《数学模型》(第三版)电子课件 第一章

合集下载

数学模型姜启源 ppt课件

数学模型姜启源 ppt课件
6
《数学模型》 姜启源 主编
数学模型
9 五 5-6 6.4种群的相互依存
2
7.1市场经济中的蛛网模型
10 五 5-6 7.2减肥计划-节食与运动
2
8.3层次分析模型
12 五 5-6 8.4效益的合理分配
2
9.2报童的诀窍(讨论课)
13 五 5-6 9.5随机人口模型
2
9.6航空公司的预定票策略
14 五 5-6 10.1牙膏的销售量
数学模型
对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 运用适当的数学工具,得到的一个数学结构。
数学
建立数学模型的全过程
建模 (包括表述、求解、解释、检验等)
2020/11/13
12
《数学模型》 姜启源 主编
第一章 建立数学模型
1.2 数学建模的重要意义
• 电子计算机的出现及飞速发展; • 数学以空前的广度和深度向一切领域渗透。
1.3 数学建模示例
1.4 数学建模的方法和步骤
1.5 数学模型的特点和分类
1.6 怎样学习数学建模
2020/11/13
8
《数学模型》 姜启源 主编
第一章 建立数学模型
1.1 从现实对象到数学模型
我们常见的模型
玩具、照片、飞机、火箭模型… … ~ 实物模型
水箱中的舰艇、风洞中的飞机… … ~ 物理模型
《数学模型》 姜启源 主编
数学模型
数学模型
2020/11/13
1
《数学模型》 姜启源 主编
数学模型
课程简介
课程名称 数学模型与数学建模 Mathematical Modeling
先修课程 微积分、线性代数、概率论与数理统计 课程简介

简单优化模型 《数学模型》(第三版)电子课件姜启源、谢金星、叶 俊编制

简单优化模型 《数学模型》(第三版)电子课件姜启源、谢金星、叶  俊编制

要 不只是回答问题,而且要建立生产周期、产量与 求 需求量、准备费、贮存费之间的关系。
问题分析与思考
日需求100件,准备费5000元,贮存费每日每件1元。
• 每天生产一次,每次100件,无贮存费,准备费5000元。
每天费用5000元
• 10天生产一次,每次1000件,贮存费900+800+…+100 =4500 元,准备费5000元,总计9500元。
允许 T ' 缺货
模型
Q'
2c1
c 2

c 3
rc2 c3
2c1r c3 c2 c2 c3
不允 许缺 货模 型
T 2c1 rc2
Q rT 2c1r c2
记 c2 c3
c3
T T , Q Q
不 允
1 T ' T , Q' Q c3
t 对g的(相对)敏感度 30
t
S(t, g) Δ t / t dt g 20 Δ g / g dg t
S(t, g) 3 3 3 20 g
10 0
0.06 0.08 0.1 0.12 0.14 g 0.16
生猪价格每天的降低量g增加1%,出售时间提前3%。
强健性分析
研究 r, g不是常数时对模型结果的影响
模型应用
c2 T,Q
r T ,Q
c1=5000, c2=1,r=100
• 回答问题
T=10(天), Q=1000(件), C=1000(元)
• 经济批量订货公式(EOQ公式)
用于订货、供应、存贮情形
每天需求量 r,每次订货费 c1,每天每件贮存费 c2 , T天订货一次(周期), 每次订货Q件,当贮存量降到 零时,Q件立即到货。

数学建模—概率模型 ppt课件

数学建模—概率模型 ppt课件

数学建模—概率模型
v3统计图(examp05-03) v箱线图(判断对称性) v频率直方图(最常用) v经验分布函数图 v正态概率图(+越集中在参考线附近,越近似正态分布)
v4分布检验 vChi2gof,jbtest,kstest,kstest2,lillietest等 vChi2gof卡方拟合优度检验,检验样本是否符合指定分布。它把观测数据分 组,每组包含5个以上的观测值,根据分组结果计算卡方统计量,当样本够 多时,该统计量近似服从卡方分布。 vjbtest,利用峰度和偏度检验。
3 单因素一元方差分析步骤
( example07_01.m 判断不同院系成绩均值是否相等)
数据预处理
正态性检验 lillietest (p>0.05接受)
方差齐性检验 vartestn (p>0.05接受)
方差分析
anoval (p=0 有显著差别)
多重比较:两两比较,找出存在显著差异的学院,multcompare
构造观测值矩阵,每一列对应因素A的一个水平,每一行对应因素B的一个
水平
方差分析
anova2 得到方差分析表
方差分析表把数据差异分为三部分(或四部分): 列均值之间的差异引起的变差 列均值之间的差异引起的变差 行列交互作用引起的变差 (随机误差) 后续可以进行多重比较,multcompare,找出哪种组合是最优的
Computer Science | Software Engineering & Information System
数学建模—概率模型
目的:用一个函数近似表示变量之间的不确定关系。 1 一元线性回归分析 做出散点图,估计趋势;计算相关系数矩阵; regress函数,可以得到回归系数和置信区间,做残差分析,剔除异常点,重 新做回归分析 Regstats 多重线性或广义回归分析,它带有交互式图形用户界面,可以处 理带有常数项、线性项、交叉项、平方项等模型 robustfit函数:稳健回归(加权最小二乘法)

