最值求法得出答案.【解答】解:(1)由表格中数据可得:第4格的“特征多项式”为:16x+25y,第n格的“特征多项式”为:n2x+(n+1)2y(n为正整数);故答案为:16x+25y,n2x+(n+1)2y(n为正整数);(2)①由题意可得:,解得:答:x的值为﹣6,y的值为2.②设W=n2x+(n+1)2y当x=﹣6,y=2时:W=﹣6n2+2(n+1)2=,此函数开口向下,对称轴为,∴当时,W随n的增大而减小,又∵n为正整数∴当n=1时,W有最大值,W最大=﹣4×(1﹣)2+3=2,即:第1格的特征多项式的值有最大值,最大值为2.26.【分析】(1)首先连接OD,由BE=EC,CO=OA,得出OE∥AB,根据平行线与等腰三角形的性质,易证得△COE≌△DOE,即可得∠ODE=∠OCE=90°,则可证得ED 为⊙O的切线;(2)只要证明OE∥AB,推出,由此构建方程即可解决问题;【解答】解:(1)证明:连接OD,∵E为BC的中点,AC为直径,∴BE=EC,CO=OA,∴OE∥AB,∴∠COE=∠CAD,∠EOD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠COE=∠DOE,在△COE和△DOE中,,∴△COE≌△DOE(SAS),∴∠ODE=∠OCE=90°,∴ED⊥OD,∴ED是圆O的切线;(2)连接CD;由题意EC、ED是⊙O的切线,∴EC=ED,∵OC=OD,∴OE⊥CD,∵AC是直径,∴∠CDA=90°,∴CD⊥AB,∴OE∥AB,∴,在Rt△ECO中,EO==5,∵∠EOC=∠CAD,∴cos∠CAD=cos∠EOC=,∴AD=,设OG=x,则有,∴x=,∴OG=.27.【分析】(1)求出E、F两点坐标,利用待定系数法即可解决问题;(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.只要证明四边形AOMK 是正方形,证明AE+OA=2AH即可解决问题;(3)如图2中,设F(0,2a),则E(﹣a,a).构建一次函数利用方程组求出交点P 坐标,分三种情形讨论求解即可;【解答】解:(1)∵OE=OA=8,α=45°,∴E(﹣4,4),F(0,8),设直线EF的解析式为y=kx+b,则有,解得∴直线EF的解析式为y=x+8.(2)如图3中,作MH⊥OA于H,MK⊥AE交AE的延长线于K.在Rt△AEO中,tan∠AOE==,OA=8,∴AE=4,∵四边形EOGF是正方形,∴∠EMO=90°,∵∠EAO=∠EMO=90°,∴E、A、O、M四点共圆,∴∠EAM=∠EOM=45°,∴∠MAK=∠MAH=45°,∵MK⊥AE,MH⊥OA,∴MK=MH,四边形KAOM是正方形,∵EM=OM,∴△MKE≌△MHO,∴EK=OH,∴AK+AH=2AH=AE+EK+OA﹣OH=12,∴AH=6,∴AM=AH=6.(3)如图2中,设F(0,2a),则E(﹣a,a).∵A(﹣8,0),E(﹣a,a),∴直线AP的解析式为y=x+,直线FG的解析式为y=﹣x+2a,由,解得,∴P(,).①当PO=OE时,∴PO2=2OE2,则有:+=4a2,解得a=4或﹣4(舍弃)或0(舍弃),此时P(0,8).②当PO=PE时,则有:+=2[(+a)2+(﹣a)2],解得:a=4或12,此时P(0,8)或(﹣24,48),③当PE=EO时,[(+a)2+(﹣a)2]=4a2,解得a=8或0(舍弃),∴P(﹣8,24)综上所述,满足条件的点P的坐标为(0,8),(﹣8,24),(﹣24,48).28.【分析】(1)由点C的坐标为(0,3),可知﹣9a=3,故此可求得a的值,然后令y=0得到关于x的方程,解关于x的方程可得到点A和点B的坐标,最后利用抛物线的对称性可确定出抛物线的对称轴;(2)利用特殊锐角三角函数值可求得∠CAO=60°,依据AE为∠BAC的角平分线可求得∠DAO=30°,然后利用特殊锐角三角函数值可求得OD=1,则可得到点D的坐标.设点P的坐标为(,a).依据两点的距离公式可求得AD、AP、DP的长,然后分为AD =P A、AD=DP、AP=DP三种情况列方程求解即可;(3)设直线MN的解析式为y=kx+1,接下来求得点M和点N的横坐标,于是可得到AN的长,然后利用特殊锐角三角函数值可求得AM的长,最后将AM和AN的长代入化简即可.【解答】解:(1)∵C(0,3).∴﹣9a=3,解得:a=﹣.令y=0得:ax2﹣2 ax﹣9a=0,∵a≠0,∴x2﹣2 x﹣9=0,解得:x=﹣或x=3.∴点A的坐标为(﹣,0),B(3,0).∴抛物线的对称轴为x=.(2)∵OA=,OC=3,∴tan∠CAO=,∴∠CAO=60°.∵AE为∠BAC的平分线,∴∠DAO=30°.∴DO=AO=1.∴点D的坐标为(0,1)设点P的坐标为(,a).依据两点间的距离公式可知:AD2=4,AP2=12+a2,DP2=3+(a﹣1)2.当AD=P A时,4=12+a2,方程无解.当AD=DP时,4=3+(a﹣1)2,解得a=0或a=2(舍去),∴点P的坐标为(,0).当AP=DP时,12+a2=3+(a﹣1)2,解得a=﹣4.∴点P的坐标为(,﹣4).综上所述,点P的坐标为(,0)或(,﹣4).(3)设直线AC的解析式为y=mx+3,将点A的坐标代入得:﹣m+3=0,解得:m =,∴直线AC的解析式为y=x+3.设直线MN的解析式为y=kx+1.把y=0代入y=kx+1得:kx+1=0,解得:x=﹣,∴点N的坐标为(﹣,0).∴AN=﹣+=.将y=x+3与y=kx+1联立解得:x=.∴点M的横坐标为.过点M作MG⊥x轴,垂足为G.则AG=+.∵∠MAG=60°,∠AGM=90°,∴AM=2AG=+2=.∴+=+=+===.中学数学一模模拟试卷一.选择题(满分36分,每小题3分)1.﹣2的绝对值是()A.﹣2 B.﹣C.2 D.2.如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是()A.B.C.D.3.下列计算正确的是()A.x3+x2=x6B.a3•a2=a6C.3﹣=3 D.×=74.PM2.5是大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为()A.0.25×10﹣5B.0.25×10﹣6C.2.5×10﹣6D.2.5×10﹣55.今年3月份某周,我市每天的最高气温(单位:℃):12,9,10,6,11,12,17,则这组数据的中位数与极差分别是()A.8,11 B.8,17 C.11,11 D.11,176.若一个多边形的内角和是1080度,则这个多边形的边数为()A.6 B.7 C.8 D.107.不等式组的解集在数轴上应表示为()A.B.C.D.8.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A 时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15 B.=15C.=D.9.下列命题中是假命题的有()A.一组邻边相等的平行四边形是菱形B.对角线互相垂直的四边形是矩形C.一组邻边相等的矩形是正方形D.一组对边平行且相等的四边形是平行四边形10.如图,点C在以O为圆心的半圆内一点,直AB=4cm,∠BCO=90°,∠OBC=30°,将△BOC绕圆心O逆时针旋转到使点C的对应点C′在半径OA上,则边BC扫过区域(图中阴影部分)的面积为()A . cm 2B .πcm 2C .cm 2D .()cm 211.已知二次函数y =ax 2+bx +c (a ≠0)图象的一部分如图所示,给出以下结论:①abc >0;②当x =﹣1时,函数有最大值;③方程ax 2+bx +c =0的解是x 1=1,x 2=﹣3;④4a +2b +c >0,其中结论错误的个数是( )A .1B .2C .3D .412.如图,一次函数y 1=kx +b (k ≠0)的图象与反比例函数y 2=(m 为常数且m ≠0)的图象都经过A (﹣1,2),B (2,﹣1),结合图象,则不等式kx +b >的解集是( )A .x <﹣1B .﹣1<x <0C .x <﹣1或0<x <2D .﹣1<x <0或x >2二.填空题(满分12分,每小题3分)13.把多项式bx 2+2abx +a 2b 分解因式的结果是 . 14.函数y =中,自变量x 的取值范围是 .15.古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是 ,2016是第 个三角形数.16.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论: ①BE =CD ; ②∠DGF =135°; ③△BEG ≌△DCG ; ④∠ABG +∠ADG =180°; ⑤若=,则3S △BDG =13S△DGF.其中正确的结论是 .(请填写所有正确结论的序号)三.解答题17.(5分)计算:(tan60°)﹣1×﹣|﹣|+23×0.125.18.先化简,再求值:(1﹣),其中m =2019.19.(7分)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘铭随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长人数,并补全图1; (2)求图2中表示家长“赞成”的圆心角的度数;(3)如果该市有8万名初中生,持“无所谓”态度的学生大约有多少人?(4)从这次接受调查的家长与学生中随机抽查一个,恰好是“无所谓”态度的概率是多少?20.(8分)童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价x元,每星期的销售量为y件,(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?21.(8分)科技改变着人们的生活,“高铁出行”已成为人们的日常重要交通方式,如今,河南高铁也在发生着日新月异的变化,2018年我省为连接A、B两座城市之间的高铁运行,某工程勘测队在点E处测得城市A在北偏西16°方向上,城市B在北偏东60°方向上,该勘测队沿正东方向行进了7.5km到达点F处,此时测得城市A在北偏西30°方向上,城市B在北偏东30°方向上(1)请结合所学的知识判断AB、AE的数量关系,并说明理由;(2)求城市A和城市B之间的距离为多少公里?(结果精确到1km)(参考数据:≈1.73,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24,sin16°≈0.28,cos16°≈0.96)22.(9分)如图,△ABC内接于半径为的⊙O,AC为直径,AB=,弦BD与AC交于点E,点P为BD延长线上一点,且∠PAD=∠ABD,过点A作AF⊥BD于点F,连接OF.(1)求证:AP是⊙O的切线;(2)求证:∠AOF=∠PAD;(3)若tan∠PAD=,求OF的长.23.(9分)如图1,抛物线y=ax2﹣x+c交x轴于A,B两点,交y轴于点C.直线y=﹣x+3经过点B,C.(1)求抛物线的解析式;(2)若点P为直线BC下方的抛物线上一动点(不与点B,C重合),则△PBC的面积能够等于△BOC的面积吗?若能,求出相应的点P的坐标;若不能,请说明理由;(3)如图2,现把△BOC平移至如图所示的位置,此时三角形水平方向一边的两个端点点O′与点B′都在抛物线上,称点O′和点B′为△BOC在抛物线上的一“卡点对”;如果把△BOC旋转一定角度,使得其余边位于水平方向然后平移,能够得到这个三角形在抛物线上新的“卡点对”.请直接写出△BOC在已知抛物线上所有“卡点对”的坐标.参考答案一.选择题1.解:因为|﹣2|=2,故选:C.2.解:从左面看易得第一层有2个正方形,第二层最左边有一个正方形.故选:B.3.解:A.不是同类项,不能合并,故A错误;B.a3•a2=a3+2=a5,故错误;C.3﹣=(3﹣1)=2,故C错误;D.,故D正确.故选:D.4.解:0.0000025=2.5×10﹣6,故选:C.5.解:把已知数据按照由小到大的顺序排序后为6、9、10、11、12、12、17,∴这组数据的中位数是11;极差是17﹣6=11.故选:C.6.解:根据n边形的内角和公式,得(n﹣2)•180=1080,解得n=8.∴这个多边形的边数是8.故选:C.7.解:,∵解不等式①得:x>1,解不等式②得:x≤2,∴不等式组的解集为1<x≤2,在数轴上表示不等式组的解集为故选:C .8.解:设走路线A 时的平均速度为x 千米/小时, 根据题意,得﹣=.故选:D .9.解:A 、一组邻边相等的平行四边形是菱形,正确,是真命题;B 、对角线相等的平行四边形是矩形,故错误,是假命题;C 、一组邻边相等的矩形是正方形,正确,是真命题;D 、一组对边平行且相等的四边形是平行四边形,正确,是真命题,故选:B .10.解:∵∠BCO =90°,∠OBC =30°, ∴OC =OB =1,BC =,则边BC 扫过区域的面积为:=πcm 2.故选:B .11.解:由图象可得,a <0,b <0,c >0,∴abc >0,故①正确,当x =﹣1时,函数有最大值,故②正确,方程ax 2+bx +c =0的解是x 1=1,x 2=﹣1﹣[1﹣(﹣1)]=﹣3,故③正确, 当x =2时,y =4a +2b +c <0,故④错误, 故选:A .12.解:由函数图象可知,当一次函数y 1=kx +b (k ≠0)的图象在反比例函数y 2=(m 为常数且m ≠0)的图象上方时,x 的取值范围是:x <﹣1或0<x <2, ∴不等式kx +b >的解集是x <﹣1或0<x <2 故选:C .二.填空题13.解:原式=b(x2+2ax+a2)=b(x+a)2,故答案为:b(x+a)2.14.解:根据题意得:x﹣1>0,解得:x>1.15.解:第9个三角形数是1+2+3+4+5+6+7+8+9=45,1+2+3+4+…+n=2016,n(n+1)=4032,解得:n=63.故答案为:45,63.16.解:①∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,AB=CD,∵AE是∠BAD的角平分线,∴∠BAE=∠DAE=45°,∴∠AEB=90°﹣∠BAE=45°=∠BAE,∴BE=AB=CD,①正确;②∵AB∥CD,∴∠CFE=∠BAE=45°,∠CEF=∠AEB=45°,∴△CEF为等腰直角三角形,∵点G为EF的中点,∴CG⊥EF,∠CGF=90°,∠FCG=45°,∵∠FCG=∠CGD+∠CDG=45°,∴∠CGD<45°,∴∠DGF=∠CGD+∠CGF<45°+90°=135°,②不正确;③∵△CEF为等腰直角三角形,∴CG=EG.∵∠BEG=180°﹣∠CEF=135°,∠DCG=180°﹣∠FCG=135°,∴∠BEG=∠DCG,在△BEG和△DCG中,有,∴△BEG≌△DCG(SAS),③正确;④∵△BEG≌△DCG,∴∠EBG=∠CDG,∵∠ABG=∠ABC+∠EBG,∠ADG=∠ADC﹣∠CDG,∴∠ABG+∠ADG=∠ABC+∠ADC=180°,④正确;⑤过点G作GM⊥DF于点M,如图所示.∵=,∴设AB=2a(a>0),则AD=3a.∵∠DAF=45°,∠ADF=90°,∴△ADF为等腰直角三角形,∴DF=AD=3a.∵△CGF为等腰直角三角形,∴GM=CM=CF=(DF﹣CD)=a,∴S△DGF=DF•GM=×3a×a=.S△BDG =S△BCD+S梯形BGMC﹣S△DGM=×2a×3a+×(3a+a)×a﹣×a×(2a+a)=.∴3S△BDG =13S△DGF,⑤正确.综上可知:正确的结论有①③④⑤.故答案为:①③④⑤.三.解答题17.解:原式=()﹣1•﹣+8×0.125==1.18.解:原式=(﹣)•=•=,当m=2019时,原式==.19.解:(1)由题意可得出:80÷20%=400(人);家长反对人数:400﹣40﹣80=280(人);(2)家长“赞成”的圆心角的度数为:×360°=36°;(3)该市有8万名初中生,持“无所谓”态度的学生大约有:80000×=12000(人);(4)从这次接受调查的家长与学生中随机抽查一个,恰好是“无所谓”态度的概率是:=.20.解:(1)根据题意得,(60﹣x)×10+100=3×100,解得:x=40,60﹣40=20元,答:这一星期中每件童装降价20元;(2)设利润为w,根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.21.解:(1)AB=AE理由如下:如图∵城市A在点E处北偏西16°方向上,城市B在点北偏东60°方向上.∴∠AEH=90°﹣16°=74°,∠BEF=90°﹣60°=30°又∵城市A在点F北偏西30°方向上,城市B在点F处北偏东30°方向上.∴∠AFE=90°﹣30°=60°.∠BFN=90°﹣30°=60°∴∠EBF=60°﹣30°=30°∴EF=BF又∵∠BFA=30°+30°=60°在△AEF与△ABF中∴△AEF≌△ABF(SAS)∴AB=AE(2)过A作AH⊥MN于点H.设AE=x,则AH=x•sin(90°﹣16°)=x•sin74°,HE=x•cos(90°﹣16°)=x•cos74°∴HF=x•cos74°+7.5∴在Rt△AHF中,AH=HF•tan60°∴x•sin74°=(x•cos74°+7.5)•tan60°即0.96x=(0.28x+7.5)×1.73解得x≈27,即AB≈27答:城市A和城市B之间距离约为27km.22.(1)证明:∵AC是⊙O的直径,∴∠ABC=90°,即∠ABD+∠CBD=90°,∵=,∴∠CAD=∠CBD,∵∠PAD=∠ABD,∴∠PAD+∠CAD=∠ABD+∠CBD=90°,即PA⊥AC,∵AC是⊙O的直径,∴AP是⊙O的切线;(2)解:∵在Rt△ABC中,AB=,AC=,∴sin C==,∴∠C=45°,∵=,∴∠ADB=∠C=45°,∵AF⊥BD,∴∠FAD=∠ADB=45°,∴FA=FD,连接OD,∵OA=OD,OF=OF,F A=FD,∴△AOF≌△DOF(SSS),∴∠AOF=∠DOF,∴∠AOD=2∠AOF,∵=,∴∠AOD=2∠ABD,∴∠AOF=∠ABD,∵∠ABD=∠PAD,∴∠AOF=∠PA D;(3)解:延长OF交AD于点G,∵OA=OD,∠AOG=∠DOG,。

2024年广西壮族自治区南宁市部分学校九年级一模考试数学模拟试题(含解析)

2024年广西壮族自治区南宁市部分学校九年级一模考试数学模拟试题(含解析)

