高一数学必修一第一章知识点总结及练习

合集下载

高中数学必修一第一章知识点归纳

高中数学必修一第一章知识点归纳

高中数学必修一第一章知识点归纳第一章是高中数学必修一的开篇,主要讲解了数的性质、整式的加减乘除以及分式的加减乘除等内容。

下面将对第一章的知识点进行归纳总结。

一、数的性质1. 自然数:自然数是人们最早认识和使用的数,包括0和正整数。

2. 整数:整数包括自然数、0和负整数。

3. 有理数:有理数是可以表示为两个整数的比值的数,包括整数和分数。

4. 实数:实数包括有理数和无理数,实数是数轴上的点。

5. 数轴:数轴是用来表示实数的直线,它以0为原点,正方向为右侧,负方向为左侧。

二、整式的加减乘除1. 代数式:代数式是由数、变量和运算符号组成的式子。

2. 同类项:同类项是指具有相同变量因子的代数式中的项。

3. 整式的加法:整式的加法是将同类项相加,要保持同类项的特性。

4. 整式的减法:整式的减法是将减数中各项的系数取相反数,然后与被减数相加。

5. 整式的乘法:整式的乘法是将各项的系数相乘,同时将各项的指数相加。

6. 整式的除法:整式的除法是将除式乘以被除式的倒数,再进行整式的乘法运算。

三、分式的加减乘除1. 分式:分式是由分子和分母组成的有理数表达式。

2. 分式的加法:分式的加法是将分式的分母取公倍数,然后将分子相加,再化简。

3. 分式的减法:分式的减法是将分式的分母取公倍数,然后将分子相减,再化简。

4. 分式的乘法:分式的乘法是将分式的分子与分母相乘,然后化简。

5. 分式的除法:分式的除法是将除式的分子与被除式的分母相乘,然后化简。

第一章主要介绍了数的性质、整式的加减乘除以及分式的加减乘除等内容。

通过学习这些知识点,我们可以更好地理解数的概念和运算规则,为后续的学习打下坚实的基础。

数学是一门系统性强的学科,需要我们掌握好基础知识,才能更好地应对复杂的问题。

希望同学们能够认真学习,多做练习,提高数学素养,为未来的学习和发展打下良好的基础。

高一数学必修一第一章知识点总结及练习

高一数学必修一第一章知识点总结及练习

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A B, B C ,那么 A C④如果A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即x ∈B }. x ∈B}).C S A=},|{A x S x x ∉∈且韦恩 图 示AB图1AB图2性质 A A=A A Φ=Φ A B=B AA B ⊆AA B ⊆BA A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

高一数学必修1第一章知识点总结

高一数学必修1第一章知识点总结

高一数学必修1第一章知识点总结高一数学必修1第一章主要包括三个部分:集合论、函数与映射、数列与数列的极限。

下面将对这三个部分进行总结。

一、集合论1. 集合的概念:集合是由一些确定的事物(称为元素)构成的整体。

2. 集合的表示方法:列举法、描述法和图示法。

3. 集合的运算:并集、交集、补集、差集、元素的判断和包含关系。

4. 集合的性质:幂集、集合的基数和集合的运算律。

二、函数与映射1. 函数的定义与表示:函数是一个对应关系,每个输入都有唯一的输出。

2. 映射的定义与表示:映射是一个集合到另一个集合的对应关系。

3. 函数的性质:定义域、值域、单调性、奇偶性、判定性质等。

4. 反函数与复合函数:反函数是一个函数的逆过程,复合函数是两个函数的结合。

三、数列与数列的极限1. 数列的概念:数列是按照一定规律排列的一组数。

2. 等差数列与等比数列:等差数列是指每一项与前一项之差都相等的数列,等比数列是指每一项与前一项之比都相等的数列。

3. 数列的通项公式与递推公式:通项公式是通过数列项的位置计算项的值,递推公式是通过前一项计算后一项的值。

4. 数列的极限:数列极限是数列中项的无限逼近某个数的过程,包括数列的有界性、极限存在与不存在以及数列极限的计算。

综上所述,高一数学必修1第一章主要是基础的数学知识点。

通过学习集合论、函数与映射以及数列与数列的极限,可以奠定后续数学学习的基础。

这些知识点在高中数学中会贯穿始终,为后续的学习打下坚实的基础。

因此,学生应该重视这些知识点的学习,理解其概念、运算法则,尽量多做相关习题,从而提高数学的综合素养和解题能力。

同时,也应注重数学的实际运用,将所学的数学知识应用到现实生活中,培养数学思维和解决问题的能力。

高中数学必修1知识点总结及题型

高中数学必修1知识点总结及题型

高中数学必修1知识点总结及题型高中数学讲义必修一第一章复知识点一:集合的概念集合是由一些能够归纳在一起的对象构成的整体,通常用大写拉丁字母A、B、C等表示。

构成集合的对象称为元素,通常用小写拉丁字母a、b、c等表示。

不含任何元素的集合称为空集,记为∅。

知识点二:集合与元素的关系如果元素a是集合A的一部分,则称a属于集合A,记作a∈A;如果a不是集合A中的元素,则称a不属于集合A,记作a∉A。

知识点三:集合的特性及分类集合元素具有唯一性、无序性和互异性。

集合可以分为有限集和无限集。

有限集包含有限个元素,无限集包含无限个元素。

知识点四:集合的表示方法集合的元素可以通过列举法和描述法来表示。

列举法是将集合的元素一一列举,并用花括号“{}”括起来表示集合的方法。

描述法是用集合所含元素的共同属性来表示集合的方法。

知识点五:集合与集合的关系子集是指集合A中的所有元素都是集合B中的元素,此时称集合A是集合B的子集,记作A⊆B。

如果A是B的子集且A不等于B,则称A是B的真子集,记作A⊂B。

空集是任何集合的子集,任何集合都是其本身的子集。

如果A是B的子集,B是C的子集,则A是C的子集。

如果A是B的真子集,B是C的真子集,则A是C的真子集。

集合相等是指A是B的子集,B是A的子集,此时称A与B相等,记作A=B。

知识点六:集合的运算交集是指两个集合中共同存在的元素构成的集合,记作A∩B。

并集是指两个集合中所有元素构成的集合,记作A∪B。

1.自然语言中,由文字、符号和图形语言组成的集合,称为集合A与B的并集。

2.交集的运算性质包括:A∩B=B∩A(交换律)A∩A=A(恒等律)A∩∅=∅(零律)A⊆B⇔A∩B=A(吸收律)3.在研究集合与集合之间的关系时,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记作U。

4.对于一个集合A,由全集U中除A的所有元素组成的集合称为集合A相对于全集U的补集,记作∁UA。

高一数学必修一第一章知识点梳理

高一数学必修一第一章知识点梳理

高一数学必修一第一章知识点梳理
摘要:
1.函数和函数的定义
2.函数的性质
3.函数的图像
4.函数的应用
正文:
高一数学必修一的第一章主要涉及函数的相关知识。

函数是数学中一个重要的概念,它在各个领域的应用都非常广泛。

本章将详细介绍函数的定义、性质、图像以及应用。

首先,我们来了解函数的定义。

函数是一种将一个数集中的数映射到另一个数集中的规则。

在函数中,输入的数被称为自变量,输出的数被称为因变量。

函数的定义可以用解析式、表格或者图像来表示。

接下来,我们学习函数的性质。

函数的性质包括奇偶性、单调性、周期性等。

通过研究函数的性质,我们可以更好地理解函数的图像和解析式,从而为函数的应用打下基础。

然后,我们学习函数的图像。

函数的图像可以帮助我们直观地了解函数的性质和特点。

在函数图像中,横坐标表示自变量,纵坐标表示因变量。

函数图像可以是直线、曲线、折线等。

最后,我们学习函数的应用。

函数在实际生活中的应用非常广泛,例如在物理、化学、生物、经济等领域都有重要的应用。

本章将通过具体的例题,介
绍如何运用函数知识解决实际问题。

总之,高一数学必修一第一章的知识点梳理主要包括函数的定义、性质、图像和应用。

高一数学必修一第一章知识点梳理

高一数学必修一第一章知识点梳理

高一数学必修一第一章知识点梳理
(最新版)
目录
1.必修一第一章概述
2.第一章主要知识点
2.1 集合与基本初等函数
2.2 函数的性质与图像
2.3 三角函数
2.4 指数函数和对数函数
2.5 解析几何初步
正文
【必修一第一章概述】
本章是高中数学必修一的第一章,主要涉及的知识点包括集合与基本初等函数,函数的性质与图像,三角函数,指数函数和对数函数,解析几何初步等。

这些知识点是高中数学的基础,对于后续的学习有着重要的影响。

【第一章主要知识点】
2.1 集合与基本初等函数
这一部分主要介绍了集合的概念及其运算,以及基本初等函数,如一次函数、二次函数、正弦函数、余弦函数等。

这些都是高中数学的基本知识,需要我们熟练掌握。

2.2 函数的性质与图像
这一部分主要讲述了如何通过函数的性质来画出函数的图像,以及如何通过函数的图像来推导函数的性质。

这对于理解函数的性质和解决实际
问题都有着重要的作用。

2.3 三角函数
三角函数是初中数学的知识,但在高中数学中也有着重要的应用。

本部分主要介绍了正弦函数、余弦函数、正切函数等基本三角函数的性质和图像。

2.4 指数函数和对数函数
指数函数和对数函数是高中数学的重要内容,本部分主要介绍了它们的性质、图像以及如何进行运算。

2.5 解析几何初步
解析几何是高中数学的重要内容,本部分主要介绍了解析几何的基本概念和方法,如点斜式、截距式等。

【结束语】
高中数学必修一第一章的知识点是高中数学的基础,我们需要对其进行深入的理解和掌握。

高中数学必修一第一章专题总结(答案版)

高中数学必修一第一章专题总结(答案版)
(2)A中至多有一个元素,也包括两种情形:①A中有一个元素,由(1)知a=0,或a=1;
②A中没有元素,此时应有得a>1.∴a的取值范围是a≥1,或a=0.
【例4】设函数f(x)=x2-2x+2(其中x∈[t,t+1],t∈R)的最小值为g(t),求g(t)的表达式.
【解】f(x)=x2-2x+2=(x-1)2+1.
化简得2(a+b)x2+2a=0对一切实数x恒成立,∴a=b=0.
解法二:由题意知,f(0)=0,得a=0.∴f(x)=.∵f(x)为奇函数,∴f(-1)=-f(1),得b=0.
三、基本方法
1.配方法
【例9】求下列函数的值域.
(1)y=2x2-3x-1,x∈(1,+∞);
(2)y=x2++8(x≠0).
【解】如上图所示,∵A∩B={4,5},∴将4,5写在A∩B中.∵(∁SB)∩A={1,2,3},∴将1,2,3写在A中.
∵(∁SB)∩(∁SA)={6,7,8},∴将6,7,8写在S中A,B之外.
∵(∁SA)∩A与(∁SB)∩(∁SA)中均无9,10,∴9,10在B中.故A={1,2,3,4,5},B={4,5,9,10}.
7.求函数值域的常用方法
(1)观察法:对于一些较简单的函数,其值域可通过观察得到;
(2)图象法:作出函数的图象,观察图象得到值域;
(3)单调性法:利用函数的单调性求值域;
(4)配方法:把函数配方,利用二次函数的性质求出值域;
(5)换元法:通过换元,将所给函数化为易于求值域的函数;但要注意换元后新变量的取值范围;
5.赋值法
【例13】已知函数f(x)是定义在实数集R上的不恒为0的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f的值是()

(完整版)人教版高中数学必修一第一章知识点

(完整版)人教版高中数学必修一第一章知识点

第一章 集合与函数概念〖1.1〗集合【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(6)子集、真子集、集合相等(7)已知集合A 有(1)n n ≥个元素,则它有2n 个子集,它有21n -个真子集,它有21n -个非空子集,它有22n-非空真子集.(8)交集、并集、补集【1.1.3】集合的基本运算名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U A {|,}x x U x A∈∉且1()UA A=∅2()UA A U=【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=()()()U U UA B A B=〖1.2〗函数及其表示 【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f,对于集合A 中任何一个数x ,在集合B中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a xb <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零. ⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义. (4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值. ③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo〖1.3〗函数的基本性质 【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 单调性如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)<f(x .....2.).,那么就说f(x)在这个区间上是增函数.... x 1x 2y=f(X)xy f(x )1f(x )2o(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象上升为增) (4)利用复合函数 如果对于属于定义域I 内某个区间上的任意两个自变量的值x 1、x 2,当x .1.< x ..2.时,都有f(x ...1.)>f(x .....2.).,那么就说f(x)在这个区间上是减函数.... y=f(X)yxox x 2f(x )f(x )211(1)利用定义(2)利用已知函数的单调性(3)利用函数图象(在某个区间图象下降为减) (4)利用复合函数②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数. ③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()ug x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,]a -∞-、,)a +∞上为增函数,分别在[,0)a 、]a 上为减函数.(3)最大(小)值定义 ①一般地,设函数()y f x =的定义域为I,如果存在实数M 满足:(1)对于任意的x I ∈,都有()f x M≤;(2)存在0x I ∈,使得0()f x M=.那么,我们称M 是函数()f x 的最大值,记作max ()f x M=.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法 函数的 性 质定义图象判定方法 函数的 奇偶性如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...-.f(x)....,那么函数f(x)叫做奇函..数..(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于原点对称)如果对于函数f(x)定义域内任意一个x ,都有f(..-.x)=...f(x)....,那么函数f(x)叫做偶函数....(1)利用定义(要先判断定义域是否关于原点对称)(2)利用图象(图象关于y 轴对称) ②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反.④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象. ①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.。

