小学奥数 4-2-1 基本图形的面积计算.教师版

合集下载

小学奥数---图形的面积

小学奥数---图形的面积

图形的面积1、如图,AD=DB ,AE=EF=FC ,已知阴影部分面积为5平方厘米,△ABC 的面积是多少平方厘米?考点:三角形面积与底的正比关系.专题:平面图形的认识与计算.分析:连接BF ,因为F 、E 是三等分点,根据三角形的高一定时,三角形的面积与底的成正比例的性质可得,三角形ABF 的面积=32三角形ABC 的面积=三角形ADF 的面积×2=三角形EDF 的面积×4,因为三角形EDF 的面积是5平方厘米,由此代入即可解决问题.解答:解:连接BF ,因为F 、E 是三等分点,根据三角形的高一定时,三角形的面积与底的成正比例的性质可得,三角形ABF 的面积=32三角形ABC 的面积=三角形ADF 的面积×2=三角形EDF 的面积×4,则三角形ABC 的面积是:5×4÷32=30(平方厘米);答:△ABC 的面积是30平方厘米.2、如图,阴影部分的面积和空白部分的面积比是5:7,正方形的边长是8厘米,DE 的长是多少厘米?如图,在△ABC 中,BD=AD ,EF=3,FC=2,△ADH 与△AGC 的面积和等于四边形EFGH 的面积,那么BE 的长是多少?.点评:此题考查了高一定时,三角形的面积与底成正比例的性质的灵活应用.3、如图,在△ABC 中,BD=AD ,EF=3,FC=2,△ADH 与△AGC 的面积和等于四边形EFGH 的面积,那么BE 的长是多少.考点:燕尾定理.专题:平面图形的认识与计算.分析:因为BD=AD ,根据燕尾定理可得,S △ADC=21S △ABC ,又因为△ADH 与△AGC 的面积和等于四边形EFGH 的面积,S △AHG 是公共部分,所以S △AEF=S △ADC=21S △ABC ,那么S △ABE+S △AFC=1-S △ABC=21S △ABC ,又因为S △ABE+S △AFC 的和与S △AEF 等高,所以BE+FC=EF ,又EF=3,FC=2,所以BE+2=3,则BE=1,问题得解.解答:解:因为BD=AD ,根据燕尾定理可得,S △ADC=21S △ABC ,S △ADH+S △AGC=S 四边形EFGH ,所以S △ADH+S △AGC+S △AHG=S 四边形EFGH+S △AHG ,即:S △AEF=S △ADC=21S △ABC ,S △ABE+S △AFC=1-S △ABC=21S △ABC ,又因为S △ABE+S △AFC 的和与S △AEF 等高,所以BE+FC=EF ,又因为∵EF=3,FC=2,BE+2=3,BE=1;故答案为:1.点评:本题关键是利用S △AHG 是S △AEF 和S △ADC 的公共部分,得出S△AEF=S △ADC=214、如图,AD=DE=EC ,F 是BC 中点,G 是FC 中点,如果三角形ABC 的面积是24平方厘米,则阴影部分是多少平方厘米?5、如图,ABCD是一个梯形,E是BD的中点,线段CE把梯形分成甲、乙两部分,它们的面积之比是9:5,求上底AB与下底CD的长度之比.考点:三角形面积与底的正比关系;比的意义.专题:平面图形的认识与计算.分析:连接CB,因为E是中点,所以三角形CBE和三角形DEC的面积相等,甲乙两部分,它们的面积之比是9:5,把乙看做是5,则三角形CBE的面积就是5,则三角形ABC的面积就是9-5=4,由此可得出三角形ABC与三角形CDB的面积之比是4:(5+5)=4:10=2:5,因为三角形ABC与三角形CDE的高相等,所以面积与底成正比例,所以AB:CD=2:5.解答:解:连接CB,因为E是中点,所以三角形CBE和三角形DEC的面积相等,甲乙两部分,它们的面积之比是9:5,把乙看做是5,则三角形CBE的面积就是5,则三角形ABC的面积就是9-5=4,由此可得出三角形ABC与三角形CDB的面积之比是4:(5+5)=4:10=2:5,所以AB:CD=2:5.点评:此题考查了两个三角形等底等高时,面积相等;高一定时,三角形的面积与底成正比的关系的灵活应用.6、如图,三角形ABC的面积是16,D是AC的中点,E是BD的中点,那四边形CDEF 的面积是多少?考点:三角形面积与底的正比关系.分析:连接EC,根据D是AC的中点,知道△ABD的面积等于△CBD的面积,都对应△ABC面积的一半,再E是BD中点,知道△ABE的面积等于△AED的面积,都对应△ABD 面积的一半,再根据高一定时,面积的比等于对应底的比,列出比例即可求出△CEF的面积,进而求出四边形CDEF的面积.解答:解:连接EC,因为D是AC的中点,所以S△ABD=S△BDC=16÷2=8,因为E是BD中点,所以S△ABE=S△AED=8÷2=4,S △BEC=S △DEC=8÷2=4,设:S △CEF=x ,则S △BEF=4-x ,S △ABF :S △ACF=BF :CF=S △BEF :S △CEF ,即 (4+4-x ):(8+x )=(4-x ):x ,12x=32, x=38所以四边形CDEF 的面积是:38+4=3207、如图,有三个正方形ABCD ,BEFG 和CHIJ ,其中正方形ABCD 的边长是10,正方形BEFG 的边长是6,那么三角形DFI 的面积是多少?考点:等积变形(位移、割补).分析:连接IC 、FC ,如下图,由正方形的对角线易知IC ∥DF ;等积变换得到:三角形DFI 的面积等于三角形DFC 的面积,由此求出三角形DFI 的面积解答:解:连接IC ,FC ,∠FDC=∠ICD由正方形的对角线易知IC ∥DF ;等积变换得到:三角形DFI 的面积=三角形DFC 的面=10×4×21=20,故答案为:20.点评:分析图形,根据图形特点进行等积变换,寻求问题突破点8、如图,大正方形的边长是5厘米,阴影部分的面积是多少平方厘米?9、有一个棱长为4cm 的立方体,如图所示,棱FG 的中点为M ,棱HG 的中点为N 。

小学奥数4-2-1 基本图形的面积计算.专项练习及答案解析

小学奥数4-2-1 基本图形的面积计算.专项练习及答案解析

小学数学平面图形计算公式:1 、正方形:周长=边长×4;面积=边长×边长2 、正方体:表面积=棱长×棱长×6;体积=棱长×棱长×棱长3 、长方形:周长=(长+宽)×2;面积=长×宽4 、长方体:表面积(长×宽+长×高+宽×高)×2;体积=长×宽×高5、 三角形:面积=底×高÷26 平行四边形:面积=底×高7 梯形:面积=(上底+下底)×高÷2模块一、基本公式的应用【例 1】 如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分。

则两个正方形的空白部分的面积相差多少平方厘米?【考点】基本图形的面积计算 【难度】2星 【题型】解答【关键词】华杯赛,五年级,决赛,第9题,10分【解析】 5×5-4×4=9(平方厘米),两个正方形的空白部分的面积相差9平方厘米。

【答案】9平方厘米【巩固】 如图12,边长为4cm 的正方形将边长为3cm 的正方形遮住了一部分,则空白部分的面积的差等于 2cm 。

例题精讲知识点拨4-2-1.基本图形的面积计算【考点】基本图形的面积计算 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,19题【解析】 空白部分的面积差等于两个正方形的面积差,即⨯-⨯=44337(平方厘米)。

【答案】7平方厘米【例 2】 在一个正方形水池的四周,环绕着一条宽2米的路(如图),这条路的面积是120平方米,那么水池的面积是______ 平方米。

水池【考点】基本图形的面积计算 【难度】2星 【题型】填空【关键词】希望杯,4年级,初赛,19题【解析】 四个边角的面积和为2×2×4=16,则水池的边长为:104÷2÷4=13,所以水池的面积是:13×13=169平方米。

(教师版)小学奥数4-3-4 任意四边形、梯形与相似模型(二).专项检测题及答案解析

(教师版)小学奥数4-3-4 任意四边形、梯形与相似模型(二).专项检测题及答案解析

板块二 梯形模型的应用梯形中比例关系(“梯形蝴蝶定理”):A BCDO ba S 3S 2S 1S 4①2213::S S a b =②221324::::::S S S S a b ab ab =; ③S 的对应份数为()2a b +.梯形蝴蝶定理给我们提供了解决梯形面积与上、下底之间关系互相转换的渠道,通过构造模型,直接应用结论,往往在题目中有事半功倍的效果.(具体的推理过程我们可以用将在第九讲所要讲的相似模型进行说明)【例 1】 如图,22S =,34S =,求梯形的面积.【考点】梯形模型 【难度】2星 【题型】解答 【解析】 设1S 为2a 份,3S 为2b 份,根据梯形蝴蝶定理,234S b ==,所以2b =;又因为22S a b ==⨯,所以1a =;那么211S a ==,42S a b =⨯=,所以梯形面积123412429S S S S S =+++=+++=,或者根据梯形蝴蝶定理,()()22129S a b =+=+=.【答案】9【巩固】 如下图,梯形ABCD 的AB 平行于CD ,对角线AC ,BD 交于O ,已知AOB △与BOC △的面积分别为25 平方厘米与35平方厘米,那么梯形ABCD 的面积是________平方厘米.例题精讲任意四边形、梯形与相似模型3525OABCD【考点】梯形模型 【难度】2星 【题型】填空 【解析】 根据梯形蝴蝶定理,2::25:35AOB BOC S S a ab ==,可得:5:7a b =,再根据梯形蝴蝶定理,2222::5:725:49AOB DOC S S a b ===,所以49DOC S =(平方厘米).那么梯形ABCD 的面积为25353549144+++=(平方厘米).【答案】144【巩固】 如图所示,在梯形ABCD 中,AB ∥CD ,对角线AC ,BD 相交于点O 。

