图论课件--图的顶点着色41页PPT
合集下载
离散数学——图论PPT课件
![离散数学——图论PPT课件](https://img.taocdn.com/s3/m/f6c371f052d380eb63946d8e.png)
第19页/共93页
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。
• 完全图:一个(n,m)图G,其n个结点中每个结点均与其它n-1个结点相邻接,记为Kn。 • 无向完全图:m=n(n-1)/2 • 有向完全图:m=n(n-1) • 举例说明以上几种图。
第20页/共93页
定义补图
• 设图G=<V,E> , G’=<V,E’> ,若G’’=<V,E∪E’> 是完全图,且E∩E’= 空集,则称G’是G的补图。 • 事实上,G与G’互为补图。
正则图
• 所有结点均有相同次数d的图称为d次正则图。 • 如4阶的完全图是3次正则图,是对角线相连的四边形。 • 试画出两个2次正则图。
第27页/共93页
两图同构需满足的条件
• 若两个图同构,必须满足下列条件: (1)结点个数相同 (2)边数相同 (3)次数相同的结点个数相同
• 例子
第28页/共93页
• 图是人们日常生活中常见的一种信息载体,其突出的特点是直观、形象。图论,顾 名思义是运用数学手段研究图的性质的理论,但这里的图不是平面坐标系中的函数, 而是由一些点和连接这些点的线组成的结构 。
第8页/共93页
• 在图形中,只关心点与点之间是否有连线,而不关心点具体代表哪些对象,也不关 心连线的长短曲直,这就是图的概念。
定义图的子图
• 子图:设G=<V,E> , G’=<V’,E’> ,若V’是V的子集, E’是E的子集,则 G’是G的子图。 • 真子图:若V’是V的子集,E’是E的真子集。 • 生成子图:V’=V,E’是E的子集。 • 举例说明一个图的子图。
第18页/共93页
定义(n,m)图
• (n,m)图:由n个结点,m条边组成的图。 • 零图:m=0。即(n,0)图,有n个孤立点。 • 平凡图:n=1,m=0。即只有一个孤立点。
图论课件-PPT课件
![图论课件-PPT课件](https://img.taocdn.com/s3/m/6f73e5f16f1aff00bed51e8e.png)
学习方法
目的明确
态度端正 理论和实践相结合
充分利用资源
逐步实现从知识到能力到素质的深化和
升华
课程考核
平时成绩 (30%-40%)
闭卷考试 (60%-70%)
图论模型
为了抽象和简化现实世界,常建立数学模型。图是关 系的数学表示,为了深刻理解事物之间的联系,图 是常用的数学模型。 (1) 化学中的图论模型 19世纪,化学家凯莱用图论研究简单烃——即碳氢 化合物 用点抽象分子式中的碳原子和氢原子,用边抽象原子间 的化学键。
E={w1r1, w1r2, w2r2, w2r3, w2r4, w3r3, w3r5}代表每个仓库和每个 零售店间的关联。则图模型图形为: w1 w2 w3
r1
r2
r3
r4
r5
29
(3) 最短航线问题 用点表示城市,两点连线当且仅当两城市有航线。为了 求出两城市间最短航线,需要在线的旁边注明距离值。 例如:令V={a, b, c, d, e}代表5个城市} E={a b, ad, b c , be, de}代表城市间的直达航线 则航线图的图形为: a 320 500 d 370 b 140 430 e c
图论学科简介 (2)
19世纪末期,图论应用于电网络方程组
和有机化学中的分子结构 20世纪中叶,由于计算机的发展,图论 用来求解生产管理、军事、交通运输、 计算机和网络通信等领域中的离散性问 题 物理学、化学、运筹学、计算机科学、 电子学、信息论、控制论、网络理论、 社会科学、管理科学等领域应用
七桥问题
近代图论的历史可追溯到18世纪的七桥问题:
穿过Kö nigsberg城的七座桥,要求每座桥通过 一次且仅通过一次。
图论基础知识PPT课件
![图论基础知识PPT课件](https://img.taocdn.com/s3/m/9941c5f0f121dd36a32d82b1.png)
.
6
图论算法与实现
一、图论基础知识
2、图的基本概念:
连通图:如果一个无向图中,任意两个顶点之间
都是连通的,则称该无向图为连通图。否则称为非连通图;左图为一个连通图。
强连通图:在一个有向图中,对于任意两个顶点U和V,都存在着一条从U到V的
有向路径,同时也存在着一条从V到U的有向路径,则称该有向图为强连通图;右 图不是一个强连通图。
深度优先遍历与宽度优先遍历的比较:
深度优先遍历实际上是尽可能地走“顶点表”; 而广度优先遍历是尽可能沿顶点的“边表”进行访问, 然后再沿边表对应顶点的边表进行访问,因此,有关边表 的顶点需要保存(用队列,先进先出),以便进一步进行广度 优先遍历。
下面是广度优先遍历的过程:
.
14
图论算法与实现
一、图论基础知识
简单路径:如果一条路径上的顶点除了起点和终点可以相同外,其它 顶点均不相同,则称此路径为一条简单路径;起点和终点 相同的简单路径称为回路(或环)。
.