最新人教版高一数学上册必修1第一章知识点总结

最新人教版高一数学上册必修1第一章知识点总结

主要知识点: 1、 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数 x,在集合B中都有惟一确定的数y和它对应,那么就称f:A—B,为集合A到集合B的一个函数, 记作:.y=f(x) , x A 2、 一个函数的构成要素为:定义域、对应关系、值域.如果两个函数的定义域相同,并且 对应关系完全一致,则称这两个函数相等.
3、集合的三要素中的互异性是个考点,经常跟函数、不等式联系 起来作为选择题或者填空题考查。
如: 已知A={1,2a,a+b},B={4,2a-3,3},且A=B,求a,b的值。
§1.1.2集合间的基本关系
教学目的: (1)了解集合之间的包含、相等关系的含义; (2)理解子集、真子集的概念; (3)能利用Venn图表达集合间的关系; (4)了解与空集的含义。 教学重点:子集与空集的概念;用Venn图表达集合间的关系。 教学难点:弄清元素与子集 、属于与包含之间的区别;
难点攻破
1、实例体会三种表示方法的的优点与缺点。
2、分段函数的画法,实例讲解。如
3、解析式的列出引导学生学会找等量关系,根据等的基本性质 教学目的: (1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性. 教学重点:函数的单调性及奇偶性及几何意义. 教学难点:利用函数的单调性定义判断、证明函数的单调性. 主要知识点: 1、 函数单调性证明的一般格式。 2、 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(x)=f(-x),那么就称 函数为偶函数.偶函数图象关于y轴对称. 3、 一般地,如果对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x),那么就称 函数为奇函数.奇函数图象关于原点对称.

高一数学必修一第一章知识点梳理

高一数学必修一第一章知识点梳理

高一数学必修一第一章知识点梳理【原创实用版】目录1.必修一第一章的主要知识点2.知识点的详细解析3.知识点的应用和实践正文一、必修一第一章的主要知识点高一数学必修一的第一章主要包括以下几个知识点:1.有理数和整式有理数包括整数、分数和无理数,整式是由单项式和多项式组成的代数式。