已知AB =5,CD =3,且梯形ABCD 的面积为4,求三角形OAB 的面积。

四年级奥数讲义教案库四年级寒假第03讲几何综合教师版

四年级奥数讲义教案库四年级寒假第03讲几何综合教师版

第三讲几何综合【例1】如图,边长为12厘米的白色正方形的中心放了一个阴影正方形,已知空白部分面积为63,那么空白部分的宽为多少厘米?分析:由白色正方形边长和空白部分面积可求出阴影部分面积,从而求出阴影部分边长,接着求出空白部分的宽。

答案:白色正方形的面积为12×12=144平方厘米,所以阴影部分面积为144-63=81平方厘米,所以阴影部分的边长为9厘米,所以空白部分的宽为(12-9)÷2=1.5厘米。

【例2】三个相同的小长方形如图拼成一个大长方形,大长方形的面积是216平方厘米,那么和它周长相同的正方形面积为多少平方厘米?分析:由图可以看出小长方形的长等于宽的两倍。

答案:小长方形的面积为216÷3=72平方厘米,由于72÷2=36,所以小长方形的宽为6厘米,长为12厘米。

所以大长方形的周长为(6+12+12)×2=60厘米,所以和它周长相同的正方形的边长为60÷4=15厘米,要点总结本讲要求掌握平均数的相关概念。

关于权重平均数的计算问题,以两组数的平均数与它们的总平均数之间的关系为内容的相关问题,可转化成倍数问题的平均数问题。

课堂精讲?所以和它周长相同的正方形的面积为15×15=225平方厘米。

拓展训练一块长方形地被分割成4个小长方形,其中三块的面积如图所示,那么第四块的面积应是多少?答案:应为28÷21×18=24。

【例3】在△ABC 中,BD 长是6,DC 长是3,AE 长是4,EC 长是2,那么△ABD 面积是△DEC 面积的多少倍?分析:由BD =6和DC =3可得出△ABD 面积和△ACD 面积的关系,由AE =4和EC =2可得出△DEC 面积和△ACD 面积的关系,由此可求出△ABD 面积与△DEC 面积的关系。

答案:依题意△ABD 面积是△ACD 面积的6÷3=2倍,△ACD 面积是△DEC 面积的(4+2)÷2=3倍。

四年级奥数第12讲-图形面积(教)

四年级奥数第12讲-图形面积(教)

学科教师辅导讲义 学员编号: 年 级:四年级 课 时 数:3学员姓名:辅导科目:奥数 学科教师: 授课主题第12讲-图形面积 授课类型 T 同步课堂 P 实战演练 S 归纳总结教学目标① 熟悉掌握基本图形面积的求法。

② 熟悉运用分解、平移、合并等技巧成基本图形,利用长方形、正方形面积计算公式求解。

③ 能够分析图形的特点,提高几何图形的观察能力和思维转换能力。

授课日期及时段T (Textbook-Based )——同步课堂解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解决;2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。

例1、人民路小学操场长90米,宽45米。

改造后,长增加10米,宽增加5米。

现在操场面积比原来增加了多少平方米?【解析】用操场现在的面积减去操场原来的面积,就得到增加的面积。

操场现在的面积是(90+10)×(45+5)=5000平方米,操场原来的面积是90×45=4050平方米。

所以,现在的面积比原来增加5000-4050=950平方米。

例2、一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

这个长方形原来的面积是多少平方米?【解析】由“宽不变,长增加6米,面积增加54平方米”可知,它的宽为54÷6=9米;由“长不变,宽减少3米,面积减少36平方米”可知,它的长为36÷3=12米。

知识梳理典例分析所以,这个长方形原来的面积是12×9=108平方米。

例3、下图是一个养禽专业户用一段16米的篱笆围成的一个长方形养鸡场,求它的占地面积。

【解析】根据题意,因为一面利用着墙,所以两条长加一条宽等于16米。

而宽是4米,那么长是(16-4)÷2=6米,占地面积是6×4=24平方米。

小学四年级奥数思维问题之图形面积

小学四年级奥数思维问题之图形面积

图形面积问题教学目标:①知识与技能目标:借助所学知识计算组合图形的面积②过程与方法目标:通过对数量关系地分析,让学生在解决问题过程中掌握一些解决问题的基本策略③情感态度与价值观目标:感受所学知识与现实生活的紧密联系教学重点:图形面积公式的运用教学难点:组合图形的面积计算[知识引领与方法]1.细心观察,把握图形特点,合理的进行切拼,从而使问题得以顺利解答2.从整体上观察图形的特征,掌握图形本质,结合必要的分析,推理和计算,使隐蔽的数量关系明朗化[例题精选及训练]【例1】一块长方形铁板,长18分米,宽15分米。

若长和宽分别减少3分米,面积比原来的减少多少平方分米?练习:1.人民路小学操场长90米,宽45米,改造后,长和宽分别增加10米。

现在操场面积比原来增加了多少平方米?2.有一块长方形的木板,长22分米,宽8分米。

如果长和宽分别减少10分米和3分米,木板的面积比原来减少多少平方分米?3.一块长方形地,长是80米,宽是45米,如果把宽增加5米,要使面积不变,长应减少多少米?【例2】一个长方形,如果宽不变,长增加5米,那么它的面积增加30平方米;如果长不变,宽增加3米,那么它的面积增加48平方米。

问这个长方形原来的面积是多少平方米?练习:1.一个长方形,如果宽不变,长减少3米,那么它的面积减少24平方米;如果长不变,宽增加4米,那么它的面积增加60平方米。

这个长方形原来的面积是多少平方米?2.一个长方形,如果宽不变,长增加6米,那么它的面积增加54平方米;如果长不变,宽减少3米,那么它的面积减少36平方米。

问这个长方形原来的面积是多少平方米?3.一个长方形花圃,如果它的长减少5米,或它的宽减少6米,那么它的面积都减少60平方米。

求这个长方形花圃原来的面积。

【例3】下图是一个养鸡专业户用一段长17米的篱笆围成的一个长方形养鸡场,那么这个养鸡场的占地面积是多少平方米?练习:1.右图是某个养鸡专业户用一段长13米的篱笆围成一个长形的养鸡场,则养鸡场的占地面积有多大?2.用56米长的木栏围成长或宽是20米的长方形,其中一边利用围墙,怎样才能使围成的面积最大?【例4】街心花园中一个正方形的花坛四周有一条1米宽的水泥路,如果水泥路的总面积是12平方米,那么中间花坛的面积是多少平方米?练习:1.有一个正方形的水池,如右图阴影部分所示,在它的周围修了一个宽8米的花池,花池的面积是480平方米,求水池的边长。

小学奥数4-1-1几何图形的认识.专项练习及答案解析

小学奥数4-1-1几何图形的认识.专项练习及答案解析

知识点拨本讲知识点属于几何模块的第一讲,属于起步内容,难度并不大.要求学生认识各种基本平面图形和立体图形;了解简单的几何图形简拼和立体图形展开;看懂立体图形的示意图,锻炼一定的空间想象能力.几何图形的定义:1、几何图形主要分为点、线、面、体等,他们是构成中最基本的要素.(1)点:用笔在纸上画一个点,可以画大些,也可以画小些.点在纸上占一个位置.(2)线段:沿着直尺把两点用笔连起来,就能画出一条线段.线段有两个端点.(3)射线:从一点出发,沿着直尺画出去,就能画出一条射线.射线有一个端点,另一端延伸的很远很远,没有尽头.(4)直线:沿着直尺用笔可以画出直线.直线没有端点,可以向两边无限延伸(5)两条直线相交:两条直线相交,只有一个交点.(6)两条直线平行:两条直线平行,没有交点,无论延伸多远都不相交.(7)角:角是由从一点引出的两条射线构成的.这点叫角的顶点,射线叫点的边.边顶点(8)角分为锐角、直角和钝角三种:直角的两边互相垂直,三角板有一个角就是这样的直角.教室里天花板上的角都是直角.锐角比直角小,钝角比直角大.直角锐角钝角(9)三角形:三角形有三条边,三个角,三个顶点.(10)直角三角形:直角三角形是一种特殊的三角形,它有一个角是直角.它的三条边中有两条叫直角边,一条叫斜边.(11)等腰三角形:等腰三角形也是一种特殊的三角形,它有两条边一样长(相等),相等的两条边叫”腰”,另外的一条边叫”底”.(12)等腰直角三角形:等腰直角三角形既是直角三角形,又是等腰三角形.(13)等边三角形:等边三角形的三条边一样长(相等),三个角也一样大(相等).(14)四边形:四边形有四条边,内部有四个角.(15)长方形:长方形的两组对边分别平行且相等,四个角也都是直角.(16)正方形:正方形的四条边都相等,四个角都是直角.(17)平行四边形:平行四边形的两组对边分别平行而且相等,两组对角分别相等.顶角顶角边边角角角顶角边直角边斜边直角边腰腰底直角边直角边斜边腰腰底边边边角角角(18)等腰梯形:等腰梯形是一种特殊的四边形,它的上下两边平行,左右两边相等.平行的两边分别叫上底和下底,相等的两边叫腰.(19)菱形:菱形的四条边都相等,对角分别相等.(20)圆:圆是个很美的图形.圆中心的一点叫圆心,圆心到圆上一点的连线叫圆的半径,过圆心连接圆上两点的连线叫圆的直径.直径把圆分成相等的两部分,每一部分都叫半圆.(21)扇形:(22)长方体:长方体有六个面,十二条棱,八个顶点.长方体的面一般是长方形,也可能有两个面是正方形.互相垂直的三条棱分别叫做长方体的长、宽、高.(23)正方体:正方体有六个面,十二条棱,八个顶点.正方体的每个面都是同样大的正方形,所以它的十二条棱长都相等.(24)圆柱:圆柱的两个底面是完全相同的圆.(25)圆锥:圆锥的底面是圆.腰腰下底上底半径直径半圆直径弧半径半径高宽长(26)棱柱:这个棱柱的上下底面是三角形.它有三条互相平行的棱,叫三棱柱.底面底面(27)棱锥:这个棱锥的底面是四边形.它有四条棱斜着立起来,所以叫四棱锥.底面(28)三棱锥:因为三棱锥有四个面,所以通常又叫”四面体”.三棱锥的每一个面都是三角形.(29)球体,简称球:球有球心,球心到球面上一点的连线叫球的半径.例题精讲模块一、几何图形的认识【例1】请看下图,共有个圆圈。