4
图论算法与实现
一、图论基础知识
2、图的基本概念:
路径和简单路径的举例:
左图1—2—3是一条简单路径,长度为2, 而1—3—4—1—3就不是简单路径;
一、图论基础知识
2、图的基本概念: 路径:对于图G=(V,E),对于顶点a、b,如果存在一些顶点序列
x1=a,x2,……,xk=b(k>1),且(xi,xi+1)∈E,i=1,2…k-1,则称 顶点序列x1,x2,……,xk为顶点a到顶点b的一条路径,而路径上边 的数目(即k-1)称为该路径的长度。 并称顶点集合{x1,x2,……,xk}为一个连通集。
边集数组
邻接表
优点
图论 图的着色
![图论 图的着色](https://img.taocdn.com/s3/m/84141337bcd126fff7050bb5.png)
X(G(V1,V2))=
X(G)=2 G为二部图
Th5.1:如果图G的顶点次数≤ρ,则G是ρ+1可着色的。
Th5.2:如果G是一个简单连通的非完全图,如果它的最大顶点次 数为ρ(ρ≥3),则称G为ρ可着色的。
下面的讨论的图为平面图:
Th5.3:每个平面图都是6可着色的。 Th5.4:每个平面图都是5可着色的。 Th5.5:每个平面图都是4可着色的。
ρ ≤ X’(G)≤ ρ+1
对任意图判断X’(G)= ρ 或X’(G)= ρ+1没有解决,但对于一些特殊图, 答案是清楚的。
对于n个点圈图: 2 or 3
.13:对于n(n>1)的完全图,
X’(kn)=n (n为奇数)X’(kn)=n-1(n为偶数) Th5.15:如G为具有最大顶点次数ρ的二部图,则X’(G)= ρ。
Corollary 5.9:地图4色定理 平面图的4色定理。 Th5.10:设G为一张每个顶点都是3次的地图,则 G为3可面着色G的每个面皆被偶数条边所围 Th5.11:如果每个3正规的地图是4可面着色的,则4色定理成立。
5.3 边的着色
G是k可边着色的:如果图G的所有的边皆可用k种颜色着色,使得 任何两条相邻的边均具有不同的颜色,则称G是k边着色的。 k为G的边色数:如果G为k可边着色的,但不是k-1可边着色的,则 称k为G的边色数,记为:X’(G)。 Th5.12:如果G为简单图且它的最大顶点次数为ρ
第五章 图的着色
5.1 色数 5.2 地图的着色 5.3 边的着色
5.1 色数
G为k可着色的:设G是一个无自环图,如果对它的每个顶点可以用 k种颜色之一着色,使得没有两个相邻的顶点有相同的颜色,则称G 是k可着色的。
《图论》图的着色(课堂PPT)
![《图论》图的着色(课堂PPT)](https://img.taocdn.com/s3/m/20a4ed8a2cc58bd63086bd18.png)
PK3(3) = 6
19
6.2 色数多项式
a
a
a
b
cb
cb
c
a
a
a
b
cb
cb
c
PK3(3)=6
20
6.2 色数多项式
➢ 若干特殊图的 PG(k) 1) 零图: G=(V, E) ,n=|V|,|E|=0,PG(k)=kn 2) 树:根节点在 k 种颜色中任取,非根节点选取 与其父亲节点不同的颜色。 PG(k)=k(k-1)n-1 3) 完全图: PG(k)=k(k-1)(k-2)…(k-n+1) 4) 非连通图:设图G由不连通的G1和G2构成,则 由乘法原理:PG(k)=PG1(k)PG2(k)
6
6.1 色数
[临界图] G=(V, E),若对G的任一真子图H均有
(H)<(G),则称G为一个临界图。
➢ k 色临界图称为 k-临界图。
[性质]
① 任何 k 色图通过对边的反复删减测试最后可以得
到其 k-临界子图。
② 临界图是连通图。
证:设G1、G2为临界图G的两个连通分支,则
(G)=max{(G1), (G2)}。不妨设 (G)=(G1),而
① 在图G中任取一边 e; ② 在图G中去掉 e,得新图G1;
在图G中收缩 e 的两端点,得新图G2,由上述有 PG(k) = PG1(k) - PG2(k)
③ 继续分解G1和G2,直到最后全部为零图。 ④ 利用 n 阶零图的 P(k)=kn 构造图G的色数多项式。
① 若 n=2,则G为 K2,PG(k)=k(k1)=k2k。
② 若 n>2,则G除一个 K2 外其它为孤立点:
PG(k)=k(k1)kn-2=knkn-1。
19
6.2 色数多项式
a
a
a
b
cb
cb
c
a
a
a
b
cb
cb
c
PK3(3)=6
20
6.2 色数多项式
➢ 若干特殊图的 PG(k) 1) 零图: G=(V, E) ,n=|V|,|E|=0,PG(k)=kn 2) 树:根节点在 k 种颜色中任取,非根节点选取 与其父亲节点不同的颜色。 PG(k)=k(k-1)n-1 3) 完全图: PG(k)=k(k-1)(k-2)…(k-n+1) 4) 非连通图:设图G由不连通的G1和G2构成,则 由乘法原理:PG(k)=PG1(k)PG2(k)
6
6.1 色数
[临界图] G=(V, E),若对G的任一真子图H均有
(H)<(G),则称G为一个临界图。
➢ k 色临界图称为 k-临界图。
[性质]
① 任何 k 色图通过对边的反复删减测试最后可以得
到其 k-临界子图。
② 临界图是连通图。
证:设G1、G2为临界图G的两个连通分支,则
(G)=max{(G1), (G2)}。不妨设 (G)=(G1),而
① 在图G中任取一边 e; ② 在图G中去掉 e,得新图G1;
在图G中收缩 e 的两端点,得新图G2,由上述有 PG(k) = PG1(k) - PG2(k)
③ 继续分解G1和G2,直到最后全部为零图。 ④ 利用 n 阶零图的 P(k)=kn 构造图G的色数多项式。
① 若 n=2,则G为 K2,PG(k)=k(k1)=k2k。