2.一元一次方程与不等式一元一次方程是指含有一个未知数的一次方程,不等式是指用不等号连接的代数式。

3.函数和导数函数是一种将自变量映射到因变量的数学关系,导数是函数在某一点的切线斜率。

二、知识点的详细解析1.有理数和整式有理数是我们日常生活中常用的数字,包括整数、分数和无理数。

整式是由单项式和多项式组成的代数式,其中单项式是只含有一个变量的代数式,多项式是由多个单项式相加或相减而成的代数式。

2.一元一次方程与不等式一元一次方程是指含有一个未知数的一次方程,例如 2x+3=7。

不等式是指用不等号连接的代数式,例如 x>5。

解一元一次方程和不等式的方法主要包括移项、合并同类项、化简等步骤。

3.函数和导数函数是一种将自变量映射到因变量的数学关系,例如 y=2x+1。

导数是函数在某一点的切线斜率,表示函数在该点的变化率。

导数的求法有多种,如极限法、微分法等。

三、知识点的应用和实践在实际生活和学习中,我们可以通过以下方式应用和实践这些知识点:1.解实际问题中的数学题,如利用一元一次方程和不等式求解实际问题。

2.学习其他数学课程,如利用函数和导数研究数学曲线的性质。

3.参加数学竞赛或考试,提高自己的数学能力和成绩。

高一数学必修一第一章知识点与习题讲解精编版

高一数学必修一第一章知识点与习题讲解精编版

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯必修 1 第一章会合与函数基础知识点整理第 1 讲§会合的含义与表示¤学习目标:经过实例,认识会合的含义,领会元素与会合的“属于” 关系;能选择自然语言、图形语言、会合语言(列举法或描绘法)描绘不一样的详细问题,感觉会合语言的意义和作用;掌握会合的表示方法、常用数集及其记法、会合元素的三个特点.¤知识重点:1. 把一些元素构成的整体叫作会合(set),其元素拥有三个特点,即确立性、互异性、无序性.2. 会合的表示方法有两种:列举法,即把会合的元素一一列举出来,并用花括号“{ } ”括起来,基本形式为 { a1 ,a2 , a3 , , a n} ,合用于有限集或元素间存在规律的无穷集. 描绘法,即用会合所含元素的共同特点来表示,基本形式为{ x A | P( x)} ,既要关注代表元素x,也要掌握其属性P( x) ,合用于无穷集.3. 往常用大写拉丁字母A, B, C ,表示会合.要记着一些常有数集的表示,如自然数集N ,正整数集N *或N,整数集 Z,有理数集 Q ,实数集 R .4. 元素与会合之间的关系是属于(belong to)与不属于(not belong to),分别用符号、表示,比如3N ,2 N .¤例题精讲:【例 1】试分别用列举法和描绘法表示以下会合:( 1)由方程x(x2 2x 3) 0 的全部实数根构成的会合;( 2)大于 2 且小于7的整数 .解:(1)用描绘法表示为:{ x R | x(x2 2 x 3) 0} ;用列举法表示为 {0, 1,3} .( 2)用描绘法表示为:{ x Z | 2 x 7} ;用列举法表示为{3,4,5,6} .【例 2】用适合的符号填空:已知 A { x | x 3k 2, k Z} , B { x| x 6m 1, m Z } ,则有:17 A ;- 5 A;17 B.解:由 3k 2 17 ,解得 k 5 Z ,所以 17 A ;由 3k 27Z ,所以 5 A ;5 ,解得k3由 6m 1 17 ,解得 m 3 Z ,所以17 B .【例 3】试选择适合的方法表示以下会合:(教材 P6练习题2, P13 A组题 4)( 1)一次函数y x 3 与 y 2 x 6 的图象的交点构成的会合;( 2)二次函数y x2 4 的函数值构成的会合;( 3)反比率函数解:(1){( x, y) | ( 2){ y | y x22y的自变量的值构成的会合.xy x 3} {(1,4)} .y 2 x 64} { y | y 4} .( 3){ x | y 2} { x | x 0} .x. 在解题中不可以把点的坐标混杂为{1,4} ,也注意对照评论:以上代表元素,分别是点、函数值、自变量( 2)与( 3)中的两个会合,自变量的范围和函数值的范围,有着本质上不一样,剖析时必定要仔细.* 【例 4】已知会合 A { a | x ax2 1有独一实数解 } ,试用列举法表示会合A.2解:化方程x a1为:x 2 x (a 2) 0 .应分以下三种状况:x229 1⑴方程有等根且不是,此时的解为 x2 :由△=0,得 a ,合.4 21⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新 料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⑵方程有一解为 2 ,而另一解不是 2 :将 x 2 代入得 a 2 ,此时另一解 x 1 2 ,合. ⑶方程有一解为2 ,而另一解不是2 :将 x2 代入得 a2 ,此时另一解为x2 1 ,合.综上可知, A { 9, 2, 2}.4. 注意分式方程易造成增根的现评论 :运用分类议论思想方法,研究出根的状况,进而列举法表示象 .第 2 讲 § 会合间的基本关系¤学习目标 :理解会合之间包括与相等的含义,能辨别给定会合的子集;在详细情境中,认识全集与空集的含义;能利用 Venn 图表达会合间的关系 .¤知识重点 :1. 一般地,对于两个会合含关系,此中会合 A 是会合A 、B ,假如会合 A 中的随意一个元素都是会合 B 中的元素,则说两个会合有 包 B 的子集( subset ),记作 A B (或 B A ),读作“ A 含于 B ”(或 “B 包括 A ”) .2. 假如会合 A 是会合 B 的子集( A B ),且会合 B 是会合 A 的子集( B A ),即会合 A 与会合 B 的元素是相同的,所以会合A 与会合B 相等,记作 AB .3. 假如会合 A B ,但存在元素 x B ,且 x A ,则称会合 A 是会合 B 的真子集( proper subset ),记作A B (或BA ) .4. 不含任何元素的会合叫作空集(empty set ),记作 ,并规定空集是任何会合的子集.5. 性质: A A ;若 A B ,BC ,则 A C ;若A B A ,则A B ;若A B A ,则B A . ¤例题精讲 :【例 1】用适合的符号填空: (1){ 菱形 } { 平行四边形 } ; { 等腰三角形 } { 等边三角形 }.( 2){ x22 0;} 0{0} ;{0} ;N{0}.R| x解:(1) , ; (2)=,∈, , .【例 2】设会合A { x| xn,n Z}, B{ x | xn 1 ,n Z } ,则以下图形能表示 A 与 B 关系的是().22A B B A ABABA .B .3 C .13D .3 1 1 3解:简单列举两个会合的一些元素,A { ,1, 1 } , B{ ,2 ,0, ,1, ,2 , ,,,},易知 B2 222 2 2 A ,故答案选 A .另解:由 B{ x | x2n 1Z } ,易知 B A ,故答案选 A .2 , n【例 3】若会合 M x | x 2x 6 0,N x | ax 1 0,且 N M ,务实数 a 的值 .解:由 x 2 x 6x 2或3 ,所以, M2, 3 .( i )若 a0 时,得 N,此时, NM ;( ii )若 a 0时,得 N{1}. 若 NM ,知足1 2或13 ,解得 a1或 a 1 . a aa23故所务实数 a 的值为 0或1或 1 .23”,因为A评论 :在观察“ A B ”这一关系时,不要忘掉“ 时存在 A B . 进而需要分状况讨论 . 题中议论的主线是依照待定的元素进行.【例 4】已知会合 A={ a,a+ b,a+2b} , B={ a,ax,ax 2}. 若 A=B ,务实数 x 的值 .解:若a b ax a+ax 2-2ax=0,所以 a(x-1) 2=0,即 a=0 或 x=1.a 2b ax22当 a=0 时,会合 B 中的元素均为 0,故舍去; 当 x=1 时,会合 B 中的元素均相同,故舍去 .a b ax 2 2若2b ax2ax -ax-a=0.a因为 a ≠ 0,所以 2x 2 -x-1=0, 即 (x-1)(2 x+1)=0. 又 x ≠ 1,所以只有 x1 .2经查验,此时 A=B 建立 . 综上所述 x1 .2. 融入方程组思想,联合元素的互异性确立会合 .评论 :抓住会合相等的定义,分状况进行议论 第 3 讲 § 会合的基本运算(一)¤学习目标 :理解两个会合的并集与交集的含义,会求两个简单会合的并集与交集; 理解在给定会合中一 个子集的补集的含义,会求给定子集的补集;能使用 Venn 图表达会合的关系及运算,领会直观图示对理解抽象观点的作用 .¤知识重点 :会合的基本运算有三种,即交、并、补,学习时先理解观点,并掌握符号等,再联合解题的训练,而达到 掌握的层次 . 下边以表格的形式概括三种基本运算以下 .并集交集 补集由全部属于会合 A 或属于集 由属于会合 A 且属于会合 B 对于会合 A,由全集 U 中不属于观点合 B 的元素所构成的会合, 的元素所构成的会合,称为 会合 A 的全部元素构成的集 称为会合 A 与B 的并集 会合A 与B 的交集合,称为会合A 相对于全集 U( union set )( intersection set )的补集( complementary set )记号 A B (读作“ A 并 B ”)A B (读作“ A 交 B ”)e U A (读作“ A 的补集”)符号A B { x | xA,或 x B} A B { x | x A,且x B}e U A { x | , 且 x A }x U图形U表示A¤例题精讲 :【例 1】设会合 U R, A { x | 1 x 5}, B { x |3 x 9}, 求AB, e U ( AB) .解:在数轴上表示出会合A 、B ,如右图所示:BA B { x | 3 x 5} , AC U ( A B) { x | x 1,或 x9} ,-1359x2】设 A { x Z | | x | 6},B 1,2,3 , C3,4,5,6【例 ,求:(1) A (B C) ; ( 2) A e A (B C) .解:A 6, 5, 4, 3, 2, 1,0,1,2,3,4,5,6 .(1)又 B C 3,∴A(B C)3 ;( 2)又 B C 1,2,3,4,5,6,得C A (BC) 6, 5, 4, 3, 2, 1,0 .∴ A C A (B C)6, 5, 4, 3, 2, 1,0 .【例 3】已知会合 A { x | 2 x4}, B { x | x m} ,且 A BA ,务实数 m 的取值范围 .解:由 AB A ,可得 AB .在数轴上表示会合 A 与会合 B ,如右图所示:BA由图形可知, m 4 .-24mx 评论 :研究不等式所表示的会合问题,经常由会合之间的关系,获得各端点之间的关系,特别要注意能否含端点的问题 .【例 4】已知全集 U{ x | x 10,且 x N *},A{2,4,5,8} , B {1,3,5,8} ,求 C U ( AB) ,C U (A B) ,3( C U A) (C U B) ,( C U A) (C U B ) ,并比较它们的关系.解:由 A B {1,2,3,4,5,8},则C U( A B) {6,7,9} .由 A B {5,8} ,则 C U ( A B) {1,2,3,4,6,7,9}由 C U A {1,3,6,7,9} , C U B {2,4,6,7,9},则 ( C U A) (C U B) {6,7,9} ,( C U A) (C U B) {1,2,3,4,6,7,9}.由计算结果能够知道,(C U A) (C U B) C U (A B) ,(C U A) (C U B) C U (A B) .另解:作出Venn 图,如右图所示,由图形能够直接察看出来结果.评论:可用 Venn 图研究(C U A)(C U B) C U ( A B) 与 (C U A) ( C U B) C U ( A B),在理解的基础记着此结论,有助于此后快速解决一些会合问题.第 4 讲§会合的基本运算(二)¤学习目标:掌握会合、交集、并集、补集的有关性质,运转性质解决一些简单的问题;掌握会合运算中的一些数学思想方法 .¤知识重点:1. 含两个会合的Venn 图有四个地区,分别对应着这两个会合运算的结果. 我们需经过Venn 图理解和掌握各地区的会合运算表示,解决一类可用列举法表示的会合运算. 经过图形,我们还能够发现一些会合性质:C U (A B) (C U A) (C U B), C U ( A B) (C U A)(C U B) .2. 会合元素个数公式:n( A B) n( A) n( B) n( A B) .3. 在研究会合问题时,经常用到分类议论思想、数形联合思想等. 也常由新的定义观察创新思想.¤例题精讲:【例 1】设会合A 4,2a 1,a2 , B 9,a 5,1 a ,若 A B 9 ,务实数 a 的值.解:因为 A4,2a 1,a2 , B 9,a 5,1 a ,且 A B 9 ,则有:当 2a 1=9时,解得a=5,此时A={ -4, 9, 25} , B={9, 0, -4} ,不合题意,故舍去;当 a2=9 时,解得 a=3或- 3 .a=3时,A={ -4,5,9} ,B ={9, -2,- 2} ,不合题意,故舍去;a=- 3,A={ -4, -7,9} , B={9, -8, 4} ,合题意.所以, a=-3 .【例】设会合 A { x | ( x 3)( x a) 0, a R} , B { x | ( x 4)( x 1) 0},求 A B, A B (教材P142 .B组题 2)解: B {1,4} .当 a 3 时, A {3} ,则 A B {1,3,4} , A B ;当 a 1时,A {1,3} ,则 A B {1,3,4} , A B {1} ;当 a 4时,A {3,4} ,则 A B {1,3,4} , A B {4} ;当 a 3 且 a 1 且 a 4时, A {3, a} ,则 A B { 1,3,4, a} , A B.评论:会合 A 含有参数 a,需要对参数 a 进行分状况议论. 排列参数 a 的各样状况时,需依照会合的性质和影响运算结果的可能而进行剖析,不多许多是分类的原则.【例 3】设会合 A ={ x | x2 4 x 0 }, B ={ x | x2 2( a 1)x a2 1 0 ,a R},若A B=B,务实数 a 的值.解:先化简会合A= { 4,0}.由A B=B,则 B A,可知会合 B 可为,或为 {0} ,或 { - 4} ,或{ 4,0} .(i)若 B= ,则4( a 1)2 4(a 2 1) 0 ,解得 a < 1 ;(ii )若0 B,代入得a 2 1 =0 a =1或 a =1,当 a =1时,B=A,切合题意;当 a = 1 时, B={0} A,也切合题意.(iii )若- 4 B,代入得a 2 8a 7 0 a =7或 a =1,当 a =1时,已经议论,切合题意;4当 a =7 时, B={ - 12,- 4} ,不切合题意.综上可得, a =1 或 a ≤ 1 .. 经过深刻理解会合表示法的变换,及会合之 评论 :本题观察分类议论的思想,以及会合间的关系的应用间的关系,能够把有关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时, 特别简单出现的错误是遗漏了 A=B 和 B= 的情况,进而造成错误.这需要在解题过程中要全方向、多角度审 视问题 .【例 4】对会合 A 与 B ,若定义 A B{ x | x A,且 x B} , 当 集 合 A { x | x 8, x N * } , 集 合B { x | x( x2)( x 5)( x 6) 0} 时,有 A B = . (由教材 P 12 补集定义“会合 A 相对于全集 U 的补集为C U A{ x | x,且 x A} ”而拓展)解:依据题意可知, A {1,2,3,4,5,6,7,8} , B{0,2,5,6}由定义AB{ x | x A,且x B} ,则A B {1,3,4,7,8} .评论 :运用新定义解题是学习能力的发展,也是一种创新思想的训练,重点是理解定义的本质性内涵,这 里新定义的含义是从A 中清除B 的元素 . 假如再给定全集U ,则 A B 也相当于 A (C U B) .第 5 讲 §函数的观点¤学习目标 :经过丰富实例, 进一步领会函数是描绘变量之间的依靠关系的重要数学模型, 在此基础上学惯用会合与对应的语言来刻画函数, 领会对应关系在刻画函数观点中的作用;认识构成函数的因素,会求一些简单函数的定义域和值域 .¤知识重点 :1. 设 A 、 B 是非空的数集,假如按某个确立的对应关系 f ,使对于会合 A 中的随意一个数 x ,在会合 B中都有独一确立的数 y 和它对应,那么就称 f :A → B 为从会合 A 到会合 B 的一个函数( function ),记作 y = f ( x) ,x A .此中, x 叫自变量, x 的取值范围 A 叫作定义域( domain ),与 x 的值对应的 y 值叫函数值,函数值的会合 { f ( x) | xA} 叫值域( range ) .2. 设 a 、 b 是两个实数,且 a<b ,则: { x|a ≤ x ≤ b} = [a,b] 叫闭区间;{ x|a<x<b} = (a,b) 叫开区间;{ x|a ≤ x<b} = [ a, b) , { x|a< x ≤ b} = (a, b] ,都叫半开半闭区间 .符号:“∞”读“无量大” ;“-∞”读“负无量大” ;“ +∞ ”读“正无量大” . 则{ x | x a} (a , ) , { x | x a} [ a, ) , { x | xb}( , b) , { x| x b}( , b] , R (, ) .3. 决定函数的三个因素是定义域、值域和对应法例 . 当且仅当函数定义域、 对应法例分别相同时, 函数才是同一函数 .¤例题精讲 :【例 1】求以下函数的定义域:( 1) y1;( 2) x3.x 2 y13x1 2解:(1)由 x 2 10 ,解得 x 1且 x 3 ,所以原函数定义域为 ( , 3)( 3, 1) ( 1, ) .x 3,解得 x 3 且 x9 ,( 2)由x 12 3所以原函数定义域为 [3,9)(9, ) .【例 2】求以下函数的定义域与值域: ( 1) y3x 2; ( 2) y x 2 x 2 .5 4 x解:(1)要使函数存心义,则 5 4x 0 ,解得 x 5 { x | x 5. 所以原函数的定义域是 } .4 43 x 2 1 12x 8 1 3(4 x 5) 23 3 23 3 3 ,所以值域为 { y | y3 y 5 4x45 4 x0 4 } .5 4 x 4 5 4 x 4 4 4( 2) yx 2 x 2(x 1 )2 9 . 所以原函数的定义域是R ,值域是 ( , 9 ] .1 x2 44【例 3】已知函数 f ( x . 求:( 1) f (2) 的值; ( 2) f ( x) 的表达式1 )x5解:(1)由1x 2 ,解得 x1,所以 f (2) 1 .1 x33(2)设1x t ,解得 x 1t,所以 f (t ) 1t,即f (x)1 x . 1 x1 t1 t1 x评论 :本题解法中突出了换元法的思想. 这种问题的函数式没有直接给出,称为抽象函数的研究,经常需要联合换元法、特值代入、方程思想等.【例 4】已知函数 f (x)x 22 , x R .1 x( 1)求 f ( x)f ( 1 f (2)f (3)f (4) 11 1) 的值;( 2)计算: f (1) f ( )f ( )f ( ) .x 12 34解:(1)由 f (x) f ( 1)222x2x 2x21 121 x 21 .x 1 x 11 xx1x121x11 1 7( 2)原式f (1) ( f (2)f ( )) ( f (3) ( f (4)f (2 f ( )))) 32342评论 :对规律的发现,能使我们实行巧算 . 