高斯小学奥数四年级下册含答案第04讲_格点图形面积计算

高斯小学奥数四年级下册含答案第04讲_格点图形面积计算

第四讲格点图形面积计算在平面几何知识中,面积计算是最重要的组成部分之一.我们已经学过了长方形、正方形、平行四边形、三角形和梯形面积公式,你还记得这些公式吗?这一讲我们将学习格点图形的面积.用线段连结格点围成的封闭图形称之为格点图形.虽然我们已经学习了基本直线形的面积公式,然而大多数的格点图形都无法直接计算面积,需要我们通过这节课的探索学习去找到方法.常见的格点有正方形格点和三角形格点.例题1图中每个最小正方形的面积都是1平方厘米,那么三个阴影图形的面积分别是多少平方厘米?「分析」这几个多边形都不规则,我们能不能把它们切成很多规则的小块,一块一块地求面积呢?或者给它们添补一些规则的小块,使得它们变成规则可求的大图形.练习1图中相邻两格点间的距离均为1厘米,那么阴影图形的面积分别是多少平方厘米?通过例1中的第1小题我们学会了将大块不规则图形“分割”成许多规则的图形,这种方法称为“分割法”;但是不一定每个图形都很容易分割,第2小题我们学会了把不好算的图形“添补”成规则的大图形,计算时用大图形的面积减去空白部分的面积,这种方法称为“添补法”.分割法,正所谓“大事化小”,把不规则的大图形化为规则的小图形.添补法则正好相反,是“以小见大”,把不规则图形周围添上规则的小图形,使总面积便于计算.使用割、补法的时候,一般应该从图形的顶点出发,尽量沿着格线划分,以便与小方格的面积找到联系或者利用垂直等性质.接下来我们用分割、添补的方法计算一下三角形格点图形的面积.例题2下图是一个三角形点阵,其中能连出的最小等边三角形的面积为1平方厘米.那么这五个图形的面积分别为多少平方厘米?「分析」前三个图是可以直接计算的,④、⑤是无法直接计算的,试着用分割、添补的方法解决吧!我们发现:如果一个三角形的两边都沿三角形格线方向,并且分别是最短线段的m 倍和n 倍,那么这个三角形的面积就是最小等边三角形面积的m n 倍.练习2下图是一个三角形点阵,其中能连出的最小等边三角形的面积为1平方厘米.那么这四个图形的面积分别为多少平方厘米?要计算格点图形的面积,我们只需要应用合适的方法,数一下要求的图形占了几个单位面积即可.当单位面积不为1时,我们就要格外小心了,千万不能在数完后再乘单位面积!对于复杂的格点图形,使用割补法一定能计算面积.但是割补法有时显得有些繁琐,有没有更简单明了的方法呢?那么我们接下来看一个简单快捷的方法.例如,我们要计算如下图的格点多边形的面积(假设最小的正方形面积是1).我们可以用割补的方法求出图形的面积,现在还有另一种方法,从格点数入手.围成阴影部分的边线,经过了一些格点.这些边界上的格点叫做边界格点,一共有12个;格点图形还完全盖住了一些格点,这些图形内部的格点叫做内部格点,一共有1个. 一般的,在最小正方形面积为1的正方形网格中,我们有:这样,按公式计算:122116÷+-=,我们就得出图中阴影部分的面积了.例题3 如图,相邻两格点间的距离均为1厘米,求阴影部分的面积?「分析」尝试着用格点图形面积公式计算一下把!先数数边界格点、内部格点分别有多少个呢?练习3如图,每一个最小正方形的面积都是2,阴影部分的面积是多少?类似地,在最小正三角形面积为1的三角形网格中,三角形格点图形也有面积计算公式:仔细比较这两个公式,可以发现:三角形格点的公式正好是正方形格点公式的2倍.大家想一下,为什么是这样呢?例题4如图,每个最小等边三角形的面积都是1平方厘米.阴影部分的面积是多少平方厘米?「分析」尝试着用格点图形面积公式计算一下把!先数数边界格点、内部格点分别有多少个呢?练习4如图,每个最小等边三角形的面积都是1平方厘米,阴影部分的面积是多少平方厘米?例题5如图,每一个最小正方形的面积都是3平方厘米.阴影部分的面积是多少平方厘米?「分析」试着比较分割法、添补法、公式法,这三个方法哪个更合适呢?例题6(1)左图中每个最小正三角形的面积是2平方厘米.阴影部分面积是多少平方厘米?(2)右图中每个最小正三角形的面积是4平方厘米.阴影部分面积是多少平方厘米?「分析」试着比较分割法、添补法、公式法,这三个方法哪个更合适呢?对于大部分格点图形而言,分割法和添补法都可以用来求面积.对于特殊的格点图形,如果不易分割,可以试试添补;如果不易添补,可以试试分割.如果用分割法和添补法都不易解决,那么格点公式就派上用场了!在使用格点公式时,有以下几点需要注意:(1)注意是正方形格点还是三角形格点;(2)按照顺序来数边界格点和内部格点;(3)用格点公式计算出来的不是面积,而是最小的正方形或正三角形的面积的倍数.看似这一讲的题目不是很难,怎么保证计算的准确性呢?如果你用分割法计算面积,不妨再用添补法验算一下.如果你用割补法计算面积,不妨再用格点公式算一算.用不同方法得到的都是同样的结果,基本上就不会出错了.课堂内外几何的起源古埃及人聚居在尼罗河附近,以在河边的农田耕作为生.可是尼罗河每隔一段时间会泛滥,河水涌上岸,把河边的农田淹没,冲毁农田的边界.所以,每次河水泛滥后,埃及人都要重新划分农田的范围和界限.埃及人在划分土地时,发现很多不同形状的农田,都可以分割为几块较细小的三角形农田,例:1块长方形农田2块大小相同的三角形农田1块梯形农田3块三角形农田这些不同形状的农田,其实就是不同的几何图形;把农田分割为几块较细小的农田,即是把几何图形分割.原来古埃及人是研究几何图形的先锋呢!作业1. 如图,每相邻两个格点的距离都是1,那么两个阴影图形的面积分别是________、________.2. 下图中三角形点阵所能连出的最小正三角形面积为1,图中两个图形的面积分别是________、________.3. 如图,最小正三角形的面积是4平方厘米,那么阴影部分的面积是________平方厘米.4. 右图中,每个最小正方形面积为2,则图中阴影部分的面积是________.5. 下图三角形点阵所能连出的最小正三角形面积为2,图形的面积是_________.第四讲 格点图形面积计算1. 例题1答案:7平方厘米;5平方厘米;11平方厘米详解:如图所示,用分割法、添补法.三个图形的面积分别是:4111127⨯+⨯+⨯=平方厘米; 4⨯⨯÷32⨯⨯÷2. 例题2答案:6;12;4;7;9详解:①:326⨯=平方厘米;②:4312⨯=平方厘米;③:224⨯=平方厘米;3. 例题3答案:6.5平方厘米 详解:内部格点:3个,边界格点:9个.面积=3921 6.5+÷-=平方厘米.4. 例题4答案:34平方厘米详解:内部格点:7个;边界格点:22个.面积:7222234⨯+-=平方厘米.5.例题5答案:19.5平方厘米;31.5平方厘米④: ⑤: 121212+17⨯+⨯+⨯= 或:441313137⨯-⨯-⨯-⨯= 2339⨯+= 或:441212139⨯-⨯-⨯-⨯=详解:可以分割、添补,也可以用公式法:(1)内部格点:4个;边界格点:7个.面积:()7241319.5÷+-⨯=平方厘米;(2)内部格点:8个;边界格点:7个.面积:()7281331.5÷+-⨯=平方厘米.6. 例题6答案:28平方厘米;56平方厘米详解:可以分割、添补,也可以用公式法:(1)内部格点:4个;边界格点:8个.面积:()4282228⨯+-⨯=平方厘米;(2)内部格点:3个;边界格点:10个.面积:()32102456⨯+-⨯=平方厘米.7. 练习1答案:3平方厘米;10平方厘米详解:如图,分别用分割法、添补法.8. 练习2答案:12;20;5;18 详解:①:3412⨯=平方厘米; ②:直接数,每层4个,共5层,4520⨯=9. 练习3答案:13 简答:内部格点:1个,边界格点:13个.面积=()11321213+÷-⨯=.10. 练习4答案:17平方厘米简答:内部格点:1个;边界格点:17个.面积:1217217⨯+-=平方厘米. ③: ④:1112125⨯+⨯+⨯= 122312818⨯+⨯+⨯+=11.作业1答案:6;6.5简答:可用分割或添补法完成.12.作业2答案:7;12简答:使用割补法分别计算.13.作业3答案:56简答:大正三角形的面积是254100⨯=平方厘米,利用添补法可得.14.作业4答案:29简答:综合利用分割法与添补法.也可以用正方形格点图形面积公式计算.注意每个最小正方形面积是2.15.作业5答案:44简答:综合利用分割法与添补法.也可以用三角形格点图形面积公式计算.注意每个最小正三角形面积是2.。