② 若 n>2,则G除一个 K2 外其它为孤立点:
PG(k)=k(k1)kn-2=knkn-1。
图论课件第七章图的着色
![图论课件第七章图的着色](https://img.taocdn.com/s3/m/74257f60657d27284b73f242336c1eb91a3733a9.png)
总结词
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。
图论的介绍ppt课件
![图论的介绍ppt课件](https://img.taocdn.com/s3/m/5b10d4ed7cd184254b3535ef.png)
chedules
工程项目的任务安排,如何满足限制条件,并在最短时 间内完成?
Program structure
大型软件系统,函数(模块)之间调用关系。编译器分 析调用关系图确定如何最好分配资源才能使程序更有效 率。
Graph Applications
Graph Problems and Algorithms
图论的介绍ppt课件
欧拉路径 解決哥尼斯保七桥问題
原來是一笔画问题啊!
数学家欧拉(Euler, 1707-1783) 于1736年严格的证明了上述哥尼斯堡 七桥问题无解,并且由此开创了图论的典型思维方式及论证方式
实际生活中的图论 Graph Model
电路模拟
例:Pspice、Cadence、ADS…..
哈密頓(Hamilton) 周遊世界问題
正十二面体有二十个顶点 表示世界上20个城市 各经每个城市一次 最后返回原地
投影至平面
哈密頓路径至今尚无有效方法來解決!
最短路径问題
(Shortest Path Problem)
最快的routing
最快航線
B 2
1
E
3
A
C 1
3 2F
1
3
D
3 3
G
最短路径算法Dijkstra算 法
二分图(偶图) Bipartite graphs
A graph that can be decomposed into two partite sets but not fewer is bipartite
It is a complete bipartite if its vertices can be divided into two non-empty groups, A and B. Each vertex in A is connected to B, and viceversa
工程项目的任务安排,如何满足限制条件,并在最短时 间内完成?
Program structure
大型软件系统,函数(模块)之间调用关系。编译器分 析调用关系图确定如何最好分配资源才能使程序更有效 率。
Graph Applications
Graph Problems and Algorithms
图论的介绍ppt课件
欧拉路径 解決哥尼斯保七桥问題
原來是一笔画问题啊!
数学家欧拉(Euler, 1707-1783) 于1736年严格的证明了上述哥尼斯堡 七桥问题无解,并且由此开创了图论的典型思维方式及论证方式
实际生活中的图论 Graph Model
电路模拟
例:Pspice、Cadence、ADS…..
哈密頓(Hamilton) 周遊世界问題
正十二面体有二十个顶点 表示世界上20个城市 各经每个城市一次 最后返回原地
投影至平面
哈密頓路径至今尚无有效方法來解決!
最短路径问題
(Shortest Path Problem)
最快的routing
最快航線
B 2
1
E
3
A
C 1
3 2F
1
3
D
3 3
G
最短路径算法Dijkstra算 法
二分图(偶图) Bipartite graphs
A graph that can be decomposed into two partite sets but not fewer is bipartite
It is a complete bipartite if its vertices can be divided into two non-empty groups, A and B. Each vertex in A is connected to B, and viceversa
图论PPT
![图论PPT](https://img.taocdn.com/s3/m/71d0ee48852458fb770b560f.png)
W (P) =
e∈ ( P) W (P
∑W(e)
则称W 为路径P(u, v) 的权或长度(距离). 长度(距离) 则称 (P)为路径 为路径 定义2:若P0 (u, v) 是G 中连接u, v的路径 且对任 定义 : 中连接 的路径, 的路径 意在G 中连接u, 的路径 的路径P 意在 中连接 v的路径 (u, v)都有 都有 W(P0)≤W(P), ≤ 则称P 中连接u, 的最短路. 则称 0 (u, v) 是G 中连接 v的最短路
解:
表示设备在第i 年年初的购买费, 设bi 表示设备在第 年年初的购买费 ci 表示设备使用 年后的维修费 表示设备使用i 年后的维修费, V={v1, v2, … , v6},点vi表示第 年年 表示第i 点 表示第 初购进一台新设备,虚设一个点 虚设一个点v6表 初购进一台新设备 虚设一个点 表 示第5年年底 年年底. 示第 年年底 E ={vivj | 1≤i<j≤6}. <
如果E的每一条边都是无向边 则称G为 如果 的每一条边都是无向边, 则称 为无向 的每一条边都是无向边 如图1) 如果E的每一条边都是有向边 1); 的每一条边都是有向边, 图(如图1) 如果 的每一条边都是有向边 则称 G为有向图(如图2) 否则 称G为混合图 2); 为有向图(如图2) 否则, 为混合图.