《数学模型电子教案》课件

《数学模型电子教案》课件

《数学模型电子教案》PPT课件第一章:数学模型概述1.1 数学模型的定义与分类1.2 数学模型的构建步骤1.3 数学模型在实际应用中的重要性1.4 数学模型与数学建模的区别与联系第二章:数学模型建立的基本方法2.1 直观建模法2.2 解析建模法2.3 统计建模法2.4 计算机模拟建模法第三章:线性方程组与线性规划模型3.1 线性方程组的求解方法3.2 线性规划的基本概念与方法3.3 线性规划模型的应用案例3.4 线性规划模型的求解算法第四章:微分方程与差分方程模型4.1 微分方程的基本概念与分类4.2 微分方程的求解方法4.3 差分方程的基本概念与分类4.4 差分方程的求解方法与应用第五章:概率论与统计模型5.1 概率论基本概念与随机变量5.2 概率分布与数学期望5.3 统计学基本概念与推断方法5.4 统计模型的应用案例第六章:最优化方法与应用6.1 无约束最优化问题6.2 约束最优化问题6.3 最优化方法的应用案例6.4 遗传算法与优化问题第七章:概率图与贝叶斯模型7.1 概率图的基本概念7.2 贝叶斯定理及其应用7.3 贝叶斯网络与推理方法7.4 贝叶斯模型在实际应用中的案例分析第八章:时间序列分析与预测模型8.1 时间序列的基本概念与分析方法8.2 自回归模型(AR)与移动平均模型(MA)8.3 自回归移动平均模型(ARMA)与自回归积分滑动平均模型(ARIMA)8.4 时间序列预测模型的应用案例第九章:排队论与网络流量模型9.1 排队论的基本概念与模型构建9.2 排队论在服务系统优化中的应用9.3 网络流量模型的基本概念与方法9.4 网络流量模型的应用案例第十章:随机过程与排队网络模型10.1 随机过程的基本概念与分类10.2 泊松过程与Poisson 排队网络10.3 马克威茨过程与随机最优控制10.4 排队网络模型的应用案例第十一章:生态学与种群动力学模型11.1 生态学中的基本概念11.2 种群动力学模型的构建11.3 差分方程在种群动力学中的应用11.4 种群动力学模型的案例分析第十二章:金融数学模型12.1 金融市场的基本概念12.2 金融数学模型概述12.3 定价模型与风险管理12.4 金融数学模型在实际应用中的案例分析第十三章:社会经济模型13.1 社会经济系统的基本特征13.2 经济数学模型的构建方法13.3 宏观经济模型与微观经济模型13.4 社会经济模型的应用案例第十四章:神经网络与深度学习模型14.1 人工神经网络的基本概念14.2 深度学习模型的构建与训练14.3 神经网络在数学建模中的应用案例14.4 当前神经网络与深度学习的发展趋势第十五章:数学模型在工程中的应用15.1 工程问题中的数学建模方法15.2 数学模型在结构工程中的应用15.3 数学模型在流体力学中的应用15.4 数学模型在其他工程领域中的应用案例重点和难点解析本《数学模型电子教案》PPT课件涵盖了数学模型概述、建模方法、线性方程组与线性规划、微分方程与差分方程、概率论与统计、最优化方法、概率图与贝叶斯模型、时间序列分析、排队论与网络流量模型、随机过程、生态学与种群动力学模型、金融数学模型、社会经济模型、神经网络与深度学习模型以及数学模型在工程中的应用等多个领域。

《运筹学》课件 第一章 线性规划

《运筹学》课件 第一章 线性规划

10
解:令
xi=
1, Si被选中
min z= ci xi i 1 10
0, Si没被选中
xi 5
i 1
x1 x8 1 x7 x8 1
称为技术系数
b= (b1,b2, …, bm) 称为资源系数
2、非标准型
标准型
(1)Min Z = CX
Max Z' = -CX
(2)约束条件
• “≤”型约束,加松弛变量;
松弛变量
例如: 9 x1 +4x2≤360
9 x1 +4x2+ x3=360
• “≥”型约束,减松弛变量;
例、将如下问题化为标准型
数据模型与决策 (运筹学)
课程教材:
吴育华,杜纲. 《管理科学基础》,天津大学出版社。
绪论
一、运筹学的产生与发展
运筹学(Operational Research) 直译为“运作研究”。
• 产生于二战时期 • 60年代,在工业、农业、社会等各领域得到广泛应用 • 在我国,50年代中期由钱学森等引入
Min z x1 2x2 3x3
x1 x2 x3 7
s.t
.
x1 x2 x3 3x1 x2 2
x3
2
5
x1, x2 , x3 0
解:令 Min z Max z' (z' z) ,第一个约束加松弛变量x5,
第二个约束减松弛变量x6,得标准型:
Max z' x1 2x2 +3x3
x1 x2 x3 x4 7
s.t .
x1 x2 3x1
x3 x2
x5 2 2x3 5
x1 , , x5 0