2024年初中学业水平学科素养调研卷(一)数学(全卷满分120分,考试时间120分钟)注意事项:1.答题前,考生务必将姓名、准考证号填写在试卷和答题卡上.2.考生作答时,请在答题卡上作答(答题注意事项见答题卡),在本试卷、草稿纸上作答无效.3.不能使用计算器.4.考试结束后,将本试卷和答题卡一并交回.一、选择题(共12小题,每小题3分,共36分,每小题给出的四个选项中只有一项是符合要求的,用2B 铅笔把答题卡上对应题目的答案标号涂黑.)1.2024年2月1日,某地记录到四个时刻的气温(单位:℃)分别为,0,1,,其中最低的气温是( )A .B .0C .1D .2.如图所示的几何体是由6个完全相同的小正方体搭成,其主视图是( )A .B .C .D .3.截至2023年底,中国新能源汽车保有量已达辆,此数据用科学记数法表示为( )A .B .C .D.3-2-3-2-204100004204110⨯5204.110⨯620.4110⨯72.04110⨯4.如图,四边形内接于,若,则的度数是( )A .B .C .D .5.在一个不透明的袋子里装有5个小球,这些小球除颜色外无其他差别,其中红球2个,白球3个,摇匀后,从这个袋子中任意摸出一个球,则这个球是白球的概率是( )A.B .C .D .6.在平面直角坐标系中,点关于原点对称的点的坐标是( )A .B .C .D .7.一元二次方程的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根8.下列计算正确的是( )A .B .C .D .9.某旅游景区内有一块三角形绿地,现要在绿地内建一个休息点,使它到,,三边的距离相等,下列作法正确的是( )A .B .C .ABCD O 70A ∠=︒C ∠70︒90︒110︒140︒23253556()2,1()2,1-()2,1-()1,2()2,1--210x x +-=842x x x ÷=523x x -=()236x x =()33xy xy =()ABC AC BC ≠ABC O AB BC ACD .10.根据物理学知识,作用于物体上的压力所产生的压强与物体受力面积三者之间满足关系式,如果压力为,压强要大于,则下列关于的说法正确的是( )A .小于B .大于C .小于D .大于11.如图,在□中,平分,交边于点,过点作于点,交于点.若,则的长为( )A .8B .10C .12D .1612.我们知道,小明同学据此画出了函数的大致图象,你认为小明同学所作图象正确的是( )A .B .C .D .二、填空题(本大题共6小题,每小题2分,共12分.)13.的相反数是.14.分解因式:.15.李校医对九(1)班50名学生的血型作了统计,列出如下边的统计表,则九(1)班()N F ()Pa p ()2m S Fp S=500N 5000Pa S S 20.1m S 20.1m S 210m S 210m ABCD 8AB =BE ABC ∠AD E C CF BE ⊥F AD G AG GE =BC ()()00xx x xx ⎧≥⎪=⎨-<⎪⎩1y x =--5-23x x -=A型血的人数是 .血型型型型型频率16.已知是方程的解,则的值为 .17.如图,当一个摆钟的钟摆从最左侧处摆到最右侧处时,摆角,点是弧的中点,连接交于点,若,则的长为 cm .(结果用含的式子表示)18.如图,将一个边长为4的菱形沿着直线折叠,使点落在延长线上的点处,若,则的长为 .三、解答题(本大题共8小题,共72分,解答应写出文字说明、证明过程或演算步骤.)19.计算:.20.先化简,再求值:,其中,.21.如图,在平面直角坐标系中,的三个顶点坐标分别为,,.ABAB O0.30.20.10.411x y =⎧⎨=⎩2ax y +=a OA OB 2AOB α∠=C AB OC AB D 20cm OA =AB αABCD AE D BC F EF BC ⊥DE ()2121312⨯--÷()()()22224x y x y x y y ⎡⎤+-+-÷⎣⎦1x =1y =-ABC ()1,1A ()3,4B ()4,2C(1)在图中画出关于轴对称的;(2)将先向左平移4个单位长度,再向上平移2个单位长度,画出平移后的;(3)在中有一点,则经过以上两次变换后点的对应点的坐标为______.22.2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等),气温(如“4/”指当天最低和最高气温分别是和),风向和风级.(1)这7天最高气温的众数是______,中位数是______;(2)计算这7天最低气温的平均数;(3)阅读冷空气等级标准表:序号等级冷空气来临的48小时内气温变化情况①弱冷空气降温幅度小于6②中等强度冷空气降温幅度大于或等于6,但小于8③较强冷空气降温幅度大于或等于8,且日最低气温超过8ABC x 111A B C △111A B C △222A B C △ABC (),P m n P 2P 17℃4℃17℃℃℃℃℃℃℃℃④强冷空气降温幅度大于或等于8,且日最低气温不超过8⑤寒潮降温幅度大于或等于10,且日最低气温不超过4本次来临的冷空气的等级是______.(填序号)23.我国第一届全国学生(青年)运动会于2023年11月5日在广西南宁开幕,吉祥物“壮壮”和“美美”毛绒玩具在市场出现热销,已知“壮壮”比“美美”每个便宜40元,某商场用6400元购买“壮壮”的数量是用4800元购买“美美”数量的2倍.(1)求购买一个“美美”和一个“壮壮”各需多少元?(2)为满足顾客需求,商场从厂家一次性购买“壮壮”和“美美”共100个,要求购买的总费用不超过11020元,求最多可以购买“美美”多少个?24.如图,已知,以为直径作交于点,连接,,作的平分线,交于点,交于点.(1)求证:是的切线;(2)求证:.25.综合与实践中国旅游研究院2024年1月5日发布的“2024年冰雪旅游十佳城市”中,哈尔滨位列榜首,火爆出圈,其中帽儿山的滑雪运动深受欢迎.滑雪爱好者小李为了得出滑行距离(单位:m )与滑行时间(单位:s )之间的关系,以便更好地享受此项运动所带来的乐趣,他在滑道A 上设置了若干个观测点,收集一些数据,如下表所示:点位1点位2点位3点位4点位5点位6点位7℃℃℃℃ABC AB O BC D AD =B CAD ∠∠ACB ∠AD E AB F AC O AC AFBC BF=y x滑行时间00.51 1.52 2.53…滑行距离0 1.625 4.58.6251420.62528.5(1)请你在平面直角坐标系中描出表中数据所对应的7个点,并用平滑的曲线连接它们;(2)观察由(1)所得的图象,请你依图象选用一个函数近似地表示与之间的函数关系,并求出这个近似函数的关系式(不要求写出自变量的取值范围);(3)若另一名滑雪爱好者小张在小李出发5秒后沿着滑道B 滑行(两条滑道互相平行,且起点在同一直线上),他的滑行距离(单位:m )与滑行时间(单位:s )可近似地看成二次函数,当小李滑行距离为384m 时,他比小张多滑行的距离不超过160m ,求的最小值.(参考数据:)26.应用与探究【情境呈现】在一次数学兴趣小组活动中,小明同学将一大一小两个三角板按照如图1所示的方式摆放,其中,,.他把三角板固定好后,将三角板从图1所示的位置开始绕点按顺时针方向旋转,每秒转动,设转动时间为秒.s x my y x y x 23y x dx =+d 212415376=90ACB DEB ∠=∠=︒30ABC DBE ∠=∠=︒4BD AC ==ABC DEB B 5︒t ()0130<≤【问题应用】(1)请直接写出图1中线段的值;(2)如图2,在三角板旋转的过程中,连接,当四边形是矩形时,求值;【问题探究】(3)如图3,在三角板旋转的过程中,取的中点,连接,是否存在最大值?若存在,请求出的最大值,并直接写出此时的值:若不存在,请说明理由.参考答案与解析1.A 【分析】本题考查有理数比较大小的实际应用,根据负数小于0小于正数,两个负数相比较,绝对值大的反而小,进行判断即可.【详解】解:∵,∴最低的气温是℃;故选A .2.D【分析】从正面看:共有2列,从左往右分别有2,1个小正方形;据此可画出图形.【详解】解:如图所示的几何体的主视图是.故选:D.AD DEB AD ACBD t DEB AD G CG CG CG t 3201-<-<<3-【点睛】本题考查了简单组合体的三视图,从正面看得到的视图是主视图.3.D【分析】本题考查用科学记数法表示绝对值大于1的数.科学记数法的表示形式为的形式,其中为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值时,n 是正数;当原数的绝对值时,n 是负数.熟记相关结论即可.【详解】解:∵故选:D 4.C 【分析】本题主要考查了圆内接四边形的性质,解题的关键是根据圆内接四边形,两对角互补,求出的度数即可.【详解】解:∵四边形内接于,,∴.故选:C .5.C 【分析】本题考查了概率的求法:如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种可能,那么事件的概率,用白球的个数除以球的总数即可求得答案.【详解】解:∵从这个袋子中任意摸出一个球共有种等可能的情况,这个球是白球的有种可能,∴从这个袋子中任意摸出一个球,则这个球是白球的概率,故选:C .6.D 【分析】根据“平面直角坐标系中任意一点,关于原点的对称点是,即关于原点的对称点,横纵坐标都变成相反数”解答即可.10n a ⨯110a n ≤<,1>1<2041000072.04110=⨯C ∠ABCD O 70A ∠=︒18070110C ∠=︒-︒=︒n A m A ()mP A n=5335=(),P x y (),x y --【详解】在平面直角坐标系中,点关于原点对称的点的坐标是.故选:D .【点睛】本题主要考查了关于原点对称的点的坐标的特点,熟记关于原点的对称点,横、纵坐标都互为相反数是解题的关键.7.A 【分析】先计算出根的判别式的值,根据判别式的值就可以判断根的情况.【详解】解:∵在方程中,,∴方程有两个不相等的实数根.故选:A .【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)⇔方程有两个不相等的实数根;(2)⇔方程有两个相等的实数;(3)⇔方程没有实数根,掌握一元二次方程根的情况与判别式的关系是解题的关键.8.C 【分析】本题考查整数的运算,利用同底数幂的除法,合并同类项,积的乘方,幂的乘方逐一计算,判断即可.【详解】解:A 、,选项计算错误;B 、,选项计算错误;C 、,选项计算正确;D 、,选项计算错误;故选:C .9.D 【分析】本题考查作图-基本作图,角平分线的性质等知识,解题的关键是理解题意,读懂图象信息.根据三角形内心的性质判断即可.()2,1()2,1--210x x +-=()214115∆=-⨯⨯-=210x x +-=∆0∆>Δ0=Δ0<∆844x x x ÷=523x x x -=()236x x =()333xy x y =【详解】解:∵点O 到三边的距离相等,∴点O 是的内心,即点O 是角平分线的交点,故选:D .10.A【分析】本题考查了反比例的应用,根据已知条件利用压强公式推导即可得到答案,熟练掌握其性质是解决此题的关键.【详解】解:∵,,∴,∵产生的压强要大于,∴小于,故选:A .11.C【分析】本题考查了平行四边形的性质、角平分线的定义、等腰三角形的性质等知识点,熟记相关结论是解题关键.根据题意可得、,据此即可求解.【详解】解:∵平分,∴∵四边形是平行四边形,∴∴,∴∵∴,∴∵∴∴∵AB BC AC 、、ABC 500N F =F p S =500p S=5000Pa S 20.1m 8AE AB ==8DG DC AB ===BE ABC ∠ABE CBE∠=∠ABCD AB CD AD CB∥∥,CBE AEB ABE ∠=∠=∠()()180ABE CBE BCG DCG ∠+∠+∠+∠=︒8AE AB ==CF BE⊥90CBE BCG ∠+∠=︒90AEB DGC ∠+∠=︒90ABE DCG ∠+∠=︒90AEB DGC ∠+∠=︒DCG DGC∠=∠8DG DC AB ===AG GE=∴∴故选:C12.B【分析】本题考查函数的图象和性质,根据时,,得到图象一定过点,即可得出结果.【详解】解:∵,∴当时,,∴图象一定过点,故满足题意的只有选项B ,故选:B .13.5【分析】本题主要考查相反数的定义,根据相反数的概念求出相反数即可,解题的关键是掌握只有符号不同的两个数互为相反数,0的相反数是0.【详解】∵的相反数是5,故答案为:5.14.【分析】根据提取公因式法因式分解进行计算即可.【详解】解:,故答案为:.【点睛】此题考查了提公因式法因式分解,熟练掌握提取公因式的方法是解本题的关键.15.【分析】142AG AE ==12BC AD AG DG ==+=0x =1y =-()0,1-1y x =--0x =1y =-()0,1-5-()3x x -()233x x x x -=-()3x x -15本题考查了频数和频率,根据频数频率数据总数求解,解答本题的关键是掌握频数频率数据总数.【详解】解:由题意可知,九(1)班型血的人数是(人),故答案为:.16.【分析】本题考查了二元一次方程的解,把方程组的解代入方程,得到关于的一元一次方程,解方程即可,把方程组的解代入方程,得到关于的一元一次方程是解题的关键.【详解】解:∵是方程的解,∴,∴,故答案为:.17.【分析】本题考查了解直角三角形的应用,圆的性质,全等三角形的判定与性质,由点是弧的中点,得出,,已知的长,用正弦公式可表示, 即可求解,关键是掌握正弦的定义.【详解】解:∵点是弧的中点,∴,又∵,∴,∵,∴,∴,,∴,又∵∴=⨯=⨯A 500.315⨯=151-a a 11x y =⎧⎨=⎩2ax y +=12a +=1a =-1-40sin αC AB AC BC =12AOD BOC AOB α∠==∠=∠OA AD C AB AC BC=2AOB α∠=12AOD BOC AOB α∠==∠=∠,OD OD OA OB ==()SAS OAD OBD ≌V V 90ODA ODB ∠=∠=︒AD BD =sin sin AD AOD OAα∠==20cmOA =n 2020sin si sin AD OA ααα=⋅==⨯∴故答案为:.18.【分析】本题考查了菱形的性质,折叠的性质,勾股定理,等腰三角形的判定与性质,由菱形得到,,由折叠得:,,再由勾股定理求出【详解】解:如图:在菱形中,,,∴,由折叠得:,,∵,∴,∴,∴,∴,∴,∴,∴,()2020m sin sin s 0in 4c AB AD BD ααα=+=+=40sin α4-4AB AD BC CD ====,∥∥AD BC AB CD 4AF AD ==3,D FE DE ∠=∠=BF =ABCD 4AB ADBC CD ====AD BC AB CD ,12DAF B ∠=∠∠=∠,4AF AD ==3D FE DE ∠=∠=,EF BC ⊥90CFE ∠=︒1+3=90∠∠︒90DAF D ∠+∠=︒()418090DAF D ∠=︒-∠+∠=︒490BAF ∠=∠=︒BF ===4CF BF BC =-=-∵,∴,∵,∴∴,∴,∴,∴,∴,故答案为:.19.【分析】本题考查有理数的混合运算,根据混合运算的法则,进行计算即可.【详解】解:原式.20.【分析】本题考查整式的混合运算及因式分解的应用,熟知乘法公式、整式的四则运算法则和因式分解的方法是正确解决本题的关键.按整式运算法则或先运用因式分解化简再代入计算即可.【详解】解:化简方法一:化简方法二:4AB AF ==1B ∠=∠190B ∠+∠=︒45B ∠=︒245∠=︒590245∠=︒-∠=︒25∠=∠CF FE=4DE CF ==410-()42128210=⨯--⨯=--=-21x y,+-()()()22224x y x y x y y ⎡⎤+-+-÷⎣⎦()()2224x y x y x y y⎡⎤=++-+÷⎣⎦()244x y y y⎡⎤=+⨯÷⎣⎦2x y=+()()()22224x y x y x y y ⎡⎤+-+-÷⎣⎦()()22224444x xy y x y y ⎡⎤=++--÷⎣⎦当,时,原式.21.(1)图见解析(2)图见解析(3)【分析】本题考查坐标与图形变换:(1)根据轴对称的性质,画出即可;(2)根据平移的性质,画出;(3)根据轴对称和平移规则,求出点的坐标即可.【详解】(1)解:如图,即为所求;(2)如图,即为所求;(3)点关于轴的对称点为,再将先向左平移4个单位长度,再向()222244+44x xy y x y y =++-÷()24+84xy y y =÷244+84xy y y y=÷÷2x y=+1x =1y =-()1211=+⨯-=-()4,2m n --+111A B C △222A B C △2P 111A B C △222A B C △(),P m n x (),m n -(),m n -上平移2个单位长度,得到:;故;故答案为:.22.(1),;(2);(3)①.【分析】本题考查了众数,中位数,平均数,掌握相关的定义是解题的关键.(1)直接用众数,中位数的定义即可求解;(2)根据平均数的定义列式计算即可求解;(3)参照天气情况图可得答案.【详解】(1)解:这7天的最高气温分别是:,∴这7天最高气温的众数是,中位数是.(2)解:这7天最低气温的平均数为.(3)解:周四周五的温差为,降温幅度小于6∴本次来临的冷空气的等级是①.23.(1)购买一个“美美”和一个“壮壮”分别需120元,80元(2)75个【分析】本题考查分式方程的实际应用,一元一次不等式的实际应用:(1)设购买一个“美美”需要元,根据“壮壮”比“美美”每个便宜40元,某商场用6400元购买“壮壮”的数量是用4800元购买“美美”数量的2倍,列出分式方程进行求解即可;(2)设购买“美美”个,根据题意,列出不等式进行求解即可.【详解】(1)解:设购买一个“美美”需要元,则购买一个“壮壮”需要元,由题意,得:()4,2m n --+()24,2P m n --+()4,2m n --+6℃6℃2℃1768467℃、5℃、℃、℃、℃、℃、℃6℃6℃421311227++++++=℃422-=℃℃x a x ()40x -,解得:,经检验是原方程的解,∴;答:购买一个“美美”和一个“壮壮”分别需120元,80元;(2)设购买“美美”个,则购买“壮壮”个,由题意,得:,解得:,又为整数,∴最多可以购买“美美”75个.24.(1)见解析;(2)见解析.【分析】本题考查了切线的判定,角平分线的性质,相似三角形的判定与性质,掌握相关性质是解题的关键.(1)由是直径,得到,由,进而得到即可求证;(2)作,交于点,分别求证,即可得出结论.【详解】(1)证明:∵是直径,∴,∴,∵,∴,∴是切线.(2)证明:作,交于点,如图:48006400240x x ⋅=-120x =120x =4080x -=a ()100a -()1208010011020a a +-≤1512a ≤a AB O 90ADB ∠=︒=B CAD ∠∠90BAC ∠=︒FH BC ⊥BC H FHB ADB ∽ CAB ADB ∽AB O 90ADB ∠=︒90ABD BAD ∠+∠=︒ABD CAD ∠=∠90CAD BAD BAC ∠+∠=︒=∠AC O FH BC ⊥BC H∵是的角平分线,,∴,∵,∴,∴ ,∵,∴,∴ ,∴,综上,.25.(1)图见解析(2)(3)11【分析】本题考查二次函数的实际应用,正确的求出函数解析式,是解题的关键.(1)描点,连线画出图象即可;(2)设函数解析式为,待定系数法求出函数解析式即可;(3)求出小李滑行距离为384m 时,所用的时间,进而求出小张滑行的距离,根据小李比小张多滑行的距离不超过160m ,列出不等式进行求解即可.【详解】(1)解:根据表格数据,描点,连线如图:CF ACB ∠90FAC FHC ∠=∠=︒AF HF =,90FBH ABD FHB ADB ∠=∠∠=∠=︒FHB ADB ∽ FH AD AF BF AB BF==,90CBA ABD CAB ADB ∠=∠∠=∠=︒CAB ADB ∽AD AC AB BC =AF AD AC BF AB BC==AC AF BC BF =2522y x x =+2y ax bx c =++(2)由图象可知,图象近似为二次函数的图象,∴设解析式为,将表格中的点位1,点位3,点位5的坐标代入得:,解得:,∴;(3)∵,∴当时,,解得:(负值已舍去);∴小张的滑行时间为,∵,∴当时,,由题意,得:,解得:,∴的最小值为:11.26.(1);(2);(3)存在,最大值为,此时的值为.【分析】本题考查了旋转的性质,三角形的中位线定理,三角形的三边关系,掌握相关性质是解题的关键.(1)由,,得到,即可求解;2y ax bx c =++0 4.54214c a b c a b c =⎧⎪++=⎨⎪++=⎩0522c a b =⎧⎪⎪=⎨⎪=⎪⎩2522y x x =+2522y x x =+384y =2523842x x +=12x =1257s -=23y x dx =+7x =23777147y d d =⨯+=+3847147160d --≤11d ≥d 4=AD 12t =CG 6t 2490ACB ∠=︒30ABC ∠=︒12AC AB =(2)当四边形是矩形时,,求出旋转角,即可求解;(3)取中点,连接,当三点共线时,最大值,可求出最大值为,此时的值为.【详解】解:(1)∵,,∴,∵,∴;(2)如图:当四边形是矩形时,∴,∵,∴旋转角,∴(秒),∴的值为;(3)取中点,连接,如图:∵是中点,∴中位线,在中,,∴,∴ ,∵是斜边上中线,ACBD 90CBD ∠=︒60ABD ∠=︒AB O OG OC 、O C G 、、CG 6t 2490ACB ∠=︒30ABC ∠=︒12AC AB =4BD AC ==4AD BD ==ACBD 90CBD ∠=︒30ABC DBE ∠=∠=︒9060ABD ABC ∠=︒-∠=︒60512t =︒÷︒=t 12AB O OG OC 、G AD 114222OG BD ==⨯=Rt ABC △90,30ACB ABC ∠=︒∠=︒12AC AB =2248AB AC ==⨯=OC Rt ABC △∴,当不在同一直线上时, ,当在线段上时, ,,∴三点共线时,最大值,此时,如图,,,∴,∵,∴,∴旋转角为,∴(秒),综上,存在最大值为,此时的值为.142OC AB ==O C G 、、CG OC OG <+O CG CG OC OG =+CG OC OG ∴≤+O C G 、、CG 426OC OG =+=+=OC OA OB ==30OBC CCB ∠=∠=︒120AOG ∠=︒OG BD ∥120ABD AOG ∠=∠=︒120︒120524t =︒÷︒=CG 6t 24。