小学奥数习题版三年级几何图形计数教师版

小学奥数习题版三年级几何图形计数教师版

图形计数知识要点(n m++-数线段【例1】请数出下图中线段的总条数。

【分析】法1:我们规定:把相邻两点间的线段叫做基本线段,我们可以这样分类数:由1条基本线段构成的线段有:AB、BC、CD、DE、EF5条.由2条基本线段构成的线段有:AC、BD、CE、DF4条.由3条基本线段构成的线段有:AD、BE、CF3条.由4条基本线段构成的线段有:AE、BF2条.由5条基本线段构成的线段有:AF1条.总数5432115++++=条.法2:按线段的起点分类(注意保持方向的一致),如右图以A点为共同左端点的线段有:AB、AC、AD、AE、AF5条.以B点为共同左端点的线段有:BC、BD、BE、BF4条.以C点为共同左端点的线段有:CD、CE、CF3条.以D点为共同左端点的线段有:DE、DF2条.以E点为共同左端点的线段有:EF1条.总数5432115++++=条.法3:线段AF上共有6个点,那么应该共有65215⨯÷=条线段。

【小结】两点确定一条线段,假设某条线段上有n个点(包含线段的两个端点),那么这条线段共包含的线段数为(1)2n n-÷条。

【例2】数一数,下图中共有多少条线段?【分析】水平方向,有(12)39+⨯=(条),两条对角线上有(12)26+⨯=+⨯=(条),竖直方向有(12)39(条)线段,所以共有99624++=(条)线段。

【例3】请问下图有多少条线段?【分析】五角星每条边上都有6条线段,那么除去相接的那条线段,两个五角星各24条线段,而两个五角星相接的那条线段上有76221⨯÷=(条),由此可得此图共有线段++=(条)。

24242169【例4】数一数下图一共有多少条线段?【分析】横向线段:1(21)(321)(4321)(54321)(654321)56++++++++++++++++++++=(条);同样的,斜向左与斜向右的线段条数也均为56条,那么此图形线段总数为:563168⨯=(条)。

小学奥数习题版三年级几何巧求面积教师版

小学奥数习题版三年级几何巧求面积教师版

知识要点简单求面积【例 1】 4个相同的长方形和一个小正方形拼成一个面积是100平方厘米的大正方形,已知小正方形的面积是36平方厘米,问长方形的长和宽各是多少厘米?【分析】 1001010=⨯,3666=⨯,大正方形的边长为10厘米,小正方形的边长为6厘米,长方形的宽为:(106)22-÷=(厘米),长为:628+=(厘米)【例 2】 如图,一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米?我们已经学会了计算正方形、长方形的周长和面积,运用这些基础的知识,可以解决一些较复杂的面积计算.由长方形、正方形引出的问题形式多样,要解决这些问题,关键要能够合理地切拼,要做到这一点,就需要我们开动脑筋,细心观察,掌握图形特点,找出分割与切拼的方法,达到解决问题的目的.1. 掌握巧妙的解题方法.2. 了解“等量代换”的思想.3. 培养学生灵活运用的能力.巧求面积75【分析】 阴影部分的宽是752-= (厘米),长是523-= (厘米),面积是236⨯= (平方厘米).【例 3】 一个长方形周长是80厘米,它是由3个完全相同的小正方形拼成的,那么每个小正方形的面积是多少平方厘米?【分析】 小正方形的边长:80810÷=厘米,每个小正方形的面积:1010100⨯=平方厘米。

面积增减【例 4】 一块长方形铁板,长15分米,宽l2分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?【分析】 如图,铁板面积比原来减少多少平方分米,就是求阴影部分的面积,用原长方形的面积减去空白部分的面积.1512(152)(122)⨯--⨯-=180130- =50(平方分米)2221512【例 5】 一块长方形地长是80米,宽是45米,如果把宽增加5米,要使原来的面积不变,长应减少多少米?【分析】 808045(455)8-⨯÷+= (米).【例 6】 人民路小学操场原来长80米,宽55米,改造后长增加20米,宽减少5米.现在操场的面积比原来增加多少?【分析】 (8020)(555)8055600+⨯--⨯= (平方米).【例 7】 有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?【分析】 根据题意,可以用下图表示增减变化的情况,从图中可以看出,原来长方形的长为(2720680)(6050)340+÷-= (米),宽为6803405052÷+= (米)。

(完整word版)小学奥数模块教程四年级杯赛备战讲义——巧求面积

(完整word版)小学奥数模块教程四年级杯赛备战讲义——巧求面积

上课日期: 上课时间: 教师姓名:知识点一:格点面积 一、正方形格点问题在一张纸上,先画出一些水平直线和一些竖直直线,并使任意两条相邻的平行线的距离都相等(通常规定是1个单位),这样在纸上就形成了一个方格网,其中的每个交点就叫做一个格点.在方格网中,以格点为顶点画出的多边形叫做格点多边形,例如,右图中的乡村小屋图形就是一个格点多边形.那么,格点多边形的面积如何计算?它与格点数目有没有关系?如果有,这两者之间的关系能否用计算公式来表达?下面就让我们一起来探讨这些问题吧!用N 表示多边形内部格点,L 表示多边形周界上的格点,S 表示多边形面积,请同学们分析前几个例题的格点数.我们能发现如下规律:12LS N =+-.这个规律就是毕克定理.二、 三角形格点问题1、定义:所谓三角形格点多边形是指:每相邻三点成“∵”或“∴”,所形成的三角形都是等边三角形.规定它的面积为1,以这样的点为顶点画出的多边形为三角形格点多边形.2、公式:关于三角形格点多边形的面积同样有它的计算公式:如果用S 表示面积,N 表示图形内包含的格点数,L 表示图形周界上的格点数,那么有22S N L =⨯+-,就是格点多边形面积等于图形内部所包含格点数的2倍与周界上格点数的和减去2.知识点二:图形剪拼巧求面积知识框架毕克定理若一个格点多边形内部有N 个格点,它的边界上有L 个格点,则它的面积为12LS N =+-.本讲中很多类型的题目还要求同学们去动手尝试.通过本讲知识的学习,让同学们了解不同图形的分割、拼合、剪拼的方法,锻炼同学们的平面想象能力以及增强学生的动手操作能力.(1)把一个几何图形按某种要求分成几个图形,就叫做图形的分割.(2)反过来,按一定的要求也可以把几个图形拼成一个完美的图形,就叫做图形的拼合.(3)将一个或者多个图形先分割开,再拼成一种指定的图形,则叫做图形的剪拼.我们在图形的分割、拼合和剪拼的过程中,都要结合所提供的图形特点来思考.(1)如果把一个图形分割成若干个大小、形状相等的部分,那么就要想办法找图形的对称点,把图形先分少,再分多.(2)图形中,如果有数量方面的要求,可以先从数量入手,找出平分后每块上所含数量的多少,再结合数量来分割图形.(3)如果是要把几个图形拼合成一个大图形,要特别注意每条边的长度,把相等的边长拼合在一起,先拼少的,再拼多的.(4)如果是剪拼图形,要抓住“剪、拼前后图形的面积相等”这个关键,根据已知条件和图形的特点,通过分析推理和必要的计算,确定剪拼的方法.一、解题关键:分割其实就是运用特殊的三角形(等角直角三角形、等边三角形等)、正方形、等边图形的特殊性质进行分割而得,所以分割的关键是利用了特殊图形的关系解题。

小学五年级奥数第4讲 长方形、正方形的面积(含答案分析)

小学五年级奥数第4讲 长方形、正方形的面积(含答案分析)

第4讲长方形、正方形的面积一、知识要点长方形的面积=长×宽,正方形的面积=边长×边长。

掌握并能运用这两个面积公式,就能计算它们的面积。

但是,在平时的学习过程中,我们常常会遇到一些已知条件比较隐蔽、图形比较复杂、不能简单地用公式直接求出面积的题目。

这就需要我们切实掌握有关概念,利用“割补”、“平移”、“旋转”等方法,使复杂的问题转化为普通的求长方形、正方形面积的问题,从而正确解答。

二、精讲精练【例题1】已知大正方形比小正方形边长多2厘米,大正方形比小正方形的面积大40平方厘米。

求大、小正方形的面积各是多少平方厘米?练习1:1.有一块长方形草地,长20米,宽15米。

在它的四周向外筑一条宽2米的小路,求小路的面积。

2.正方形的一组对边增加30厘米,另一组对边减少18厘米,结果得到一个与原正方形面积相等的长方形。

原正方形的面积是多少平方厘米?【例题2】一个大长方形被两条平行于它的两条边的线段分成四个较小的长方形,其中三个长方形的面积如下图所求,求第四个长方形的面积。

练习2:1.下图一个长方形被分成四个小长方形,其中三个长方形的面积分别是24平方厘米、30平方厘米和32平方厘米,求阴影部分的面积。

2.下面一个长方形被分成六个小长方形,其中四个长方形的面积如图所示(单位:平方厘米),求A和B的面积。

【例题3】把20分米长的线段分成两段,并且在每一段上作一正方形,已知两个正方形的面积相差40平方分米,大正方形的面积是多少平方分米?练习3:1.一块正方形,一边划出1.5米,另一边划出10米搞绿化,剩下的面积比原来减少了1350平方米。