电子教案-高等数学(工科类)(魏寒柏 骈俊生)ppt-第一章函数及其应用-电子课件

电子教案-高等数学(工科类)(魏寒柏 骈俊生)ppt-第一章函数及其应用-电子课件

第 如果对于任意 y f (D),都可以从关系式y f (x)
一 节
中确定唯一的值 x D 与之对应,那么所确定的 以 y为自变量的函数x f 1( y) 称为函数的反函数.


习惯上,函数自变量用x 表示,所以反函数


通常表示为 y f 1(x) ,
性 质
此时函数与反函数的
图像有如图对称性。
由于鱼缸的容积为180cm3 ,即有x2h 108
模 型 和 工
由此得
h 108 x2

所以总费用与底面边长的函数关系为:

线
C 2ax2 432a , x ( 0 , )
x
第 二 节 函 数 模 型 和 工 程 曲 线
4.函数的有界性
定义1.7 设函数y f (x)在区间I上有定义,

如果存在一个正数 M,对于任意xI ,恒
一 节
有| f (x) | M 成立,则称y f (x) 是区间I 上

的有界函数;如果这样的正数M 不存在,
数 及
则称 y f (x) 是区间 I上的无界函数。

性 质
比如:函数 y sin x 在区间(, ) 内是有
3.函数的周期性
定义1.6 设T 为一个非零实数,如果函数
y f (x) 对于其定义域内任意x D ,且x T D
第 一
都有 f (T x) f (x) ,则称y f (x)是周期函数,

习惯上,把上述关系式成立的最小正数称

为周期。


其 性
例如求函数 f (x) Asin(wx ) 的周期:
xx
x3
注意:若不考虑实际意义,只研究用解析

数学模型(姜启源 第三版第一章)

数学模型(姜启源  第三版第一章)

1、举出两三个实例说明建立数学模型的必要性,包括实际问题的背景,建模目的,需要大体上什么样的模型以及怎样应用这种模型等。

2、从下面不大明确的叙述中确定要研究的问题,要考虑哪些有重要影响的变量:(1)一家商场要建一个新的停车场,如何规划照明设施;(2)一农民要在一块土地上作出农作物的种植规划;(3)一制造商要确定某种产品的产量及定格;(4)卫生部门要确定一种新药对某种疾病的疗效;(5)一滑雪场要进行山坡滑道和上山缆车的规划。

3、怎样解决下面的实际问题。

包括需要哪些数据资料,要作些什么观察、实验以及建立什么样的数学模型等。

(1)估计一个人体内血液的总量;(2)为保险公司制定人寿保险金计划(不同年龄的人应缴纳的金额和公司赔偿的金额);(3)估计一批日关灯管的寿命;(4)确定火箭发射至最高点所需的时间;(5)决定十字路口黄灯亮的时间长度;(6)为汽车租凭公司制订车辆维修、更新和出租计划;(7)一高层办公楼有4部电梯,早晨上班时间非常拥挤,试制订合理的运行计划。

4、在1.3节“椅子能在不平的地面上放稳吗”的假设条件中,将四脚的连线呈正方形改为呈长方形,其余不变。

试构造模型并了解。

5、模仿1.4节商人过河问题中的状态转移模型,作下面这个众所周知的智力游戏:人带着猫、鸡、米过河,船除了需要人划之外,至多能载猫、鸡、米三者之一,而当下人不在场时猫要吃鸡、鸡要吃米。

试设计一个安全过河的方案,并使渡河次数尽量地最少。

6、利用1.5节表1和表3给出的1790—2000年美国实际人口资源建立下列模型:(1)分段的指数增长模型。

将时间分为若干段,分别确定增长率r ;(2)阻滞增长模型。

换一种方法确定固有增长率r 和最大容量m x 。

7、说明1.5节中Logistic 模型(9)可以表为0()()1mr t t x x t e --=+,其中是人口增长出现拐点的时刻,并说明0t 与,r ,m x 的关系。