【3套试卷】南宁市中考第一次模拟考试数学精选含答案

【3套试卷】南宁市中考第一次模拟考试数学精选含答案

中考模拟考试数学试题含答案一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x43.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.如图的几何体的左视图是()A.B.C.D.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12 6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)7.方程=0的解为()A.﹣2 B.2 C.5 D.无解8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=二.填空题(共10小题)11.数据0.0007用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.分解因式5a3b﹣10a2b+5ab=.14.计算:=.15.不等式组的整数解是.16.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是度.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.18.△ABC的面积为,AB=3,BC=10,AH⊥BC于点H,点E为BC中点,则HE=.19.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD =20,则平行四边形ABCD的面积为.20.如图,△ABC中,∠ACB=90°,∠B=60°,AB=4,D为AB中点,CE平分∠ACB,∠DEC=30°,则CE=.三.解答题(共7小题)21.先化简再求值,其中x=3tan30°﹣4cos60°.22.如图,在小正方形的边长均为1的方格纸中有线段AB,BC,点A,B,C均在小正方形的顶点上.(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在小正方形的顶点上;(2)在图2中画出凸四边形ABCE,点E在小正方形的顶点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的周长.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?24.已知:如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、AC的中点,点F在BC 延长线上,连接EF,且∠CEF=∠BAC.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与△AED面积相等的三角形.25.王叔叔决定在承包的荒山上种苹果树,第一次用1000元购进了一批树苗,第二次又用了1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第一次少了100棵.(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵果树平均产苹果30斤,王叔叔将两批果树所产苹果按同一价格全部销售完毕后获利不低于89800元,求每斤苹果的售价至少是多少元?26.如图,△ABC中,AB=AC,AD⊥BC于D,E是AC边上一点,⊙O过B、D、E三点,分别交AC、AB于点F、G,连接EG、BF分别与AD交于点M、N;(1)求证:∠AMG=∠BND;(2)若点E为AC的中点,求证:BF=BC;(3)在(2)的条件下,作EH⊥EG交AD于点H,若EH=EG=4,过点G作GK⊥BF 于点K,点P在线段GK上,点Q在线段BK上,连接BP、GQ,若∠KGQ=2∠GBP,GQ=15,求GP的长度.27.如图,直线y=x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC =AB;(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2﹣PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB 上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC∥AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.参考答案与试题解析一.选择题(共10小题)1.﹣的相反数是()A.9 B.﹣9 C.D.﹣【分析】直接利用相反数的定义分析得出答案.【解答】解:﹣的相反数是:.故选:C.2.下列运算正确的是()A.﹣3(x﹣4)=﹣3x+12 B.(﹣3x)2=6x2C.3x+x2=3x D.x8÷x2=x4【分析】分别根据去括号法则、积的乘方法则、合并同类项法则以及同底数幂相除法则逐一判断即可.【解答】解:A.﹣3(x﹣4)=﹣3x+12,故本选项符合题意;B.(﹣3x)2=9x2,故本选项不合题意;C.3x与x2不是同类项,故不能合并,故本选项不合题意;D.x8÷x2=x6,故本选项不合题意.故选:A.3.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、是中心对称图形,也是轴对称图形,故本选项错误;B、是中心对称图形,但不是轴对称图形,故本选项正确;C、不是中心对称图形,但是轴对称图形,故本选项错误;D、不是中心对称图形,但是轴对称图形,故本选项错误.故选:B.4.如图的几何体的左视图是()A.B.C.D.【分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答】解:从左边看去,左边是3个正方形,右边是2个正方形.故选:A.5.如图,若等边△ABC的内切圆⊙O的半径是2,则△ABC的面积是()A.4B.6C.8D.12【分析】连接OB,OD,根据⊙O是等边△ABC的内切圆,求出∠OBD=30°,求出OB=2OD =4,根据勾股定理求出BD,同理求出CD,得到BC,求出AD,即可得出答案.【解答】解:连接OB,OD,OA,∵⊙O是等边△ABC的内切圆,∴∠OBD=30°,∠BDO=90°,∴OB=2OD=4,由勾股定理得:BD==2,同理CD=2,∴BC=BD+CD=4,∵△ABC是等边三角形,A,O,D三点共线,∴AD=6,∴S△ABC=BC•AD=12.6.下列关于抛物线y=(x+2)2+6的说法,正确的是()A.抛物线开口向下B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,10)【分析】根据抛物线的解析式可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:∵y=(x+2)2+6=x2+4x+10,∴a=1,该抛物线的开口向上,故选项A错误,抛物线的顶点坐标是(﹣2,6),故选项B错误,抛物线的对称轴是直线x=﹣2,故选项C错误,当x=0时,y=10,故选项D正确,故选:D.7.方程=0的解为()A.﹣2 B.2 C.5 D.无解【分析】根据解分式方程的步骤依次计算可得.【解答】解:两边都乘以x﹣5,得:2﹣x+3=0,解得:x=5,检验:当x=5时,x﹣5=0,所以方程无解.故选:D.8.如图,菱形ABCD的对角线AC=6,BD=8,AE⊥BC于点E,则AE的长是()A.5 B.C.D.【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【解答】解:∵四边形ABCD是菱形,∴CO=AC=3,BO=BD=4,AO⊥BO,∴BC==5,∴S菱形ABCD=AC•BD=×6×8=24,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=.故选:C.9.已知直线y=x+1与反比例函数y=的图象的一个交点为P(a,2),则ak的值为()A.2 B.C.﹣2 D.﹣【分析】根据图象上的点满足函数解析式,可求得a,从而求得点P的坐标,根据待定系数法,可得k值,进而求得ak的值.【解答】解:一次函数y=x+1的图象过点(a,2),∴a+1=2,∴a=1∵y=的图象过点(1,2)∴2=,解得k=2,∴ak=2.故选:A.10.如图,在△ABC中,点D、E分别为AB、AC边上的点,连接DE,且DE∥BC,点F为BC 边上一点,连接AF交DE于点G,则下列结论中一定正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理即可判断;【解答】解:∵DE∥BC,∴=,∴=,故选:C.二.填空题(共10小题)11.数据0.0007用科学记数法表示为7×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0007=7×10﹣4.故答案为:7×10﹣4.12.在函数y=中,自变量x的取值范围是x≠6 .【分析】根据分式的意义即分母不等于0,可以求出x的范围.【解答】解:依题意得x﹣6≠0,∴x≠6.故答案为:x≠6.13.分解因式5a3b﹣10a2b+5ab=5ab(a﹣1)2.【分析】原式提取公因式,再利用完全平方公式分解即可.【解答】解:原式=5ab(a2﹣2a+1)=5ab(a﹣1)2,故答案为:5ab(a﹣1)214.计算:=.【分析】直接化简二次根式进而计算得出答案.【解答】解:原式=2﹣18×=﹣.故答案为:﹣.15.不等式组的整数解是0 .【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:解不等式①得:x>﹣1,解不等式②得:x≤0,∴不等式组的解集为﹣1<x≤0,∴不等式组的整数解为0,故答案为0.16.一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是150 度.【分析】根据扇形的面积公式求出半径,然后根据弧长公式求出圆心角即可.【解答】解:扇形的面积公式=lr=240πcm2,解得:r=24cm,又∵l==20πcm,∴n=150°.故答案为:150.17.有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、…6点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.【分析】共有6种等可能的结果数,其中点数是3的倍数有3和6,从而利用概率公式可求出向上的一面出现的点数是3的倍数的概率.【解答】解:掷一次骰子,向上的一面出现的点数是3的倍数的概率==.故答案为.18.△ABC的面积为,AB=3,BC=10,AH⊥BC于点H,点E为BC中点,则HE=.【分析】根据题意画出图形,由勾股定理求出BH的长,则HE可求出.【解答】解:如图1,当AH在△ABC内时,∵△ABC的面积为,BC=10,∴.∴.∴=.∴.如图2,当AH在△ABC外时,同理可得AH=,BH=,∴.故答案为:或.19.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD =20,则平行四边形ABCD的面积为48 .【分析】已知平行四边形的高AE、AF,设BC=AD=x,则CD=20﹣x,根据“等面积法”列方程,求BC,从而求出平行四边形的面积.【解答】解:设BC=AD=x,则CD=20﹣x,根据“等面积法”得4x=6(20﹣x),解得x=12,∴平行四边形ABCD的面积=4x=4×12=48.故答案为:48.20.如图,△ABC中,∠ACB=90°,∠B=60°,AB=4,D为AB中点,CE平分∠ACB,∠DEC=30°,则CE=2.【分析】连接CD,作CH⊥DE于H,由直角三角形的性质可得CD=BD=AD=2,∠A=30°,可得HD=HC=,由直角三角形的性质可得CE=2HC=2.【解答】解:连接CD,作CH⊥DE于H∵∠ACB=90°,∠B=60°,AB=4,D为AB中点,∴CD=BD=AD=2,∠A=30°∴∠ACD=∠A=30°,∵CE平分∠ACB∴∠ACE=45°∴∠DCE=15°∴∠HDC=∠DEC+∠DCE=45°,且CH⊥DE∴∠HCD=∠HDC=45°,且CD=2∴HD=HC=∵∠DEC=30°,CH⊥DE∴CE=2CH=2故答案为:2三.解答题(共7小题)21.先化简再求值,其中x=3tan30°﹣4cos60°.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=•=•=,∵x=3×﹣4×=﹣2,∴原式=.22.如图,在小正方形的边长均为1的方格纸中有线段AB,BC,点A,B,C均在小正方形的顶点上.(1)在图1中画出凸四边形ABCD,使四边形ABCD是轴对称图形,点D在小正方形的顶点上;(2)在图2中画出凸四边形ABCE,点E在小正方形的顶点上,∠AEC=90°,EC>EA;直接写出四边形ABCE的周长6+4.【分析】(1)根据轴对称图形的性质作出只有一条对称轴的图形即可求解;(2)作出四边形ABCE即为所求四边形ABCE,进而利用周长解答即可.【解答】解:(1)如图1所示:凸四边形ABCD即为所求;(2)如图2所示,凸四边形ABCE即为所求,四边形ABCE的周长=6+4.故答案为:6+4.23.某中学围绕“哈尔滨市周边五大名山,即:香炉山、凤凰山、金龙山、帽儿山、二龙山,你最喜欢那一座山?(每名学生必选且只选一座山)的问题在全校范围内随机抽取了部分学生进行问卷调查,根据调查结果绘制了如图的不完整的统计图:(1)求本次调查的样本容量;(2)求本次调查中,最喜欢凤凰山的学生人数,并补全条形统计图;(3)若该中学共有学生1200人,请你估计该中学最喜欢香炉山的学生约有多少人?【分析】(1)由帽儿山的人数及其所占百分比可得总人数;(2)根据各部分人数之和等于总人数可得凤凰山的人数;(3)利用样本估计总体思想求解可得.【解答】解:(1)20÷25%=80(名),答:本次抽样调查共抽取了80名学生.(2)最喜欢凤凰山的学生人数为80﹣24﹣8﹣20﹣12=16(名),补全条形统计图(3)1200×=360(名),由样本估计总体得该中学最喜欢香炉山的学生约有360名.24.已知:如图,在Rt△ABC中,∠ACB=90°,点D、E分别是AB、AC的中点,点F在BC 延长线上,连接EF,且∠CEF=∠BAC.(1)如图1,求证:四边形CDEF是平行四边形;(2)如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与△AED面积相等的三角形.【分析】(1)利用三角形中位线定理证明DE∥CF,再证明EF∥CD即可;(2)利用等高模型即可解决问题;【解答】(1)证明:∵点D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,∵∠ACB=90°,AD=DB,∴CD=AD=DB,∴∠A=∠DCA,∵∠CEF=∠A,∴∠CEF=∠ECD,∴EF∥CD,∴四边形CDEF是平行四边形.(2)如图2中,与△AED面积相等的三角形有:△AEF,△ECF,△EDC,△EDB.理由:∵四边形CDEF是平行四边形,∴△EFC与△DEC的面积相等,∵AE=ED,DE∥BC,∴△ADE与△EDC,△EDC与△EDB的面积相等,∴与△AED面积相等的三角形有:△AEF,△ECF,△EDC,△EDB.25.王叔叔决定在承包的荒山上种苹果树,第一次用1000元购进了一批树苗,第二次又用了1000元购进该种树苗,但这次每棵树苗的进价是第一次进价的2倍,购进数量比第一次少了100棵.(1)求第一次每棵树苗的进价是多少元?(2)一年后,树苗的成活率为85%,每棵果树平均产苹果30斤,王叔叔将两批果树所产苹果按同一价格全部销售完毕后获利不低于89800元,求每斤苹果的售价至少是多少元?【分析】(1)首先设第一次每棵树苗的进价是x元,则第二次每棵树苗的进价是2x元,依题意得等量关系:第一购进树苗的棵数﹣第二次购进树苗的棵树=100,由等量关系列出方程即可;(2)设每斤苹果的售价是a元,依题意得等量关系:两次购进树苗的总棵树×成活率为85%×每棵果树平均产苹果30斤﹣两次购进树苗的成本≥89800元,根据不等关系代入相应的数值,列出不等式.【解答】解:(1)设第一次每棵树苗的进价是x元,依题意得:﹣=100,解得:x=5,经检验x=5是原分式方程的解,∴第一次每棵树苗的进价是5元.(2)设每斤苹果的售价是a元,依题意得:(+)×85%×30a﹣1000×2≥89800,解得:a≥12,答:每斤苹果的售价至少是12元.26.如图,△ABC中,AB=AC,AD⊥BC于D,E是AC边上一点,⊙O过B、D、E三点,分别交AC、AB于点F、G,连接EG、BF分别与AD交于点M、N;(1)求证:∠AMG=∠BND;(2)若点E为AC的中点,求证:BF=BC;(3)在(2)的条件下,作EH⊥EG交AD于点H,若EH=EG=4,过点G作GK⊥BF 于点K,点P在线段GK上,点Q在线段BK上,连接BP、GQ,若∠KGQ=2∠GBP,GQ=15,求GP的长度.【分析】(1)由等腰三角形的性质和圆的内接四边形的性质可得结论;(2)可证出BD=CD,可得∠FBC=∠BAC,证出∠BFC=∠ABC=∠C,结论得证;(3)取AB中点P,连接MH、GH、DE,可得平行四边形BDEM、等边△MHE,可得出∠GAH =∠GHA=15°,求出GA=GH=•EH=,求出AE=,可求出AB和BG长,Rt△BGK中,可得∠GBK=45°,求出GK=BK=,Rt△QGK中勾股定理可得QK=,延长BK到T使KT=PK,连接GK则△BKP≌△GKT,得出∠KGT=∠KBP,可得QG=QT=15,则PK可求出,GP=GK﹣PK=.【解答】(1)证明:∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵四边形BFEG内接于⊙O,∴∠BGE+∠BFE=180°∵∠BGE+∠AGE=180°,∴∠BFE=∠AGE,∵△AGM中,∠BAD+∠AGE+∠AMG=180°,△ANF中,∠CAD+∠BFE+∠ANF=180°,∴∠AMG=∠ANF,∵∠ANF=∠BND,∴∠AMG=∠BND;(2)证明:如图,连接DE,∵AB=AC,AD⊥BC,∴BD=CD,∵AE=CE,∴DE是△ABC的中位线,∴DE∥AB,∴∠DEC=∠BAC,∵∠DEC=∠FBC,∴∠FBC=∠BAC,∵AB=AC,∴∠ABC=∠C,∴∠BFC=∠ABC=∠C,∴BF=BC;(3)解:如图,取AB中点M,连接MH、GH、DE,∵AE=CE,∴四边形BDEM是平行四边形,∴ME∥BD,∴∠GME=∠ABC,∵∠ABC=∠C,∠C=∠EDC=∠BGE,∴∠MGE=∠GME,∴GE=ME,∵MH=ME,EH=EG,∴△MHE是等边三角形,∵AD垂直平分BC,∴AH垂直平分ME,∴∠GAH=∠GHA=15°,∴GA=CH=•EH==,∴在△AGE中,AE=,∴AB=AC=,∴BG=AB﹣AG=,∵Rt△BGK中,可得∠GBK=45°,∴GK=BK=,∴Rt△QGK中,QK==,延长BK到T使KT=PK,连接GK,∵∠BKP=∠GKT,∴△BKP≌△GKT(SAS),∴∠KGT=∠KBP,∴∠BPK=∠GTK,∵∠QGT=∠KGQ+∠KGT=∠KGQ+∠PBK,∠KGQ=2∠GBP,∴∠QGT=2∠GBP+∠PBK,∵∠PBK=45°﹣∠GBP,∴∠QGT=45°+∠PBG=∠BPK,∴∠QGT=∠GTK,∴QG=QT=15,∴PK=KT=QT﹣QK=,∴GP=GK﹣PK=12=.27.如图,直线y=x+6与x轴、y轴交于A、B两点,点C在第四象限,BC⊥AB,且BC =AB;(1)如图1,求点C的坐标;(2)如图2,D是BC的中点,过D作AC的垂线EF交AC于E,交直线AB于F,连接CF,点P为射线AD上一动点,求PF2﹣PC2的值;(3)如图3,在(2)的条件下,在第二象限过点A作线段AM⊥AB于点A,在线段AB 上取一点N,连接MN,使MN=BN,在第三象限取一点Q,使∠NMQ=90°,连接QC,若QC∥AB,且QC=6AM,设点P的横坐标为t,△PMQ的面积为s,求s与t的函数关系式.【分析】(1)过C作CH⊥y轴于H,则∠BCH+∠CBH=90°,证明△BHC≌△AOB(AAS)即可解决问题.(2)(2)如图2中,设射线AD交CF于G.证明△ABD≌△CBF(SAS),利用勾股定理解决问题即可.(3)如图3中,连接BM,BQ,过B作BK⊥QM延长线于点K,延长MA交QC于点T,可得正方形ABCT.证明△BKM≌△BAM(ASA),推出BA=BK=BC,MK=MA,证明Rt△BKQ≌Rt△BCQ(HL),推出QK=QC,设AM=a,则QK=QC=6a,在Rt△QMT中,MQ=5a,MT=a+10,QT=6a﹣10,勾股定理可得a=,由tan∠MNA=tan∠QMT=tan∠BAO=,推出QT=10,MQ=,MT=,作PS⊥MQ于点S,根据,计算即可.【解答】解:(1)如图1中,在y=x+6中,令y=0,得x=﹣8;令x=0,得y=6 ∴A(﹣8,0),B(0,6),∴OA=8,OB=6,过C作CH⊥y轴于H,则∠BCH+∠CBH=90°,∵BC⊥AB,∴∠ABO+∠CBH=90°,∴∠BCH=∠ABO,又∠BHC=∠AOB=90°,BC=AB,∴△BHC≌△AOB(AAS),∴HC=OB=6,BH=OA=8,OH=8﹣6=2,∴C(6,﹣2).(2)如图2中,设射线AD交CF于G.∵BC⊥AB,BC=AB,∴∠BAC=45°∵EF⊥AC,∴∠AFE=45°∴△BDF是等腰直角三角形,∴BD=BF,又∠ABD=∠CBF=90°,AB=CB∴△ABD≌△CBF(SAS),∴∠BAD=∠BCF,∵∠BDA=∠CDG,∴∠CGD=∠ABD=90°,即AD⊥CF,∵OA=8,OB=6,∴AB==10,∴BC=10,∴BF=BD=5,∴PF2﹣PC2=(PG2+FG2)﹣(PG2+CG2)=FG2﹣CG2=(DF2﹣DG2)﹣(DC2﹣DG2)=DF2﹣DC2=DF2﹣BD2=BF2=25(3)如图3中,连接BM,BQ,过B作BK⊥QM延长线于点K,延长MA交QC于点T,可得正方形ABCT.∵MN=BN,∴∠NMB=∠NBM,∵BK⊥QK,NM⊥QK,∴BK∥MN,∴∠KBM=∠BMN,∴∠KBM=∠MBA,∵MB=MB,∠K=∠BAM=90°∴△BKM≌△BAM(ASA),∴BA=BK=BC,MK=MA,∴Rt△BKQ≌Rt△BCQ(HL),∴QK=QC,设AM=a,则QK=QC=6a,在Rt△QMT中,MQ=5a,MT=a+10,QT=6a﹣10,勾股定理可得a=,∵tan∠MNA=tan∠QMT=tan∠BAO=,∴QT=10,MQ=,MT=∴MN∥x轴,MQ∥y轴,作PS⊥MQ于点S,∴,设MQ与x轴交于点I,Rt△MAI中,AI=2,作AL⊥PS于点L,得矩形ALSI,∴PS=PL+LS=t+10,∴,∴.中考一模数学试卷及答案1. 1的一个有理化因式是()【A【B【C 1【D 12. 为了了解学生双休日做作业的时间,老师随机抽查了10位学生双休日做作业时间,结果如下表所示:作业时间(分钟)90 100 120 150 200 人数2 2 23 1 那么这10位学生双休日做作业时间的中位数与众数分别是()【A 】150,150【B 】120,150【C 】135,150【D 】150,1203. 已知P 是ABC ∆内一点,联接PA 、PB 、PC ,把ABC ∆的面积三等分,则P 点一定是()【A 】ABC ∆的三边中垂线的交点【B 】ABC ∆的三条角平分线的交点【C 】ABC ∆的三条高的叫点【D 】ABC ∆的三条中线的交点4. 下列运算正确的是个数是①236x x x +=;②235x x x =;③236(3x )9x =;④224(2x )4x =()【A 】1个【B 】2个【C 】3个【D 】4个5. 在平面直角坐标系内,点A 的坐标为(1,0),点B 的坐标为(a,0),圆A 的半径为2,下列说法中不正确的是()【A 】当a=-1时,点B 在圆A 上【B 】当a 〈1时,点B 在圆A 内【C 】当a 〈 -1时,点B 在圆A 外【D 】当-1 〈a 〈3时,点B 在圆A 内6. 下列命题中,属于假命题的是()【A 】 对角线相等的梯形是等腰梯形【B 】两腰相等的梯形是等腰梯形【C 】底角相等的梯形是等腰梯形【D 】等腰三角形被平行于底边的直线截成两部分,所截得的四边形的等腰梯形一、填空题(本大题共12题,每题4分,满分48分)7. 科学家发现一种病毒的直径为0.000104米,用科学计数法表示为_______米8. 方程的23x x +=-根是_______9. 已知关于x 的一元二次方程210x bx ++=有两个不相等的实数根,则b 的值为_________10. 将抛物线22y x x =+向左平移两个单位长度,再向下平移3个长度单位,得到的抛物线的表达式为_________11. 已知反比例函数的图像经过点(2,1)p -,则这个函数的图像分别在第_________象限。