正确探究出前一问的结论,是解答后一问的重点 .第 6 讲 § 函数的表示法¤学习目标 :在本质情境中,会依据不一样的需要选择适合的方法(图象法、列表法、分析法)表示函数;经过详细实例,认识简单的分段函数,并能简单应用;认识映照的观点 .¤知识重点 :1. 函数有三种表示方法:分析法(用数学表达式表示两个变量之间的对应关系,长处:简洁,给自变量可求函数值) ;图象法(用图象表示两个变量的对应关系,长处:直观形象,反响变化趋向) ;列表法(列出表 格表示两个变量之间的对应关系,长处:不需计算便可看出函数值) .2. 分段函数的表示法与意义(一个函数,不一样范围的 x ,对应法例不一样) .3. 一般地,设 A 、 B 是两个非空的会合,假如按某一个确立的对应法例f ,使对于会合 A 中的随意一个元 素 x ,在会合 B 中都有独一确立的元素 y 与之对应,那么就称对应f : A B 为从会合 A 到会合 B 的一个映照 ( mapping ).记作“ f : AB ” .鉴别一个对应能否映照的重点: A 中随意, B 中独一;对应法例 f.¤例题精讲 : 【例 1】如图,有一块边长为 a 的正方形铁皮,将其四个角各截去一个边长为x 的小正 方形,而后折成一个无盖的盒子,写出体积V 以 x 为自变量的函数式是 _____ ,这个函数的 定义域为 _______ .解:盒子的高为 x ,长、宽为 a -2x ,所以体积为 V = x(a - 2x)2 .又由 a -2xa0 ,解得 x .2a} .所以,体积 V 以 x 为自变量的函数式是V x(a -2 x) 2,定义域为 { x | 0 x2332x(,1)【例 2】已知 f(x)=x 2xx( 1 , ,求 f[f(0)] 的值 .3x 3)x解:∵ 0 (,1) , ∴ f(0)= 32 .又 ∵ 3 2 >1,∴ f( 32 )=(3 2 )3+( 32 )-3=2+ 1 = 5,即 f[f(0)]=5.【例 3】画出以下函数的图象: 2 22( 1) y | x 2| ; (教材 P 26 练习题 3) ( 2) y | x 1| | 2 x 4 | .解:( 1)由绝对值的观点,有 y| xx 2, x 22 |x, x.226所以,函数 y| x 2 | 的图象如右图所示 .3x 3, x 1( 2) y | x 1| | 2 x 4 |x 5, 2 x 1,3 x 3, x2所以,函数 y | x 1| | 2x 4 | 的图象如右图所示 .评论 :含有绝对值的函数式,能够采纳分零点议论去绝对值的方法,将函数式化为分段函数,而后依据定义域的分段状况,选择相应的分析式作出函数图象.【例 4】函数 f ( x) [ x] 的函数值表示不超出x 的最大整数, 比如 [ 3.5]4 ,[2.1] 2 ,当 x ( 2.5,3] 时,写出 f ( x) 的分析式,并作出函数的图象.3,x 2 2, 2 x 11, 1 x 0解: f ( x) 0, 0 x 1. 函数图象如右: 1, 1 x 22, 2 x 33, x3评论 :解题重点是理解符号 m 的观点,抓住分段函数的对应函数式.第 7 讲 § 函数的单一性¤学习目标 :经过已学过的函数特别是二次函数, 理解函数的单一性及其几何意义;学会运用函数图像理解和研究函数的性质 . 理解增区间、减区间等观点,掌握增(减)函数的证明和鉴别.¤知识重点 : 1. 增函数:设函数 y=f(x)的定义域为 I ,假如对于定义域 I 内的某个 区间 D 内的随意两个自变量 x 1,x 2,当 x 1< x 2 时,都有 f(x 1)< f(x 2 ),那么就说 f(x)在区间 D 上是增函数( increasing function ) . 模仿增函数的定义可定义减函数 .2. 假如函数 f(x)在某个区间 D 上是增函数或减函数, 就说 f(x)在这一区间上拥有 (严格的) 单一性, 区间 D 叫 f(x)的单一区间 . 在单一区间上,增函数的图象是从左向右是上涨的(如右图 1),减函数的图象从左向右 是降落的(如右图 2) . 由此,能够直观察看函数图象上涨与降落的变化趋向,获得函数的单一区间及单一性.3. 判断单一性的步骤:设x 1 、 x 2 ∈给定区间,且 x 1 <x 2 ;→计算 f(x 1 )- f(x 2 ) →判断符号→下结论 .¤例题精讲 :【例 1】试用函数单一性的定义判断函数f (x)2x 在区间( 0, 1)上的单一性 .x 1解:任取 x , x ∈ (0,1) ,且 x x . 则 f ( x 1) f ( x 2 ) 2x 1 2x 2 2( x 2 x 1 )2 .1 1 2x 1 1 x 2 1 (x 1 1)(x 2 1)因为 0 x 1 x 2 1 , x 1 1 0 , x 2 1 0 , x 2 x 1 0 ,故 f ( x 1 ) f ( x 2 ) 0 ,即 f ( x 1 ) f (x 2 ) .所以,函数 f (x)2x 在( 0, 1)上是减函数 .x 1【例 2】求二次函数 f (x) ax2bx c (a 0) 的单一区间及单一性 .解:设随意 x 1 , x 2 R ,且 x 1x 2 . 则f ( x 1 ) f ( x 2 ) ( ax 1 2bx 1 c) (ax 2 2 bx 2 c) a( x 12 x 2 2 ) b( x 1x 2 ) ( x 1 x 2 )[ a(x 1 x 2 ) b] .若 a 0 ,当 x 1 x 2 b x 2 0 , x 1 x 2b ,即 a (x 1 x 2 ) b 0 ,进而 f ( x 1 ) f (x 2 ) 0 ,时,有 x 1 a 2a bb即 f ( x 1 ) f (x 2 ) ,所以 f (x) 在 ( , 上单一递加 . 同理可得f (x) 在 [, ) 上单一递减 .] 2a3】求以下函数的单一区间: 2a【例 ( 1) y | x 1|| 2 x 4 | ;( 2) yx 2 2| x | 3 .73x 3, x 1解:( 1) y | x 1| | 2x4 | x5, 2 x 1 ,其图象如右 .3x 3, x 2由图可知,函数在 [ 2, ) 上是增函数,在( , 2] 上是减函数 .( 2) yx22 | x | 3x 2 2 x 3, x 0 ,其图象如右 .x22x 3, x 0由图可知,函数在 ( , 1] 、 [0,1] 上是增函数,在 [ 1,0] 、 [1, ) 上是减函数 .评论 :函数式中含有绝对值,能够采纳分零点议论去绝对值的方法,将函数式化为分段函数.第2小题也 能够由偶函数的对称性,先作y 轴右边的图象,并把 y 轴右边的图象对折到左边,获得 f (| x |) 的图象 . 由图象 研究单一性,重点在于正确作出函数图象.【例 4】已知 f ( x) 3x1,指出 f ( x) 的单一区间 .x 2解:∵ f ( x)3( x 2) 5 3 x 5 ,x 22∴ 把g (x)5的图象沿 x 轴方向向左平移 2 个单位,再沿 y 轴向上平移 3 个单位,x获得 f ( x) 的图象,以下图 .由图象得 f (x) 在 (, 2) 单一递加,在 ( 2, ) 上单一递加 .评论 :变形后联合平移知识,由平移变换获得一类分式函数的图象. 需知 f ( x a) b 平移变换规律 .第 8 讲 § 函数最大(小)值¤学习目标 :经过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质 . 能利用单一性求函数的最大(小)值 .¤知识重点 :1. 定义最大值:设函数y f (x) 的定义域为I ,假如存在实数M 知足: 对于随意的 ∈ ,都有 f (x) ≤ M ;x I存在 x 0∈ I ,使得 f (x 0 ) = M. 那么,称 M 是函数 y f (x) 的最大值( Maximum Value ). 模仿最大值定义,可以给出最小值( Minimum Value )的定义 .2. 配方法: 研究二次函数 yax 2bx c (a0) 的最大 (小) 值,先配方成 y a( xb ) 2 4ac b 2 后,222a4a当 a 0 时,函数取最小值为4ac b ;当 a0 时,函数取最大值4ac b .4a4a3. 单一法:一些函数的单一性,比较简单察看出来,或许能够先证明出函数的单一性,再利用函数的单一性求函数的最大值或最小值 .4. 图象法:先作出其函数图象后,而后察看图象获得函数的最大值或最小值.¤例题精讲 : 【例 1】求函数 y6的最大值 .x 2x1解:配方为 y6,由 (x 1 )368 .13 2 3,得 0( x 224 41 23)4( x)422所以函数的最大值为 8.【例 2】某商人假如将进货单价为 8 元的商品按每件 10 元售出时, 每日可售出 100 件 . 此刻他采纳提升售出价,减少进货量的方法增添收益,已知这种商品每件抬价1 元,其销售量就要减少 10 件,问他将售出价定 为多少元时,才能使每日所赚得的收益最大?并求出最大收益 .解:设他将售出价定为 x 元,则提升了 (x 10) 元,减少了 10 ( x 10) 件,所赚得的收益为y (x8) [100 10 (x10)] .即 y10x 2 280x 1600 10( x 14) 2 360 . 当 x 14时, y max360 .8所以,他将售出价定为 14 元时,才能使每日所赚得的收益最大 , 最大收益为 360 元. 【例 3】求函数 y 2 xx 1 的最小值 .解:此函数的定义域为1, ,且函数在定义域上是增函数, 所以当 x 1时,y min 2 1 1 2 ,函数的最小值为 2.评论 :形如 y ax bcx d 的函数最大值或最小值,能够用单一性法研究,也能够用换元法研究 .【另解】令x 1 t ,则 t 0 , x t 21 ,所以 y 2t 2t 2 2(t1 )2 15 ,在 t 0 时是增函数,当 t4 8时, y min 2 ,故函数的最小值为2.【例 4】求以下函数的最大值和最小值:(1) y 3 2x x 2, x[5 , 3] ; (2) y | x 1| | x 2 | .2 2b解:( 1)二次函数 y3 2 x x 2 的对称轴为 x,即 x1 .2a39画出函数的图象,由图可知,当 x 1 时, y max 4 ; 当 x时, y min2 .4所以函数 y3 2x x 2 , x [ 5 , 3 ] 的最大值为 4,最小值为9 .2 24(2)y | x 1| | x 2 | 3 ( x 2) 2x 1 ( 1 x 2) .3 ( x 1)作出函数的图象,由图可知,y [ 3,3] . 所以函数的最大值为 3, 最小值为 -3.评论 :二次函数在闭区间上的最大值或最小值,常依据闭区间与对称轴的关系,联合图象进行剖析 . 含绝对值的函数,常分零点议论去绝对值,转变为分段函数进行研究 . 分段函数的图象注意分段作出.第 9 讲 §函数的奇偶性¤学习目标 :联合详细函数, 认识奇偶性的含义; 学会运用函数图像理解和研究函数的性质 . 理解奇函数、偶函数的几何意义,能娴熟鉴别函数的奇偶性 .¤知识重点 :1. 定义:一般地,对于函数 f (x) 定义域内的随意一个 x ,都有 f ( x) f (x) ,那么函数 f ( x) 叫偶函数( evenfunction ). 假如对于函数定义域内的随意一个x ,都有 f ( x) f ( x) ),那么函数 f ( x) 叫奇函数( odd function ).2. 拥有奇偶性的函数其定义域对于原点对称,奇函数的图象对于原点中心对称,偶函数图象对于 y 轴轴对称 .3. 鉴别方法:先观察定义域能否对于原点对称,再用比较法、计算和差、比商法等鉴别 f ( x) 与 f ( x) 的关系 .¤例题精讲 :【例 1】鉴别以下函数的奇偶性:( 1) f ( x) x 3 1 ; ( 2) f (x) | x 1| | x 1| ;( 3) f ( x) x2 x3 .x解:(1)原函数定义域为 { x | x0} ,对于定义域的每一个x ,都有f ( x)( 31 31 f ( x) , 所认为奇函数 .x)x( x)x( 2)原函数定义域为 R ,对于定义域的每一个x ,都有f ( x) | x1 | | x 1 | x| 1 | x |,所认为偶函数 .1f | x( 3)因为 f ( x)x 2x 3f ( x) ,所以原函数为非奇非偶函数.【例 2】已知 f ( x) 是奇函数, g( x) 是偶函数,且 f (x) 1,求 f ( x) 、 g ( x) .g ( x)f ( x) 是奇函数,g ( x) 是偶函数,x 1解:∵∴ f ( x)f (x) ,g ( x)g ( x) .f (x)g ( x)1f (x)g (x)1 x 1 x 1则,即.1 1f ( x)g ( x) f ( x) g (x)x 1 x 1两式相减,解得 f (x)x;两式相加,解得g (x)12 2 . x 12x2x 1【例3】已知 f ( x)是偶函数,x 0 时, f ( x) 4 x ,求x 0 时f (x)的分析式.解:作出函数 y24 x 2( x22, x 0 的图象,其极点为(1,2) .2 x 1)∵ f (x) 是偶函数,∴ 其图象对于y 轴对称 .作出 x 0 时的图象,其极点为( 1,2) ,且与右边形状一致,∴ x 0 时, f (x) 2( x 1)2 2 2 x2 4 x .评论:本题中的函数本质就是y 2 x2 4 | x | . 注意两抛物线形状一致,则二次项系数 a 的绝对值相同 . 此类问题,我们也能够直接由函数奇偶性的定义来求,过程以下.【另解】当x 0 时,x 0 ,又因为 f ( x)是偶函数,则 f ( x) f ( x) ,所以,当 x 0 时, f ( x) f ( x) 2( x)2 4( x) 2 x2 4 x .【例 4 】设函数 f ( x) 是定义在R 上的奇函数,且在区间( ,0) 上是减函数,实数 a 知足不等式f (3a 2 a 3) f (3a2 2a) ,务实数 a 的取值范围 .解:∵ f ( x) 在区间 ( ,0) 上是减函数,∴ f ( x) 的图象在y轴左边递减.又∵ f ( x) 是奇函数,∴ f ( x) 的图象对于原点中心对称,则在y 轴右边相同递减 .又 f ( 0) f (0) ,解得 f (0) 0 ,所以 f ( x) 的图象在R上递减.∵ f (3a2 a 3) f (3a 2 2a ) ,∴3a 2 a 3 3a22a ,解得a 1 .评论:定义在R 上的奇函数的图象必定经过原点. 由图象对称性能够获得,奇函数在对于原点对称区间上单一性一致,偶函数在对于原点对称区间上的单一性相反.会合与函数基础测试一、选择题 (共 12 小题,每题 5 分,四个选项中只有一个切合要求)1.函数y==x2-6x+ 10 在区间( 2, 4)上是()A.递减函数B.递加函数C.先递减再递加D.选递加再递减.x y 22.方程组{ x y 0 的解构成的会合是()A .{( 1,1)} B.{1,1} C.( 1, 1)D.{1}3.已知会合 A={ a, b, c}, 以下能够作为会合 A 的子集的是()A. aB. { a, c}C. { a, e}D.{ a, b, c, d}4.以下图形中,表示M N的是()M NN M M N MNA B C D5.以下表述正确的选项是()A. { 0}B.{0}C. { 0}D. { 0}6、设会合A={x|x 参加自由泳的运动员} , B= {x|x 参加蛙泳的运动员} ,对于“既参⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯加自由泳又参加蛙泳的运动员”用会合运算表示为( )A.A ∩B B ∪B B7.会合 A={x x 2k, k Z } ,B={ x x 2k 1, k Z } ,C={ x x 4k 1, k Z }又a A,b B, 则有()A. ( a+b) AB. (a+b) BC.(a+b) CD. (a+b) A、B、C 任一个)8.函数f ()=-2+ 2(a-1) x+2在(-∞,4)上是增函数,则 a 的范围是(x x a a aaA.≥5 B.≥3 C.≤3 D.≤-59.知足条件 {1,2,3} M {1,2,3,4,5,6} 的会合 M 的个数是()A. 8 B . 7 C. 6 D. 510.全集 U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么会合 { 2 ,7 ,8} 是()A. A BB.ABC. C U A C U BD. C U A C U B11.以下函数中为偶函数的是()A .y xB .y x C.y x2 D.y x3 112. 假如会合 A={ x|ax 2+ 2 x+ 1=0} 中只有一个元素,则 a 的值是()A . 0 B.0或1 C.1 D.不可以确立二、填空题 (共 4 小题,每题 4 分,把答案填在题中横线上)13.函数f(x)= 2× 2-3|x|的单一减区间是 ___________.14.函数y=1的单一区间为 ___________.x+1{ a,b,1} ,又可表示成 { a 2 ,a15.含有三个实数的会合既可表示成b,0} ,则 a 2003 b2004 .a16.已知会合U { x | 3 x 3},M { x | 1 x 1} , C U N { x | 0 x 2}那么会合N ,M (C U N) , M N .三、解答题 (共 4 小题,共44 分)17. 已知会合 A { x x 2 4 0} ,会合 B { x ax 2 0},若B A ,务实数a的取值会合.18. 设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),f(3)= 1,求解不等式f(x)+f(x-2)> 1.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新 料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯19. 已知函数 f ( x )是奇函数,且当 x > 0 时, f ( x )= x 3+ 2x 2—1,求 f ( x )在 R 上的表达式.20. 已知二次函数f ( x) x 2 2(m 1) x 2m m 2 的图象对于 y 轴对称, 写出函数的分析表达式, 并求出函数 f (x) 的单一递加区间 .必修 1 第一章 会合测试会合测试参照答案:一、 1~5CABCB6~10ABACC11~12cB二、 13 [ 0, 3],(-∞,- 3)4414(-∞,- 1),(- 1,+∞) 15 -116 N { x | 3 x 0 或 2 x 3} ;M (C U N ) { x | 0 x 1} ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯M N { x | 3 x 1或 2 x3} .三、 17 .{0.-1,1} ;18. 解:由条件可得f x f x f x x f( 3).()+(-2)=[(-2)],1=f x x f f xR 上的增函数,所以有x x3,可解得x所以[(- 2)]>( 3),又()是定义在(-2)>> 3 或 x<-1.答案:>3 或<- 1.x x19..分析:本题主假如培育学生理解观点的能力.f( x)= x3+2x2-1.因 f ( x)为奇函数,∴ f (0)=-1.当 x<0时,- x>0, f (- x)=(- x)3+2(- x)2-1=- x3+2x2-1,∴ f ( x)= x3-2x2+1.20. 二次函数 f (x) x2 2(m 1)x 2m m2的图象对于y 轴对称,∴ m 1,则f ( x) x 2 1,函数 f (x) 的单一递加区间为,0 ..。