8、假定人口的增长服从这样的规律:t 时刻的人口为()x t ,到t t +∆时间内人口的增量与()m x x t 成正比(其中m x 为最大容量)。

《数学建模》PPT课件

《数学建模》PPT课件

( x2
x1)
f
f (x2 ) (x2 ) f
2 1 ( x1) 22
1
f
( x1 )
f
(x2 )
3
f
( x1 ) x1
f (x2 ) x2
2 (12 f (x1)f (x2 ))1/2
如函数的导数容易求得,一般首先考虑使用三次插值
法,因为它具有较高效率。对于只需要计算函数值的方
法中,二次插值法是一个很好的方法,它的收敛速度较
优化模型
(2)多项式近似法 该法用于目标函数比较复杂的情 况。此时寻找一个与它近似的函数代替目标函数,并用 近似函数的极小点作为原函数极小点的近似。常用的近 似函数为二次和三次多项式。
二次内插涉及到形如下式的二次函数数据拟合问题:
mq() a2 b c
其中步长极值为:
b
2a
完整版课件ppt
求解单变量最优化问题的方法有很多种,根据目标函 数是否需要求导,可以分为两类,即直接法和间接法。 直接法不需要对目标函数进行求导,而间接法则需要用 到目标函数的导数。
完整版课件ppt
4
优化模型
1、直接法 常用的一维直接法主要有消去法和近似法两种: (1)消去法 该法利用单峰函数具有的消去性质进行
反复迭代,逐渐消去不包含极小点的区间,缩小搜索区 间,直到搜索区间缩小到给定允许精度为止。一种典型 的消去法为黄金分割法(Golden Section Search)。黄金 分割法的基本思想是在单峰区间内适当插入两点,将区 间分为三段,然后通过比较这两点函数值的大小来确定 是删去最左段还是最右段,或同时删去左右两段保留中 间段。重复该过程使区间无限缩小。插入点的位置放在 区间的黄金分割点及其对称点上,所以该法称为黄金分 割法。该法的优点是完整算版课法件p简pt 单,效率较高,稳定性好5 。

《平差数学模型》PPT课件

《平差数学模型》PPT课件

一般而言,如果某一平差问题中,观测值
个数为n,必要观测个数为t,多余
观 测 个 数 为 r=n-t , 再 增 选 u 个 独 立
参 数 , u=t , 则 总 共 应 列 出
c=r+u=n 个 函 数 关 系 式 , 其 一 般 形
式为
L~ F(X~)
n1
或:
L~BX~d
n1 nt t1 n1
将 L ~L代入上式,并令
则:
l Ld
BX~l
n1 nt t1 n1
上式就是间接平差的函数模型。
03.02.2021 8
第二节 测量平差的数学模型
一、函数模型
L~ F(X~)
4. 附有条件的间接平差法
n1(X~) 0
如果在某平差问题中,选取u>t个参数,线性形式的S1函数模型为
其中包含t个独立参数,则多选的 s=u- t个参数必定是t个独立参数 的函数,即在u个参数之间存在着s 个函数关系式。方程的总数
产生矛盾
平差
求改正数V
L1L2L3180
消除矛盾
Lˆi Li Vi
“观测值估值” (又叫平差值、 最或是值、最 或然值)来代 替观测值
我们把按照某一准则求得观测值新的 一组最优估值的计算过程叫平差。
V称为观测值的改 正数
03.02.2021 5
第二节 测量平差的数学模型
• 在科学技术领域,通常对研究对象
7
第二节 测量平差的数学模型
一、函数模型
3. 间接平差法
参选数择几X~ 何,模将型每中一t个个观独测立量量表为达平成差 u 1
所选参数的函数,共列出 r+u=r+t=n个这种函数关系式,以 此作为平差的函数模型的平差方法 称为间接平差。(见例子)

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

第一章 数学建模概论 数学模型与实验 国家级精品课程课件 20页

2、国际数学建模竞赛(MCM)
创办于1985年,由美国运筹与管理学会,美国工业与应 用数学学会和美国数学会联合举办,开始主要是美国的大学 参赛,90年代以来有来自中国、加拿大、欧洲、亚洲等许多 国家的大学参加,逐渐成为一项全球性的学科竞赛。上一年 11月份报名,每个大学限报4队,每个系限报2队,2月上旬 比赛,4月份评奖。9篇优秀论文刊登在 “The Journal of Undergraduate Mathematics and Its Applications(UMAP)” 专刊上。详见 /
用实际问题的实测数据等 来检验该数学模型
不符合实际 符合实际
交付使用,从而可产生 经济、社会效益
建模过程示意图
七、怎样撰写数学建模的论文? 1、摘要:问题、模型、方法、结果 2、问题重述 3、模型假设 4、分析与建立模型 5、模型求解 6、模型检验 7、模型改进、评价、推广等 8、参考文献 9、附录
数学模型与实验
十一、 资料查询
校内:校图书馆提供电子资源,搜索软件查询 校外:, ,
数学模型与实验
十二 数学建模示例
椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
• 四条腿一样长,椅脚与地面点接触,四脚 连线呈正方形; • 地面高度连续变化,可视为数学上的连续 曲面; • 地面相对平坦,使椅子在任意位置至少三 只脚同时着地。
1、中国大学生数学建模竞赛(CUMCM)
创办于1990年,由教育部高教司和中国工业与应用数学 学会共同举办,全国几乎所有大专院校都有参加,每年6月份 报名,9月下旬比赛,11月份评奖。优秀论文刊登在《数学 的实践与认识》或?工程数学?每年第一期上。详见