广西南宁市数学中考一模试卷

广西南宁市数学中考一模试卷

广西南宁市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)下列计算正确的是()A . (﹣14)﹣(+5)=﹣19B . 0﹣(﹣3)=0C . (﹣3)﹣(﹣3)=﹣6D . |5﹣3|=﹣(5﹣3)2. (2分)(2018·安顺模拟) 下面的计算正确的是()A . 6a﹣5a=1B . a+2a2=3a3C . ﹣(a﹣b)=﹣a+bD . 2(a+b)=2a+b3. (2分)下列是某同学在一次测验中解答的填空题,其中填错了的是()A . -2的相反数是2B . |-2|=2C . ∠α=32.7°,∠β=32°42′,则∠α-∠β=0度D . 函数y=的自变量x的取值范围是x<14. (2分)(2018·南通) —个空间几何体的主视图和左视图都是边长为的正三角形,俯视图是一个圆,那么这个几何体的表面积是()A .B .C .D .5. (2分)某班七个合作学习小组人数如下:4、5、5、x、6、7、8,已知这组数据的平均数是6,则这组数据的中位数是()A . 5B . 5.5C . 6D . 76. (2分)如图,关于抛物线y=(x-1)2-2,下列说法错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=lC . 开口方向向上D . 当x>1时,Y随X的增大而减小7. (2分)如图,△ABC中,∠ACB=90°,CD⊥AB,∠A=30°,那么S△ABC:S△BCD=()A . 2:1B . :1C . 3:1D . 4:18. (2分)(2018·威海) 矩形ABCD与CEFG,如图放置,点B,C,E共线,点C,D,G共线,连接AF,取AF的中点H,连接GH.若BC=EF=2,CD=CE=1,则GH=()A . 1B .C .D .二、填空题 (共8题;共13分)9. (1分)地球绕太阳转动每小时经过的路程约为1.1×105km,声音在空气中每小时传播1.2×103km,地球绕太阳转动的速度与声音传播的速度哪个快?________10. (6分) (2019九下·沈阳月考) 某校在一次考试中,甲乙两班学生的数学成绩统计如下:分数5060708090100人数甲161211155乙351531311请根据表格提供的信息回答下列问题:(1)甲班众数为________分,乙班众数为________分,从众数看成绩较好的是________班.(2)甲班的中位数是________分,乙班的中位数是________分.(3)若成绩在85分以上为优秀,则成绩较好的是________班.11. (1分)从-3,-2,-1,0,2,3这七个数中,随机取出一个数,记为a,那么a使关于x的方程有整数解,且使关于x的不等式组有解的概率为________.12. (1分) (2017·绥化) 因式分解:x2﹣9=________.13. (1分) (2019七下·厦门期中) 如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=40°,则下列结论:①∠BOE=70°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中符合题意结论有________填序号)14. (1分) (2019八下·江苏月考) 已知:如图,在正方形ABCD中,AC,BD交于点O,延长CB到点E,使BE=BC,连结DE交AB于点F,若正方形的ABCD的边长为6,则OF的长为________15. (1分) (2017八下·宜兴期中) 如图,将△ABC沿它的中位线MN折叠后,点A落在点A′处,若∠A=30°,∠B=115°,则∠A′NC=________°.16. (1分) (2019九上·锦州期末) 如图,已知点A在反比例函数图象上,AC⊥y轴于点C,点B在x轴的负半轴上,且△ABC的面积为3,则该反比例函数的表达式为________.三、解答题 (共11题;共111分)17. (5分) (2016七上·南江期末) 先化简,再求值:3xy2﹣(﹣4x2y+6xy2)+2(xy2﹣4x2y),其中|x+2|+2(y﹣)4=0.18. (10分) (2019八下·邓州期中)(1)化简:( +1)÷ ;(2)解方程: - =1.19. (5分)先化简,再求值:+,其中x=2sin30°﹣1.20. (11分)(2016·嘉善模拟) 随着互联网、移动终端的迅速发展,数字化阅读越来越普及,公交上的“低头族”越来越多.某研究机构针对“您如何看待数字化阅读”问题进行了随机问卷调查(如图1),并将调查结果绘制成图2和图3所示的统计图(均不完整).请根据统计图中提供的信息,解答下列问题:(1)求出本次接受调查的总人数,并将条形统计图补充完整;(2)表示观点B的扇形的圆心角度数为________度;(3)若嘉善人口总数约为60万,请根据图中信息,估计嘉善市民认同观点D的人数.21. (10分) (2018九上·华安期末) 有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?22. (10分)(2012·茂名) 如图,已知矩形ABCD中,F是BC上一点,且AF=BC,DE⊥AF,垂足是E,连接DF.求证:(1)△ABF≌△DEA;(2) DF是∠EDC的平分线.23. (10分)(2017·温州模拟) 如图,在△ABC中,∠B=45°,AD⊥BC于点D,以D为圆心DC为半径作⊙D 交AD于点G,过点G作⊙D的切线交AB于点F,且F恰好为AB中点.(1)求tan∠ACD的值.(2)连结CG并延长交AB于点H,若AH=2,求AC的长.24. (10分) (2019九上·海淀期中) 如图,在Rt△ABC 中,∠C=90°,以BC为直径的半圆交AB于点D,O是该半圆所在圆的圆心,E为线段AC上一点,且ED=EA.(1)求证:ED是⊙O的切线;(2)若,∠A=30°,求⊙O的半径.25. (15分) (2019九上·台州开学考) 设二次函数y=(x-x1)(x-x2) (x1 , x2 为实数)(1)甲求得当x=0时,y=0;当x=1时,y=0;乙求得当x= 时,y=- 。