图论在数学建模中的应用
• • • • 第一部分 第二部分 第三部分 第四部分概念
图论中的“ 图论中的“图”并不是通常意义下的几何图 形或物体的形状图, 形或物体的形状图, 而是以一种抽象的形式来表 达一些确定的事物之间的联系的一个数学系统. 达一些确定的事物之间的联系的一个数学系统. 称为一个图, 定义1 :一个有序二元组 一个有序二元组( 定义1 :一个有序二元组(V, E ) 称为一个图, 记为G = (V, E ), 其中 的顶点集, 其元素称为顶点, ① V 称为G的顶点集, V≠φ, 其元素称为顶点, 简称点; 简称点; 的边集, 其元素称为边, ② E 称为G的边集, 其元素称为边, 它联结V 中的两个点, 如果这两个点是无序的, 中的两个点, 如果这两个点是无序的, 则称该边 为无向边, 否则, 称为有向边. 为无向边, 否则, 称为有向边.
《图论的介绍》课件
![《图论的介绍》课件](https://img.taocdn.com/s3/m/607cc368182e453610661ed9ad51f01dc28157f4.png)
添加副标题
图论的介绍
汇报人:
目录
PART One
添加目录标题
PART Three
图论的应用领域
PART Two
图论的基本概念
PART Four
图论的基本问题
PART Five
图论的算法和数据 结构
PART Six
图论的扩展知识
单击添加章节标题
图论的基本概念
图论的发展历程
18世纪末,欧拉提出“七桥问题”,开启了图论的先河
匹配问题
匹配问题定义:在图论中,匹配问 题是指在图中找到一组边,使得每 个顶点恰好有一条边。
最小匹配问题:在图中找到一组边, 使得边的数量最少。
添加标题
添加标题
添加标题
添加标题
最大匹配问题:在图中找到一组边, 使得边的数量最多。
完美匹配问题:在图中找到一组边, 使得每个顶点恰好有一条边,并且 边的数量最多。
图论的扩展知识
欧拉路径和欧拉回路
欧拉路径:通过图中所有边且仅通过一次的路径
欧拉回路:通过图中所有边且仅通过一次的回路
欧拉定理:一个无向图存在欧拉回路当且仅当每个顶点的度数都是偶数
应用:欧拉路径和欧拉回路在计算机科学、数学、物理等领域有广泛应用,如电路设计、网络 拓扑、图论算法等
哈密顿路径和哈密顿回路
应用
生物技术:图 论在生物工程、 生物制造和生 物能源等领域
的应用
图论的发展趋势和未来展望
应用领域:图 论在计算机科 学、物理学、 生物学等领域 的应用越来越
广泛
研究方向:图 论在算法设计、 网络优化、数 据挖掘等领域 的研究不断深
入
技术发展:图 论与机器学习、 深度学习等技 术的结合越来
图论的介绍
汇报人:
目录
PART One
添加目录标题
PART Three
图论的应用领域
PART Two
图论的基本概念
PART Four
图论的基本问题
PART Five
图论的算法和数据 结构
PART Six
图论的扩展知识
单击添加章节标题
图论的基本概念
图论的发展历程
18世纪末,欧拉提出“七桥问题”,开启了图论的先河
匹配问题
匹配问题定义:在图论中,匹配问 题是指在图中找到一组边,使得每 个顶点恰好有一条边。
最小匹配问题:在图中找到一组边, 使得边的数量最少。
添加标题
添加标题
添加标题
添加标题
最大匹配问题:在图中找到一组边, 使得边的数量最多。
完美匹配问题:在图中找到一组边, 使得每个顶点恰好有一条边,并且 边的数量最多。
图论的扩展知识
欧拉路径和欧拉回路
欧拉路径:通过图中所有边且仅通过一次的路径
欧拉回路:通过图中所有边且仅通过一次的回路
欧拉定理:一个无向图存在欧拉回路当且仅当每个顶点的度数都是偶数
应用:欧拉路径和欧拉回路在计算机科学、数学、物理等领域有广泛应用,如电路设计、网络 拓扑、图论算法等
哈密顿路径和哈密顿回路
应用
生物技术:图 论在生物工程、 生物制造和生 物能源等领域
的应用
图论的发展趋势和未来展望
应用领域:图 论在计算机科 学、物理学、 生物学等领域 的应用越来越
广泛
研究方向:图 论在算法设计、 网络优化、数 据挖掘等领域 的研究不断深
入
技术发展:图 论与机器学习、 深度学习等技 术的结合越来
运筹学--图论 ppt课件
![运筹学--图论 ppt课件](https://img.taocdn.com/s3/m/c2c2ec21cc17552707220864.png)