王孝武主编《现代控制理论基础》(第3版)课件

王孝武主编《现代控制理论基础》(第3版)课件

x1 x2
xn
0 u 0
1
x1
y b0
b1
bn1
xn
注:如果输入项的导数阶次和输出项导数阶次相同,则有d。
Y (s) R(s)
bn s n an s n
b1s b0 a1s a0
d
bn1sn1 b1s b0 ansn a1s a0
例1-4 已知描述系统的微分方程为 y18y 192y 640y 160u 640u
0
0
0 1 an1
x1 x2
xn
0
0
b0
u
系统的状态图如下:
x1
y 1
0
0
xn
1.2.2 微分方程中含有输入信号导数项
(一)待定系数法
首先考察三阶系统,其微分方程为 y a2 y a1 y a0 y b3u b2u b1u b0u
┆ xn1 xn z(n1)
xn z(n) a0 x1 a1x2 an1xn b0u
y
b z (n1) n1
b1z
b0 z
b0 x1
b1x2
bn1xn
写成矩阵形式
x1
x2
xn
0
0
0
a0
1 0 0 a1
0 1 0 a2
0 0 0 a3
0
0
0 1 an1
2. 线性时变系统: x A(t)x B(t)u y C(t)x D(t)u
3. 非线性定常系统:
x = f(x, u) y = g(x, u)
4. 非线性时变系统:
x = f(x, u, t ) y = g(x, u, t )
1.1.3 状态变量的选取 (1) 状态变量的选取可以视问题的性质和输入特性而定

《数学模型》(第三版)电子-省公开课获奖课件市赛课比赛一等奖课件

《数学模型》(第三版)电子-省公开课获奖课件市赛课比赛一等奖课件


w w c w
c 20000 0.025
w 8000100
即每七天每公斤体重消耗 20230/100=200千 卡
1)不运动情况旳两阶段减肥计划
• 第一阶段: w(k)每七天减1公斤, c(k)减至下限10000千
卡w(k) w(k 1) 1 w(k 1) w(k) c(k 1) w(k)
当不稳定时政府能采用什么干预手段使之稳定
蛛网模型
xk~第k时段商品数量;yk~第k时段商品价格
消费者旳需求关系 需求函数 yk f (xk ) 减函数
生产者旳供给关系 供给函数 xk 1 h( yk ) 增函数
y
f
g
y0
P0
0
x0
yk g (xk 1)
f与g旳交点P0(x0,y0) ~ 平衡点 一旦xk=x0,则yk=y0,
减肥计划
某甲体重100公斤,目前每七天吸收20230千卡热量, 体重维持不变。现欲减肥至75公斤。
1)在不运动旳情况下安排一种两阶段计划。 第一阶段:每七天减肥1公斤,每七天吸收热量逐 渐降低,直至到达下限(10000千卡); 第二阶段:每七天吸收热量保持下限,减肥到达目
2)的若要加紧进程,第二阶段增长运动,试安排计划。
• 运动(内容同前) C 8000 0.028 75 16800 (千卡)
7.3 差分形式旳阻滞增长模型
连续形式旳阻滞增长模型 (Logistic模型)
x(t) ~某种群 t 时刻旳数量(人口)
x(t) rx(1 x ) N
t, xN, x=N是稳定平衡点(与r大小无关)
离散
yk ~某种群第k代旳数量(人口)
模型假设
1)体重增长正比于吸收旳热量— —每8000千卡增长体重1公斤;

数学建模——回归分析模型 ppt课件

数学建模——回归分析模型  ppt课件

有最小值:
n n i 1 i 1
i
2 2 ( y a bx ) i i i
ppt课件
ˆx ˆi a ˆ b y i
6
数学建模——回归分析模型
一元线性回归模型—— a, b, 2估计
n ( xi x )( yi y ) ˆ i 1 b n ( xi x )2 i 1 ˆ ˆ y bx a
数学建模——回归分析模型
Keep focused Follow me —Jiang
ppt课件
1
数学建模——回归分析模型
• • • • • 回归分析概述 几类回归分析模型比较 一元线性回归模型 多元线性回归模型 注意点
ppt课件
2
数学建模——回归分析模型
回归分析 名词解释:回归分析是确定两种或两种以上变数 间相互赖的定量关系的一种统计分析方法。 解决问题:用于趋势预测、因果分析、优化问题 等。 几类常用的回归模型:
可决系数(判定系数) R 2 为:
可决系数越靠近1,模型对数据的拟合程度越好。 ppt课件 通常可决 系数大于0.80即判定通过检验。 模型检验还有很多方法,以后会逐步接触
15
2 e ESS RSS i R2 1 1 TSS TSS (Yi Y )2
数学建模——回归分析模型
2 i i 1
残差平 方和
13
数学建模——回归分析模型
多元线性回归模型—— 估计 j 令上式 Q 对 j 的偏导数为零,得到正规方程组,
用线性代数的方法求解,求得值为:
ˆ ( X T X )1 X TY
ˆ 为矩阵形式,具体如下: 其中 X , Y ,