【3套试卷】南宁市中考第一次模拟考试数学精选含答案

【3套试卷】南宁市中考第一次模拟考试数学精选含答案

中考第一次模拟考试数学试卷时量:120 分钟满分:120 分一、选择题(本题共12 小题,每题3分,共36 分)11.的倒数是()2018A.12018 B. 2018 C. -2018D.-120182.下列图形中,是轴对称图形,但不是中心对称图形的是()A. B. C. D.3.下列计算正确的是()A. a2 ⋅a3 =a6B. 2a + 3a = 6aC. a2 +a2 +a2 = 3a2D. a2 +a2 +a2 =a64.下列调查中,最适合采用抽样调查的是()A.对某地区现有的16 名百岁老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校九年级三班学生视力情况的调查D.对市场上某一品牌电脑使用寿命的调查5.估计2 +1的值应在()A. 3 和4 之间B. 4 和5 之间C. 5 和6 之间D. 6 和7 之间6.若x=-3 ,y=1,则代数式2x - 3y +1的值为()A.-10B.-8C. 4D. 107.要使分式4x - 3有意义,x应满足的条件是()A.x > 3B.x = 3C.x < 3D.x ≠ 358.若将点A(1, 3)向左平移2 个单位,再向下平移4 个单位得到点B,则点B的坐标为()A. (-2, -1)B. (-1, 0)C. (-1,-1)D. (-2, 0)9.若∆ABC∽∆DEF ,相似比为3 : 2 ,则对应边的中线比为()A. 3 : 2B. 3 : 5C. 9 : 4D. 4 : 910.如图,在矩形A BCD 中,C D =1,∠DBC = 30︒,若将B D 绕点B旋转后,点D落在B C 延长线上的点E处,点D经过的路径D E ,则图中阴影部分的面积是()11.如图,已知E是菱形ABCD 的边B C 上一,且∠DAE =∠B =点80︒,那么∠CDE 的度数为(A.B. C. D. 3512.二次函数y =ax2 +bx +c (a ≠ 0)的部分图象如图所示,图象经过点(-1, 0),对称轴为直线x = 2 ,下则x1<-1 < 5 <x2.其中正确的结论有()A. 2 个B. 3 个C. 4 个D. 5 个二、填空题(每小题3 分,共18 分)13.由中国发起创立的“亚洲基础设施投资银行”的法定资本金为100000000000 美元,用科学记数法表示为美元.14.扇形OAB 的圆心角为120︒,半径为3 ,则该扇形的弧长为(结果保留π).315.如图, A B 是 O 的直径,弦CD ⊥ AB ,垂足为 E ,若∠CAB = 22.5为 cm .,CD = 8cm ,则 O 的半径第 15 题图第 16 题图 第 18 题图16. 如图, 直线 y = kx 与双曲线 y = 2交于 A 、 B 两点, BC ⊥ y 轴于点 C ,则 ∆ABC 的面积为x.17.点(-1, y 1 )、(2, y 2 ) 是直线 y = 2x +1上的两点,则 y 1y 2 (填“ > ”“ = ”或“ < ”).18.如图,小明在大楼30 米高即( P H = 30 米)的窗口 P 处进行观测,测得山坡上 A 处的俯角为,山 脚 B 处的俯角为,已知该山坡的坡度i (即tan ∠ABC )为1:,点P , H , B ,C , A 在同一平 面上,点 H 、 B 、C 在同一条直线上,且 P H ⊥ HC ,则 A 到 B C 的距离为 米.三、解答题:21.如图,四边形ABCD 中,AB / /DC ,∠B = 90︒,F 为DC 上一点,且FC =AB ,E 为AD 上一点,EC 交AF 于点G .(1)求证:四边形ABCF 是矩形;(2)若ED =EC ,求证:EA =EG .22.某数学兴趣小组在全校范围内随即抽取了50 名同学进行“舌尖上的长沙——我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图.请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000 名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A 、B 、C 、D ,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“ A ”的概率.O23.“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设,渝利铁路通车后,从重庆到上海比原铁路全程缩短了320 千米,列车设计运行时速比原铁路设计运行时速提高了120 千米/小时,全程设计运行时间只需8 小时,比原铁路设计运行时间少用16 小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时时速减少 m % ,以便于有充分时间应对突发事件, m这样,从重庆到上海的实际运行时间将增加10小时,求 m 的值.24.如图,在 R t ∆ABC 中, ∠ABC =90︒, D 是 A C 的中点, O 经过 A 、 B 、 D 三点, C B 的延长线交 O 于点 E .(1)求证: AE = CE ;( 2 ) EF 与 相切于点 E ,交 AC 的延长线于点 F ,若CD = CF = 2cm ,求 O 的直径;(3)若CF= n (n > 0),求sin ∠CAB .CD1 25.定义:若在某区间内某函数的图象均在 x 轴上或 x 轴的上方,则该区间称为这个函数的正能量区间. 如 当 x ≥1时,函数 y = 2x -1的图象均在 x 轴上或 x 轴的上方,则 x ≥1叫做函数 y = 2x -1的正能量区间. 22(2)经过点(2, 3)的一次函数的正能量区间为 x ≥ 1,求一次函数的解析式;(3)如果抛物线 y = ax 2+ bx + c (a ≠ 0) 与 x 轴交于点 A ( x ,0) 和点B ( x ,0) ,那么我们把 A 、B 两 12点 之间 的距 离叫 作抛物 线在 x 轴上的 “ 截距 ” ,设 m , n 为 正 整数 , 且 m ≠ 2 , 抛物 线y = x 2 + (3 - mt ) x - 3mt 在 x 轴上的“截距”为d ,抛物线 y = -x 2+ (2t - n ) x + 2nt 在 x 轴上的“截距”为 d , s = d 2 - d 2 ,试表示出 s 与t 之间的函数关系式,若全体实数为该函数的正能量区间,求 m , n 的 212值.(26.如图,已知抛物线 y =1 x 2 - 1 (b +1) x + b4 4 4b 是实数且b > 2 )与 x 轴的正半轴分别交于点 A 、B (点A位于点B的,与 y 轴的正半轴交于点C .(1)点 B的坐标为 ,点C的坐标为 (用含b的代数式;(2)若点 P 在第一象限内,且使得∆PBC 是以点 P 为直角顶点的等腰直角三角形,求直线OP 的解析式; (3)请你进一步探索在第一象限内是否存在点Q ,使得∆QCO , ∆QOA 和∆QAB 中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q 的坐标;如果不存在,请说明理由.中考第一次模拟考试数学试题一.选择题(共10小题)1.下面几何体的主视图是()A.B.C.D.2.如图是一只茶壶,这只茶壶的俯视图的是()A.B.C.D.3.对于反比例函数y=,当x>1时,y的取值范围是()A.y>3或y<0 B.y<3 C.y>3 D.0<y<34.已知反比例函数y=的图象如图所示,则一次函数y=kx+b的图象可能是()A.B.C.D.5.如图,一辆小车沿斜坡向上行驶13米,斜坡的坡度是1:2.4,则小车上升的高度是()A.5米B.6米C.65米D.12米6.在Rt△ABC中,∠C=90°,a=1,b=,则∠A=()A.30°B.45°C.60°D.90°7.如图,路灯P距地面8米,身高1.6米的小明站在距离灯杆的底部(点O)8米的点A 处,小明的影长是()A.1.6米B.1.8米C.2米D.2.2米8.如图,线段BC的两端点的坐标分别为B(3,8),C(6,3),以点A(1,0)为位似中心,将线段BC缩小为原来的后得到线段DE,则端点D的坐标为()A.(1,4)B.(2,4)C.(,4)D.(2,2)9.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为()A.B.C.D.10.如图,将足够大的等腰直角三角板PCD的锐角顶点P放在另一个等腰直角三角板PAB的直角顶点处,三角板PCD绕点P在平面内转动,且∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,设AB=2,AN=x,BM=y,则能反映y与x的函数关系的图象大致是()A.B.C.D.二.填空题(共8小题)11.若点A(1,m)在反比例函数y=的图象上,则m的值为.12.关于x的方程2x2﹣x+m=0有两个相等的实数根,则此方程的解是.13.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,∠A=50°,则∠E+∠F=.14.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小,使变换后得到的△DEF与△ABC对应边的比为1:2,则线段AC 的中点P变换后对应的点的坐标为.15.如图,在四边形ABCD中,∠A=∠B=90°,AB=6,AD=1,BC=2,P为AB边上的动点,当△PAD与△PBC相似时,PA=.16.已知抛物线y=x2﹣2x+m与坐标轴有三个公共点,则m的取值范围为.17.如图,点A在反比例函数y=(x>0)的图象上,AC⊥x轴,垂足为C,B在OC延长线上,∠CAB=30°,直线CD⊥AB,CD与AB和y轴交点分别为D,E,连接BE,△BCE 的面积为1,则k的值是.18.如图,在平面直角坐标系xOy的第一象限内依次作等边三角形△A1B1A2,△A2B2A3,△A3B3A4…,点A1,A2,A3,…,在x轴的正半轴上,点B1,B2,B3,…,在射线OM上,若∠B1OA1=30°,OA1=1,则点B2019坐标是.三.解答题(共8小题)19.计算(1)2sin30°﹣3tan230°+tan260°;(2)cos30°﹣sin45°+tan45°•cos60°.20.如图,已知E是平行四边形ABCD中DA边的延长线上一点,且AD=2AE,连接EC分别交AB,BD于点F,G.(1)求证:BF=2AF;(2)若BD=20cm,求DG的长.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?22.如图,AB=AC,⊙O为△ABC的外接圆,AF为⊙O的直径,四边形ABCD是平行四边形.(1)求证:AD是⊙O的切线;(2)若∠BAC=45°,AF=2,求阴影部分的面积.23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到0.1cm)(参考数据:sin15°≈0.259,cos15°≈0.966,tan15°≈0.268,≈1.414)24.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A 型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?25.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G 为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.26.如图,直线y=x﹣2与x轴交于点B,与y轴交于点A,抛物线y=ax2﹣x+c经过A,B两点,与x轴的另一交点为C.(1)求抛物线的解析式;(2)M为抛物线上一点,直线AM与x轴交于点N,当=时,求点M的坐标;(3)P为抛物线上的动点,连接AP,当∠PAB与△AOB的一个内角相等时,直接写出点P的坐标.参考答案与试题解析一.选择题(共10小题)1.下面几何体的主视图是()A.B.C.D.【分析】根据主视图就是从物体的正面进行观察,得出主视图有3列,小正方形数目分别为2,1,1.【解答】解:如图所示:.故选:C.2.如图是一只茶壶,这只茶壶的俯视图的是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:这只茶壶的俯视图如图:故选:A.3.对于反比例函数y=,当x>1时,y的取值范围是()A.y>3或y<0 B.y<3 C.y>3 D.0<y<3【分析】先求出x=1时y的值,再根据反比例函数的性质即可得出结论.【解答】解:当x=1时,y=3,∵反比例函数y=中,k=3>0,∴在第一象限内y随x的增大而减小,∴0<y<3.故选:D.4.已知反比例函数y=的图象如图所示,则一次函数y=kx+b的图象可能是()A.B.C.D.【分析】由反比例函数的图象可知:kb<0,然后分情况讨论k、b与0的大小关系即可.【解答】解:由反比例函数的图象可知:kb<0,当k>0,b<0时,∴直线经过一、三、四象限,当k<0,b>0时,∴直线经过一、二、四象限,故选:C.5.如图,一辆小车沿斜坡向上行驶13米,斜坡的坡度是1:2.4,则小车上升的高度是()A.5米B.6米C.65米D.12米【分析】在Rt△ABC中,设BC=5k,AC=12k,利用勾股定理求出k即可解决问题.【解答】解:作BC⊥AC.在Rt△ABC中,∵AB=13m,BC:AC=1:2.4=5:12,∴可以假设:BC=5k,AC=12k,∵AB2=BC2+AC2,∴132=(5k)2+(12k)2,∴k=1,∴BC=5m,故选:A.6.在Rt△ABC中,∠C=90°,a=1,b=,则∠A=()A.30°B.45°C.60°D.90°【分析】首先画出图形,进而利用锐角三角函数关系的定义得出即可.【解答】解:如图所示:∵在Rt△ABC中,∠C=90°,a=1,b=,∴tan A==.∴∠A=30°,故选:A.7.如图,路灯P距地面8米,身高1.6米的小明站在距离灯杆的底部(点O)8米的点A 处,小明的影长是()A.1.6米B.1.8米C.2米D.2.2米【分析】直接利用相似三角形的性质解答即可.【解答】解:由图可知:△CAB∽△COP,∴,即,解得:AC=2,故选:C.8.如图,线段BC的两端点的坐标分别为B(3,8),C(6,3),以点A(1,0)为位似中心,将线段BC缩小为原来的后得到线段DE,则端点D的坐标为()A.(1,4)B.(2,4)C.(,4)D.(2,2)【分析】根据位似变换的概念得到△ADE∽△ABC,根据相似三角形的性质得到点D是线段AB的中点,根据坐标与图形性质解答即可.【解答】解:∵将线段BC缩小为原来的后得到线段DE,∴△ADE∽△ABC,∴==,∴点D是线段AB的中点,∵A(1,0),B(3,8),∴点D的坐标为(2,4),故选:B.9.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为()A.B.C.D.【分析】连接CD,作DM⊥BC,DN⊥AC,证明△DMG≌△DNH,则S四边形DGCH=S四边形DMCN,求得扇形FDE的面积,则阴影部分的面积即可求得.【解答】解:连接CD,作DM⊥BC,DN⊥AC.∵CA=CB,∠ACB=90°,点D为AB的中点,∴DC=AB=1,四边形DMCN是正方形,DM=.则扇形FDE的面积是:=.∵CA=CB,∠ACB=90°,点D为AB的中点,∴CD平分∠BCA,又∵DM⊥BC,DN⊥AC,∴DM=DN,∵∠GDH=∠MDN=90°,∴∠GDM=∠HDN,则在△DMG和△DNH中,,∴△DMG≌△DNH(AAS),∴S四边形DGCH=S四边形DMCN=.则阴影部分的面积是:﹣.10.如图,将足够大的等腰直角三角板PCD的锐角顶点P放在另一个等腰直角三角板PAB 的直角顶点处,三角板PCD绕点P在平面内转动,且∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,设AB=2,AN=x,BM=y,则能反映y与x的函数关系的图象大致是()A.B.C.D.【分析】作PH⊥AB于H,根据等腰直角三角形的性质得∠A=∠B=45°,AH=BH=AB =1,则可判断△PAH和△PBH都是等腰直角三角形,得到PA=PB=AH=,∠HPB =45°,由于∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,而∠CPD=45°,所以1≤x≤2,再证明∠2=∠BPM,这样可判断△ANP∽△BPM,利用相似比得=,则y=,所以得到y与x的函数关系的图象为反比例函数图象,且自变量为1≤x≤2.【解答】解:作PH⊥AB于H,如图,∵△PAB为等腰直角三角形,∴∠A=∠B=45°,AH=BH=AB=1,∴△PAH和△PBH都是等腰直角三角形,∴PA=PB=AH=,∠HPB=45°,∵∠CPD的两边始终与斜边AB相交,PC交AB于点M,PD交AB于点N,而∠CPD=45°,∴1≤AN≤2,即1≤x≤2,∵∠2=∠1+∠B=∠1+45°,∠BPM=∠1+∠CPD=∠1+45°,∴∠2=∠BPM,而∠A=∠B,∴△ANP∽△BPM,∴=,即=,∴y=,∴y与x的函数关系的图象为反比例函数图象,且自变量为1≤x≤2.故选:A.二.填空题(共8小题)11.若点A(1,m)在反比例函数y=的图象上,则m的值为 3 .【分析】直接把点A(1,m)代入函数解析式,即可求出m的值.【解答】解:∵点A(1,m)在反比例函数y=的图象上,∴m==3.故答案为:3.12.关于x的方程2x2﹣x+m=0有两个相等的实数根,则此方程的解是x1=x2=.【分析】根据根的判别式即可求出答案.【解答】解:由题意可知:△=1﹣8m=0,∴m=,∴原方程为:2x2﹣x+=0,∴16x2﹣8x+1=0,∴(4x﹣1)2=0,∴x1=x2=,故答案为:x1=x2=13.如图,四边形ABCD内接于⊙O,AD、BC的延长线相交于点E,AB、DC的延长线相交于点F,∠A=50°,则∠E+∠F=80°.【分析】根据圆内接四边形的性质得到∠ADC+∠ABC=180°,∠ECD=∠A=50°,∠BCF =∠A=50°,根据三角形内角和定理计算即可.【解答】解:∵四边形ABCD内接于⊙O,∴∠ADC+∠ABC=180°,∠ECD=∠A=50°,∠BCF=∠A=50°,∴∠EDC+∠FBC=180°,∴∠E+∠F=360°﹣180°﹣50°﹣50°=80°,故答案为:80°.14.如图,△ABC三个顶点的坐标分别为A(2,2),B(4,2),C(6,4),以原点O为位似中心,将△ABC缩小,使变换后得到的△DEF与△ABC对应边的比为1:2,则线段AC 的中点P变换后对应的点的坐标为(2,)或(﹣2,).【分析】位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.本题中k=2或﹣2.【解答】解:∵两个图形的位似比是1:(﹣)或1:,AC的中点是(4,3),∴对应点是(2,)或(﹣2,).15.如图,在四边形ABCD中,∠A=∠B=90°,AB=6,AD=1,BC=2,P为AB边上的动点,当△PAD与△PBC相似时,PA=2或3+或3﹣.【分析】由于∠A=∠B=90°,故要使△PAD与△PBC相似,分两种情况讨论:①△APD ∽△BPC,②△APD∽△BCP,这两种情况都可以根据相似三角形对应边的比相等求出AP 的长即可.【解答】解:∵∠A=∠B=90°,AB=6,AD=1,BC=2,∴设AP的长为x,则BP长为6﹣x,若AB边上存在P点,使△PAD与△PBC相似,那么分两种情况:①当∠APD=∠BPC时,△APD∽△BPC,则AP:BP=AD:BC,即x:(6﹣x)=1:2,解得:x=2,②当∠APD=∠BCP时,△APD∽△BCP,则AP:BC=AD:BP,即x:2=1:(6﹣x),解得:x=3±,③当∠APD=∠B时,此时不符合题意,舍去,故答案为:2或3+或3﹣.16.已知抛物线y=x2﹣2x+m与坐标轴有三个公共点,则m的取值范围为m<1且m≠0 .【分析】由抛物线y=x2﹣2x+m与坐标轴有三个公共点知抛物线不过原点且与x轴有两个交点,据此可得.【解答】解:∵抛物线y=x2﹣2x+m与坐标轴有三个公共点,∴△=(﹣2)2﹣4×1×m>0,且m≠0,解得:m<1且m≠0,故答案为:m<1且m≠0.17.如图,点A在反比例函数y=(x>0)的图象上,AC⊥x轴,垂足为C,B在OC延长线上,∠CAB=30°,直线CD⊥AB,CD与AB和y轴交点分别为D,E,连接BE,△BCE 的面积为1,则k的值是 6 .【分析】设A(n,m),B(t,0),则OC=n,AC=m,解直角三角形求出BC和OE的长,然后利用三角形的面积公式可得到mn=6,即得到k的值.【解答】解:设A(n,m),则OC=n,AC=m,∵AC⊥BC,∠CAB=30°,∴∠ABC=60°,∵CD⊥AB,∴∠OCE=∠BCD=30°,在Rt△ABC中,BC=AC=m,在Rt△EOC中,OE=OC=n,∵△BCE的面积为1,∴S△BCE=•OE•BC=1,∴•n•m=1,∴mn=6,∵点A在反比例函数y=(x>0)的图象上,∴k=mn=6.故答案为6.18.如图,在平面直角坐标系xOy的第一象限内依次作等边三角形△A1B1A2,△A2B2A3,△A3B3A4…,点A1,A2,A3,…,在x轴的正半轴上,点B1,B2,B3,…,在射线OM上,若∠B1OA1=30°,OA1=1,则点B2019坐标是(3×22017,×22017).【分析】根据点的坐标规律,利用等边三角形的性质、勾股定理、锐角三角函数值即可求解.【解答】解:根据题意,得等边三角形△A1B1A2,△A2B2A3,△A3B3A4…,∵∠B1OA1=30°,OA1=1,∠B1A1A2=∠A1A2B1=∠A2B1A1=60°,∴∠OB1A1=30°,∴∠OB1A2=90°,∴A1A2=A2B1=A1B1=OA1=1,所以B1的横坐标为1+=,纵坐标为×tan30°=×=;同理可得:B2的横坐标为2+1=3,纵坐标为3×=;B3的横坐标为4+2=22+21,B4的横坐标为8+4=23+22,B5的横坐标为16+8=24+23,…B n的横坐标为2n﹣1+2n﹣2=2n﹣2(2+1)=3×2n﹣2,纵坐标为3×2n﹣2×tan30°=×2n﹣2.所以B2019的坐标为(3×22017,×22017)三.解答题(共8小题)19.计算(1)2sin30°﹣3tan230°+tan260°;(2)cos30°﹣sin45°+tan45°•cos60°.【分析】(1)直接利用特殊角的三角函数值进而代入求出答案;(2)直接利用特殊角的三角函数值进而代入求出答案.【解答】解:(1)2sin30°﹣3tan230°+tan260°=2×﹣3×()2+()2=1﹣1+3=3;(2)cos30°﹣sin45°+tan45°•cos60°=×﹣×+1×=﹣1+=1.20.如图,已知E是平行四边形ABCD中DA边的延长线上一点,且AD=2AE,连接EC分别交AB,BD于点F,G.(1)求证:BF=2AF;(2)若BD=20cm,求DG的长.【分析】(1)根据平行四边形的性质得到AB∥CD,AD∥BC,利用平行线分线段成比例定理得到==,则==,从而得到结论;(2)根据平行四边形的性质AB=CD,则利用BF=2AF得到BF=AB=CD,再利用BF∥CD,根据平行线分线段成比例定理得到==,然后根据比例的性质求DG的长.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AB∥CD,AD∥BC,∵AF∥CD,∴==,∵AE∥BC,∴==,∴BF=2AF;(2)解:∵四边形ABCD为平行四边形,∴AB=CD,而BF=2AF,∴BF=AB=CD,∵BF∥CD,∴==,∴=,∴DG=BD=×20=12cm.21.某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体试验,测得成人服药后血液中药物浓度y(微克/毫升)与服药时间x小时之间函数关系如图所示(当4≤x≤10时,y与x成反比例).(1)根据图象分别求出血液中药物浓度上升和下降阶段y与x之间的函数关系式.(2)问血液中药物浓度不低于4微克/毫升的持续时间多少小时?【分析】(1)分别利用正比例函数以及反比例函数解析式求法得出即可;(2)利用y=4分别得出x的值,进而得出答案.【解答】解:(1)当0≤x≤4时,设直线解析式为:y=kx,将(4,8)代入得:8=4k,解得:k=2,故直线解析式为:y=2x,当4≤x≤10时,设反比例函数解析式为:y=,将(4,8)代入得:8=,解得:a=32,故反比例函数解析式为:y=;因此血液中药物浓度上升阶段的函数关系式为y=2x(0≤x≤4),下降阶段的函数关系式为y=(4≤x≤10).(2)当y=4,则4=2x,解得:x=2,当y=4,则4=,解得:x=8,∵8﹣2=6(小时),∴血液中药物浓度不低于4微克/毫升的持续时间6小时.22.如图,AB=AC,⊙O为△ABC的外接圆,AF为⊙O的直径,四边形ABCD是平行四边形.(1)求证:AD是⊙O的切线;(2)若∠BAC=45°,AF=2,求阴影部分的面积.【分析】(1)根据垂径定理得到AF⊥BC,根据平行四边形的性质得到AD∥BC,求得AD ⊥AF,于是得到AD是⊙O的切线;(2)连接OC,OB,根据圆周角定理得到∠BOC=90°,根据勾股定理得到BC=,求得AD=BC=,连接OE,根据梯形和扇形的面积公式即可得到结论.【解答】解:(1)∵AB=AC,∴=,∵AF为⊙O的直径,∴AF⊥BC,∵四边形ABCD是平行四边形,∴AD∥BC,∠AD⊥AF,∴AD是⊙O的切线;(2)连接OC,OB,∵∠BAC=45°,∴∠BOC=90°,∵AF=2,∴OB=OC=1,∴BC=,∵四边形ABCD是平行四边形,∴AD=BC=,连接OE,∵AB∥BD,∴∠ACE=∠BAC=45°,∴∠AOE=2∠ACE=90°,∵OA=OE=1,∴阴影部分的面积=S梯形AOED﹣S扇形AOE=(1+)×1﹣=﹣.23.如图,图①是某电脑液晶显示器的侧面图,显示屏AO可以绕点O旋转一定的角度.研究表明:显示屏顶端A与底座B的连线AB与水平线BC垂直时(如图②),人观看屏幕最舒适.此时测得∠BAO=15°,AO=30cm,∠OBC=45°,求AB的长度.(结果精确到0.1cm)(参考数据:sin15°≈0.259,cos15°≈0.966,tan15°≈0.268,≈1.414)【分析】过O点作OD⊥AB交AB于D点,根据∠A=15°,AO=30可知OD=AO•sin15°,AD=AO•cos15°,在Rt△BDO中根据∠OBC=45°可知BD=OD,再根据AB=AD+BD即可得出结论.【解答】解:过O点作OD⊥AB交AB于D点.在Rt△ADO中,∵∠A=15°,AO=30,∴OD=AO•sin15°=30×0.259=7.77(cm)AD=AO•cos15°=30×0.966=28.98(cm)又∵在Rt△BDO中,∠OBC=45°,∴BD=OD=7.77(cm),∴AB=AD+BD=36.75≈36.8(cm).答:AB的长度为36.8cm.24.国家推行“节能减排,低碳经济”政策后,低排量的汽车比较畅销,某汽车经销商购进A、B两种型号的低排量汽车,其中A型汽车的进货单价比B型汽车的进货单价多2万元;花50万元购进A型汽车的数量与花40万元购进B型汽车的数量相同.(1)求A、B两种型号汽车的进货单价;(2)销售中发现A型汽车的每周销量y A(台)与售价x(万元/台)满足函数关系y A=﹣x+20,B型汽车的每周销量y B(台)与售价x(万元/台)满足函数关系y B=﹣x+14,A 型汽车的售价比B型汽车的售价高2万元/台.问A、B两种型号的汽车售价各为多少时,每周销售这两种汽车的总利润最大?最大利润是多少万元?【分析】(1)根据购进两种型号的汽车数量相同列出分式方程即可求解;(2)根据销售利润等于每台汽车的利润乘以销售量列出二次函数关系即可求解.【解答】解:(1)设B型汽车的进货单价为x万元,根据题意,得=,解得x=8,经检验x=8是原分式方程的根.答A、B两种型号汽车的进货单价为:10万元、8万元.(2)设两种汽车的总利润为w万元,根据题意,得w=(x+2﹣10)[﹣(x+2)+18]+(x﹣8)(﹣x+14)=﹣2x2+48x﹣256=﹣2(x﹣12)2+32∵﹣2<0,当x=12时,w有最大值为32.答:A、B两种型号的汽车售价各为14万元、12万元时,每周销售这两种汽车的总利润最大,最大利润是32万元25.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G 为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.【分析】(1)结论:DE=DG.如图1中,连接EG,延长EG交BC的延长线于M,连接DM.证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE(SAS)即可解决问题.(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.证明方法类似.(3)分两种情形:①如图3﹣1中,当E,F,C共线时.②如图3﹣2中,当E,F,C 共线时,分别求解即可.【解答】解:(1)结论:DE=DG.理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.∵四边形ABCD是正方形,∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,∵∠AEF=∠B=90°,∴EF∥CM,∴∠CMG=∠FEG,∵∠CGM=∠EGF,GC=GF,∴△CMG≌△FEG(AAS),∴EF=CM,GM=GE,∵AE=EF,∴AE=CM,∴△DCM≌△DAE(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∴DG⊥EM,DG=GE=GM,∴△EGD是等腰直角三角形,∴DE=DG.(2)如图2中,结论成立.理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.∵EG=GM,FG=GC,∠EGF=∠CGM,∴△CGM≌△FGE(SAS),∴CM=EF,∠CMG=∠GEF,∴CM∥ER,∴∠DCM=∠ERC,∵∠AER+∠ADR=180°,∴∠EAD+∠ERD=180°,∵∠ERD+∠ERC=180°,∴∠DCM=∠EAD,∵AE=EF,∴AE=CM,∴△DAE≌△DCM(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∵EG=GM,∴DG=EG=GM,∴△EDG是等腰直角三角形,∴DE=DG.(3)①如图3﹣1中,当E,F,C共线时,在Rt△ADC中,AC===5,在Rt△AEC中,EC===7,∴CF=CE﹣EF=6,∴CG=CF=3,∵∠DGC=90°,∴DG===4.∴DE=DG=4.②如图3﹣2中,当E,F,C共线时,同法可得DE=3.综上所述,DE的长为4或3.26.如图,直线y=x﹣2与x轴交于点B,与y轴交于点A,抛物线y=ax2﹣x+c经过A,B两点,与x轴的另一交点为C.(1)求抛物线的解析式;(2)M为抛物线上一点,直线AM与x轴交于点N,当=时,求点M的坐标;(3)P为抛物线上的动点,连接AP,当∠PAB与△AOB的一个内角相等时,直接写出点P的坐标.【分析】(1)直线y=x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),即可求解;(2)直线MA的表达式为:y=(m﹣)x﹣2,则点N(,0),当=时,则=,即:=,即可求解;(3)分∠PAB=∠AOB=90°、∠PAB=OAB、∠PAB=OBA三种情况,分别求解即可.【解答】解:(1)直线y=x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=,故抛物线的表达式为:y=x2﹣x﹣2…①;(2)设点M(m,m2﹣m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(m﹣)x﹣2,则点N(,0),当=时,则=,即:=,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2…②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=,即:,解得:x=,则点H(﹣,0),则直线AH的表达式为:y=﹣x﹣2…③,联立①③并解得:x=,故点P(,﹣);③当∠PAB=OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=,故点H(,0),则直线AH的表达式为:y=x﹣2…③,联立①③并解得:x=0或(舍去0),故点P(,);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P的坐标为:(﹣1,0)或(,﹣)或(,)或(3,﹣2).中考模拟考试数学试卷姓名:得分:日期:一、选择题(本大题共 10 小题,共 30 分)1、(3分) 下列实数为无理数的是()A.-5B.C.0D.π2、(3分) 2017年4月1日自贸区青白江片区正式挂牌,仅一年的时间后,地方生产总值达到了475.1亿元,同比增长了10.5%,获得了“全国综合实力百强区”称号.数据“475.1亿”用科学记数法表示为()A.4.751×104B.0.4751×106C.4.51×1010D.0.4751×10113、(3分) 实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.-a>cB.bc>0C.ac>0D.a+c>04、(3分) 如图是由6个大小相同的小立方体搭成的几何体,这个几何体的左视图是()A. B. C. D.5、(3分) 如图形中,既是轴对称图形又是中心对称图形的是()A.B. C.D.6、(3分) 下列计算正确的是()A.a2+a2=2a4B.(-2a3)2=-4a6C.(a+2)(a-1)=a2+a-2D.(a+b)2=a2+b27、(3分) 等腰三角形的两边分别为3和6,则这个三角形的周长是()A.9B.12C.15D.12或158、(3分) 为了解居民用水情况,小明在某小区随机抽查了20户家庭的月用水量,结果如下表:月用水量(m3) 4 5 6 8 9户数 4 5 7 3 1则关于这20户家庭的月用水量,下列说法错误的是()A.中位数是6m3B.平均数是5.8m3C.众数是6m3D.极差是6m39、(3分) 如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°10、(3分) 二次函数y=ax2+bx+c(a≠0)大致的图象如图,关于该二次函数,下列说法错误的是()A.函数有最大值B.对称轴是直线x=D.当时-1<x<2时,y>0C.当x<时,y随x的增大而减小二、填空题(本大题共 9 小题,共 36 分)11、(4分) 函数中,自变量x的取值范围是______.12、(4分) 已知腰长为6cm的等腰三角形,底角为45度,那么它底边上的高等于______cm.13、(4分) 关于x的方程=3的根为x=1,则a=______.14、(4分) 如图,在长方形ABCD中,AB=3,BC=4,AC为对角线,∠DAC的角平分线AE交DC于点E,则CE的长为______.15、(4分) 若m是方程2x2+3x-1=0的根,则式子4m2+6m-2019的值为______.16、(4分) 从-3、-1、、1、3这五个数中,随机抽取一个数,记为a,则关于x的一次函数y=-x+a的图象与坐标轴围成三角形的面积不超过4的概率为______.17、(4分) 在平行四边形ABCD中,动点P从点B出发,沿B⇒C⇒D⇒A运动至点A停止,设点P运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图所示,则四边形ABCD的面积是______.18、(4分) 如图,在Rt△ABC中,∠C=90°,AC=4,cosA=,点D是斜边AB上的动点且不与A,B重合,连接CD,点B'与点B关于直线CD对称,连接B'D,当B'D垂直于Rt△ABC的直角边时,BD的长为______.19、(4分) 如图,在平面直角坐标系中,矩形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,AC长为,若将边AC平移至A'C'处,此时A'坐标为(-4,2),分别连接A'B,C'O,反比例函数y=的图象与四边形A'BOC'对角线A'O交于D点,连接BD.则当BD取得最小值时,k 的值是______ .。