高一数学必修1第一章知识点归纳

高一数学必修1第一章知识点归纳

高一数学必修1第一章知识点总结一、集合 (一)集合有关概念1、集合的含义:练习1:下列四组对象,能构成集合的是( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2、元素与集合的关系(1)如果a 是集合A 的元素,则a 属于A ,记作a____A (2)如果a 不是集合A 的元素,则a 不属于A ,记作a_____A 3、常用数集自然数集______,正整数集______,整数集______,有理数集______,实数集______。

练习2:用适当的符号填空 (1)5______N , (2)Q Q ____,___21π-(3){}()(){}1|,____2,1,2|______3+=≤x y y x x x (4){}32|_______52+≤+x x ,4、集合的中元素的三个特性(1) 元素的______ (2) 元素的______ (3) 元素的 ______练习3:若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等腰三角形 练习4:下面有四个命题:(1)集合N 中最小的数是1; (2)若a -不属于N ,则a 属于N ;(3)若,,N b N a ∈∈则b a +的最小值为2;(4)x x 212=+的解可表示为{}1,1; 其中正确命题的个数为( )A .0个B .1个C .2个D .3个 5、集合常用的表示方法: 1) _______:{a,b,c ……}2) ________:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x>2} ,{x| x-3>2}3) __________:例:{不是直角三角形的三角形}; 4) Venn 图练习5:集合M={0,2,3,7},P={x|x=ab ,a 、b ∈M ,a ≠b},用列举法表示,则P=___________. 练习6: 集合 }0)(|{=x f x 0}f(x)|{x >f(x)}y |{x =f(x)}y |{y = )}(|,{x f y y x =)(含义练习7:已知集合⎭⎬⎫⎩⎨⎧∈-∈=N x N x A 68|,试用列举法表示集合A = ___ _ 练习8:方程组⎩⎨⎧=-=+42y x y x 的解集是( )(A ) {}13-=或x (B ){})1,3(- (C ){}1,3- (D ))1,3(- (二)集合间的基本关系1.“包含”关系:子集(B A ⊆): 注:有两种可能:① 任何一个集合是它本身的子集,即:________B (A )2.“相等”关系:________ ,如图所示:3.“真包含”关系:________,如图所示:练习10:能满足关系{a,b}⊆M⊆{a,b,c,d,e}的集合M的个数是A.8个B.6个C.4个D.3个4.不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的_______,空集是任何非空集合的_______。

高一数学必修一第一章知识点总结

高一数学必修一第一章知识点总结

高一数学必修一第一章知识点总结
本文总结了高一数学必修一第一章的知识点,帮助学生们更好地理解和掌握该章节的内容。

1. 有理数的概念及其表示
1.1 有理数的定义:有理数是可以表示为两个整数之比的数。

1.2 有理数的表示方法:可用分数表示,也可用小数表示。

2. 有理数的比较
2.1 有理数的大小比较:可以通过比较其分数形式的大小来比较有理数的大小。

2.2 有理数的相反数:对于有理数a,其相反数为-b,满足
a+b=0。

2.3 有理数的绝对值:对于有理数a,其绝对值为|a|,满足当
a>0时,|a|=a;当a<0时,|a|=-a。

3. 有理数的加减运算
3.1 有理数的加法:有理数相加时,同号相加取其绝对值相加,异号相加取其绝对值相减。

3.2 有理数的减法:有理数相减时,可以转化为加法运算,即
a-b=a+(-b)。

4. 有理数的乘除运算
4.1 有理数的乘法:有理数相乘时,同号得正,异号得负。

4.2 有理数的除法:有理数相除时,可以转化为乘法运算,即
a÷b=a×(1/b)。

5. 有理数的混合运算
5.1 有理数的混合运算:有理数的混合运算包括加减乘除的综合运算。

5.2 有理数的运算顺序:混合运算时,按照先乘除后加减的顺序进行计算。

以上是高一数学必修一第一章的知识点总结,希望能对学生们的研究有所帮助。

高一数学必修一第一章知识总结

高一数学必修一第一章知识总结

人教版高一数学第一章 集合与函数概念子集的性质:1.空集是任何集合的子集,空集是任何非空集合的真子集;2任何一个集合都是它本身的子集;3.任何非空集合的真子集的个数比子集少两个。

4.传递性,即若B A ⊆,C B ⊆,则C A ⊆。

集合与集合 集合与集合的基本关系 子集:若集合A 的每一个元素都是集合B 的元素,则称集合A 是集合B 的子集,即若B x A x ∈⇒∈,则B A ⊆真子集:若集合A 是集合B 的子集,且B 中至少有一个元素不在A 中,则称A 是B 的真子集,即若B A ⊆且A ≠B ,则A B空集:不含任何元素的集合叫做空集,记为∅ 相等:若集合A 是集合B 的子集,且集合B 也是集合A 的子集,则称A 与B 相等。

即若若B A ⊆且A B ⊆,则A=B集合的运算关系交集:一般的,由属于集合A 且属于集合B 的所有元素组成的集合,称为集合A 与B 交集,记作B A ;即{}B x A x x B A ∈∈=且,性质: A ∅=∅;B A =A B 并集:一般的,由属于集合A 或属于集合B 的所有元素组成的集合,称为集合A 与B 并集,记作B A ;即{}B x A x x B A ∈∈=或,性质: A ∅=A ;B A =A B 补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于集合U 的补集,简称集合A 的补集,记为A C U ,即{}A x U x x A C U ∉∈=且,全集:一般的,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U 集合与元素概念 元素:一般的,我们把研究对象统称为元素集合:把一些元素组成的总体叫做集合元素与集合的关系 如果a 是集合A 的元素,则a 属于集合A ,记作A a ∈如果a 不是集合A 的元素,则a 不属于集合A ,记作A a ∉ 集合的表示方法 列举法:如2到8之间的偶数{2,4,6,8} 描述法:如{}10<x x 图示法集合中元素的特性:确定性,互异性,无序性常用的数集及其记法:非负整数集或自然数集,N ;正整数集,N*或N+;整数集,Z ;有理数集,Q ;实数集,R 。