《数学模型》课件数学建模中的数值方法20180907

《数学模型》课件数学建模中的数值方法20180907

u t
b2
2u x2
2u y2
2u z 2
f
(x,
y,
z,t)
其中, f F 。 a
Q1
t t t
S
k
u n
dS
dt
如果考虑的是线或是面的扩散问题,则方程变为
u t
b2
2u x2
一维热传导方程
u t
b2
2u x2
2u y2
二维热传导方程
如果考虑的是稳恒场,即 u 与时间 t 无关,分布达到某种动态平
t
V
a
u t
dxdydz
dt
Q2
由于对与任意的区域上式都要成立,因此
a
u t
k
(
2u x2
2u y 2
2u z 2
)
u
边界条件:(i) u
f1 ;
(ii)
u n
f2 ;
(iii)
u n
u
f3
那现在的问题是: 这样模型好求解吗?
微分方程的解析解
求微分方程(组)解析解的命令(matlab):
1870 38.6
1880 1890 1900 1910 1920 50.2 62.9 76.0 92.0 106.5
8.2
7.4
11.6 12.7 13.1 16
14.5
年(公元) 1930 人口(百万) 123.2
1940 1950 1960 1970 1980 1990 131.7 150.7 179.3 204.0 226.5 251.4

0,即 r xm =0,于是
s
r xm
,代入 rx
r

《数学模型》课件量纲分析法20180907

《数学模型》课件量纲分析法20180907
数乘积形式表示

[q] M L T

几何学量纲: = 0,0,=0


运动学量纲: = 0,0,0
动力学量纲:0,0,0
无量纲量

0

[q]= 1
无量纲量可由两个具有相同量纲的物理量相比得到;可由几
个有量纲物理量乘除组合,使组合量的量纲指数为零得到。
i
,X1,X2, , Xn 是基本量纲, nm, q1, q2, , qm 的量纲
可表为
q1 q2
qm
n
aij
q j X i , j 1, 2, , m
X 1 a11

i 1


X 1 a21 aij

量纲矩阵记作
A {aij }nm ,




若 rank A r
于是
由F( 1, 2) = 0,可得 1 = ( 2 ) ( )
从而有
l
t 2
g
. 给定摆角实验,从数据进行参数估计
为什么可以假设为幂次乘积式
物理量,通常由实数连同所采用的单位表示。随单位的变
化物理量的实数值也会随着相应变化,也可以认为这是一
种主观的变化,非实质的变化。客观规律当然不依赖于主
量纲分析法
我们发现的化学元素仅有百余种,然而各成分的多寡、
结构差异形成了万物间的千差万别. 我们称这些元素为
基础成分.
反映物理现象的各个量是否也具有类似的统一的基础
成分哪?如有,可以找到类似分子结构的东西。类比
如,物理学研究物质在时空中的演化和运动,所有一
切最终离不开质量、时间和长度这三种基本量,因此