这块地原来的面积是多少平方米?2.一个正方形,如果它的边长增加5厘米,那么,面积就比原来增加95平方厘米。

原来正方形的面积是多少平方厘米?【例题4】有一个正方形ABCD如下图,请把这个正方形的面积扩大1倍,并画出来。

练习4:1.四个完全一样的长方形和一个小正方形组成了一个大正方形,如果大、小正方形的面积分别是49平方米和4平方米,求其中一个长方形的宽.2.正图的每条边都垂直于与它相邻的边,并且28条边的长都相等。

(教师版)小学奥数4-4-1 圆与扇形(一).专项检测题及答案解析

(教师版)小学奥数4-4-1 圆与扇形(一).专项检测题及答案解析

研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、 跟曲线有关的图形元素: ①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n.比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长+360n⨯2⨯半径(易错点是把扇形的周长等同于扇形的弧长)②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图: 弯角的面积=正方形-扇形④”谷子”:如图: “谷子”的面积=弓形面积2⨯二、 常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块一 平移、旋转、割补、对称在曲线型面积中的应用例题精讲圆与扇形【例 1】 如图,圆O 的直径AB 与CD 互相垂直,AB =10厘米,以C 为圆心,CA 为半径画弧。

求月牙形ADBEA (阴影部分)的面积。

D【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】华杯赛,决赛,第9题,10分 【解析】 ①月牙形ADBEA (阴影部分)的面积=半圆的面积+△ABC 的面积-扇形CAEBC 的面积②月牙形ADBEA 的面积=211π525π502524⨯⨯+-⨯⨯=(平方厘米),所以月牙形ADBEA 的面积是25平方厘米。

四年级下册数学奥数拓展试题 第三讲 基本直线面积公式 人教版 无答案

四年级下册数学奥数拓展试题     第三讲  基本直线面积公式 人教版 无答案

第三讲基本直线面积公式在几何中,所谓直线形就是指由线段构成的图形.在日常生活中,我们最常见的直线形有以下几种:正方形、长方形、平行四边形、三角形、梯形正方形长方形平行四边形三角形梯形在有关直线形的计算中,计算周长和计算面积是最常见的两类,我们已经学过了如何计算直线形的周长,接下来我们将学习如何计算直线形的面积正方形的面积和长方形的面积公式是我们所熟悉的,如图1:宽边长长正方形的面积=边长×边长长方形的面积=长×宽试一试正方形的边长是6厘米,面积是平方厘米长方形的长为8厘米,宽为4厘米,面积是平方厘米正方形的面积是121平方厘米,它的边长是厘米长方形的面积是48平方厘米,宽为4厘米,长为厘米例题1、如图,有一块长方形田地被分成了五小块,分别栽种了茄子、黄瓜、豆角、莴笋和苦瓜,其中茄子地的面积是16平方米,黄瓜地的面积是28平方米,豆角地的面积是32平方米,莴笋地的面积是72平方米,而且左上角茄子地恰好是一个正方形.请问:剩下的苦瓜地的面积是多少?练习1、如图有一块长方形田地被分成了四小块,分别栽种了冬瓜24平方米,西瓜地的面积是36平方米,南瓜地的面积是18平方米,而且左下角西瓜地恰好是一个正方形.请问:剩下的黄瓜地的面积是多少?如图2,平行四边形的两组对边平行且相等,我们把两组对边用不同颜色标出来图2为了计算平行四边形的面积,我们可以把平行四边形切成两块,然后拼成一个长方形,如图3这个平行四边形的面积和拼成的长方形的面积相同,都等于长方形的长乘以宽.长方形的长和宽在平行四边形中都可以找到对应线段,在平行四边形中,这两条线段分别叫做底和高。

于是我们有: 平行四边形面积=底×高如图4所示,同学们可以画出这条底对应的若干条高,并且这些高是相等的,都等于上下两条平行线间的距离图4当然我们可以用另一种方式把上面的平行四边形剪拼成一个长方形,如图5所示。

同样得到相对于这条底的若干条高,如图6所示,这些高也是相等的,都等于左右两条平行线间的距离(两条平行线间的距离处处相等)要计算平行四边形的面积,需要知道一条底,以及它所对应的高.大家看看下面的几个图形,试着画出与底边相对应的高画一画下面有四个平行四边形,每个平行四边形都指定了一条边作为底,请画出与每条底相对应的高例题2如图是由两个边长分别为4和7的正方形拼成的,请求出图中阴影部分的面积如图,大正方形里有一个小正方形还有一个阴影平行四边形。

六年级奥数-面积计算

六年级奥数-面积计算

面积计算(一)专题简析:计算平面图形的面积时,有些问题乍一看,在已知条件与所求问题之间找不到任何联系,会使你感到无从下手。

这时,如果我们能认真观察图形,分析、研究已知条件,并加以深化,再运用我们已有的基本几何知识,适当添加辅助线,搭一座连通已知条件与所求问题的小“桥”,就会使你顺利达到目的。

有些平面图形的面积计算必须借助于图形本身的特征,添加一些辅助线,运用平移旋转、剪拼组合等方法,对图形进行恰当合理的变形,再经过分析推导,方能寻求出解题的途径。

例题1。

已知图18-1中,三角形ABC 的面积为8平方厘米,AE =ED ,BD=23 BC ,求阴影部分的面积。

【思路导航】阴影部分为两个三角形,但三角形AEF 的面积无法直接计算。

由于AE=ED,连接DF ,可知S △AEF =S △EDF (等底等高),采用移补的方法,将所求阴影部分转化为求三角形BDF 的面积。

因为BD=23 BC ,所以S △BDF =2S △DCF 。

又因为AE =ED ,所以S △ABF =S △BDF =2S △DCF 。

因此,S △ABC =5 S △DCF 。

由于S △ABC =8平方厘米,所以S △DCF =8÷5=1.6(平方厘米),则阴影部分的面积为1.6×2=3.2(平方厘米)。

练习11、 如图18-2所示,AE =ED ,BC=3BD ,S △ABC =30平方厘米。

求阴影部分的面积。

2、 如图18-3所示,AE=ED ,DC =13 BD ,S △ABC =21平方厘米。

求阴影部分的面积。

3、 如图18-4所示,DE =12AE ,BD =2DC ,S △EBD =5平方厘米。

求三角形ABC 的面积。

AB CFD E18-2ABCFE D18-1 ABCFED 18-3CB D EF 18-4例题2。

两条对角线把梯形ABCD 分割成四个三角形,如图18-5所示,已知两个三角形的面积,求另两个三角形的面积各是多少?【思路导航】已知S △BOC 是S △DOC 的2倍,且高相等,可知:BO =2DO ;从S △ABD 与S △ACD相等(等底等高)可知:S △ABO 等于6,而△ABO 与△AOD 的高相等,底是△AOD 的2倍。