高一数学必修一-第一章-知识点与习题讲解

高一数学必修一-第一章-知识点与习题讲解

必修1第一章集合及函数根底学问点整理第1讲 §1.1.1 集合的含义及表示¤学习目的:通过实例,理解集合的含义,体会元素及集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描绘法)描绘不同的详细问题,感受集合语言的意义和作用;驾驭集合的表示方法、常用数集及其记法、集合元素的三个特征.¤学问要点:1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,根本形式为123{,,,,}n a a a a ⋅⋅⋅,适用于有限集或元素间存在规律的无限集. 描绘法,即用集合所含元素的共同特征来表示,根本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集.3. 通常用大写拉丁字母,,,A B C ⋅⋅⋅表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或N +,整数集Z ,有理数集Q ,实数集R .4. 元素及集合之间的关系是属于(belong to )及不属于(not belong to ),分别用符号∈、∉表示,例如3N ∈,2N -∉.¤例题精讲:【例1】试分别用列举法和描绘法表示下列集合:(1)由方程2(23)0x x x --=的全部实数根组成的集合; (2)大于2且小于7的整数. 解:(1)用描绘法表示为:2{|(23)0}x R x x x ∈--=; 用列举法表示为{0,1,3}-.(2)用描绘法表示为:{|27}x Z x ∈<<; 用列举法表示为{3,4,5,6}.【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有:17 A ; -5 A ; 17 B . 解:由3217k +=,解得5k Z =∈,所以17A ∈;由325k +=-,解得73k Z =∉,所以5A -∉;由6117m -=,解得3m Z =∈,所以17B ∈.【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+及26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2y x =的自变量的值组成的集合.解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩.(2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量. 在解题中不能把点的坐标混淆为{1,4},也留意比照(2)及(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时肯定要细心.*【例4】已知集合2{|1}2x a A a x +==-有唯一实数解,试用列举法表示集合A .解:化方程212x a x +=-为:2(2)0x x a --+=.应分以下三种状况:⑴方程有等根且不是2±:由 △=0,得94a =-,此时的解为12x =,合.⑵方程有一解为2,而另一解不是2-:将2x =代入得2a =-,此时另一解12x =-,合.⑶方程有一解为2-,而另一解不是2:将2x =-代入得2a =,此时另一解为21x =+,合.综上可知,9{,2,2}4A =--.点评:运用分类探讨思想方法,探讨出根的状况,从而列举法表示. 留意分式方程易造成增根的现象.第2讲 §1.1.2 集合间的根本关系¤学习目的:理解集合之间包含及相等的含义,能识别给定集合的子集;在详细情境中,理解全集及空集的含义;能利用Venn 图表达集合间的关系.¤学问要点:1. 一般地,对于两个集合A 、B ,假如集合A 中的随意一个元素都是集合B 中的元素,则说两个集合有包含关系,其中集合A 是集合B 的子集(subset ),记作A B ⊆(或B A ⊇),读作“A 含于B ”(或“B 包含A ”).2. 假如集合A 是集合B 的子集(A B ⊆),且集合B 是集合A 的子集(B A ⊇),即集合A 及集合B 的元素是一样的,因此集合A 及集合B 相等,记作A B =.3. 假如集合A B ⊆,但存在元素x B ∈,且x A ∉,则称集合A 是集合B 的真子集(proper subset ),记作A ≠⊂B (或B ≠⊃A ). 4. 不含任何元素的集合叫作空集(empty set ),记作∅,并规定空集是任何集合的子集.5. 性质:A A ⊆;若A B ⊆,B C ⊆,则A C ⊆;若A B A =,则A B ⊆;若A B A =,则B A ⊆. ¤例题精讲:【例1】用适当的符号填空:(1){菱形} {平行四边形}; {等腰三角形} {等边三角形}.(2)∅ 2{|20}x R x ∈+=; 0 {0}; ∅ {0}; N {0}. 解:(1), ;(2)=, ∈, ,.A BBA AB A B A . B .C .D .【例2】设集合1,,}22{|,{|n n x n n A x x B x =∈=+∈==Z}Z ,则下列图形能表示A 及B关系的是( ).解:简洁列举两个集合的一些元素,3113{,1,,0,,1,,}2222A =⋅⋅⋅---⋅⋅⋅,3113{,,,,,}2222B =⋅⋅⋅--⋅⋅⋅,易知B ≠⊂A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A . 【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,务实数a 的值.解:由26023x x x +-=⇒=-或,因此,{}2,3M =-. (i )若0a =时,得N =∅,此时,N M ⊆;(ii )若0a ≠时,得1{}N a =. 若N M ⊆,满意1123a a ==-或,解得1123a a ==-或.故所务实数a 的值为0或12或13-.点评:在考察“A B ⊆”这一关系时,不要遗忘“∅” ,因为A =∅时存在A B ⊆.从而须要分状况探讨. 题中探讨的主线是根据待定的元素进展.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}. 若A =B ,务实数x 的值. 解:若⇒a +ax 2-2ax =0, 所以a (x -1)2=0,即a =0或x =1. 当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均一样,故舍去. 若⇒2ax 2-ax -a =0.因为a ≠0,所以2x 2-x -1=0, 即(x -1)(2x +1)=0. 又x ≠1,所以只有12x =-.经检验,此时A =B 成立. 综上所述12x =-.点评:抓住集合相等的定义,分状况进展探讨. 融入方程组思想,结合元素的互异性确定集合.第3讲 §1.1.3 集合的根本运算(一)¤学习目的:理解两个集合的并集及交集的含义,会求两个简洁集合的并集及交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能运用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.¤学问要点:集合的根本运算有三种,即交、并、补,学习时先理解概念,并驾驭符号等,再念属于集合B 的元素所组成的集合,称为集合A 及B 的并集(union set )集合B 的元素所组成的集合,称为集合A 及B 的交集(intersection set )不属于集合A 的全部元素组成的集合,称为集合A 相对于全集U 的补集(complementary set )记号 A B (读作“A 并B ”) A B (读作“A 交B ”)UA (读作“A 的补集”)符号 {|,}AB x x A x B =∈∈或{|,}AB x x A x B =∈∈且{|,}UA x x U x A =∈∉且图形表示¤例题精讲:【例1】设集合,{|15},{|39},,()U R A x x B x x A B A B ==-≤≤=<<求. 解:在数轴上表示出集合A 、B ,如右图所示: {|35}A B x x =<≤,(){|1,9}U C A B x x x =<-≥或,【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ; (2)()A A B C . 解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------. (1)又{}3B C =,∴()A B C ={}3; (2)又{}1,2,3,4,5,6B C =, 得{}()6,5,4,3,2,1,0A C B C =------.∴ ()A A C B C {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,务实数m 的取值范围.解:由A B A =,可得A B ⊆.在数轴上表示集合A 及集合B ,如右图所示:由图形可知,4m ≥.点评:探讨不等式所表示的集合问题,经常由集合之间的关系,得到各端点之间的关系,特殊要留意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C A B ,()U C A B ,()()U U C A C B , ()()U U C A C B ,并比拟它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C A B =. 由{5,8}A B =,则(){1,2,3,4,6,7,9}U C A B = 由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =, 则()(){6,7,9}U U C A C B =, ()(){1,2,3,4,6,7,9}U U C A C B =.由计算结果可以知道,()()()U U U C A C B C A B =,UA-2 4 m x B A A BB A()()()U U U C A C B C AB =.另解:作出Venn 图,如右图所示,由图形可以干脆视察出来结果.点评:可用Venn 图探讨()()()U U U C A C B C A B =及()()()U U U C A C B C A B = ,在理解的根底记住此结论,有助于今后快速解决一些集合问题.第4讲 §1.1.3 集合的根本运算(二)¤学习目的:驾驭集合、交集、并集、补集的有关性质,运行性质解决一些简洁的问题;驾驭集合运算中的一些数学思想方法.¤学问要点:1. 含两个集合的Venn 图有四个区域,分别对应着这两个集合运算的结果. 我们需通过Venn 图理解和驾驭各区域的集合运算表示,解决一类可用列举法表示的集合运算. 通过图形,我们还可以发觉一些集合性质:()()()U U U C A B C A C B =,()()()U U U C A B C A C B =.2. 集合元素个数公式:()()()()n A B n A n B n A B =+-.3. 在探讨集合问题时,经常用到分类探讨思想、数形结合思想等. 也常由新的定义考察创新思维.¤例题精讲:【例1】设集合{}{}24,21,,9,5,1A a a B a a =--=--,若{}9A B =,务实数a 的值.解:由于{}{}24,21,,9,5,1A a a B a a =--=--,且{}9A B =,则有:当219 a -=时,解得5a =,此时={4, 9, 25}={9, 0, 4}A B -,-,不合题意,故舍去; 当29a =时,解得33a =或-.3 ={4,5,9} ={9,2,2}a A B =时,-,--,不合题意,故舍去; 3={4, 7 9}={9, 8, 4}a A B =-,--,,-,合题意. 所以,3a =-.【例2】设集合{|(3)()0,}A x x x a a R =--=∈,{|(4)(1)0}B x x x =--=,求A B , A B .(教材P 14 B 组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B =,A B =∅; 当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =; 当4a =时,{3,4}A =,则{1,3,4}A B =,{4}A B =;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}A B a =,A B =∅.点评:集合A 含有参数a ,须要对参数a 进展分状况探讨. 罗列参数a 的各种状况时,需根据集合的性质和影响运算结果的可能而进展分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=}, B ={x |222(1)10x a x a +++-=,a R ∈},若A B =B ,务实数a 的值.解:先化简集合A ={4,0}-. 由A B =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经探讨,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.点评:此题考察分类探讨的思想,以及集合间的关系的应用. 通过深入理解集合表示法的转换,及集合之间的关系,可以把相关问题化归为解方程的问题,这是数学中的化归思想,是重要数学思想方法.解该题时,特殊简洁出现的错误是遗漏了A =B 和B =∅的情形,从而造成错误.这须要在解题过程中要全方位、多角度谛视问题.【例4】对集合A 及B ,若定义{|,}A B x x A x B -=∈∉且,当集合*{|8,}A x x x N =≤∈,集合{|(2)(5)(6)0}B x x x x x =---=时,有A B -= . (由教材P 12 补集定义“集合A 相对于全集U 的补集为{|,}U C A x x x A =∈∉且”而拓展)解:根据题意可知,{1,2,3,4,5,6,7,8}A =,{0,2,5,6}B = 由定义{|,}A B x x A x B -=∈∉且,则 {1,3,4,7,8}A B -=.点评:运用新定义解题是学习实力的开展,也是一种创新思维的训练,关键是理解定义的本质性内涵,这里新定义的含义是从A 中解除B 的元素. 假如再给定全集U ,则A B -也相当于()U A C B .第5讲 §1.2.1 函数的概念¤学习目的:通过丰富实例,进一步体会函数是描绘变量之间的依靠关系的重要数学模型,在此根底上学惯用集合及对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;理解构成函数的要素,会求一些简洁函数的定义域和值域.¤学问要点:1. 设A 、B 是非空的数集,假如按某个确定的对应关系f ,使对于集合A 中的随意一个数x ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ),记作y =()f x ,x A ∈.其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),及x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range ).2. 设a 、b 是两个实数,且a <b ,则:{x |a ≤x ≤b }=[a ,b ] 叫闭区间; {x |a <x <b }=(a ,b ) 叫开区间;{x |a ≤x <b }=[,)a b , {x |a <x ≤b }=(,]a b ,都叫半开半闭区间. 符号:“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”. 则 {|}(,)x x a a >=+∞,{|}[,)x x a a ≥=+∞,{|}(,)x x b b <=-∞,{|}(,]x x b b ≤=-∞,(,)R =-∞+∞. 3. 确定函数的三个要素是定义域、值域和对应法则. 当且仅当函数定义域、对应法则分别一样时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域: (1);(2). 解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞. (2)由,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域及值域:(1)3254x y x+=-; (2)22y x x =-++.解:(1)要使函数有意义,则540x -≠,解得54x ≠. 所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.(2)22192()24y x x x =-++=--+. 所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1x f x x-=+. 求:(1)(2)f 的值; (2)()f x 的表达式解:(1)由121x x -=+,解得13x =-,所以1(2)3f =-.(2)设11x t x -=+,解得11t x t -=+,所以1()1t f t t -=+,即1()1x f x x-=+.点评:此题解法中突出了换元法的思想. 这类问题的函数式没有干脆给出,称为抽象函数的探讨,经常须要结合换元法、特值代入、方程思想等.【例4】已知函数.(1)求1()()f x f x+的值;(2)计算:111(1)(2)(3)(4)()()()234f f f f f f f ++++++.