2020年南宁市初三数学下期末一模试题(含答案)

2020年南宁市初三数学下期末一模试题(含答案)

2020年南宁市初三数学下期末一模试题(含答案)一、选择题1.如图,已知a∥b,l与a、b相交,若∠1=70°,则∠2的度数等于()A.120°B.110°C.100°D.70°2.预计到2025年,中国5G用户将超过460 000 000,将460 000 000用科学计数法表示为()A.94.610⨯B.74610⨯C.84.610⨯D.90.4610⨯3.在庆祝新中国成立70周年的校园歌唱比赛中,11名参赛同学的成绩各不相同,按照成绩取前5名进入决赛.如果小明知道了自己的比赛成绩,要判断能否进入决赛,小明需要知道这11名同学成绩的( )A.平均数B.中位数C.众数D.方差4.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x 尺,竿长y尺,则符合题意的方程组是()A.5 {152x yx y=+=-B.5{1+52x yx y=+=C.5{2-5x yx y=+=D.-5{2+5x yx y==5.某商店有方形、圆形两种巧克力,小明如果购买3块方形和5块圆形巧克力,他带的钱会差8元,如果购买5块方形和3块圆形巧克力,他带的钱会剩下8元.若他只购买8块方形巧克力,则他会剩下()元A.8B.16C.24D.326.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD 到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米7.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场,设有x 个队参赛,根据题意,可列方程为()A .()11362x x -=B .()11362x x += C .()136x x -= D .()136x x +=8.实数,,a b c 在数轴上的对应点的位置如图所示,若a b =,则下列结论中错误的是( )A .0a b +>B .0a c +>C .0b c +>D . 0ac <9.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大 10.若关于x 的一元二次方程kx 2﹣4x +3=0有实数根,则k 的非负整数值是( ) A .1 B .0,1 C .1,2 D .1,2,3 11.如图,AB 为⊙O 直径,已知为∠DCB=20°,则∠DBA 为( )A .50°B .20°C .60°D .70°12.下列各式化简后的结果为2 的是( )A 6B 12C 18D 36二、填空题13.已知62x =,那么222x x -的值是_____.14.用一个圆心角为180°,半径为4的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径为_______.15.“复兴号”是我国具有完全自主知识产权、达到世界先进水平的动车组列车.“复兴号”的速度比原来列车的速度每小时快40千米,提速后从北京到上海运行时间缩短了30分钟,已知从北京到上海全程约1320千米,求“复兴号”的速度.设“复兴号”的速度为x 千米/时,依题意,可列方程为_____.16.已知一组数据6,x ,3,3,5,1的众数是3和5,则这组数据的中位数是_____.17.一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2, a a 次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物乙车共运270吨,现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为___________元.(按每吨运费20元计算)18.如图①,在矩形 MNPQ 中,动点 R 从点 N 出发,沿 N→P→Q→M 方向运动至点 M 处停止,设点 R 运动的路程为 x ,△MNR 的面积为 y ,如果 y 关于 x 的函数图象如图②所示,则矩形 MNPQ 的面积是________.19.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____.20.计算:21(1)211x x x x ÷-+++=________. 三、解答题21.解方程:x 21x 1x-=-. 22.如图,在Rt△ACB 中,∠C=90°,AC=3cm ,BC=4cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长度;(2)点E 是线段AC 上的一点,试问:当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.23.已知222111x x x A x x ++=---. (1)化简A ;(2)当x 满足不等式组1030x x -≥⎧⎨-<⎩,且x 为整数时,求A 的值. 24.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(1)求y与x之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?25.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.26.直线AB交⊙O于C、D两点,CE是⊙O的直径,CF平分∠ACE交⊙O于点F,连接EF,过点F作FG∥ED交AB于点G.(1)求证:直线FG是⊙O的切线;(2)若FG=4,⊙O的半径为5,求四边形FGDE的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先求出∠1的邻补角的度数,再根据两直线平行,同位角相等即可求出∠2的度数.【详解】如图,∵∠1=70°,∴∠3=180°﹣∠1=180°﹣70°=110°,∵a∥b,∴∠2=∠3=110°,故选B.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补.2.C解析:C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】460 000 000=4.6×108.故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.B解析:B【解析】【分析】由于比赛取前5名参加决赛,共有11名选手参加,根据中位数的意义分析即可.【详解】11个不同的成绩按从小到大排序后,中位数及中位数之后的共有5个数,故只要知道自己的成绩和中位数就可以知道是否进入决赛了.故选B.【点睛】本题考查了中位数意义.解题的关键是正确的求出这组数据的中位数.4.A解析:A【解析】【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【详解】设索长为x尺,竿子长为y尺,根据题意得:515 2x yx y=+⎧⎪⎨=-⎪⎩.故选A.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.5.D解析:D【解析】【分析】设每块方形巧克力x元,每块圆形巧克力y元,根据小明身上的钱数不变得出方程3x+5y-8=5x+3y+8,化简整理得y-x=8.那么小明最后购买8块方形巧克力后他身上的钱会剩下(5x+3y+8)-8x,化简得3(y-x)+8,将y-x=8代入计算即可.【详解】解:设每块方形巧克力x元,每块圆形巧克力y元,则小明身上的钱有(3x+5y-8)元或(5x+3y+8)元.由题意,可得3x+5y-8=5x+3y+8,,化简整理,得y-x=8.若小明最后购买8块方形巧克力,则他身上的钱会剩下:(5x+3y+8)-8x=3(y-x)+8=3×8+8=32(元).故选D.【点睛】本题考查了二元一次方程的应用,分析题意,找到关键描述语,得出每块方形巧克力与每圆方形巧克力的钱数之间的关系是解决问题的关键.6.A解析:A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.7.A解析:A【解析】【分析】共有x个队参加比赛,则每队参加(x-1)场比赛,但2队之间只有1场比赛,根据共安排36场比赛,列方程即可.【详解】解:设有x 个队参赛,根据题意,可列方程为: 12x (x ﹣1)=36, 故选:A . 【点睛】此题考查由实际问题抽象出一元二次方程,解题关键在于得到比赛总场数的等量关系.8.A解析:A【解析】【分析】根据a b =,确定原点的位置,根据实数与数轴即可解答.【详解】解:a b =Q ,∴原点在a ,b 的中间,如图,由图可得:a c <,0a c +>,0b c +<,0ac <,0a b +=,故选项A 错误,故选A .【点睛】本题考查了实数与数轴,解决本题的关键是确定原点的位置.9.A解析:A【解析】分析:根据平均数的计算公式进行计算即可,根据方差公式先分别计算出甲和乙的方差,再根据方差的意义即可得出答案.详解:换人前6名队员身高的平均数为x =1801841881901921946+++++=188, 方差为S 2=()()()()()()22222211801881841881881881901881921881941886⎡⎤-+-+-+-+-+-⎣⎦=683; 换人后6名队员身高的平均数为x =1801841881901861946+++++=187, 方差为S 2=()()()()()()22222211801871841871881871901871861871941876⎡⎤-+-+-+-+-+-⎣⎦=593∵188>187,683>593, ∴平均数变小,方差变小,故选:A.点睛:本题考查了平均数与方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为x ,则方差S 2=1n[(x 1-x )2+(x 2-x )2+…+(x n -x )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 10.A解析:A【解析】【分析】【详解】由题意得,根的判别式为△=(-4)2-4×3k , 由方程有实数根,得(-4)2-4×3k≥0,解得k≤43, 由于一元二次方程的二次项系数不为零,所以k≠0, 所以k 的取值范围为k≤43且k≠0, 即k 的非负整数值为1,故选A .11.D解析:D【解析】题解析:∵AB 为⊙O 直径,∴∠ACB =90°,∴∠ACD =90°-∠DCB =90°-20°=70°,∴∠DBA =∠ACD =70°.故选D .【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.12.C解析:C【解析】A 不能化简;BC ,故正确;D ,故错误;故选C.点睛:本题主要考查二次根式,熟练掌握二次根式的性质是解题的关键.二、填空题13.4【解析】【分析】将所给等式变形为然后两边分别平方利用完全平方公式即可求出答案【详解】∵∴∴∴∴故答案为:4【点睛】本题考查了二次根式的运算解题的关键是熟练运用二次根式的运算以及完全平方公式注意正确解析:4【解析】【分析】将所给等式变形为x=【详解】∵x=,∴x-=∴(22x=,∴226x-+=,∴24x-=,故答案为:4【点睛】本题考查了二次根式的运算,解题的关键是熟练运用二次根式的运算以及完全平方公式.注意正确的变形可以使得运算简便.14.2【解析】【分析】设这个圆锥的底面圆的半径为R根据扇形的弧长等于这个圆锥的底面圆的周长列出方程即可解决问题【详解】设这个圆锥的底面圆的半径为R由题意:2πR=解得R=2故答案为2解析:2【解析】【分析】设这个圆锥的底面圆的半径为R,根据扇形的弧长等于这个圆锥的底面圆的周长,列出方程即可解决问题.【详解】设这个圆锥的底面圆的半径为R,由题意:2πR=1804 180π⨯,解得R=2.故答案为2.15.【解析】【分析】设复兴号的速度为x千米/时则原来列车的速度为(x-40)千米/时根据提速后从北京到上海运行时间缩短了30分钟列出方程即可【详解】设复兴号的速度为x千米/时则原来列车的速度为(x﹣40解析:13201320304060x x-=-.【解析】【分析】设“复兴号”的速度为x千米/时,则原来列车的速度为(x-40)千米/时,根据提速后从北京到上海运行时间缩短了30分钟列出方程即可.【详解】设“复兴号”的速度为x千米/时,则原来列车的速度为(x﹣40)千米/时,根据题意得:13201320304060x x-=-.故答案为:13201320304060x x-=-.【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意,找到题目蕴含的相等关系.16.4【解析】【分析】先根据众数的定义求出x=5再根据中位数的定义进行求解即可得【详解】∵数据6x3351的众数是3和5∴x=5则这组数据为133556∴这组数据的中位数为=4故答案为:4【点睛】本题主解析:4【解析】【分析】先根据众数的定义求出x=5,再根据中位数的定义进行求解即可得.【详解】∵数据6,x,3,3,5,1的众数是3和5,∴x=5,则这组数据为1、3、3、5、5、6,∴这组数据的中位数为352+=4,故答案为:4.【点睛】本题主要考查众数和中位数,熟练掌握众数和中位数的定义以及求解方法是解题的关键.17.【解析】【分析】根据甲乙两车单独运这批货物分别用2a次a次能运完甲的效率应该为乙的效率应该为那么可知乙车每次货运量是甲车的2倍根据若甲丙两车合运相同次数运完这批货物时甲车共运了180吨;若乙丙两车合解析:2160【解析】【分析】根据“甲、乙两车单独运这批货物分别用2a次、a次能运完”甲的效率应该为1 2a ,乙的效率应该为1a,那么可知乙车每次货运量是甲车的2倍根据“若甲、丙两车合运相同次数运完这批货物时,甲车共运了180吨;若乙、丙两车合运相同次数运完这批货物时,乙车共运了270吨.”这两个等量关系来列方程.【详解】设这批货物共有T吨,甲车每次运t甲吨,乙车每次运t乙吨,∵2a⋅t甲=T,a⋅t乙=T,∴t甲:t乙=1:2,由题意列方程:180270 180270T Tt t--=甲乙,t乙=2t甲,∴180270180135T T--=,解得T=540.∵甲车运180吨,丙车运540−180=360吨,∴丙车每次运货量也是甲车的2倍,∴甲车车主应得运费15402021605⨯⨯= (元),故答案为:2160.【点睛】考查分式方程的应用,读懂题目,找出题目中的等量关系是解题的关键.18.20【解析】【分析】根据图象横坐标的变化问题可解【详解】由图象可知x =4时点R到达Px=9时点R到Q点则PN=4QP=5∴矩形MNPQ的面积是20【点睛】本题为动点问题的函数图象探究题考查了动点到达解析:20【解析】【分析】根据图象横坐标的变化,问题可解.【详解】由图象可知,x=4时,点R到达P,x=9时,点R到Q点,则PN=4,QP=5∴矩形MNPQ的面积是20.【点睛】本题为动点问题的函数图象探究题,考查了动点到达临界点前后图象趋势的趋势变化.解答时,要注意数形结合.19.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.20.【解析】【分析】先对括号内分式的通分并将括号外的分式的分母利用完全平方公式变形得到÷;接下来利用分式的除法法则将除法运算转变为乘法运算然后约分即可得到化简后的结果【详解】原式=÷=·=故答案为【点睛 解析:11x + 【解析】【分析】先对括号内分式的通分,并将括号外的分式的分母利用完全平方公式变形得到()21xx +÷111x x +-+;接下来利用分式的除法法则将除法运算转变为乘法运算,然后约分即可得到化简后的结果.【详解】原式=()21x x +÷111x x +-+ =()21x x +·1x x+ =11x +. 故答案为11x +. 【点睛】 本题考查了公式的混合运算,解题的关键是熟练的掌握分式的混合运算法则.三、解答题21.2x =.【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】去分母得:x 2-2x+2=x 2-x ,解得:x=2,检验:当x=2时,方程左右两边相等,所以x=2是原方程的解.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)AD=95;(2)当点E 是AC 的中点时,ED 与⊙O 相切;理由见解析.【分析】(1)由勾股定理易求得AB的长;可连接CD,由圆周角定理知CD⊥AB,易知△ACD∽△ABC,可得关于AC、AD、AB的比例关系式,即可求出AD的长.(2)当ED与 O相切时,由切线长定理知EC=ED,则∠ECD=∠EDC,那么∠A和∠DEC就是等角的余角,由此可证得AE=DE,即E是AC的中点.在证明时,可连接OD,证OD⊥DE 即可.【详解】(1)在Rt△ACB中,∵AC=3cm,BC=4cm,∠ACB=90°,∴AB=5cm;连接CD,∵BC为直径,∴∠ADC=∠BDC=90°;∵∠A=∠A,∠ADC=∠ACB,∴Rt△ADC∽Rt△ACB;∴,∴;(2)当点E是AC的中点时,ED与⊙O相切;证明:连接OD,∵DE是Rt△ADC的中线;∴ED=EC,∴∠EDC=∠ECD;∵OC=OD,∴∠ODC=∠OCD;∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°;∴ED⊥OD,∴ED与⊙O相切.【点睛】本题考查了圆周角定理、切线的判定、相似三角形的判定与性质,熟练掌握该知识点是本题解题的关键.23.(1)11x;(2)1【解析】【分析】(1)根据分式四则混合运算的运算法则,把A式进行化简即可.(2)首先求出不等式组的解集,然后根据x为整数求出x的值,再把求出的x的值代入化简后的A式进行计算即可.(1)原式=2(1)(1)(1)1x x x x x +-+--=111x x x x +---=11x x x +--=11x - (2)不等式组的解集为1≤x <3∵x 为整数,∴x =1或x =2,①当x =1时,∵x ﹣1≠0,∴A =11x -中x ≠1, ∴当x =1时,A =11x -无意义. ②当x =2时,A =11x -=1=12-1考点:分式的化简求值、一元一次不等式组.24.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.【解析】【分析】(1)根据图象可得:当2x =,120y =,当4x =,140y =;再用待定系数法求解即可;(2)根据这种干果每千克的利润×销售量=2090列出方程,解方程即可.【详解】解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;∴21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,∵让顾客得到更大的实惠,∴9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.【点睛】本题考查了一元二次方程的应用和一次函数的应用,读懂图象信息、熟练掌握待定系数法、正确列出一元二次方程是解题的关键.25.(1)200;(2)52;(3)840人;(4)16分析:(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树状图方法,利用概率公式即可求解.详解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是21= 126.点睛:此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.26.(1)证明见解析(2)48【解析】【分析】(1)利用角平分线的性质以及等腰三角形的性质得出∠OFC=∠FCG,继而得出∠GFC+∠OFC=90°,即可得出答案;(2)首先得出四边形FGDH是矩形,进而利用勾股定理得出HO的长,进而得出答案.【详解】(1)连接FO,∵ OF=OC,∴∠OFC=∠OCF.∵CF平分∠ACE,∴∠FCG=∠FCE.∴∠OFC=∠FCG.∵ CE是⊙O的直径,∴∠EDG=90°,又∵FG//ED,∴∠FGC=180°-∠EDG=90°,∴∠GFC+∠FCG=90°∴∠GFC+∠OFC=90°,即∠GFO=90°,∴OF⊥GF,又∵OF是⊙O半径,∴FG与⊙O相切.(2)延长FO,与ED交于点H,由(1)可知∠HFG=∠FGD=∠GDH=90°,∴四边形FGDH是矩形.∴FH⊥ED,∴HE=HD.又∵四边形FGDH是矩形,FG=HD,∴HE=FG=4.∴ED=8.∵在Rt△OHE中,∠OHE=90°,∴OH=22OE HE-=2254-=3.∴FH=FO+OH=5+3=8.S四边形FGDH=12(FG+ED)•FH=12×(4+8)×8=48.。