小学奥数:不规则图形的面积

小学奥数:不规则图形的面积

4-2-6.不规则图形的面积例题精讲本讲主要通过求一些不规则图形的面积,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求面积的技巧,提高学生的观察能力、动手操作能力、综合运用能力.【例 1】你有什么好的方法计算所给图形的面积呢?(单位:厘米)4993499349934993图1图2图3【巩固】如图是学校操场一角,请计算它的面积(单位:米)40303020【巩固】如右图所示,图中的ABEFGD是由一个长方形ABCD及一个正方形CEFG拼成的,线段的长度如图所示(单位:厘米),求ABEFGD的周长和面积.A D4A D4HFE10GCFE10GCB10B10【巩固】求图中五边形的面积.3645【例 2】这是一个楼梯的截面图,高280厘米,每级台阶的宽和高都是20厘米.问,此楼梯截面的面积是多少?【巩固】如图是一个楼梯的截面图,每级台阶的宽和高都是20厘米.这楼梯的截面积是多少平方厘米?【例 3】有一块菜地长16米,宽8米,菜地中间留了宽2米的路,把菜地平均分成四块,每一块地的面积是多少?2米2米8米2米2米8米16米16米【例 4】有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?【例 5】下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.20-55820820【巩固】两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积.ADBO32ECF【例 6】如图,李大伯给一块长方形田地喷药,喷药器所能喷洒的范围是以李大伯的落脚点为中心,边长2米的正方形区域,他从图中的A点出发,沿最短路线(图中虚线)走,走过88米到达B点,恰好把这块田地全部喷完,这块田地的面积是多少平方米?A1米1米B【例 7】右图中甲的面积比乙的面积大__________平方厘米.4厘米乙8厘米甲6厘米【例 8】右图中,矩形ABCD的边AB为4厘米,BC为6厘米,三角形ABF比三角形EDF 的面积大9平方厘米,求ED的长.A FEDB C【巩固】如图所示,CA=AB=4厘米,△ABE比△CDE的面积小2平方厘米,求CD的长为多少厘米?D CEA B【巩固】如图,平行四边形ABCD种,BC=10cm,直角三角形ECB的边EC=8cm,已知阴影部分的总面积比三角形EFG的面积大10cm2,求平行四边形ABCD的面积.EA F G DB C【例 9】如图,ABCD是7⨯4的长方形,DEFG是10⨯2的长方形,求VBCO与VEFO的面积差.A B A BD G C O EFD C O EFG【例 10】有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?5060680平方米2720平方米【巩固】有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的面积?3【例 11】一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?12215【例 12】一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积?522×5【巩固】一块长方形纸片,在长边剪去5cm,宽边剪去2cm后(如图),得到的正方形面积比原长方形面积少31cm2.求原长方形纸片的面积.552 A22BC【巩固】一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新正方形的面积比原正方形大120平方厘米.求原正方形的面积?6厘米6厘米6厘米6厘米【例 13】一块正方形的钢板,先截去一个宽5分米的长方形,又截去一个宽8分米的长方形(如图),面积就比原来正方形减少181平方分米.原正方形的边长是多少分米?58【巩固】一张长方形纸片,先把长剪去8厘米,这时面积减少了72平方厘米,又把宽剪去5厘米,这时面积又减少了60平方厘米,原来这张长方形纸片的面积是多少平方厘米?长5宽8【巩固】如右图所示,在一个正方形上先截去宽11分米的长方形,再截去宽7分米的长方形,所得图形的面积比原正方形减少301平方分米.原正方形的边长是______分米.711【例 14】如图长方形被分成两部分,已知阴影面积比空白部分面积大34平方厘米,求阴影部分的面积.10cm18cm【例 15】一张长方形纸片,把它的右上角往下折叠(如图甲),阴影部分面积占原纸片面积2的;再把左下角往上折叠(如图乙),乙图中阴影部分面积占原纸片面积的7________(答案用分数表示).甲乙【巩固】折叠后,原平行四边形面积是折叠后图形面积的1.5倍.已知阴影部分面积之和为1,则重叠部分(即空白部分)的面积是多少?【巩固】如图,一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米?75【例 16】如图,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?【例 17】如图所示,直角三角形中有一个长方形,求长方形的面积?464BAD6F C 64【例 18】一个边长为20厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积??【巩固】如图是由5个大小不同的正方形叠放而成的,如果最小的正方形(阴影部分)的周长是8,那么最大的正方形的边长是.第6题【巩固】图中有6个正方形,较小的正方形都由较大的正方形的4边中点连接而成.已知最大的正方形的边长为16厘米,那么最小的正方形的面积等于多少平方厘米?【例 19】已知图中大正方形的面积是22平方厘米,小正方形面积是多少平方厘米?【巩固】如图所示,外侧大正方形的边长是10cm ,在里面画两条对角线、一个圆、两个正方形,阴影的总面积为26cm 2,最小的正方形的边长为多少厘米?A BCZ Y X D【例 20】有一个边长为16厘米的正方形,连接每边的中点构成第二个正方形,再连接每边的中点构成第三个正方形,第四个正方形.求图中阴影部分的面积?【例 21】如图,边长为10的正方形中有一等宽的十字,其面积(阴影部分)为36,则十字中央的小正方形面积为.第2题【例 22】下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)663【巩固】如图所示,四个相叠的正方形,边长分别是5、7、9、11.问灰色区与黑色区的面积的差是多少?11975【例 23】甲、乙、丙三个正方形,它们的边长分别是6、8、10厘米,乙的一个顶点在甲的中心上,丙的一个顶点在乙的中心上.这三个正方形的覆盖面积是多少平方厘米?甲6甲6乙8丙10乙8丙10【巩固】将20张边长为10厘米的正方形纸片,按顺序一张一张地摆放在地板上,摆的时候,要求后摆的纸片必须有一个顶点与前一张的中心重合,且每一张只与其前一张和后一张有重合部分(右图表示已经摆好的5张).地板被这20张纸片所覆盖部分的面积是多少?【例 24】有2个大小不同的正方形A 和B .如下左图所示的那样,在将B 正方形的对角线的交点与A 正方形的一个顶点相重叠时,相重叠部分的面积为A 正方形面积的1.求A 与B 的边长之比.如果当按下右图那样,将A 和B 反向重叠的话,所重9叠部分的面积是B 的几分之几?BAABAB左图右图【例 25】有一个正方形水池(图中阴影部分),在它的周围修一个宽是8米的草地,草地的面积为480平方米,求水池的边长?8888【巩固】一块长方形草坪(图中阴影部分)长是宽的2倍,它的四周围的总面积是34平方米的1米宽的小路.求草坪的面积是多少平方米?A C BA CB AA【例 26】如图所示,一个长方形广场的正中央有一个长方形的水池.水池长8米、宽3米.水池周围用边长为1米的方砖一圈一圈地向外铺.恰好铺了若干圈,共用了152块方砖,那么共铺了圈.水池【例 27】用四个相同的长方形拼成一个面积为100cm 2的大正方形,每个长方形的周长是多少平方厘米?【巩固】如图所示,4个相同的长方形和一个小正方形拼成一个大的正方形,大正方形的面积是100平方分米,小正方形的面积是36平方分米,求一个小长方形的面积及周长.【例 28】四个完全相同的长方形拼成右图,大正方形的面积是l00平方分米,小正方形的面积是l6平方分米,求每个长方形的面积是多少?长方形的短边是多少分米?16【巩固】如图,4个相同的长方形和1个小正方形拼成一个大正方形,已知其中小正方形的面积为4平方厘米,大正方形的面积为400平方厘米,则其中长方形的长为厘米,宽厘米.【例 29】街心花园里有一个正方形花坛,四周有一条宽1米的甬道(如图),如果甬道的面积是12平方米,那么中间花坛的面积是多少平方米?第19题1米【巩固】在一个正方形的小花园周围,环绕着宽5米的水池,水池面积为300平方米,那么正方形花园的面积是多少平方米?5【巩固】有大、小两个长方形(如图),对应边的距离均为1cm ,已知两个长方形之间部分的面积是16cm 2,且小长方形的长是宽的2倍,求大长方形的面积.AB【例 30】已知大正方形比小正方形边长多4厘米,大正方形面积比小正方形面积大96平方厘米.问大、小正方形面积各是多少?44ABC4D 4【巩固】两个正方形的面积相差9cm 2,边长相差1cm .求两个正方形的面积和.C AB【巩固】有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米.小正方形的面积是多少平方厘米?【例 31】在一个正方形中放入一个四个顶点与大正方形相接的一个小正方形(如图),如果两个正方形的周长相差16厘米,面积相差96平方厘米,求小正方形的面积是多少平方厘米?(1)(2)cabc【例 32】用两块长方形纸片和一块正方形纸片拼成一个大正方形,长方形纸片面积分别为44平方厘米与28平方厘米,原正方形纸片面积是多少平方厘米?【例 33】计划修建一个正方形的花坛,并在花坛周围种上3米宽的草坪,草坪的面积为300平方米,那么修建这个花坛需要占地多少平方米?(1)(2)【巩固】有大、小两个长方形(右图),对应边的距离均为1厘米,已知两个长方形之间部分的面积是16平方厘米,且小长方形的长是宽的2倍,求大长方形的面积.【巩固】一块长方形的草坪(见图中阴影部分),长是宽的2倍,它的四周围的总面积是34平方米的1米宽的小路,求草坪的总面积是多少平方米?A C AB BA C A【例 34】一块正方形的苗圃(如右图实线所示),若将它的边长各增加30米(如图虚线所示),则面积增加9900平方米,问原来这块正方形苗圃的面积是多少平方米?3030【例 35】从一块正方形的玻璃板上锯下宽为0.5米的一个长方形玻璃条后,剩下的长方形的面积为5平方米,请问锯下的长方形玻璃条的面积等于多少?0.55【巩固】从一个正方形的木板上锯下宽1m 的一个长方形木条后,剩下的长方形面积为6m 2,问锯下的长方形木条面积是多少?【巩固】从一块正方形木板锯下宽为165米的一个木条以后,剩下的面积是平方米.问锯218下的木条面积是多少平方米?【例 36】图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40平方厘米.求乙正方形的面积.【例 37】有一大一小两块正方形试验田,他们的周长相差40米,面积相差220平方米,那么小正方形试验田的面积是多少平方米?图a图b【例 38】如图,边长是整数的四边形AFED的面积是48平方厘米,FB为8厘米.那么,正方形ABCD的面积是平方厘米.F8AB48C【例 39】如图,一个正方形被分成4个小长方形,它们的面积分别是ED11平方米、平方米、10532平方米和平方米.已知图中的阴影部分是正方形,那么它的面积是多少平105方米?【例 40】长方形ABCD 的周长是30厘米,以这个长方形的每一条边为边长向外画正方形.已知这四个正方形的面积之和为290平方厘米,那么长方形ABCD 的面积是多少平方厘米?E 1D 1EDC 1C BA 1A【巩固】如图,长方形ABCD 的周长是16厘米,在它的每一条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68平方厘米,求长方形ABCD 的面积?IH DG FADAB C B C E【例 41】一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道黑条,黑条宽都是2厘米,这条手帕白色部分的面积是多少?【例 42】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示.如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?图1图2【例 43】7个完全相同的长方形拼成了图中阴影部分,图中空白部分的面积是多少平方厘米?24【巩固】如图所示,7个完全相同的长方形拼成了图中的阴影部分,图中空白部分的面积是多少平方厘米?【例 44】如右图所示,在长方形ABCD中,放入六个形状大小相同的长方形(尺寸如图),图中阴影部分的面积是__________.D C6A14B【例 45】若干同样大小的长方形小纸片摆成了如图所示的图形.已知小纸片的宽是12厘米,问阴影部分的总面积是多少平方厘米?【例 46】一个大长方形若能分割成若干个大小不同的小正方形,则称为完美长方形.下面一个长方形是由9个小正方形组成的完美长方形.图中正方形A 和B 的边长分别是7厘米和4厘米,那么这个完美长方形的面积分别是多少平方厘米?DABE A HBFCG【巩固】如图:有一个矩形可以被分割为11个正方形,其中最小的正方形(阴影部分)面积为81cm 2,请问这个矩形之面积为多少平方厘米?jg ehca bif d教师寄语:拼一个春夏秋冬,换一生无怨无悔。