常微分方程(第三版)课件第一章

常微分方程(第三版)课件第一章
2u 2u 2u 8. 2 2 4 xy y
§1.1 Sketch of ODE n阶隐式方程 n阶显式方程 方程组
偏微分方程 偏微分方程 不是微分方程
9. f 2 ( x) sin x
§1.1 Sketch of ODE
微分方程模型举例/Modeling of ODE/
CH.1 Introduction
本章要求/Requirements/
能快速判断微分方程的类型;
掌握高阶微分方程及其初值问题的一般形式;
理解微分方程解的意义。
§1.1 Sketch of ODE
§ 1.1 微分方程概述/ Sketch of ODE/
微分方程理论起始于十七世纪末,是研究自然现象强有 力的工具,是数学科学联系实际的主要途径之一。
§ 1.2 基本概念/Basic Conception/
1. 常微分方程和偏微分方程 2. 一阶与高阶微分方程 3. 线性和非线性微分方程 4. 解和隐式解 5. 通解和特解 6. 积分曲线和积分曲线族 7. 微分方程的几何解释-----方向场
§1.2 Basic Conception
常微分方程与偏微分方程/ODE and PDE/
电子课件
常微分方程
Ordinary differential equation
王高雄 周之铭 朱思铭 王寿松编
常微分方程
Ordinary differential equation
• • • • • • • 第一章 第二章 第三章 第四章 第五章 第六章 第七章 绪 论 一阶微分方程的初等解法 一阶微分方程的解的存在定理 高阶微分方程 线性微分方程组 定性理论初步1 2 一阶线性偏微分方程
常微分方程的解的表达式中,可能包含一个或者几个常
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求解
x =20 y =5
船速每小时20千米 小时. 千米/ 答:船速每小时 千米/小时.
航行问题建立数学模型的基本步骤 航行问题建立数学模型的基本步骤
作出简化假设(船速,水速为常数); 作出简化假设(船速,水速为常数); 用符号表示有关量(x, y表示船速和水速); 用符号表示有关量( 表示船速和水速 表示船速和水速); 用物理定律(匀速运动的距离等于速度乘以 用物理定律( 时间)列出数学式子(二元一次方程); 时间)列出数学式子(二元一次方程); 求解得到数学解答(x=20, y=5); 求解得到数学解答( ); 回答原问题(船速每小时 千米 小时). 回答原问题(船速每小时20千米 小时). 千米/小时
模型是为了一定目的, 模型是为了一定目的,对客观事物的一部分 是为了一定目的 进行简缩,抽象,提炼出来的原型 原型的替代物 进行简缩,抽象,提炼出来的原型的替代物 模型集中反映了原型中人们需要的那一部分特征 模型集中反映了原型中人们需要的那一部分特征 集中反映了原型
你碰到过的数学模型——"航行问题" "航行问题" 你碰到过的数学模型
S={(x , y)| x=0, y=0,1,2,3; | x=3, y=0,1,2,3; x=y=1,2}
y 3 d1, …,d11给出安全渡河方案 d11
评注和思考
规格化方法,易于推广 规格化方法,
sn+1
考虑4名商人各带一随从的情况 考虑 名商人各带一随从的情况
数学 建模
建立数学模型的全过程 (包括表述,求解,解释,检验等) 包括表述,求解,解释,检验等)
1.2
数学建模的重要意义
电子计算机的出现及飞速发展; 电子计算机的出现及飞速发展; 数学以空前的广度和深度向一切领域渗透. 数学以空前的广度和深度向一切领域渗透.
数学建模作为用数学方法解决实际问题的第一步, 数学建模作为用数学方法解决实际问题的第一步, 越来越受到人们的重视. 越来越受到人们的重视. 在一般工程技术领域数学建模仍然大有用武之地; 在一般工程技术领域数学建模仍然大有用武之地; 在高新技术领域数学建模几乎是必不可少的工具; 在高新技术领域数学建模几乎是必不可少的工具; 数学进入一些新领域,为数学建模开辟了许多处女地. 数学进入一些新领域,为数学建模开辟了许多处女地.
模型构成
用数学语言把椅子位置和四只脚着地的关系表示出来 地面为连续曲面 椅子在任意位置 至少三只脚着地 f(θ) , g(θ)是连续函数 是 对任意θ, f(θ), g(θ) 至少一个为0 至少一个为
数学 问题
已知: 已知: f(θ) , g(θ)是连续函数 ; 是 对任意θ, f(θ) g(θ)=0 ; 且 g(0)=0, f(0) > 0. , 证明: 证明:存在θ0,使f(θ0) = g(θ0) = 0.
数学建模的具体应用
分析与设计 预报与决策 规划与管理
控制与优化
数学建模
如虎添翼
计算机技术
知识经济
1.3
数学建模示例
1.3.1 椅子能在不平的地面上放稳吗 问题分析 通常 ~ 三只脚着地 模 型 假 设
放稳 ~ 四只脚着地
四条腿一样长,椅脚与地面点接触,四脚 四条腿一样长,椅脚与地面点接触, 连线呈正方形; 连线呈正方形 地面高度连续变化,可视为数学上的连续 地面高度连续变化, 曲面; 曲面 地面相对平坦,使椅子在任意位置至少三 地面相对平坦, 只脚同时着地. 只脚同时着地.
甲乙两地相距750千米,船从甲到乙顺水航行需30小时, 千米,船从甲到乙顺水航行需 小时 小时, 甲乙两地相距 千米 从乙到甲逆水航行需50小时 问船的速度是多少? 小时, 从乙到甲逆水航行需 小时,问船的速度是多少 表示船速, 表示水速,列出方程: 用 x 表示船速,y 表示水速,列出方程:
( x + y ) × 30 = 750 ( x y ) × 50 = 750