南宁市初三中考数学一模模拟试卷

南宁市初三中考数学一模模拟试卷

南宁市初三中考数学一模模拟试卷一.选择题(满分12分,每小题2分)1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x52.已知a,b为两个连续整数,且a<<b,则a+b的值为()A.9 B.8 C.7 D.63.﹣a一定是()A.正数B.负数C.0 D.以上选项都不正确4.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72 B.2.0 C.1.125 D.不能确定5.已知:如右图,O为圆锥的顶点,M为底面圆周上一点,点P在OM上,一只蚂蚁从点P 出发绕圆锥侧面爬行回到点P时所经过的最短路径的痕迹如图.若沿OM将圆锥侧面剪开并展平,所得侧面展开图是()A.B.C.D.6.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<6二.填空题(满分20分,每小题2分)7.将数12000000科学记数法表示为.8.当x时,分式的值为0;若分式有意义,则x的取值范围是.9.分解因式:x4﹣16=.10.计算:=.11.已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.12.如图,△ABC中,AB=AC,BE⊥AC,D为AB中点,若DE=5,BE=8.则EC=.13.把点A(a,﹣2)向左平移3个单位,所得的点与点A关于y轴对称,则a等于.14.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC 于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.15.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为.16.如图,在正方形ABCD中,点E是BC上一点,BF⊥AE交DC于点F,若AB=5,BE=2,则AF=.三.解答题17.(7分)计算或化简:(1)(2)18.(7分)如图,在数轴上,点A、B分别表示数1、﹣2x+5(1)求x的取值范围;(2)数轴上表示数﹣x+3的点应落在.A.点A的左边,B.线段AB上,C.点B的右边19.(7分)某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是,请补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中B等级所对应的圆心角为.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.20.(8分)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.21.(8分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.22.(9分)小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用40min.小亮骑自行车以300m/min的速度直接到甲地,两人离甲地的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示,(1)甲、乙两地之间的路程为m,小明步行的速度为m/min;(2)求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)求两人相遇的时间.23.(8分)在某海域,一艘海监船在P处检测到南偏西45°方向的B处有一艘不明船只,正沿正西方向航行,海监船立即沿南偏西60°方向以40海里/小时的速度去截获不明船只,经过1.5小时,刚好在A处截获不明船只,求不明船只的航行速度.(≈1.41,≈1.73,结果保留一位小数).24.(9分)已知:分别以△ABC的各边为边,在BC边的同侧作等边三角形ABE、等边三角形CBD和等边三角形ACF,连结DE,DF.(1)试说明四边形DEAF为平行四边形.(2)当△ABC满足什么条件时,四边形DEAF为矩形?并说明理由;(3)当△ABC满足什么条件时,四边形DEAF为菱形.直接写出答案.25.(8分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.26.(8分)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.27.(9分)在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB.(1)如图1,图2,若△ABC为等腰直角三角形,问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是,数量关系是;深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=,当BM=时,BP的最大值为.参考答案一.选择题1.解:原式=x6,故选:C.2.解:∵9<13<16,∴3<<4,即a=3,b=4,则a+b=7,故选:C.3.解:﹣a中a的符号无法确定,故﹣a的符号无法确定.故选:D.4.解:∵AB=1.5,BC=0.9,AC=1.2,∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,∴AB2=BC2+AC2,∴∠ACB=90°,∵CD是AB边上的高,∴S=,△ABC1.5CD=1.2×0.9,CD=0.72,故选:A.5.解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.6.解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.二.填空题7.解:12 000 000=1.2×107,故答案是:1.2×107,8.解:若分式的值为0,则x﹣1=0,且x+1≠0,解得x=1;若分式有意义,则x+5≠0,解得x≠﹣5,故答案为:=1;x≠﹣5.9.解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).10.解:原式=+=2+3=5.故答案为5.11.解:把x=2+代入方程得(2+)2﹣4(2+)+m=0,解得m=1.故答案为1.12.解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=AC=2DE=2×5=10,∵BE=8,∴AE==6,∴EC=AC﹣AE=4,故答案为:4.13.解:点A(a,﹣2)向左平移3个单位后为(a﹣3,﹣2),∵所得的点与点A关于y轴对称,∴a﹣3=﹣a,解得a=.故答案为:.14.解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m, n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,=BE•BF=mn=∴S△BEF故答案为.15.解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°.16.解:∵四边形ABCD是正方形,∴AB=BC,∠A BE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF===.故答案为:.三.解答题17.解:(1)原式=+==;(2)原式=÷(x+2)•=••=;18.解:(1)由数轴上点的位置得:﹣2x+5>1,解得:x<2;(2)由x<2,得到﹣x+3>1,且﹣2x+5>﹣x+3,则数轴上表示数﹣x+3的点在线段AB上,故选B19.解:(1)样本容量为16÷32%=50,B等级人数为50﹣16﹣10﹣4=20,如图所示:故答案为:50;(2)D等级学生人数占被调查人数的百分比为×100%=8%;B等级所对应的圆心角为×360°=144°;故答案为:8%,144°;(3)全校A等级的学生人数约有×1600=512(人).20.(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴=,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴=,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴=,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=AB=BC,∴=,∴BC2=2DF•BF.21.解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A,B,C,D,∵垃圾要按A,B,C、D类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为=.22.解:(1)结合题意和图象可知,线段CD为小亮路程与时间函数图象,折线O﹣A﹣B为小明路程与时间图象,则甲、乙两地之间的路程为8000米,小明步行的速度==100m/min,故答案为8000,100(2)∵小亮从离甲地8000m处的乙地以300m/min的速度去甲地,则xmin时,∴小亮离甲地的路程y=8000﹣300x,自变量x的取值范围为:0≤x≤(3)∵A(20,6000)∴直线OA解析式为:y=300x∴8000﹣300x=300x,∴x=∴两人相遇时间为第分钟.23.解:作PQ垂直于AB的延长线于点Q,由题意得:∠BPQ=45°,∠APQ=60°,AP=1.5×40=60海里,∴在△APQ中,AQ=AP•sin60°=30海里,PQ=AP•cos60°=30海里,∵在△BQP中,∠BPQ=45°,∴PQ=BQ=30海里,∴AB=AQ﹣BQ=30﹣30≈21.9海里,∴=14.6海里/小时,∴不明船只的航行速度是14.6海里/小时.24.解:(1)如图1,∵△ABE和△CBD为等边三角形,∴∠ABE=∠CBD=60°,AB=BE=AE,CB=BD=CD,∴∠ABC=∠EBD,在△ABC和△EBD中,∴△ABC≌△EBD(SAS),∴AC=DE,∵△ACF为等边三角形,∴AC=AF,∴AF=DE,同理可证得△ACB≌△FCD,∴AB=DF,而AB=AE,∴AE=DF,∴四边形DEAF是平行四边形;(2)如图2,当△ABC满足∠BAC=150°时,四边形DEAF是矩形.理由如下:由(1)知:四边形DEAF是平行四边形,∵∠BAC=150°,∠EAB=∠FAC=60°∴∠EAF=360°﹣150°﹣60°﹣60°=90°∴四边形DEAF是矩形;(3)如图3,△ABC满足AB=AC时,四边形DEAF是菱形.理由如下:由(1)知:四边形DEAF是平行四边形,∵AB=AC,AE=AB,AC=AF,∴AE=AF,∴四边形DEAF是菱形.故答案为:AB=AC.25.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F 1(,8),F2(,4),F3(,6+),F4(,6﹣).26.解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°.27.解:问题初现:(1)①AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由:如图1,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN故答案为:AM⊥BN;AM=BN深入探究:②当点M在线段AB的延长线上时,AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由如下:如图,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN类比拓展:(2)如图,过点C作CE⊥AB于点E,过点N作NF⊥CE于点F,则FN∥AB∵△MCN是等腰直角三角形∴CM=CN,∠MCN=90°∴∠ECM+∠FCN=90°,且∠ECM+∠CME=90°∴∠FCN=∠CME,且CM=CN,∠F=∠CEM=90°∴△CNF≌△CME(AAS)∴FN=EC,EM=CF∵BC=4,CE⊥AB,∠CBA=45°∴CE=BE=4,∴FN=BE=CE,且FN∥BA∴四边形FNBE是平行四边形,且∠F=90°∴四边形FNBE是矩形∴∠CEM=∠ABN=90°∴∠PMB+∠MPB=90°∵CM⊥MP∴∠CME+∠PMB=90°∴∠CME=∠MPB,且∠CEM=∠ABN=90°∴△CEM∽△MBP∴∴BP==﹣(BM﹣2)2+1∴当BM=2时,BP有最大值为1.故答案为:2,1中学数学一模模拟试卷一.选择题(满分12分,每小题2分)1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x52.已知a,b为两个连续整数,且a<<b,则a+b的值为()A.9 B.8 C.7 D.63.﹣a一定是()A.正数B.负数C.0 D.以上选项都不正确4.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72 B.2.0 C.1.125 D.不能确定5.已知:如右图,O为圆锥的顶点,M为底面圆周上一点,点P在OM上,一只蚂蚁从点P 出发绕圆锥侧面爬行回到点P时所经过的最短路径的痕迹如图.若沿OM将圆锥侧面剪开并展平,所得侧面展开图是()A.B.C.D.6.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<6二.填空题(满分20分,每小题2分)7.将数12000000科学记数法表示为.8.当x时,分式的值为0;若分式有意义,则x的取值范围是.9.分解因式:x4﹣16=.10.计算:=.11.已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.12.如图,△ABC中,AB=AC,BE⊥AC,D为AB中点,若DE=5,BE=8.则EC=.13.把点A(a,﹣2)向左平移3个单位,所得的点与点A关于y轴对称,则a等于.14.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC 于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.15.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为.16.如图,在正方形ABCD中,点E是BC上一点,BF⊥AE交DC于点F,若AB=5,BE=2,则AF=.三.解答题17.(7分)计算或化简:(1)(2)18.(7分)如图,在数轴上,点A、B分别表示数1、﹣2x+5(1)求x的取值范围;(2)数轴上表示数﹣x+3的点应落在.A.点A的左边,B.线段AB上,C.点B的右边19.(7分)某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是,请补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中B等级所对应的圆心角为.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.20.(8分)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.21.(8分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.22.(9分)小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用40min.小亮骑自行车以300m/min的速度直接到甲地,两人离甲地的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示,(1)甲、乙两地之间的路程为m,小明步行的速度为m/min;(2)求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)求两人相遇的时间.23.(8分)在某海域,一艘海监船在P处检测到南偏西45°方向的B处有一艘不明船只,正沿正西方向航行,海监船立即沿南偏西60°方向以40海里/小时的速度去截获不明船只,经过1.5小时,刚好在A处截获不明船只,求不明船只的航行速度.(≈1.41,≈1.73,结果保留一位小数).24.(9分)已知:分别以△ABC的各边为边,在BC边的同侧作等边三角形ABE、等边三角形CBD和等边三角形ACF,连结DE,DF.(1)试说明四边形DEAF为平行四边形.(2)当△ABC满足什么条件时,四边形DEAF为矩形?并说明理由;(3)当△ABC满足什么条件时,四边形DEAF为菱形.直接写出答案.25.(8分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.26.(8分)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.27.(9分)在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB.(1)如图1,图2,若△ABC为等腰直角三角形,问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是,数量关系是;深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=,当BM=时,BP的最大值为.参考答案一.选择题1.解:原式=x6,故选:C.2.解:∵9<13<16,∴3<<4,即a=3,b=4,则a+b=7,故选:C.3.解:﹣a中a的符号无法确定,故﹣a的符号无法确定.故选:D.4.解:∵AB=1.5,BC=0.9,AC=1.2,∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,∴AB2=BC2+AC2,∴∠ACB=90°,∵CD是AB边上的高,∴S=,△ABC1.5CD=1.2×0.9,CD=0.72,故选:A.5.解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.6.解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,∵方程在﹣1<x<4的范围内有实数根,当x=﹣1时,y=6;当x=4时,y=11;函数y=x2﹣2x+3在x=1时有最小值2;∴2≤t<11;故选:A.二.填空题7.解:12 000 000=1.2×107,故答案是:1.2×107,8.解:若分式的值为0,则x﹣1=0,且x+1≠0,解得x=1;若分式有意义,则x+5≠0,解得x≠﹣5,故答案为:=1;x≠﹣5.9.解:x4﹣16=(x2+4)(x2﹣4)=(x2+4)(x+2)(x﹣2).故答案为:(x2+4)(x+2)(x﹣2).10.解:原式=+=2+3=5.故答案为5.11.解:把x=2+代入方程得(2+)2﹣4(2+)+m=0,解得m=1.故答案为1.12.解:∵BE⊥AC,∴∠AEB=90°,∵D为AB中点,∴AB=AC=2DE=2×5=10,∵BE=8,∴AE==6,∴EC=AC﹣AE=4,故答案为:4.13.解:点A(a,﹣2)向左平移3个单位后为(a﹣3,﹣2),∵所得的点与点A关于y轴对称,∴a﹣3=﹣a,解得a=.故答案为:.14.解:设D(2m,2n),∵OD:OB=2:3,∴A(3m,0),C(0,3n),∴B(3m,3n),∵双曲线y=(x>0)经过矩形OABC的顶点B,∴9=3m•3n,∴mn=1,∵双曲线y=(x>0)经过点D,∴k=4mn∴双曲线y=(x>0),∴E(3m, n),F(m,3n),∴BE=3n﹣n=n,BF=3m﹣m=m,=BE•BF=mn=∴S△BEF故答案为.15.解:由图可知,∠AOB=75°﹣45°=30°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠1=∠AOB=×30°=15°.故答案为15°.16.解:∵四边形ABCD是正方形,∴AB=BC,∠A BE=∠BCF=90°,∴∠BAE+∠AEB=90°,∵BH⊥AE,∴∠BHE=90°,∴∠AEB+∠EBH=90°,∴∠BAE=∠EBH,在△ABE和△BCF中,,∴△ABE≌△BCF(ASA),∴CF=BE=2,∴DF=5﹣2=3,∵四边形ABCD是正方形,∴AB=AD=5,∠ADF=90°,由勾股定理得:AF===.故答案为:.三.解答题17.解:(1)原式=+==;(2)原式=÷(x+2)•=••=;18.解:(1)由数轴上点的位置得:﹣2x+5>1,解得:x<2;(2)由x<2,得到﹣x+3>1,且﹣2x+5>﹣x+3,则数轴上表示数﹣x+3的点在线段AB上,故选B19.解:(1)样本容量为16÷32%=50,B等级人数为50﹣16﹣10﹣4=20,如图所示:故答案为:50;(2)D等级学生人数占被调查人数的百分比为×100%=8%;B等级所对应的圆心角为×360°=144°;故答案为:8%,144°;(3)全校A等级的学生人数约有×1600=512(人).20.(1)证明:∵AF⊥BC于点F,∴∠AFB=90°,∵点E是AB的中点,∴AE=FE,∴∠EAF=∠AFE,∵AE2=EG•ED,∴=,∵∠AEG=∠DEA,∴△AEG∽△DEA,∴∠EAG=∠ADG,∵∠AGD=∠FGE,∴∠DAG=∠FEG,∵四边形ABCD是菱形,∴AD∥BC,∴∠DAG=∠AFB=90°,∴∠FEG=90°,∴DE⊥EF;(2)解:∵AE=EF,AE2=EG•ED,∴FE2=EG•ED,∴=,∵∠FEG=∠DEF,∴△FEG∽△DEF,∴∠EFG=∠EDF,∴∠BAF=∠EDF,∵∠DEF=∠AFB=90°,∴△ABF∽△DFE,∴=,∵四边形ACBD是菱形,∴AB=BC,∵∠AFB=90°,∵点E是AB的中点,∴FE=AB=BC,∴=,∴BC2=2DF•BF.21.解:(1)记可回收物、厨余垃圾、有害垃圾、其它垃圾分别为A,B,C,D,∵垃圾要按A,B,C、D类分别装袋,甲拿了一袋垃圾,∴甲拿的垃圾恰好是B类:厨余垃圾的概率为:;(2)画树状图如下:由树状图知,乙拿的垃圾共有16种等可能结果,其中乙拿的两袋垃圾不同类的有12种结果,所以乙拿的两袋垃圾不同类的概率为=.22.解:(1)结合题意和图象可知,线段CD为小亮路程与时间函数图象,折线O﹣A﹣B为小明路程与时间图象,则甲、乙两地之间的路程为8000米,小明步行的速度==100m/min,故答案为8000,100(2)∵小亮从离甲地8000m处的乙地以300m/min的速度去甲地,则xmin时,∴小亮离甲地的路程y=8000﹣300x,自变量x的取值范围为:0≤x≤(3)∵A(20,6000)∴直线OA解析式为:y=300x∴8000﹣300x=300x,∴x=∴两人相遇时间为第分钟.23.解:作PQ垂直于AB的延长线于点Q,由题意得:∠BPQ=45°,∠APQ=60°,AP=1.5×40=60海里,∴在△APQ中,AQ=AP•sin60°=30海里,PQ=AP•cos60°=30海里,∵在△BQP中,∠BPQ=45°,∴PQ=BQ=30海里,∴AB=AQ﹣BQ=30﹣30≈21.9海里,∴=14.6海里/小时,∴不明船只的航行速度是14.6海里/小时.24.解:(1)如图1,∵△ABE和△CBD为等边三角形,∴∠ABE=∠CBD=60°,AB=BE=AE,CB=BD=CD,∴∠ABC=∠EBD,在△ABC和△EBD中,∴△ABC≌△EBD(SAS),∴AC=DE,∵△ACF为等边三角形,∴AC=AF,∴AF=DE,同理可证得△ACB≌△FCD,∴AB=DF,而AB=AE,∴AE=DF,∴四边形DEAF是平行四边形;(2)如图2,当△ABC满足∠BAC=150°时,四边形DEAF是矩形.理由如下:由(1)知:四边形DEAF是平行四边形,∵∠BAC=150°,∠EAB=∠FAC=60°∴∠EAF=360°﹣150°﹣60°﹣60°=90°∴四边形DEAF是矩形;(3)如图3,△ABC满足AB=AC时,四边形DEAF是菱形.理由如下:由(1)知:四边形DEAF是平行四边形,∵AB=AC,AE=AB,AC=AF,∴AE=AF,∴四边形DEAF是菱形.故答案为:AB=AC.25.解:(1)将A、C两点坐标代入抛物线,得,解得:,∴抛物线的解析式为y=﹣x2+x+8;(2)①∵OA=8,OC=6,∴AC==10,过点Q作QE⊥BC与E点,则sin∠ACB===,∴=,∴QE=(10﹣m),∴S=•CP•QE=m×(10﹣m)=﹣m2+3m;②∵S=•CP•QE=m×(10﹣m)=﹣m2+3m=﹣(m﹣5)2+,∴当m=5时,S取最大值;在抛物线对称轴l上存在点F,使△FDQ为直角三角形,∵抛物线的解析式为y=﹣x2+x+8的对称轴为x=,D的坐标为(3,8),Q(3,4),当∠FDQ=90°时,F1(,8),当∠FQD=90°时,则F2(,4),当∠DFQ=90°时,设F(,n),则FD2+FQ2=DQ2,即+(8﹣n)2++(n﹣4)2=16,解得:n=6±,∴F3(,6+),F4(,6﹣),满足条件的点F共有四个,坐标分别为F 1(,8),F2(,4),F3(,6+),F4(,6﹣).26.解:(1)连接OB,∵BC是圆的切线,∴OB⊥BC,∵四边形OABC是平行四边形,∴OA∥BC,∴OB⊥OA,∴△AOB是等腰直角三角形,∴∠ABO=45°,∴的度数为45°;(2)连接OE,过点O作OH⊥EC于点H,设EH=t,∵OH⊥EC,∴EF=2HE=2t,∵四边形OABC是平行四边形,∴AB=CO=EF=2t,∵△AOB是等腰直角三角形,∴OA=t,则HO===t,∵OC=2OH,∴∠OCE=30°.27.解:问题初现:(1)①AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由:如图1,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN故答案为:AM⊥BN;AM=BN深入探究:②当点M在线段AB的延长线上时,AM与BN位置关系是AM⊥BN,数量关系是AM=BN.理由如下:如图,∵△ABC,△CMN为等腰直角三角形,∴∠ACB=∠MCN=90°,AC=BC,CM=CN,∠CAB=∠CBA=45°∴∠ACM=∠BCN,且AC=BC,CM=CN,∴△ACM≌△BCN(SAS)∴∠CAM=∠CBN=45°,AM=BN.∵∠CAB=∠CBA=45°,∴∠ABN=45°+45°=90°,即AM⊥BN类比拓展:(2)如图,过点C作CE⊥AB于点E,过点N作NF⊥CE于点F,则FN∥AB∵△MCN是等腰直角三角形∴CM=CN,∠MCN=90°∴∠ECM+∠FCN=90°,且∠ECM+∠CME=90°∴∠FCN=∠CME,且CM=CN,∠F=∠CEM=90°∴△CNF≌△CME(AAS)∴FN=EC,EM=CF∵BC=4,CE⊥AB,∠CBA=45°∴CE=BE=4,∴FN=BE=CE,且FN∥BA∴四边形FNBE是平行四边形,且∠F=90°∴四边形FNBE是矩形∴∠CEM=∠ABN=90°∴∠PMB+∠MPB=90°∵CM⊥MP∴∠CME+∠PMB=90°∴∠CME=∠MPB,且∠CEM=∠ABN=90°∴△CEM∽△MBP∴∴BP==﹣(BM﹣2)2+1∴当BM=2时,BP有最大值为1.故答案为:2,1中学数学一模模拟试卷一.选择题(满分12分,每小题2分)1.化简(﹣x3)2的结果是()A.﹣x6B.﹣x5C.x6D.x52.已知a,b为两个连续整数,且a<<b,则a+b的值为()A.9 B.8 C.7 D.63.﹣a一定是()A.正数B.负数C.0 D.以上选项都不正确4.如图,△ABC中,CD是AB边上的高,若AB=1.5,BC=0.9,AC=1.2,则CD的值是()A.0.72 B.2.0 C.1.125 D.不能确定5.已知:如右图,O为圆锥的顶点,M为底面圆周上一点,点P在OM上,一只蚂蚁从点P 出发绕圆锥侧面爬行回到点P时所经过的最短路径的痕迹如图.若沿OM将圆锥侧面剪开并展平,所得侧面展开图是()A.B.C.D.6.抛物线y=x2+bx+3的对称轴为直线x=1.若关于x的一元二次方程x2+bx+3﹣t=0(t 为实数)在﹣1<x<4的范围内有实数根,则t的取值范围是()A.2≤t<11 B.t≥2 C.6<t<11 D.2≤t<6二.填空题(满分20分,每小题2分)7.将数12000000科学记数法表示为.8.当x时,分式的值为0;若分式有意义,则x的取值范围是.9.分解因式:x4﹣16=.10.计算:=.11.已知2+是关于x的方程x2﹣4x+m=0的一个根,则m=.12.如图,△ABC中,AB=AC,BE⊥AC,D为AB中点,若DE=5,BE=8.则EC=.13.把点A(a,﹣2)向左平移3个单位,所得的点与点A关于y轴对称,则a等于.14.如图,双曲线y=(x>0)经过矩形OABC的顶点B,双曲线y=(x>0)交AB,BC 于点E、F,且与矩形的对角线OB交于点D,连接EF.若OD:OB=2:3,则△BEF的面积为.15.如图,量角器外沿上有A、B两点,它们的读数分别是75°、45°,则∠1的度数为.16.如图,在正方形ABCD中,点E是BC上一点,BF⊥AE交DC于点F,若AB=5,BE=2,则AF=.三.解答题17.(7分)计算或化简:(1)(2)18.(7分)如图,在数轴上,点A、B分别表示数1、﹣2x+5(1)求x的取值范围;(2)数轴上表示数﹣x+3的点应落在.A.点A的左边,B.线段AB上,C.点B的右边19.(7分)某中学为了了解七年级学生体能状况,从七年级学生中随机抽取部分学生进行体能测试,测试结果分为A、B、C、D四个等级,并依据测试成绩绘制了如下两幅尚不完整的统计图:(1)这次抽样调查的样本容量是,请补全条形图;(2)D等级学生人数占被调查人数的百分比为,在扇形统计图中B等级所对应的圆心角为.(3)该校九年级学生有1600人,请你估计其中A等级的学生人数.20.(8分)如图,已知菱形ABCD,点E是AB的中点,AF⊥BC于点F,联结EF、ED、DF,DE交AF于点G,且AE2=EG•ED.(1)求证:DE⊥EF;(2)求证:BC2=2DF•BF.21.(8分)现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其它垃圾.其中甲拿了一袋垃圾,乙拿了两袋垃圾.(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率;(2)求乙所拿的两袋垃圾不同类的概率.22.(9分)小明和小亮分别从甲地和乙地同时出发,沿同一条路相向而行,小明开始跑步,中途改为步行,到达乙地恰好用40min.小亮骑自行车以300m/min的速度直接到甲地,两人离甲地的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示,(1)甲、乙两地之间的路程为m,小明步行的速度为m/min;(2)求小亮离甲地的路程y关于x的函数表达式,并写出自变量x的取值范围;(3)求两人相遇的时间.23.(8分)在某海域,一艘海监船在P处检测到南偏西45°方向的B处有一艘不明船只,正沿正西方向航行,海监船立即沿南偏西60°方向以40海里/小时的速度去截获不明船只,经过1.5小时,刚好在A处截获不明船只,求不明船只的航行速度.(≈1.41,≈1.73,结果保留一位小数).24.(9分)已知:分别以△ABC的各边为边,在BC边的同侧作等边三角形ABE、等边三角形CBD和等边三角形ACF,连结DE,DF.(1)试说明四边形DEAF为平行四边形.(2)当△ABC满足什么条件时,四边形DEAF为矩形?并说明理由;(3)当△ABC满足什么条件时,四边形DEAF为菱形.直接写出答案.25.(8分)如图,在矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线y=﹣x2+bx+c经过点A、C,与AB交于点D.(1)求抛物线的函数解析式;(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.①求S关于m的函数表达式;②当S最大时,在抛物线y=﹣x2+bx+c的对称轴l上,若存在点F,使△DFQ为直角三角形,请直接写出所有符合条件的点F的坐标;若不存在,请说明理由.26.(8分)如图,在▱OABC中,以O为圆心,OA为半径的圆与BC相切于点B,与OC相交于点D.(1)求的度数.(2)如图,点E在⊙O上,连结CE与⊙O交于点F,若EF=AB,求∠OCE的度数.27.(9分)在△ABC中,∠ABC为锐角,点M为射线AB上一动点,连接CM,以点C为直角顶点,以CM为直角边在CM右侧作等腰直角三角形CMN,连接NB.(1)如图1,图2,若△ABC为等腰直角三角形,问题初现:①当点M为线段AB上不与点A重合的一个动点,则线段BN,AM之间的位置关系是,数量关系是;深入探究:②当点M在线段AB的延长线上时,判断线段BN,AM之间的位置关系和数量关系,并说明理由;类比拓展:(2)如图3,∠ACB≠90°,若当点M为线段AB上不与点A重合的一个动点,MP⊥CM交线段BN于点P,且∠CBA=45°,BC=,当BM=时,BP的最大值为.参考答案一.选择题1.解:原式=x6,故选:C.2.解:∵9<13<16,∴3<<4,即a=3,b=4,则a+b=7,故选:C.3.解:﹣a中a的符号无法确定,故﹣a的符号无法确定.故选:D.4.解:∵AB=1.5,BC=0.9,AC=1.2,∴AB2=1.52=2.25,BC2+AC2=0.92+1.22=2.25,∴AB2=BC2+AC2,∴∠ACB=90°,∵CD是AB边上的高,∴S=,△ABC1.5CD=1.2×0.9,CD=0.72,故选:A.5.解:蜗牛绕圆锥侧面爬行的最短路线应该是一条线段,因此选项A和B错误,又因为蜗牛从p点出发,绕圆锥侧面爬行后,又回到起始点P处,那么如果将选项C、D的圆锥侧面展开图还原成圆锥后,位于母线OM上的点P应该能够与母线OM′上的点(P′)重合,而选项C还原后两个点不能够重合.故选:D.6.解:∵y=x2+bx+3的对称轴为直线x=1,∴b=﹣2,∴y=x2﹣2x+3,∴一元二次方程x2+bx+3﹣t=0的实数根可以看做y=x2﹣2x+3与函数y=t的有交点,。