五年级奥数第4讲平面图形面积计算

五年级奥数第4讲平面图形面积计算

同学个性化教学设计年级:教师: 科目:
班主任:日期: 时段:
【例 1】 在梯形中阴影部分面积是150平方厘米,求梯形面积。

【巩固】如图,已知平行四边形面积是48平方厘米,求阴影部分面积。

【例 2】 如图,是两个完全相同的直角三角形叠在一起,求阴影部分的面积。

(单位:分米)
【例 3】 如图,将长为9厘米、宽为6厘米的长方形划分成四个三角形,其面积分别为1S 、2S 、3S 、
4S ,且4321S S S S +==,求4S 。

【巩固】如图,四年级ABCD是直角三角形,其中AD=12厘米,AB=8厘米,BC=15厘米,且△ADE 四边形DEBF及△CDF的面积相等,求三角形EBF的面积。

【例 4】如图,AE=5厘米,CF=2厘米,AB=6厘米,CD=4厘米,∠B=∠D=90°。

求四边形AFCE 的面积。

【巩固】如图,四边形ABCD中,AE=5厘米,AB=10厘米,FC=12厘米,∠B=∠D=90°,求四边形AFCE的面积。

【例 5】如图,求图示长方形中阴影部分的面积。

(单位:厘米)
【例 6】如图,平行四边形ABCD的边长BC=10厘米,直角三角形BCE的直角边CE长8厘米。

已知阴影部分的面积比三角形FEG的面积大10平方厘米。

求CF的长。

【巩固】如图,正方形ABCD的边长是12厘米,已知DE是EC的长度的2倍。

求(1)△DEF的面积;(2)CF的长。

学生签字:__________
教研组长签字:____
_______。

小学奥数教师版-4-1-2 图形找规律

小学奥数教师版-4-1-2 图形找规律

【考点】图形找规律 【难度】3 星 【题型】解答 【解析】(1)数一数“宝塔”每层包含的小三角形数:
4-1-2 图形找规律 题库
page 3 of 17
请;
可见 1,3,5,7 是个奇数列,所以由这个规律猜出第五层应包含的小三角形是 9 个. (2)整个五层塔共包含的小三角形个数是:1+3+5+7+9=25(个). 【答案】(1) 9 ,(2) 25
此 A 表示竖向线段;第二个图形与第三个图形的共同之处是都有一条横向线段,它们的共同字母是 D,因此 D 表示横向线段.这样,由第一个图形可知 B 表示大圆,由第二个图形可知 C 表示小圆, 从而 A*C 表示的图形应为竖向线段和小圆组合而成,即下图.
【答案】
【例 15】(希望杯五年级一试第 7 题,6 分)下列四个图形是由四个简单图形 A、B、C、D(线段和正方形) 组合(记为*)而成。
4-1-2 图形找规律 题库
page 4 of 17
请;
(3)观察第 1 组与第 2 组,每组中有三种图形:★、□、■,我们把每组图形再分为三小组,将更明
显的得出变化规律.
小组,根据这个规律,可得“?”中应填. 【答案】
第 2 组将第 1 组中的 1、2 小组按原顺序调至第 3
【例 13】观察下图的变化规律,画出丙图.
【总结】旋转是数学中的重要概念,掌握好这个概念,可以提高观察能力,加快解题速度,对于许多问题的 解决,也有事半而功倍的效果.
【答案】
【例 14】图中的三个图形都是由 A、B、C、D(线段或圆)中的两个组合而成,记为 A★B、C★D、A★D.请 你画出表示 A★C 的图形.
【考点】图形找规律 【难度】2 星 【题型】填空 【解析】观察上图,第一个图形和第三个图形的共同之处是都有一条竖向线段,而它们共有的字母是 A,因

苏教版四年级下册同步奥数培优第五讲解决问题的策略(图形面积的计算)

苏教版四年级下册同步奥数培优第五讲解决问题的策略(图形面积的计算)

苏教版四年级下册同步奥数培优第五讲解决问题的策略(图形面积的计算)解答有关“图形面积”问题时,应注意以下几点:1.细心观察,把握图形特点,合理地进行切拼,从而使问题得以顺利地解答。

2.从整体上观察图形特征,掌握图形本质,结合必要的分析推理和计算,使隐蔽的数量关系明朗化。

例1:有一块长方形地,长是宽的2倍,中间有一座雕塑,雕塑的底面是一个正方形,周围是草坪。

如图,草坪的总面积是多少平方米?练一:1.下图是一个养禽专业户用一段长16米的篱笆围成的一个长方形养鸡场,求占地面积有多大?2.下图是由6个相同的三角形拼成的图形,求这个图形的面积。

(单位:分米)3.用长36厘米的一根铁丝围成一个正方形,它的面积是多少?用这根铁丝围成一个长12厘米的长方形,它的面积是多少?例2:XXX操场长90米,宽45米,改造后,长增加10米,宽增加5米,现在操场面积比原来增加多少平方米?1页第练二:1.有一块长方形菜地,长18米,宽10米,如果长和宽都减少了4米,面积比原来减少了多少平方米?2.一块长方形木板,长24分米,宽16分米,如果长减少4分米,宽减少2分米,面积比原来减少几何平方分米?3.一块长方形果园,长是90米,宽是60米,如果把长增加2米,宽增加3米,面积增加几何平方米?例3:一个长方形,如果长不变,宽增加6米,面积就增加72平方米;如果宽不变,长增加4米,面积就增加了32平方米。

这个长方形原来的面积是多少平方米?练三:1.一个长方形,如果宽不变,长减少4米,面积就减少了36平方米;如果长不变,宽减少3米,面积就减少42平方米。

这个长方形原来的面积是多少平方米?2.一个长方形,如果长不变,宽增加5米,那么它的面积就增加35平方米;如果它的宽不变,长减少4米,面积就减少16平方米,这个长方形原来的面积是多少平方米?3.一个长方形,如果它的长减少4米,或它的宽减少3米,那么它的面积都减少48平方米,求这个长方形原来的面积。

最新小学奥数 三角形的等积变形教师版

最新小学奥数  三角形的等积变形教师版

A
乙 E

B
D
C
连接 AD.因为 BE=3,AE=6,所以 BE:AE=3:6=1:2,设甲部分的面积为 1 个单位,那么三角形
AED 的面积为 2 个单位,这样 ABD 的面积为 3 个单位,因为 BD:CD=1:1,所以三角形 ADC
的面积也为 3 个单位,这样乙部分的面积为 3+3-1=5 个单位,所以乙部分是甲部分面积的 5
,它们 所对的顶点同为 A 点,(也就是它们的高相等)那么这两个三角形的面积相
等. 同时也可以知道△ABC 的面积是△ABD 或△AEC 面积的 3 倍.
例如在右图中,△ABC 与△DBC 的底相同(它们的底都是 BC),它所对的两个顶 点 A、D 在与底 BC 平行的直线上,(也就是它们的高相等),那么这两个三角形 的面积相等.
-1-
例如右图中,△ABC 与△DBC 的底相同(它们的底都是 BC),△ABC 的高是△DBC 高的 2 倍(D 是 AB 中点,AB=2BD,有 AH=2DE),则△ABC 的面积是△DBC 面积的 2 倍.
上述结论,是我们研究三角形等积变形的重要依据. 例 1 用三种不同的方法,把任意一个三角形分成四个面积相等的三角形.
方法 2:如右图,先将 BC 二等分,分点 D、连结 AD,得到两个等积 三角形,即△ABD 与△ADC 等积.然后取 AC、AB 中点 E、F,并连结 DE、 DF.以而得到四个等积三角形,即△ADF、△BDF、△DCE、△ADE 等积.
-2-
例 2 用三种不同的方法将任意一个三角形分成三个小三角形,使它们的面积比 为及 1∶3∶4.
A
B
E
C
D
如图,连接 AD,因为 BC:CE=1:1,所以三角形 ACD 的面积:三角形 ABC 的面积=1:1, 所以三角形 ACD 的面积=1,三角形 ABD 的面积=2,因为 AB:BE=1:2,所以三角形 ADE 的 面积为 4. 5、三角形 ABC 被分成了甲、乙两部分,BD=DC=4,BE=3,AE=6,乙部分面积是甲部分面积的 几倍?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小学数学平面图形计算公式:1 、正方形:周长=边长×4;面积=边长×边长2 、正方体:表面积=棱长×棱长×6;体积=棱长×棱长×棱长3 、长方形:周长=(长+宽)×2;面积=长×宽4 、长方体:表面积(长×宽+长×高+宽×高)×2;体积=长×宽×高 5、 三角形:面积=底×高÷2 6 平行四边形:面积=底×高7 梯形:面积=(上底+下底)×高÷2模块一、基本公式的应用【例 1】 如图,两个正方形边长分别是5厘米和4厘米,图中阴影部分为重叠部分。