解:(1)由2222222221111()()1111111x x x x f x f x x x x x x++=+=+==+++++. (2)原式11117(1)((2)())((3)())((4)())323422f f f f f f f =++++++=+=点评:对规律的发觉,能使我们施行巧算. 正确探究出前一问的结论,是解答后一问的关键.第6讲 §1.2.2 函数的表示法¤学习目的:在实际情境中,会根据不同的须要选择恰当的方法(图象法、列表法、解析法)表示函数;通过详细实例,理解简洁的分段函数,并能简洁应用;理解映射的概念.¤学问要点:1. 函数有三种表示方法:解析法(用数学表达式表示两个变量之间的对应关系,优点:简明,给自变量可求函数值);图象法(用图象表示两个变量的对应关系,优点:直观形象,反响改变趋势);列表法(列出表格表示两个变量之间的对应关系,优点:不需计算就可看出函数值).2. 分段函数的表示法及意义(一个函数,不同范围的x ,对应法则不同).3. 一般地,设A 、B 是两个非空的集合,假如按某一个确定的对应法则f ,使对于集合A 中的随意一个元素x ,在集合B 中都有唯一确定的元素y 及之对应,那么就称对应:f A B →为从集合A 到集合B 的一个映射(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中随意,B 中唯一;对应法则f . ¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -.又由20a x >-,解得2a x <.所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x )= ,求f [f (0)]的值. 解:∵ 0(,1)∈-∞, ∴ f (0)=32. 又 ∵ 32>1,∴ f (32)=(32)3+(32)-3=2+12=52,即f [f (0)]=52.【例3】画出下列函数的图象:(1)|2|y x =-; (教材P 26 练习题3) (2)|1||24|y x x =-++. 解:(1)由肯定值的概念,有.所以,函数|2|y x =-的图象如右图所示.(2)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,所以,函数|1||24|y x x =-++的图象如右图所示.点评:含有肯定值的函数式,可以采纳分零点探讨去肯定值的方法,将函数式化为分段函数,然后根据定义域的分段状况,选择相应的解析式作出函数图象.【例4】函数()[]f x x =的函数值表示不超过x 的最大整数,例如[ 3.5]4-=-,[2.1]2=,当( 2.5,3]x ∈-时,写出()f x 的解析式,并作出函数的图象.解:3, 2.522,211,10()0,011,122,233,3x x x f x x x x x --<<-⎧⎪--≤<-⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪=⎩. 函数图象如右: 点评:解题关键是理解符号[]m 的概念,抓住分段函数的对应函数式.第7讲 §1.3.1 函数的单调性¤学习目的:通过已学过的函数特殊是二次函数,理解函数的单调性及其几何意义;学会运用函数图像理解和探讨函数的性质. 理解增区间、减区间等概念,驾驭增(减)函数的证明和判别.¤学问要点:1. 增函数:设函数y =f (x )的定义域为I ,假如对于定义域I 内的某个区间D 内的随意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasing function ). 仿照增函数的定义可定义减函数.2. 假如函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观视察函数图象上升及下降的改变趋势,得到函数的单调区间及单调性.3. 推断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2) →推断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义推断函数2()1x f x x =-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <. 则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1x f x x =-在(0,1)上是减函数.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.解:设随意12,x x R ∈,且12x x <. 则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++. 若0a <,当122b x x a<≤-时,有120x x -<,12b x x a+<-,即12()0a x x b ++>,从而12()()0f x f x -<,即12()()f x f x <,所以()f x 在(,]2b a-∞-上单调递增. 同理可得()f x 在[,)2ba-+∞上单调递减. 【例3】求下列函数的单调区间: (1)|1||24|y x x =-++;(2)22||3y x x =-++.解:(1)33,1|1||24|5,2133,2x x y x x x x x x +>⎧⎪=-++=+-≤≤⎨⎪--<-⎩,其图象如右.由图可知,函数在[2,)-+∞上是增函数,在(,2]-∞-上是减函数.(2)22223,02||323,0x x x y x x x x x ⎧-++≥⎪=-++=⎨--+<⎪⎩,其图象如右.由图可知,函数在(,1]-∞-、[0,1]上是增函数,在[1,0]-、[1,)+∞上是减函数.点评:函数式中含有肯定值,可以采纳分零点探讨去肯定值的方法,将函数式化为分段函数. 第2小题也可以由偶函数的对称性,先作y 轴右侧的图象,并把y 轴右侧的图象对折到左侧,得到(||)f x 的图象. 由图象探讨单调性,关键在于正确作出函数图象.【例4】已知31()2x f x x +=+,指出()f x 的单调区间. 解:∵ 3(2)55()322x f x x x +--==+++, ∴ 把5()g x x-=的图象沿x 轴方向向左平移2个单位,再沿y 轴向上平移3个单位,得到()f x 的图象,如图所示.由图象得()f x 在(,2)-∞-单调递增,在(2,)-+∞上单调递增.点评:变形后结合平移学问,由平移变换得到一类分式函数的图象. 需知()f x a b ++平移变换规律.第8讲 §1.3.1 函数最大(小)值¤学习目的:通过已学过的函数特殊是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和探讨函数的性质. 能利用单调性求函数的最大(小)值.¤学问要点:1. 定义最大值:设函数()y f x =的定义域为I ,假如存在实数M 满意:对于随意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x = M . 那么,称M 是函数()y f x =的最大值(Maximum Value ). 仿照最大值定义,可以给出最小值(Minimum Value )的定义.2. 配方法:探讨二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成后,当0a >时,函数取最小值为;当0a <时,函数取最大值.3. 单调法:一些函数的单调性,比拟简洁视察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4. 图象法:先作出其函数图象后,然后视察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值.解:配方为,由2133()244x ++≥,得.所以函数的最大值为8.【例2】某商人假如将进货单价为8元的商品按每件10元售出时,每天可售出100件. 如今他采纳进步售出价,削减进货量的方法增加利润,已知这种商品每件提价1元,其销售量就要削减10件,问他将售出价定为多少元时,才能使每天所赚得的利润最大?并求出最大利润.解:设他将售出价定为x 元,则进步了(10)x -元,削减了10(10)x -件,所赚得的利润为(8)[10010(10)]y x x =---.即2210280160010(14)360y x x x =-+-=--+. 当14x =时,max 360y =. 所以,他将售出价定为14元时,才能使每天所赚得的利润最大, 最大利润为360元.【例3】求函数21y x x =+-的最小值.解:此函数的定义域为[)1,+∞,且函数在定义域上是增函数, 所以当1x =时,min 2112y =+-=,函数的最小值为2.点评:形如y ax b cx d =+±+的函数最大值或最小值,可以用单调性法探讨,也可以用换元法探讨.【另解】令1x t -=,则0t ≥,21x t =+,所以22115222()48y t t t =++=++,在0t ≥时是增函数,当0t =时,min 2y =,故函数的最小值为2.【例4】求下列函数的最大值和最小值:(1)25332,[,]22y x x x =--∈-; (2)|1||2|y x x =+--. 解:(1)二次函数232y x x =--的对称轴为2b x a=-,即1x =-. 画出函数的图象,由图可知,当1x =-时,max 4y =; 当32x =时,min 94y =-. 所以函数25332,[,]22y x x x =--∈-的最大值为4,最小值为94-. (2) 3 (2)|1||2|2 1 (12)3 (1)x y x x x x x ≥⎧⎪=+--=--<<⎨⎪-≤-⎩.作出函数的图象,由图可知,[3,3]y ∈-. 所以函数的最大值为3, 最小值为-3. 点评:二次函数在闭区间上的最大值或最小值,常根据闭区间及对称轴的关系,结合图象进展分析. 含肯定值的函数,常分零点探讨去肯定值,转化为分段函数进展探讨. 分段函数的图象留意分段作出.第9讲 §1.3.2 函数的奇偶性¤学习目的:结合详细函数,理解奇偶性的含义;学会运用函数图像理解和探讨函数的性质. 理解奇函数、偶函数的几何意义,能娴熟判别函数的奇偶性.¤学问要点:1. 定义:一般地,对于函数()f x 定义域内的随意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(even function ). 假如对于函数定义域内的随意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(odd function ). 2. 具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3. 判别方法:先考察定义域是否关于原点对称,再用比拟法、计算和差、比商法等判别()f x -及()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-; (2)()|1||1|f x x x =-++;(3)23()f x x x =-. 解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有3311()()()()f x x x f x x x-=--=--=--, 所以为奇函数. (2)原函数定义域为R ,对于定义域的每一个x ,都有()|1||1||1||1|()f x x x x x f x -=--+-+=-++=,所以为偶函数.(3)由于23()()f x x x f x -=+≠±,所以原函数为非奇非偶函数.【例2】已知()f x 是奇函数,()g x 是偶函数,且1()()1f xg x x -=+,求()f x 、()g x . 解:∵ ()f x 是奇函数,()g x 是偶函数,∴ ()()f x f x -=-,()()g x g x -=.则,即.两式相减,解得2()1x f x x =-;两式相加,解得21()1g x x =-. 【例3】已知()f x 是偶函数,0x ≥时,2()24f x x x =-+,求0x <时()f x 的解析式.解:作出函数22242(1)2,0y x x x x =-+=--+≥的图象,其顶点为(1,2).∵ ()f x 是偶函数, ∴ 其图象关于y 轴对称.作出0x <时的图象,其顶点为(1,2)-,且及右侧形态一样,∴ 0x <时,22()2(1)224f x x x x =-++=--.点评:此题中的函数本质就是224||y x x =-+. 留意两抛物线形态一样,则二次项系数a 的肯定值一样. 此类问题,我们也可以干脆由函数奇偶性的定义来求,过程如下.【另解】当0x <时,0x ->,又由于()f x 是偶函数,则()()f x f x =-,所以,当0x <时,22()()2()4()24f x f x x x x x =-=--+-=--.【例4】设函数()f x 是定义在R 上的奇函数,且在区间(,0)-∞上是减函数,实数a 满意不等式22(33)(32)f a a f a a +-<-,务实数a 的取值范围.解:∵ ()f x 在区间(,0)-∞上是减函数, ∴ ()f x 的图象在y 轴左侧递减.又 ∵ ()f x 是奇函数,∴()f x 的图象关于原点中心对称,则在y 轴右侧同样递减.又 (0)(0)f f -=-,解得(0)0f =, 所以()f x 的图象在R 上递减.∵ 22(33)(32)f a a f a a +-<-,∴ 223332a a a a +->-,解得1a >.点评:定义在R 上的奇函数的图象肯定经过原点. 由图象对称性可以得到,奇函数在关于原点对称区间上单调性一样,偶函数在关于原点对称区间上的单调性相反.集合及函数根底测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ( )A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是 ( )A. aB. {a ,c }C. {a ,e }D.{a ,b ,c ,d }4.下列图形中,表示N M ⊆的是 ( )M N A M N B N M C M N D5.下列表述正确的是 ( )A.}0{=∅B. }0{⊆∅C. }0{⊇∅D. }0{∈∅6、设集合A ={x|x 参与自由泳的运发动},B ={x|x 参与蛙泳的运发动},对于“既参加自由泳又参与蛙泳的运发动”用集合运算表示为 ( )A.A∩BB.A ⊇BC.A∪BD.A ⊆B7.集合A={x Z k k x ∈=,2} ,B={Z k k x x ∈+=,12} ,C={Z k k x x ∈+=,14}又,,B b A a ∈∈则有( )A.(a+b )∈ AB. (a+b) ∈BC.(a+b) ∈ CD. (a+b) ∈ A 、B 、C 任一个8.函数f (x )=-x 2+2(a -1)x +2在(-∞,4)上是增函数,则a 的范围是( )A .a ≥5B .a ≥3C .a ≤3D .a ≤-59.满意条件{1,2,3}⊂≠M ⊂≠{1,2,3,4,5,6}的集合M 的个数是 ( )A. 8B. 7C. 6D. 510.全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )A. A BB. B AC. B C A C U UD. B C A C U U11.下列函数中为偶函数的是( )A .x y =B .x y =C .2x y =D .13+=x y12. 假如集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 ( )A .0B .0 或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.函数f (x )=2×2-3|x |的单调减区间是___________.14.函数y =11+x 的单调区间为___________. 15.含有三个实数的集合既可表示成,又可表示成}0,,{2b a a +,则=+20042003b a .16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17. 已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,务实数a 的取值集合.18. 设f (x )是定义在R 上的增函数,f (xy )=f (x )+f (y ),f (3)=1,求解不等式f (x )+f (x -2)>1.19. 已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式.20. 已知二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,写出函数的解析表达式,并求出函数)(x f 的单调递增区间.必修1 第一章 集合测试集合测试参考答案:一、1~5 CABCB 6~10 ABACC 11~12 cB二、13 [0,43],(-∞,-43)14 (-∞,-1),(-1,+∞) 15 -1 16 03|{≤≤-=x x N 或}32≤≤x ;}10|{)(<<=⋂x x N C M U ;13|{<≤-=⋃x x N M 或}32≤≤x . 三、17 .{0.-1,1}; 18. 解:由条件可得f (x )+f (x -2)=f [x (x -2)],1=f (3).所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19. .解析:本题主要是培育学生理解概念的实力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称,∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-..。