南宁市三美学校2020-2021学年度下学期初三数学第一次模拟考试题

南宁市三美学校2020-2021学年度下学期初三数学第一次模拟考试题

南宁市三美学校2020-2021学年度下学期初三数学第一次模拟考试题一.选择题(共12小题)1.下列自然能源图标中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.已知某物体的三视图如图所示,那么与它对应的物体是()A.B.C.D.3.国家统计局公布的数据显示,经初步核算,2020年尽管受到新冠疫情的影响,前三个季度国内生产总值仍然达到近697800亿元,按可比价格计算,同比增长了6.2%.将数据697800用科学记数法表示为()A.697.8×103B.69.78×104C.6.978×105D.0.6978×1064.下列计算正确的是()A.3a+2b=5ab B.5ab2﹣5a2b=0C.7a+a=7a2D.﹣ab+3ba=2ab5.小玲的爸爸在钉制平行四边形框架时,采用了一种方法:如图所示,将两根木条AC、BD的中点重叠并用钉子固定,则四边形ABCD就是平行四边形,这种方法的依据是()A.对角线互相平分的四边形是平行四边形B.一组对边平行且相等的四边形是平行四边形C.两组对边分别相等的四边形是平行四边形D.两组对角分别相等的四边形是平行四边形6.某校为丰富学生课余活动,开展了一次“校园书法绘画”比赛,共有20名学生入围,他们的决赛成绩如表:949596979899成绩(分)人数136532则入围学生决赛成绩的中位数和众数分别是()A.96分,96分B.96.5分,96分C.97分,97分D.96.5分,97分7.已知直线l1∥l2,将一块直角三角板ABC(其中∠A是30°,∠C是60°)按如图所示方式放置,若∠1=84°,则∠2等于()A.56°B.64°C.66°D.76°8.有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是()A.30πB.48πC.60πD.80π9.《九章算术》是我国古代数学的经典著作,奠定了中国传统数学的基本框架,书中记载:“今有大器五、小器一容三斛;大器一、小器五容二斛,问大小器各容几何?”译文:“今有大容器5个、小容器1个,总容量为3斛;大容器1个、小容器5个,总容量为2斛.问大小容器的容积各是多少斛?”设1个大容器的容积为x斛,1个小容器的容积y斛,则根据题意可列方程组()A.B.C.D.10.若关于x的一元一次不等式组的解集为x>1,则a的取值范围是()A.a<1B.a≤1C.a>1D.a≥111.如图,在菱形ABCD中,∠BAD=120°,AB=2,点E是AB边上的动点,过点B作直线CE的垂线,垂足为F,当点E从点A运动到点B时,点F的运动路径长为()A.πB.πC.πD.π12.如图,点A是双曲线y=上一点,过A作AB∥x轴,交直线y=﹣x于点B,点D是x轴上一点,连接BD交双曲线于点C,连接AD,若BC:CD=3:2,△ABD的面积为,tan∠ABD=,则k的值为()A.﹣2B.﹣3C.﹣D.二.填空题(共5小题)13.某中学为了选拔一名运动员参加市运会100米短跑比赛,有甲、乙两名运动员备选,他们最近测试的10次百米跑平均时间都是12.83秒,他们的方差分别是S2甲=1.3(秒2),S2乙=1.7(秒2),如果要选择一名成绩优秀且稳定的人去参赛,应派去.14.中心角为30°的正多边形边数为.15.因式分解:3x2−12=16.如图是一个地铁站入口双翼闸机的示意图,当它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=61cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°,当双翼收起时,可以通过闸机的物体最大宽度为.17.如图,在平行四边形ABCD中,AD=2,AB=5,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连结CE,则阴影部分的面积是(结果保留π)18.第24届国际数学家大会会标图案是由四个全等的直角三角形围成的一个正方形,中间的阴影部分是一个小正方形的“赵爽弦图”,如图,如果这四个全等的直角三角形有一个角为30°,顶点A1、A2、A3、…和C1、C2、C3、…分别在直线y=和x轴上,图中阴影部分正方形的面积从左到右依次记为S1、S2、S3、…、S n,则S n的值为.三.解答题(共6小题)19.计算:(−2)÷65−(−23)×320. 解方程:2x−1+11−x=121.如图,在边长为1个单位长度的小正方形网格中,(1)画出△ABC向上平移6个单位,再向右平移5个单位后的△A1B1C1;(2)以点B为位似中心,将△ABC放大为原来的2倍,得到△A2BC2,请在网格中画出△A2BC2;(3)直接写出△CC1C2的面积,及A1,A2的坐标.22.如图,四边形ABCD是平行四边形,AD=BD,过点C作CE∥BD,交AD的延长线于点E.(1)求证:四边形BDEC是菱形;(2)连接BE,若AB=2,AD=4,求BE的长.23.2020年春季在新冠疫情的背景下,全国各大中小学纷纷开设空中课堂,学生要面对电脑等电子产品上网课,某校为了解本校学生对自己视力保护的重视程度,随机在校内调查了部分学生,调直结果分为“非常重视”“重视”“比较重视”“不重视”四类,并将结果绘制成如图所示的两幅不完整的统计图:根据图中信息,解答下列问题:(1)在扇形统计图中,“比较重视”所占的圆心角的度数为,并补全条形统计图;(2)该校共有学生3200人,请你估计该校对视力保护“非常重视”的学生人数;(3)对视力“非常重视”的4人有A1,A2两名男生,B1,B2两名女生,若从中随机抽取两人向全校作视力保护经验交流,请利用树状图或列表法,求出恰好抽到同性别学生的概率.24.阳谷县2016年为做好“精准扶贫”,投入资金1500万元用于异地安置,并规划投入资金逐年增加,2018年在2016年的基础上增加投入资金1440万元.(1)从2016年到2018年,该地投入异地安置资金的年平均增长率为多少?(2)在2018年异地安置的具体实施中,该地计划投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户含第1000户每户每天奖励9元,1000户以后每户每天补助5元,按租房400天计算,试求今年该地至少有多少户享受到优先搬迁租房奖励?25.如图,在△ABC中,AB=AC,以AB为直径作圆O,分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC于点H,连接DE交线段OA于点F.(1)求证:DH是圆O的切线;(2)若=,求证;A为EH的中点.(3)若EA=EF=1,求圆O的半径.26.如图,在平面直角坐标系xOy中,抛物线y=x2+mx+n经过点B(6,1),C(5,0),且与y轴交于点A.(1)求抛物线的表达式及点A的坐标;(2)点P是y轴右侧抛物线上的一点,过点P作PQ⊥OA,交线段OA的延长线于点Q,如果∠P AB=45°.求证:△PQA∽△ACB;(3)若点F是线段AB(不包含端点)上的一点,且点F关于AC的对称点F′恰好在上述抛物线上,求FF′的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广西南宁市九年级下学期数学第一次摸底考试
姓名:________ 班级:________ 成绩:________
一、选择题(共12分) (共6题;共12分)
1. (2分)(2019·包河模拟) 如图是几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立方体图形的左视图是()
A .
B .
C .
D .
2. (2分)下列成语所描述的事件是必然发生的是()
A . 水中捞月
B . 拔苗助长
C . 守株待免
D . 瓮中捉鳖
3. (2分) (2015九上·崇州期末) 反比例函数y=﹣的图象在()
A . 第一、三象限
B . 第一、二象限
C . 第二、四象限
D . 第三、四象限
4. (2分)(2016·西安模拟) 三角形在方格纸中的位置如图所示,则cosα的值是()
A .
B .
C .
D .
5. (2分)如图,AB和CD都是⊙O的直径,∠AOC=56°,则∠C的度数是()
A . 22°
B . 28°
C . 34°
D . 56°
6. (2分) (2020九上·遂宁期末) 矩形ABCD中,边长AB=4,边BC=2,M、N分别是边BC、CD上的两个动点,且始终保持AM⊥MN.则CN的最大为()
A . 1
B .
C .
D . 2
二、填空题(共24分) (共8题;共24分)
7. (3分)(2019·广西模拟) 已知点A(a,1)与点B(5,b)是关于原点O的对称点,则a=________,b=________
8. (3分)(2016·南沙模拟) 如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,tan∠BCD= ,AC=12,则BC=________.
9. (3分)请写出一个以直线x=-2为对称轴,且在对称轴左侧部分是上升的抛物线的表达式可以是________ .
10. (3分) (2018九上·汨罗期中) 已知x1 , x2是方程x2﹣3x+1=0的两个实数根,则=________.
11. (3分)(2017·吉林模拟) 如图,直线l1∥l2∥l3 ,直线AC分别交l1、l2、l3于点A,B,C;直线DF分别交l1、l2、l3于点D,E,F.若AB=3,BC=4,DE=2,则线段DF的长为________.
12. (3分) (2017八下·常熟期中) 如图,点A是反比例函数在第二象限内图象上一点,点B是反比例函数在第一象限内图象上一点,直线AB与y轴交于点C,且AC=BC,连接OA、OB,则△AOB的面积是________.
13. (3分)如图,点A、B、C在半径为9的⊙O上,弧AB的长为2π ,则∠ACB的大小是________.
14. (3分) (2016九上·浦东期中) 已知菱形ABCD的边长为6,对角线AC与BD相交于点O,OE⊥AB,垂足为点E,AC=4,那么sin∠AOE=________.
三、解答题(共20分) (共6题;共40分)
15. (5分)(2019·通辽) 计算:
16. (5分) (2020九上·镇平期末) 如图,为了估算河的宽度,我们可以在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线PS与河垂直,接着再过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R. 如果测得QS=45m,ST=90m,QR=60m,求河的宽度PQ.
17. (5分)(2017·江津模拟) 如图,在△ABC中,AD是BC边上的高,tanC= ,AC=3 ,AB=4,求△ABC 的周长.
18. (5.0分)(2017·东营模拟) 如图1,抛物线y=ax2+bx+4的图象过A(﹣1,0),B(4,0)两点,与y 轴交于点C,作直线BC,动点P从点C出发,以每秒个单位长度的速度沿CB向点B运动,运动时间为t秒,当点P与点B重合时停止运动.
(1)
求抛物线的表达式;
(2)
如图2,当t=1时,求S△ACP的面积;
(3)
如图3,过点P向x轴作垂线分别交x轴,抛物线于E、F两点.
①求PF的长度关于t的函数表达式,并求出PF的长度的最大值;
②连接CF,将△PCF沿CF折叠得到△P′CF,当t为何值时,四边形PFP′C是菱形?
19. (10.0分)(2017·恩施) 如图,AB、CD是⊙O的直径,BE是⊙O的弦,且BE∥CD,过点C的切线与EB 的延长线交于点P,连接BC.
(1)求证:BC平分∠ABP;
(2)求证:PC2=PB•PE;
(3)若BE﹣BP=PC=4,求⊙O的半径.
20. (10.0分) (2017九上·长春月考) 如图①,在Rt△ABC中,∠C=90°,AB=10,BC=6.点P从点A出发,沿折现AB—BC向终点C运动,在AB上以每秒5个单位长度的速度运动,在BC上以每秒3个单位长度的速度运动.点Q从点C出发,沿CA方向以每秒个单位长度的速度运动.点P、Q两点同时出发,当点P停止时,点Q也随之停止.设点P运动的时间为t秒.
(1)求线段AQ的长.(用含t的代数式表示)
(2)当PQ与△ABC的一边平行时,求t的值
(3)如图②,过点P作PE⊥AC于点E,以PE、QE为邻边作矩形PEQF,点D为AC的中点,连结DF.直接写出DF将矩形PEQF分成两部分的面积比为1:2时t的值.
四、解答题(共28分) (共4题;共28分)
21. (7.0分)(2017·江阴模拟) 2015年合肥市区中考理科实验操作考试备选试题为物理4题(用W1、W2、W3、W4表示)、化学4题(用H1、H2、H3、H4表示)、生物2题(用S1、S2表示),共10题.某校为备战实验操作考试,对学生进行模拟训练.由学生在每科测试时抽签选定一个进行实验操作.若学生测试时,第一次抽签选定物理实验题,第二次抽签选定化学实验题,第三次抽签选定生物实验题.已知王强同学抽到的物理实验题为 W1题,
(1)请用树形图法或列表法,表示王强同学此次抽签的所有可能情况.
(2)若王强对化学的H2、H3y=0.15x和生物的S1实验准备得较好,求他能同时抽到化学和生物都是准备较好的实验题的概率是多少?
22. (7.0分)长方形OABC绕顶点C(0,5)逆时针方向旋转,当旋转到CO′A′B′位置时,边O′A′交边AB于D,且A′D=2,AD=4.
(1)求BC长;
(2)求阴影部分的面积.
23. (7.0分) (2015九上·宝安期末) 如图,某校20周年校庆时,需要在草场上利用气球悬挂宣传条幅,EF为旗杆,气球从A处起飞,几分钟后便飞达C处,此时,在AF延长线上的点B处测得气球和旗杆EF的顶点E 在同一直线上.
(1)
已知旗杆高为12米,若在点B处测得旗杆顶点E的仰角为30°,A处测得点E的仰角为45°,试求AB的长(结果保留根号);
(2)
在(1)的条件下,若∠BCA=45°,绳子在空中视为一条线段,试求绳子AC的长(结果保留根号)?
24. (7.0分) (2019九上·兴化月考) 如图,在平面直角坐标系中,△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4)
(1)将△ABC绕点A顺时针旋转90°后得到△AB1C1,在图①中画出△AB1C1,并求出在旋转过程中△ABC扫过的面积;
(2)在图②中以点O为位似中心,将△ABC缩小为原来的,并写出点C的对应点的坐标.
五、解答题(共16分) (共2题;共16分)
25. (8分)(2018·黄梅模拟) △OAB是⊙O的内接三角形,∠AOB=120°,过O作OE⊥AB于点E,交⊙O于点C,延长OB至点D,使OB=BD,连CD.
(1)求证: CD是⊙O切线;
(2)若F为OE上一点,BF的延长线交⊙O于G,连OG,,CD=6 ,求S△GOB.
26. (8.0分)(2016·太仓模拟) 如图,在矩形ABCD中,以点A为圆心,AB长为半径画弧,交CD于点E,连接AE、BE.作BF⊥AE于点F.
(1)求证:BF=AD;
(2)若EC= ﹣1,∠FEB=67.5°,求扇形ABE的面积(结果保留π).
参考答案一、选择题(共12分) (共6题;共12分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
二、填空题(共24分) (共8题;共24分)
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
三、解答题(共20分) (共6题;共40分)
15-1、
16-1、
17-1、18-1、
18-2、
18-3、19-1、
19-2、
19-3、
20-1、20-2、
四、解答题(共28分) (共4题;共28分)
21-1、
21-2、
22-1、
22-2、
23-1、23-2、24-1、
24-2、
五、解答题(共16分) (共2题;共16分) 25-1、
25-2、
26-1、26-2、。

相关文档
最新文档