模型构成
xk~第k次渡河前此岸的商人数 第 次渡河前此岸的商人数 yk~第k次渡河前此岸的随从数 第 次渡河前此岸的随从数 sk=(xk , yk)~过程的状态 过程的状态 xk, yk=0,1,2,3; k=1,2,… … … S ~ 允许状态集合
S={(x , y)| x=0, y=0,1,2,3; x=3, y=0,1,2,3; x=y=1,2} | uk~第k次渡船上的商人数 第 次渡船上的商人数 vk~第k次渡船上的随从数 第 次渡船上的随从数 dk=(uk , vk)~决策 决策 sk+1=sk +(-1)k dk uk, vk=0,1,2; k=1,2,… … … ~状态转移律 状态转移律
x(t + t ) x(t ) = rt x(t )
x (t ) = x 0 e
rt
x(t ) = x0 (e ) ≈ x0 (1 + r)
r t
t
随着时间增加, 随着时间增加,人口按指数规律无限增长
指数增长模型的应用及局限性
与19世纪以前欧洲一些地区人口统计数据吻合 世纪以前欧洲一些地区人口统计数据吻合 适用于 世纪后迁往加拿大的欧洲移民后代 适用于19世纪后迁往加拿大的欧洲移民后代 可用于短期人口增长预测 不符合 世纪后多数地区人口增长规律 不符合19世纪后多数地区人口增长规律 不能预测较长期的人口增长过程 19世纪后人口数据 19世纪后人口数据 不是常数(逐渐下降) 人口增长率r不是常数(逐渐下降)
dx = rx dt
dx/dt
dx x = r ( x) x = rx(1 ) dt xm
x xm xm/2 x0 0 t
0
xm/2
xm x
x (t ) =
xm xm 1) e rt 1+ ( x0
x(t)~S形曲线 形曲线, 形曲线 x增加先快后慢 增加先快后慢
阻滞增长模型( 模型) 阻滞增长模型(Logistic模型) 模型
阻滞增长模型( 模型) 阻滞增长模型(Logistic模型) 模型
人口增长到一定数量后,增长率下降的原因: 人口增长到一定数量后,增长率下降的原因: 资源, 资源,环境等因素对人口增长的阻滞作用 且阻滞作用随人口数量增加而变大 假设 r是x的减函数 是 的减函数
r(x) = r sx (r, s > 0)
评注和思考 建模的关键 ~ θ和 f(θ), g(θ)的确定 的确定
假设条件的本质与非本质 考察四脚呈长方形的椅子
1.3.2 商人们怎样安全过河
问题(智力游戏) 问题(智力游戏)
随从们密约, 随从们密约, 在河的任一 岸, 一旦随从的人数比商 人多, 就杀人越货. 人多, 就杀人越货. 但是乘船渡河的方案由商人决定. 但是乘船渡河的方案由商人决定. 商人们怎样才能安全过河? 商人们怎样才能安全过河
常用的计算公式 k年后人口 年后人口
今年人口 x0, 年增长率 r
x k = x 0 (1 + r )
k
指数增长模型——马尔萨斯提出 (1798) 马尔萨斯提出 指数增长模型 )
人口(相对 相对)增长率 基本假设 : 人口 相对 增长率 r 是常数 x(t) ~时刻 的人口 时刻t的 时刻
dx = rx , x ( 0 ) = x 0 dt
模型求解
给出一种简单, 给出一种简单,粗糙的证明方法
将椅子旋转 对角线AC和 互换 互换. 将椅子旋转900,对角线 和BD互换. 旋转 由g(0)=0, f(0) > 0 ,知f(π/2)=0 , g(π/2)>0. , π π 令h(θ)= f(θ)–g(θ), 则h(0)>0和h(π/2)<0. 和 π 由 f, g的连续性知 h为连续函数 据连续函数的基本性 为连续函数, 的连续性知 为连续函数 质, 必存在θ0 , 使h(θ0)=0, 即f(θ0) = g(θ0) . 因为f( 所以f( 因为 θ) g(θ)=0, 所以 θ0) = g(θ0) = 0.
r s = xm
r~固有增长率 很小时 固有增长率(x很小时 固有增长率 很小时)
xm~人口容量(资源,环境能容纳的最大数量) 人口容量( 人口容量 资源,环境能容纳的最大数量)
r ( xm ) = 0
x r ( x ) = r (1 ) xm
阻滞增长模型( 模型) 阻滞增长模型(Logistic模型) 模型
D={(u , v)| u+v=1, 2} ~允许决策集合 允许决策 | 允许决策集合
多步决策 问题
求dk∈D(k=1,2, …n), 使sk∈S, 并按 转移律由 转移律由 s1=(3,3)到达 sn+1=(0,0). 到达
模型求解
穷举法 ~ 编程上机 图解法 状态s=(x,y) ~ 16个格点 状态 个格点 允许状态 ~ 10个 点 个 移动1或 格 允许决策 ~ 移动 或2格; k奇,左下移 k偶,右上移 左下移; 右上移. 奇 左下移 偶 右上移
r=0.2557, xm=392.1 专家估计
阻滞增长模型( 模型) 阻滞增长模型(Logistic模型) 模型
模型检验
用模型计算2000年美国人口,与实际数据比较 年美国人口, 用模型计算 年美国人口
x(2000) = x(1990) + x = x(1990) + rx(1990)[1 x(1990) / xm ]
数学模型 (Mathematical Model) 和 数学建模( 数学建模(Mathematical Modeling) 数学模型
现实对象, 特定目的, 对于一个现实对象 为了一个特定目的 对于一个现实对象,为了一个特定目的, 根据其内在规律,作出必要的简化假设, 根据其内在规律,作出必要的简化假设, 内在规律 简化假设 运用适当的数学工具,得到的一个数学结构. 运用适当的数学工具,得到的一个数学结构. 数学工具 数学结构
相关文档
最新文档