则两个正方形的空白部分的面积相差多少平方厘米?【考点】基本图形的面积计算 【难度】2星 【题型】解答 【关键词】华杯赛,五年级,决赛,第9题,10分 【解析】 5×5-4×4=9(平方厘米),两个正方形的空白部分的面积相差9平方厘米。

【答案】9平方厘米【巩固】 如图12,边长为4cm 的正方形将边长为3cm 的正方形遮住了一部分,则空白部分的面积的差等于 2cm 。

【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】希望杯,4年级,初赛,19题 【解析】 空白部分的面积差等于两个正方形的面积差,即⨯-⨯=44337(平方厘米)。

【答案】7平方厘米【例 2】 在一个正方形水池的四周,环绕着一条宽2米的路(如图),这条路的面积是120平方米,那么水池的面积是______ 平方米。

水池【考点】基本图形的面积计算 【难度】2星 【题型】填空 例题精讲知识点拨4-2-1.基本图形的面积计算【关键词】希望杯,4年级,初赛,19题 【解析】 四个边角的面积和为2×2×4=16,则水池的边长为:104÷2÷4=13,所以水池的面积是:13×13=169平方米。

【答案】169平方米【例 3】 每边长是10厘米的正方形纸片,正中间挖了一个正方形的洞,成为一个宽1厘米的方框。

把五个这样的方框放在桌面上,成为一个这样的图案(如图所示)。

问桌面上被这些方框盖住的部分面积是多少平方厘米?【考点】基本图形的面积计算 【难度】3星 【题型】填空 【关键词】华杯赛,初赛,第2题【解析】 方框的面积是22108-。

每个重叠部分占的面积是一个边长为1厘米的正方形。

重叠部分共有8个()221085183658172-⨯-⨯=⨯-= (平方厘米)。

故被盖住的面积是172平方厘米。

【答案】172平方厘米【例 4】 如图4所示,长方形ABCD 的长为25,宽为15。

四对平行线截长方形各边所得的线段的长已在图上标出,且横向的两组平行线都与BC 平行。

求阴影部分的面积。

D3【考点】基本图形的面积计算 【难度】3星 【题型】填空 【关键词】希望杯,五年级,复赛,第17题,10分 【解析】 方法一、先计算四个长条形面积之和,再减去重叠部分.2DCS 阴影=3×25+1×25+2×15+3×15-2×l -2×3-3×1-3×3=155.方法二、可将四组平行线分别移至端线处,如图所示,移动后阴影部分面积不变。

长方形ABCD 面积为:25×15=375;中间空白的长方形面积为:(25-2-3)×(15-1-3)=220。

所以:S 阴影=375-220=155。

【答案】155【例 5】 如图,长方形被分成面积相等的4部分。

X=( )厘米。

x cm2cm16cm【考点】基本图形的面积计算 【难度】3星 【题型】填空 【关键词】走美杯,五年级,初赛,第2题 【解析】 根据图形知道上面的长方形的面积为16232⨯=(平方厘米),所以四部分的面积分别为32平方厘米,因为三角形的面积和右边的长方形面积相等x 分别是长方形的宽和三角形的直角边,所以三角形的另一条直角边和长方形的长之间是2倍关系为11616123⨯=+,所以x 值为:163263÷=(厘米)【答案】6厘米【例 6】 如图,长 9厘米,宽8厘米的长方形的中间有一个由两个长方形构成的十字形的阴影.如果阴影部分的面积恰好等于空白部分的面积,那么x= 厘米.【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】希望杯,四年级,二试,第7题 【解析】 直线形汁算,首先单独看竖直的阴影正好将长方形分为相等的三份,要使阴影部分与空白部分面积相等,那么水平的阴影与竖直阴影不重合的部分应该等于半份,382(93)2x =⨯÷÷-= 【答案】2【例 7】 如图是一块黑白格子布.白色大正方形的边长是14厘米,白色小正方形的边长是6 厘米.问:这块布中白色的面积占总面积的百分之几?【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】华杯赛,初赛,第5题 【解析】 格子布的面积是下图面积的9倍,格子布白色部分的面积也是图上白色面积的9倍,下图中白色部分所占面积的百分比是:1414662020⨯+⨯⨯=0.58=58%,格子布中白色部分的面积是总面积的58%.【答案】58%【例 8】 如图,周长为52厘米的“L”形纸片可沿虚线分成两个完全相同的长方形.如果最长的边是16厘米. 那么该“L”形纸片的面积是____平方厘米.1616【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】希望杯,四年级,二试,第11题 【解析】 120 ,如图,周长52厘米-2⨯最长边16厘米=2个长.所以长=10厘米,宽=6厘米,“L”形纸片面积是2106120⨯⨯=平方厘米.【答案】120平方厘米【例 9】 如图,正方形ABCD 的边长是l2厘米,E 点在CD 上,BO AE ⊥于O ,OB 长9厘米,则AE 长_________厘米。

EOBCD A321【考点】基本图形的面积计算 【难度】3星 【题型】填空 【关键词】希望杯,五年级,初赛,第10题,6分 【解析】 方法一:连结BE 三角形ABE 的面积是正方形面积的一半,根据三角形的面积公式算出121222916AE =⨯÷⨯÷=厘米。

方法二:在四边形OECB 中,∠2+∠OEC=180°,因为∠3+∠OEC=180°,所以∠2=∠3,∠1=∠DAC,所以, AB OB AE AD =,即12912AE =,所以16AE =【答案】16厘米【例 10】 如图3,边长为4的正方形ABCD 和边长为6的正方形BEFG 并排放在一起,1O 和2O 分别是两个正方形的中心(正方形对角线的交点),则阴影部分的面积是______.【考点】基本图形的面积计算 【难度】4星 【题型】填空 【关键词】希望杯,六年级,初赛,第10题,6分 【解析】 等于一个直角梯形减去两个直角梯形的面积,(2+3)×5÷2-2×2÷2-3×3÷2=6. 【答案】6【例 11】 如图所示,长方形AEGH 与正方形BFGH 的面积比为3:2,则正方形ABCD 的面积是正方形BFGH的面积的______ 倍(结果写成小数)ABCDEFHG【考点】基本图形的面积计算 【难度】3星 【题型】填空 【关键词】第三届,五年级,复赛,第15题,6分 【解析】 由于长方形AEGH 的面积与正方形BFGH 的面积之比为3:2.,则EG :GF =3:2,令正方形ABCD的边长为5,则AH =3,BH =2,所以正方形GHFB 的面积为4而正方形ABCD 的面积为25,所以正方形ABCD 的面积是BFGH 的面积的25÷4=6.25倍。

【答案】6.25倍模块二、简单的割补【例 12】 图中“风车”(阴影部分)的面积等于2cm 。

【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】希望杯,4年级,初赛,18题【解析】 由割补法知:这个风车可以拼成一个长为2厘米的正方形,所以它的面积是4平方厘米。

【答案】4平方厘米【例 13】 如图,正方形硬纸片ABCD 的每边长20厘米,点E 、F 分别是AB 、BC 的中点,现沿图a 中的虚线剪开,拼成图b 所示的一座“小别墅”,则图b 中阴影部分的面积是 平方厘米。

FEDCBAa【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】希望杯,五年级,复赛,第7题,5分 【解析】 20×20×12×12=100(平方厘米)。

【答案】100平方厘米【例 14】 下列各图中,阴影部分的面积与整个图形面积的比值最大的是图 。

(C )【考点】基本图形的面积计算 【难度】2星 【题型】填空 【关键词】希望杯,四年级,复赛,第9题,6分 【解析】 4个图比值分别为1/3,3/8,1/4,1/4,比值最大的是图B 【答案】B【例 15】 在半径为7厘米的圆形场地边缘等距离地插6面彩旗,则相邻的两面彩旗的距离等于 米。

【考点】基本图形的面积计算 【难度】3星 【题型】填空 【关键词】希望杯,四年级,复赛,第8题,5分 【解析】 在圆上等距离的插6面彩旗相当于将圆六等分,这样6面旗刚好围成一个正六边形,变长为半径,所以相邻两面旗的距离等于7米。

【答案】7米【例 16】 如图所示,在由七个同样的小正方形组成的图形中,直线l 将原图形分为面积相等的两部分。

l 与AB 的交点为E ,与CD 的交点为F 。

若线段CF 与线段AE 的长度之和为91厘米,那么小正方形的边长是 厘米。

lFEDCBA【考点】基本图形的面积计算 【难度】3星 【题型】填空 【关键词】华杯赛,决赛,第4题,10分 【解析】 因为l 将图形分成面积相等的两部分,所以AE CF +恰好是3.5个边长,所以,正方形的周长为91 3.526÷=厘米【答案】26厘米【例 17】 如图所示,平行四边形内有两个大小一样的正六边形,那么阴影部分的面积占平行四边形面积的( ).(A )12(B )23(C )25(D )512【考点】基本图形的面积计算 【难度】3星 【题型】填空 【关键词】华杯赛,初赛,第1题 【解析】 A ,每个空白正六边形能分成六个相同的正三角形,所以空白部分总共包含12个这样的正三角形;而整个大平行四边形能分成24个这样的正三角形,所以空白部分占整个平行四边形的一半,那么阴影部分也占整个平行四边形的一半。

所以选A 。

【答案】A【例 18】 如图3,正六边形(各边相等,各内角相等)ABCDEF 的面积是24,M ,N 分别是AF ,CD 的中点,若MP ∥AB ,MO ∥EF ,PN ∥BC ,ON ∥ED ,那么,菱形(四条边相等)MPNO 的面积是 。

相关文档
最新文档