高一数学必修一 第一章 知识点与习题讲解

高一数学必修一 第一章 知识点与习题讲解

精心整理必修1第一章集合与函数基础知识点整理第1讲§1.1.1集合的含义与表示¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征.¤知识要点:1.把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性.2.集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{}”括起来,基本形式为{*N 或N +N ,2-解:(1)3{(,)|}{(1,4)}26y x x y y x =+⎧=⎨=-+⎩. (2)2{|4}{|4}y y x y y =-=≥-. (3)2{|}{|0}x y x x x==≠.点评:以上代表元素,分别是点、函数值、自变量.在解题中不能把点的坐标混淆为{1,4},也注意对比(2)与(3)中的两个集合,自变量的范围和函数值的范围,有着本质上不同,分析时一定要细心.*【例4】已知集合2{|1}2x aA a x +==-有唯一实数解,试用列举法表示集合A .解:化方程212x a x +=-为:2(2)0x x a --+=.应分以下三种情况: ⑴方程有等根且不是=0,得94a =-,此时的解为12x =,合.x =a =1x =-⑶方程有一解为x =代入得a =1x =+,合. 综上可知,9{,4A =-.点评:运用分类讨论思想方法,研究出根的情况,从而列举法表示.注意分式方程易造成增根的现象.包含包含A 的元,记作B A =,则A B A =,则¤例题精讲:1】用适当的符号填空:){菱形}{平行四边形等腰三角形}{等边三角形,;,∈,,. (). 两A =易知B ≠A ,故答案选A .另解:由21,}2{|n x n B x +=∈=Z ,易知B ≠⊂A ,故答案选A .【例3】若集合{}{}2|60,|10M x x x N x ax =+-==-=,且N M ⊆,求实数a 的值.解:由26023x x x +-=⇒=-或,因此,{}2,3M =-. (i )若0a =时,得N =∅,此时,N M ⊆; (ii )若0a ≠时,得1{}N a =.若N M ⊆,满足1123a a ==-或,解得1123a a ==-或. 故所求实数a 的值为0或12或13-.点评:在考察“A B ⊆”这一关系时,不要忘记“∅”,因为A =∅时存在A B ⊆.从而需要分情况讨论.题中讨论的主线是依据待定的元素进行.【例4】已知集合A ={a ,a +b ,a +2b },B ={a ,ax ,ax 2}.若A =B ,求实数x 的值.解:若22a b axa b ax+=⎧⎨+=⎩⇒a +ax 2-2ax =0,所以a (x -1)2=0,即a =0或x =1. 当a =0时,集合B 中的元素均为0,故舍去; 当x =1时,集合B 中的元素均相同,故舍去. 若22a b ax a b ax⎧+=⎨+=⎩⇒2ax 2-ax -a =0. 因为a ≠0,所以2x 2-x -1=0,即(x -1)(2x +1)=0.又x ≠1,所以只有1x =-. A B (读作“A B (读作“,()U B AB ð.{|3A B x =()U A B =【例2】设{|||6}A x Z x =∈≤,{}{}1,2,3,3,4,5,6B C ==,求: (1)()A B C ;(2)()A A B C ð.解:{}6,5,4,3,2,1,0,1,2,3,4,5,6A =------.(1)又{}3B C =,∴()A B C ={}3;(2)又{}1,2,3,4,5,6BC =,得{}()6,5,4,3,2,1,0A C BC =------.∴()A A C B C {}6,5,4,3,2,1,0=------.【例3】已知集合{|24}A x x =-<<,{|}B x x m =≤,且A B A =,求实数m 的取值范围.A-13 5 9 x解:由A B A =,可得A B ⊆.在数轴上表示集合A 与集合B ,如右图所示: 由图形可知,4m ≥.点评:研究不等式所表示的集合问题,常常由集合之间的关系,得到各端点之间的关系,特别要注意是否含端点的问题.【例4】已知全集*{|10,}U x x x N =<∈且,{2,4,5,8}A =,{1,3,5,8}B =,求()U C AB ,()UC AB ,()()U U C A C B ,()()U U C A C B ,并比较它们的关系.解:由{1,2,3,4,5,8}A B =,则(){6,7,9}U C AB =.由{5,8}AB =,则(){1,2,3,4,6,7,9}UC AB =由{1,3,6,7,9}U C A =,{2,4,6,7,9}U C B =,()U C B =由计算结果可以知道,()()U U C B C AB =,()()U U C B C AB =.另解:作出Venn 图,如右图所示,由图形可以直接观察出来结果可用Venn 图研究()()()U U U C A C B C AB =与()()()U U U C A C B C AB =,在理解的基础记住此结论,有助于今后迅速解决一些集合问题.4讲§1.1.3集合的基本运算(二):掌握集合、交集、并集、补集的有关性质,运行性质解决一些简单的问题;掌握集合运算中)()()U U U C B C A C B =,()()()U U U C A B C A C B =.2.集合元素个数公式:()()()()n ABn A n B n A B =+-.3.在研究集合问题时,常常用到分类讨论思想、数形结合思想等.也常由新的定义考查创新思维¤例题精讲:}{}21,,9,5,1a B a a -=--,若{}9A B =,求实数{}9B =,则有:={9, 0, 4}-,不合题意,故舍去;不合题意,故舍去;P 14B组题2)解:{1,4}B =.当3a =时,{3}A =,则{1,3,4}A B =,A B =∅;当1a =时,{1,3}A =,则{1,3,4}A B =,{1}A B =;当4a =时,{3,4}A =,则{1,3,4}AB =,{4}A B =;当3a ≠且1a ≠且4a ≠时,{3,}A a =,则{1,3,4,}AB a =,A B =∅.点评:集合A 含有参数a ,需要对参数a 进行分情况讨论.罗列参数a 的各种情况时,需依据集合的性质和影响运算结果的可能而进行分析,不多不少是分类的原则.【例3】设集合A ={x |240x x +=},B ={x |222(1)10x a x a +++-=,a R ∈},若AB =B ,求实数a 的值.解:先化简集合A ={4,0}-.由AB =B ,则B ⊆A ,可知集合B 可为∅,或为{0},或{-4},或{4,0}-.(i )若B =∅,则224(1)4(1)0a a ∆=+--<,解得a <1-; (ii )若0∈B ,代入得2a 1-=0⇒a =1或a =1-, 当a =1时,B =A ,符合题意;当a =1-时,B ={0}⊆A ,也符合题意.(iii )若-4∈B ,代入得2870a a -+=⇒a =7或a =1, 当a =1时,已经讨论,符合题意;当a =7时,B ={-12,-4},不符合题意. 综上可得,a =1或a ≤1-.点评:此题考查分类讨论的思想,以及集合间的关系的应用.通过深刻理解集合表示法的转换,及集合之集合B =,UC x A ∉且:根据题意可知,{|B x x -={1,3,4,7,8}=()U C B .进一步体会函数是描述变量之间的依赖关系的重要数学模型,了解构成函数的要素,B y =). 3.决定函数的三个要素是定义域、值域和对应法则.当且仅当函数定义域、对应法则分别相同时,函数才是同一函数.¤例题精讲:【例1】求下列函数的定义域:(1)121y x =+-;(2)y =.解:(1)由210x +-≠,解得1x ≠-且3x ≠-, 所以原函数定义域为(,3)(3,1)(1,)-∞----+∞.(2)由3020x -≥⎧⎪≠,解得3x ≥且9x ≠,所以原函数定义域为[3,9)(9,)+∞.【例2】求下列函数的定义域与值域:(1)3254x y x+=-;(2)22y x x =-++. 解:(1)要使函数有意义,则540x -≠,解得54x ≠.所以原函数的定义域是5{|}4x x ≠.32112813(45)233233305445445445444x x x y x x x x ++-+==⨯=⨯=-+≠-+=-----,所以值域为3{|}4y y ≠-.(2)22192()24y x x x =-++=--+.所以原函数的定义域是R ,值域是9(,]4-∞.【例3】已知函数1()1xf x x-=+.求:(1)(2)f 的值;(2)()f x 的表达式素(mapping ).记作“:f A B →”.判别一个对应是否映射的关键:A 中任意,B 中唯一;对应法则f .¤例题精讲:【例1】如图,有一块边长为a 的正方形铁皮,将其四个角各截去一个边长为x 的小正方形,然后折成一个无盖的盒子,写出体积V 以x 为自变量的函数式是_____,这个函数的定义域为_______.解:盒子的高为x ,长、宽为2a x -,所以体积为V =2(2)x a x -. 又由20a x >-,解得2a x <. 所以,体积V 以x 为自变量的函数式是2(2)V x a x =-,定义域为{|0}2a x x <<.【例2】已知f (x)=33x x-+⎪⎩(,1)(1,)x x ∈-∞∈+∞,求f [f (0)]的值.解:∵0(,1)∈-∞,∴f(0)=,∴f3-3=2+12=52,即f [f (0)]=52. 【例3】画出下列函数的图象:(1)|2|y x =-;(教材P 26练习题3) (2)|1||24|y x x =-++.解:(1)由绝对值的概念,有2,2|2|x x y x -≥⎧=-=⎨.区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数(increasingfunction ).仿照增函数的定义可定义减函数.2.如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间.在单调区间上,增函数的图象是从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2).由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.3.判断单调性的步骤:设x 1、x 2∈给定区间,且x 1<x 2;→计算f (x 1)-f (x 2)→判断符号→下结论.¤例题精讲:【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性. 解:任取12,x x ∈(0,1),且12x x <.则1221121212222()()()11(1)(1)x x x x f x f x x x x x --=-=----. 由于1201x x <<<,110x -<,210x -<,210x x ->,故12()()0f x f x ->,即12()()f x f x >.所以,函数2()1xf x x =-在(0,1)上是减函数.【例2】求二次函数2()(0)f x ax bx c a =++<的单调区间及单调性.解:设任意12,x x R ∈,且12x x <.则22121122()()()()f x f x ax bx c ax bx c -=++-++221212()()a x x b x x =-+-1212()[()]x x a x x b =-++.b b0<,即(f得到f ¤学习目标:通过已学过的函数特别是二次函数,理解函数的最大(小)值及其几何意义;学会运用函数图像理解和研究函数的性质.能利用单调性求函数的最大(小)值.¤知识要点:1.定义最大值:设函数()y f x =的定义域为I ,如果存在实数M 满足:对于任意的x ∈I ,都有()f x ≤M ;存在x 0∈I ,使得0()f x =M .那么,称M 是函数()y f x =的最大值(MaximumValue ).仿照最大值定义,可以给出最小值(MinimumValue )的定义.2.配方法:研究二次函数2(0)y ax bx c a =++≠的最大(小)值,先配方成224(24b ac b y a x a a-=++后,当0a >时,函数取最小值为244ac b a -;当0a <时,函数取最大值244ac b a-.3.单调法:一些函数的单调性,比较容易观察出来,或者可以先证明出函数的单调性,再利用函数的单调性求函数的最大值或最小值.4.图象法:先作出其函数图象后,然后观察图象得到函数的最大值或最小值. ¤例题精讲:【例1】求函数261y x x =++的最大值. 解:配方为2613()24y x =++,由2133()244x ++≥,得260813()24x <≤++. 所以函数的最大值为8.【例2】某商人如果将进货单价为8元的商品按每件10元售出时,每天可售出100件.现在他采用提高解10(10)x -件,所赚得的利润为8)[10010(10)]x --.即2280160010(x +-=-时,max 360y =所以,他将售出价定为14元时,才能使每天所赚得的利润最大,最大利润为】求函数21y x x =+-的最小值解在t ≥(解(作出函数的图象,由图可知,[3,3]y ∈-.所以函数的最大值为3,最小值为-3.点评:二次函数在闭区间上的最大值或最小值,常根据闭区间与对称轴的关系,结合图象进行分析.含绝对值的函数,常分零点讨论去绝对值,转化为分段函数进行研究.分段函数的图象注意分段作出.第9讲§1.3.2函数的奇偶性¤学习目标:结合具体函数,了解奇偶性的含义;学会运用函数图像理解和研究函数的性质.理解奇函数、偶函数的几何意义,能熟练判别函数的奇偶性.¤知识要点:1.定义:一般地,对于函数()f x 定义域内的任意一个x ,都有()()f x f x -=,那么函数()f x 叫偶函数(evenfunction ).如果对于函数定义域内的任意一个x ,都有()()f x f x -=-),那么函数()f x 叫奇函数(oddfunction ).2.具有奇偶性的函数其定义域关于原点对称,奇函数的图象关于原点中心对称,偶函数图象关于y 轴轴对称.3.判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别()f x -与()f x 的关系.¤例题精讲:【例1】判别下列函数的奇偶性:(1)31()f x x x=-;(2)()|1||1|f x x x =-++;(3)23()f x x x =-. 解:(1)原函数定义域为{|0}x x ≠,对于定义域的每一个x ,都有3311()()(()f x x x f x x x-=--=--=--,所以为奇函数..2(3f a 又∵()f x 是奇函数,∴()f x 的图象关于原点中心对称,则在y 轴右侧同样递减. 又(0)(0)f f -=-,解得(0)0f =,所以()f x 的图象在R 上递减. ∵22(33)(32)f a a f a a +-<-, ∴223332a a a a +->-,解得1a >.点评:定义在R 上的奇函数的图象一定经过原点.由图象对称性可以得到,奇函数在关于原点对称区间上单调性一致,偶函数在关于原点对称区间上的单调性相反.集合与函数基础测试一、选择题(共12小题,每题5分,四个选项中只有一个符合要求)1.函数y ==x 2-6x +10在区间(2,4)上是( )A .递减函数B .递增函数C .先递减再递增D .选递增再递减.2.方程组20{=+=-y x y x 的解构成的集合是 ()A .)}1,1{(B .}1,1{C .(1,1)D .}1{3.已知集合A ={a ,b ,c },下列可以作为集合A 的子集的是(),B ∈A B B A B C A C U U D.B C A C U U11.下列函数中为偶函数的是()A .x y =B .x y =C .2x y =D .13+=x y12.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是()A .0B .0或1C .1D .不能确定二、填空题(共4小题,每题4分,把答案填在题中横线上)13.函数f (x )=2×2-3|x |的单调减区间是___________.14.函数y =11+x 的单调区间为___________. 15.含有三个实数的集合既可表示成}1,,{ab a ,又可表示成}0,,{2b a a +,则=+20042003b a . 16.已知集合}33|{≤≤-=x x U ,}11|{<<-=x x M ,}20|{<<=x x N C U 那么集合=N ,=⋂)(N C M U ,=⋃N M .三、解答题(共4小题,共44分)17.已知集合}04{2=-=x x A ,集合}02{=-=ax x B ,若A B ⊆,求实数a 的取值集合.18.19.x )在R 20.};)],1=f 所以f [x (x -2)]>f (3),又f (x )是定义在R 上的增函数,所以有x (x -2)>3,可解得x >3或x <-1.答案:x >3或x <-1.19..解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=-1. 当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1, ∴f (x )=x 3-2x 2+1.20. 二次函数222)1(2)(m m x m x x f -+-+-=的图象关于y 轴对称, ∴1=m ,则1)(2+-=x x f ,函数)(x f 的单调递增区间为(]0,∞-. .。

人教版高一数学必修一第一章 集合与函数概念知识点+经典例题+巩固练习

人教版高一数学必修一第一章 集合与函数概念知识点+经典例题+巩固练习

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ …} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x∈R| x-3>2} ,{x| x-3>2}3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集A⊆有两种可能(1)A是B的一部分,;(2)A与B是注意:B同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A⊆A②真子集:如果A⊆B,且A≠B那就说集合A是集合B的真子集,记作A B(或B A)③如果A⊆B, B⊆C ,那么A⊆C④如果A⊆B 同时B⊆A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A B(读作‘A交B’),即A B={x|x∈A,且x∈B}.由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A B(读作‘A并B’),即A B ={x|x∈A,或x∈B}).设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即C S A=},|{AxSx x∉∈且韦恩图示A B图1A B图2SA性 质A A=A A Φ=Φ A B=B A A B ⊆A A B ⊆BA A=A A Φ=A A B=B A A B ⊇A A B ⊇B(C u A) (C u B)= C u (A B) (C u A) (C u B)= C u (A B) A (C u A)=U A (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( ) A 某班所有高个子的学生 B 著名的艺术家 C 一切很大的书 D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学必修1各章知识点总结第一章集合与函数概念一、集合有关概念1.集合的含义2.集合的中元素的三个特性:(1)元素的确定性如:世界上最高的山(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}(3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}(2)集合的表示方法:列举法与描述法。

注意:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R1)列举法:{a,b,c……}2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。

{x R| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形}4)Venn图:4、集合的分类:(1)有限集含有有限个元素的集合(2)无限集含有无限个元素的集合(3)空集不含任何元素的集合例:{x|x2=-5}二、集合间的基本关系1.“包含”关系—子集注意:BA⊆有两种可能(1)A是B的一部分,;(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:①任何一个集合是它本身的子集。

A A②真子集:如果A B,且A B那就说集合A是集合B的真子集,记作A B(或B A)③如果 A B, B C ,那么 A C④如果A B 同时 B A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。

有n个元素的集合,含有2n个子集,2n-1个真子集三、集合的运算运算类型交集并集补集定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A I B(读作‘A交B’),即A I B={x|x∈A,且由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:A Y B(读作‘A并B’),即A YB ={x|x∈A,或设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作ACS,即x ∈B }. x ∈B}).C S A=},|{A x S x x ∉∈且韦恩 图 示AB图1AB图2性质 A I A=A A I Φ=Φ A I B=B I AA IB ⊆AA IB ⊆BA Y A=A A Y Φ=A A Y B=B Y A A Y B ⊇A A Y B ⊇B(C u A) I (C u B)= C u (A Y B) (C u A) Y (C u B)= C u (A I B) A Y (C u A)=U A I (C u A)= Φ.例题:1.下列四组对象,能构成集合的是 ( )A 某班所有高个子的学生B 著名的艺术家C 一切很大的书D 倒数等于它自身的实数2.集合{a ,b ,c }的真子集共有 个3.若集合M={y|y=x 2-2x+1,x ∈R},N={x|x ≥0},则M 与N 的关系是 .4.设集合A=}{12x x <<,B=}{x x a <,若A ⊆B ,则a 的取值范围是5.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有 人。

6. 用描述法表示图中阴影部分的点(含边界上的点)组成的集合M= .7.已知集合A={x| x 2+2x-8=0}, B={x| x 2-5x+6=0}, C={x| x 2-mx+m 2-19=0}, 若BSA∩C≠Φ,A∩C=Φ,求m的值二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B 为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域.注意:1.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)(见课本21页相关例2)2.值域 : 先考虑其定义域(1)观察法(2)配方法(3)代换法3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 .(2) 画法A、描点法:B、图象变换法常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间(2)无穷区间(3)区间的数轴表示.5.映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

记作“f(对应关系):A(原象)→B(象)”对于映射f:A→B来说,则应满足:(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(2)集合A中不同的元素,在集合B中对应的象可以是同一个;(3)不要求集合B中的每一个元素在集合A中都有原象。

6.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集.补充:复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f、g的复合函数。

二.函数的性质1.函数的单调性(局部性质)(1)增函数设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1<x2时,都有f(x1)<f(x2),那么就说f(x)在区间D上是增函数.区间D称为y=f(x)的单调增区间.如果对于区间D上的任意两个自变量的值x1,x2,当x1<x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.区间D称为y=f(x)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A) 定义法:○1任取x1,x2∈D,且x1<x2;○2作差f(x1)-f(x2);○3变形(通常是因式分解和配方);○4定号(即判断差f(x1)-f(x2)的正负);○5下结论(指出函数f(x)在给定的区间D上的单调性).(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.(2).奇函数一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:○1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-x)与f(x)的关系;○3作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) =0,则f(x)是偶函数;若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定; (2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; (3)利用定理,或借助函数的图象判定 .9、函数的解析表达式(1).函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.(2)求函数的解析式的主要方法有:1)凑配法2)待定系数法3)换元法4)消参法10.函数最大(小)值(定义见课本p36页)○1利用二次函数的性质(配方法)求函数的最大(小)值○2利用图象求函数的最大(小)值○3利用函数单调性的判断函数的最大(小)值:如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);例题:1.求下列函数的定义域:⑴y=⑵y=2.设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为_ _3.若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是4.函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x = 5.求下列函数的值域:⑴223y x x =+- ()x R ∈ ⑵223y x x =+- [1,2]x ∈(3)y x =y 6.已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式 7.已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。

相关文档
最新文档