4
5
4 9 8
v1
v3
2
v6
[8,v2]
v8
5 33
1
[2,v1]
v4
v7
[10,v4]
33
Dijkstra算法示例1
3)迭代计算(c)—更新与永久标号节点v2相连的节 (d2+w25=3+7=)10< ∞ (=d5) 点的临时标号。
[3,v1]
v2
[0,-]
7
v5
[10,v2]
2 [+∞,v1] 6
v4
v7
[+∞,v1]
22
Dijkstra算法示例1
2)迭代计算(a)—从临时标号中找到距离上界dk最 小的节点v4,d4=min{dk},将其变换为永久编号。
[3,v1] [+∞,v1]
v2
[0,-]
7
v5
2 [+∞,v1] 6 1 2 [+∞,v1]
3
5 2 [5,v1]
4
5
4 9 8
v1
v3
最小树问题不一定有唯一解。
10
10
最小支撑树问题的解法
破圈法 算法
初始化 将图G的边按权值从大到小的次序排列,从 原图开始迭代; 迭代
第1步(删边) 从排列中顺序选择一条与图中剩余边构成圈 的边,则将此边从图中删除,进入第2步(结束判断); 第2步(结束判断) 若图中剩下n-1条边,则已经得到最小支 撑树;否则,进入下一轮迭代,返回第1步(加边);
柯尼斯堡七桥问题
柯尼斯堡市区横跨普雷格尔河两岸,在河中心有两 个小岛。小岛的两岸共有七座桥将岛与岛、岛与河 岸连接起来。一个人怎样才能一次走遍七座桥,每 座桥只走过一次,并最后回到出发点?
图论图着色
![图论图着色](https://img.taocdn.com/s3/m/af586880e53a580216fcfe42.png)
源自v2v1v0
v4
v5
(b)去掉v0后结点v1与v3处在 同一个连通分支中,v1 与v3有一通路,其中点的颜色红黄交替出现,它与 v0构成一回路C(同一个连通分支),也就是约当曲线, 这时结点v2处在曲线的内部而结点v5则处在线的外 部,v2与v5的任何连线必与曲线C相交,与平面图的 条件矛盾。因此约当曲线C必然将黑白集中的结点分 成两个连通分支,使v2与v5分别处于两个连通分支中 (也就是v2与v5不连通), v 于是问题回到(a),可将v2 v v (或v5)所在的分支中的黑 v 白色对换,于是与v0邻接 v v 的5个结点也只着了4种颜 色, v0就可着第5种颜色。
独立集特点 (1)图G的每一个结点构成一个独立集。 (2)极大独立集不是唯一的,它的基数不一定 是最大的,但它的元素数目已达到极限, 即不可能再加入其他结点而不破坏它的独 立性。 (3)最大独立集必然也是极大独立集而且元素 数目是最多的。 (4)任一完全图Kn的独立数I(Kn)=1 (5)偶图G只有两个极大独立集,即是它的两 个互补结点子集V1和V2
v1 e1 c1 e3 c3 v3 v0 e2 c2 v2
定理6.4 若G是偶图,则 ψ e (G ) = Δ (最大结点次数) 证:设G的两个互补结点子集为Vl和V2,若|V1|<|V2|,则 在V1中增加一些结点成为V1’使|V1’|=|V2|, 对xi∈V1’及yj∈V2,若G中无边(xi,yj),则增加一条 边(xi,yj),通过以上的增添,图G=(V,E)成为图GΔ= (V’,E1’), GΔ 是 Δ次正则偶图,( 由定理5.4的推论可知)它 有一完美匹配M1,令E2’=E1’一M1,得到图 G Δ-1= (V’,E2’),则 G Δ-1是(Δ一1)次正则偶图,它也有一 完美匹配M2, 如此继续下去可以得到M1,M2,..., MΔ 个完美匹 配,每一个完美匹配可着一种颜色,使得到G的边 着 色,即 ψ e (G ) = Δ
v4
v5
(b)去掉v0后结点v1与v3处在 同一个连通分支中,v1 与v3有一通路,其中点的颜色红黄交替出现,它与 v0构成一回路C(同一个连通分支),也就是约当曲线, 这时结点v2处在曲线的内部而结点v5则处在线的外 部,v2与v5的任何连线必与曲线C相交,与平面图的 条件矛盾。因此约当曲线C必然将黑白集中的结点分 成两个连通分支,使v2与v5分别处于两个连通分支中 (也就是v2与v5不连通), v 于是问题回到(a),可将v2 v v (或v5)所在的分支中的黑 v 白色对换,于是与v0邻接 v v 的5个结点也只着了4种颜 色, v0就可着第5种颜色。
独立集特点 (1)图G的每一个结点构成一个独立集。 (2)极大独立集不是唯一的,它的基数不一定 是最大的,但它的元素数目已达到极限, 即不可能再加入其他结点而不破坏它的独 立性。 (3)最大独立集必然也是极大独立集而且元素 数目是最多的。 (4)任一完全图Kn的独立数I(Kn)=1 (5)偶图G只有两个极大独立集,即是它的两 个互补结点子集V1和V2
v1 e1 c1 e3 c3 v3 v0 e2 c2 v2
定理6.4 若G是偶图,则 ψ e (G ) = Δ (最大结点次数) 证:设G的两个互补结点子集为Vl和V2,若|V1|<|V2|,则 在V1中增加一些结点成为V1’使|V1’|=|V2|, 对xi∈V1’及yj∈V2,若G中无边(xi,yj),则增加一条 边(xi,yj),通过以上的增添,图G=(V,E)成为图GΔ= (V’,E1’), GΔ 是 Δ次正则偶图,( 由定理5.4的推论可知)它 有一完美匹配M1,令E2’=E1’一M1,得到图 G Δ-1= (V’,E2’),则 G Δ-1是(Δ一1)次正则偶图,它也有一 完美匹配M2, 如此继续下去可以得到M1,M2,..., MΔ 个完美匹 配,每一个完美匹配可着一种颜色,使得到G的边 着 色,即 ψ e (G ) = Δ
图论-总结PPT课件
![图论-总结PPT课件](https://img.taocdn.com/s3/m/550e2238e009581b6ad9eb19.png)
q-p+1条弦。 (2) 若G是一个(p,q)连通图,则T至少有多少个圈?(q-p+1) 若G是一个(p,q)连通图,则T有多少个圈? 若G是一个(p,q)连通图,则T至少(多)有多少个生成树?
.
16
第三节 割点、桥和割集
3.1 割点和桥(割边)
定义1 设v是图G的一个顶点,若G-v的支数大于 G的支数,则称顶点v为图G的一个割点(如图)。
degu + degv≥p-1,
则G是连通的。[这个定理是一个充分条件]
定理3 设G=(V,E)是至少有一个顶点不是弧立顶 点的图。若对任意v∈V,degv为偶数,则G中 有回路。
定理4 若图G中的两个不同顶点u与v间有两条不 同的路联结,则G中有回路。
.
6
例1 若G是一个恰有两个奇度顶点u和v的无向图,则 G连通G+uv连通。
.
8
第五节 欧拉图(Euler)
5.1 欧拉图
定义1 设(G,V)是一个图,则包含图的所有顶 点和所有边的闭迹称为欧拉闭迹;存在一 条欧拉闭迹的图称为欧拉图。
定理1 图G是欧拉图当且仅当G是连通的且每 个顶点的度都是偶数。
(定理1对多重图也成立)
.
9
第六节 哈密顿图
6.1 哈密顿图 定义1 设G是一个图,则图G中包含G的所有顶
数称为顶点v的度,记为degv。 定理1 (握手定理)设G=(V,E)是一个具有p个顶点q条边的图,
则G中各顶点度的和等于边的条数q的两倍,即∑degv=2q。 推论1任一图中,度为奇数的顶点的数目必为偶数。
.
3
定义3 设G是图,若Δ(G)=δ(G)=r,即G的每个顶点的 度都等于r,则G称为r度正则图。
.
16
第三节 割点、桥和割集
3.1 割点和桥(割边)
定义1 设v是图G的一个顶点,若G-v的支数大于 G的支数,则称顶点v为图G的一个割点(如图)。
degu + degv≥p-1,
则G是连通的。[这个定理是一个充分条件]
定理3 设G=(V,E)是至少有一个顶点不是弧立顶 点的图。若对任意v∈V,degv为偶数,则G中 有回路。
定理4 若图G中的两个不同顶点u与v间有两条不 同的路联结,则G中有回路。
.
6
例1 若G是一个恰有两个奇度顶点u和v的无向图,则 G连通G+uv连通。
.
8
第五节 欧拉图(Euler)
5.1 欧拉图
定义1 设(G,V)是一个图,则包含图的所有顶 点和所有边的闭迹称为欧拉闭迹;存在一 条欧拉闭迹的图称为欧拉图。
定理1 图G是欧拉图当且仅当G是连通的且每 个顶点的度都是偶数。
(定理1对多重图也成立)
.
9
第六节 哈密顿图
6.1 哈密顿图 定义1 设G是一个图,则图G中包含G的所有顶
数称为顶点v的度,记为degv。 定理1 (握手定理)设G=(V,E)是一个具有p个顶点q条边的图,
则G中各顶点度的和等于边的条数q的两倍,即∑degv=2q。 推论1任一图中,度为奇数的顶点的数目必为偶数。
.
3
定义3 设G是图,若Δ(G)=δ(G)=r,即G的每个顶点的 度都等于r,则G称为r度正则图。
chap12 图的着色
![chap12 图的着色](https://img.taocdn.com/s3/m/449895e2f61fb7360b4c6572.png)
C(v)=2+2+2+2=8 C(v)=1+2+1+2=6 故优于,易知, 是最优2边着色。
2016/12/5 离散数学 22
缺色又重色的顶点在奇回路上
引理12.2.2:设是图G的最优k边着色,若G中 有顶点u , 其上不出现颜色i,却出现颜色j至少 两次,令Ei和Ej为G中以i和j着色的边集合,则 G[Ei∪Ej]中含u的分支B是奇数长度的回路。 证明:若引理不成立,则由引理12.2.1知B有一 个2边着色,使的两种颜色在B中度不小于2 的顶点上都出现,设的色集为{i , j}。于是, 将B的边按照着色,G的其它边仍按着色, 得到G的新的k边着色。 对于顶点u,有 C(u)=C(u)+1,但对v≠u,Cr(v) C(v),即优 于,此与最优的假设矛盾。故引理成立。
2016/12/5 离散数学 23
边色数之上下界
定理12.2.1(Vizing 1964):对于任何简单图G, (G) (G) (G) +1 . 证明:只须证明右边的不等式。 假设对某个简单图G,有 (G)>(G)+1。 令是G的最优((G)+1)边着色。 ? 由假设G中必有一点u,有C(u)<d(u)。因此 有颜色 u 上至少出现两次。又 < (G)+1 若对 ui有 C (u)=d(u),则是正常d(u) k边着色, 。 1在 故有颜色 i0在 u上不出现。设 (uv)= (uv1)=i 是 ((G)+1) 边着色,这与 (G) > (G)+1 矛盾。 1。
Ak1 Ak 2 Akk
2016/12/5
离散数学
15
(G)2q/p2+1
9.2 顶点染色
![9.2 顶点染色](https://img.taocdn.com/s3/m/93ccbb73a26925c52cc5bf87.png)
9.2 图的染色
图的染色问题源于著名的四色问题。所 谓四色猜想就是在平面上任何一张地图,总 可以用至多四种颜色给每一个国家染色,使 得任何相邻国家的颜色是不同的。 四色问题可以转化为图论中的问题来讨论, 从地图出发构造一个图 ,让每一个顶点代 G 表地图的一个区域,如果两个区域有一段公 共边界线,就在相应的顶点之间连上一条边。 则对地图的染色就转化为对图 的一个顶点 G 染色。
G 的色数是所得完全图的色 当所得图都是完全图时,算法结束, 数的最小者。
证明:设 (G) k ,并考虑 G 的 k 染色。假设顶点 u 和 v 染不同的颜色,则 G 的 k 染色也是 G uv 的 k 染色 。 因而,此时有
(G uv) k (G)
现在假设顶点 u 和 v 的染色相同,则 G 的一个 k 染色 可得到 G uv 的一个 k 染色,于是,有
或者由推论9.2.1可得。
推论9.2.0 若 G 是连通图,但不是正则图,则
(G) (G)
证明: 由定理9.2.0,只需证明对G 的任何一个点导出子图 H 都有 ( H ) (G) 1 。若 H G ,因 G 不是正则图, 故 ( H ) (G) 1 。如果 H 是 G 的真子集,由于 G 连通, 存在 x V ( H ) y V (G H ), 使 xy E (G) ,则 dH ( x) dG ( x) 1 (G) 1 故 ( H ) (G) 1
(G) min (G uv), (G uv)
综合以上结论,有
(G) min (G uv), (G uv)
以上定理的结论提供了一个求图的色数的算法: 设 G 是有 p 个顶点的简单图 关于 (G ) 的算法: (1)如果 G 是 K p ,则 (G) p 。如果 G 不是 K p ,令 H G 并按(2)进行; (2)选取 H 的不相邻的一对不同顶点 u ,v ,作图 H uv 和 H uv ,并按(3)进行; (3)令 H 是由(2)得到的某个图。如果 H 是完全图,比如说有 k 个顶点,则 ( H ) k 。如果 H 不是完全图,转入(2) 进行。
图的染色问题源于著名的四色问题。所 谓四色猜想就是在平面上任何一张地图,总 可以用至多四种颜色给每一个国家染色,使 得任何相邻国家的颜色是不同的。 四色问题可以转化为图论中的问题来讨论, 从地图出发构造一个图 ,让每一个顶点代 G 表地图的一个区域,如果两个区域有一段公 共边界线,就在相应的顶点之间连上一条边。 则对地图的染色就转化为对图 的一个顶点 G 染色。
G 的色数是所得完全图的色 当所得图都是完全图时,算法结束, 数的最小者。
证明:设 (G) k ,并考虑 G 的 k 染色。假设顶点 u 和 v 染不同的颜色,则 G 的 k 染色也是 G uv 的 k 染色 。 因而,此时有
(G uv) k (G)
现在假设顶点 u 和 v 的染色相同,则 G 的一个 k 染色 可得到 G uv 的一个 k 染色,于是,有
或者由推论9.2.1可得。
推论9.2.0 若 G 是连通图,但不是正则图,则
(G) (G)
证明: 由定理9.2.0,只需证明对G 的任何一个点导出子图 H 都有 ( H ) (G) 1 。若 H G ,因 G 不是正则图, 故 ( H ) (G) 1 。如果 H 是 G 的真子集,由于 G 连通, 存在 x V ( H ) y V (G H ), 使 xy E (G) ,则 dH ( x) dG ( x) 1 (G) 1 故 ( H ) (G) 1
(G) min (G uv), (G uv)
综合以上结论,有
(G) min (G uv), (G uv)
以上定理的结论提供了一个求图的色数的算法: 设 G 是有 p 个顶点的简单图 关于 (G ) 的算法: (1)如果 G 是 K p ,则 (G) p 。如果 G 不是 K p ,令 H G 并按(2)进行; (2)选取 H 的不相邻的一对不同顶点 u ,v ,作图 H uv 和 H uv ,并按(3)进行; (3)令 H 是由(2)得到的某个图。如果 H 是完全图,比如说有 k 个顶点,则 ( H ) k 。如果 H 不是完全图,转入(2) 进行。
图的着色问题课件PPT
![图的着色问题课件PPT](https://img.taocdn.com/s3/m/2739227051e79b896902263d.png)
显然我们可以选用4种颜色给每个顶点涂色,或者选
用3种颜色分别给3个极大独立集涂色,例如为{b,d,f}中
的b、d、f涂颜色1,为{a,f}中的a涂颜色2,为{}中的e涂颜色4。
求极小覆盖法-布尔代数法
Step3:从中挑选所用极大独立集个数最小者, 即为X(G)
但上述子集的颜色数都不是X(G),正确的应 该是X(G)=3,该子集为:给{b,d,f}中的 b,d,f涂颜色1,为{a,e,g}中a,e,g涂颜色2为 {a,c,g}中的c涂颜色3。
由此可见,求色数其需要求极大独立集以及 一切若干极大独立集的和含所有顶点的子集, 对于大图,因为图计算量过大而成为实际上难 以凑效的算法,所以不是一个好算法,一般我 们采用贪心法等近似算法来求解 。
图的着色问题
问题来源
图的着色
• 通常所说的着色问题是指下述两类问题:
• 1.给定无环图G=(V,E),用m种颜色为图
中的每条边着色,要求每条边着一种颜色, 并使相邻两条边有着不同的颜色,这个问题 称为图的边着色问题。
• 2.给定无向图G=(V,E),用m种颜色为图
中的每个顶点着色,要求每个顶点着一种颜 色,并使相邻两顶点之间有着不同的颜色, 这个问题称为图的顶着色问题。
穷举法-Welch Powell着色法
• I.将图G中的结点按度数的递减顺序进行排列(这
种排列可能不是唯一的,因为有些结点的度数相 同)。
• II.用第一种颜色对第一结点着色,并按排列顺 序对与前面着色结点不邻接的每一结点着上同样 的颜色。
• III.用第二种颜色对尚未着色的结点重复II,用 第三种颜色继续这种做法,直到所有的结点全部 着上色为止。
回溯法
void GraphColor(int n, int c[ ][ ], int m)
《图论及其应用》课件
![《图论及其应用》课件](https://img.taocdn.com/s3/m/8ebbb947cd1755270722192e453610661ed95ad7.png)
图像处理
探索图论在图像处理领域的应用,如图像分割 和模式识别。
七、总结
图论的重要性
强调图论在计算机科学和现实 世界中的重要性和广泛应用。
现实中的应用价值
讨论图论在实际问题中解决方 案的应用价值和优势。
对于未来的展望
探索图论在未来可能的发展方 向和应用领域,如人工智能和 物联网。
2
Floyd算法
介绍Floyd算法的原理和使用方法,用于计算图中所有节点之间的最短路径。
四、最小生成树算法
Prim算法
解释Prim算法的工作原理和应用,用于寻找图中的 最小生成树。
Kruskal算法
讨论Kruskal算法的概念和实现,用于生成图的最小 生成树。
五、网络流算法
1
最大流
介绍网络流问题和最大流算法,用于解
《图论及其应用》PPT课 件
本PPT课件将带您深入了解图论及其应用。图论是一门关于图的性质及其应用 的学科,将为您揭开图论的奥秘。
一、图论基础
图的定义及术语
介绍图的基本定义以及相关的术语,为后续内 容打下基础。
无向图与有向图
解释无向图和有向图的区别,并介绍它们之间 的关系和应用。
图的表示方法
讲解图的常用表示方法,如邻接矩阵和邻接表, 并比较它们的优缺点。
连通性和路径
讨论图的连通性概念以及如何找到两个节点之 间的最短路径。
二、图的遍历算法
1
广度优先搜索(BFS)
2
介绍广度优先搜索算法的工作原理和常 见应用。
深度优先搜索(DFS)
深入探讨深度优先搜索算法的原理和应 用场景。
三、最短路径算法
1
Dijkstra算法
详细讲解Dijkstra算法的步骤和应用,用于寻找图中两个节点间的最短路径。