第十四届希望杯数学邀请赛五年级1试 试题
希望杯第一届至第十届五年级试题与答案
10.三个武术队进行擂台赛,每队派 6 名选手,先由两队各出 1 名选手上擂台比武,负者下台,不再上 台,胜者继续同其它队的一位选手比武,负者下台,和胜者不同队的双一位选手上台……继续下去。当有 两个队的选手全部被击败时,余下的队即获胜。这时最少要进行_____场比武。
1 6
11.两种饮水器若干个,一种容量 12 升水,另一种容量 15 升水。153 升水恰好装满这些饮水器,其中 15 升容量的_____个。
14.小光前天登录到数理天地网站 ,他在首页看到"您是通过什么方式知道本网站的?" 调查,他查看了投票结果,发现投票总人数是 500 人,"杂志"项的投票率是 68%。当他昨天再次登录数理 天地网站时,发现"杂志"项的投票率上升到 72%,则当时的投票总人数至少是_____ 。
的四位数是
。
8. a , b , c 都是质数,并且 a + b =33, b + c =44, c + d =66,那么 d =
,
BA
9.如果A◆B= A B ,那么1◆2-2◆3-3◆4-…-2002◆2003-2003◆2004=
。
10.用1-8这八个自然数中的四个组成四位数,从个位到千位的的数字依次增大,且任意两个数字的
1.计算
_______ 。
2.将 1、2、3、4、5、6 分别填在右图中的每个方格内,使折叠成的正方体中对面数字的 和相等。
3.在纸上画 5 条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:
景区
千岛湖 张家界 庐山 三亚 丽江 大理 九寨沟 鼓浪屿
气温(℃) 11/1
算英语,平均分是91分。小永三门功课的平均成绩是
“希望杯”全国数学大赛小学五年级模拟试卷附答案[B]
“希望杯”全国数学大赛决赛模拟试卷附答案(小五) (时间:90分钟 满分:120分)一、填空题。
(每题6分,共72分。
) 1.计算:1+12 +22 +12 +13 +23 +33 +23 +13 +…+12006 +22006 +…+20062006 +…+22006 +12006=____________。
2.8+88+888+…+88…8的和的个位上的数字是____________。
3.有四个连续奇数的和是2008,则其中最小的一个奇数是____________。
4.张阿姨把相同数量的苹果和橘子分给若干名小朋友,每名小朋友分得1个苹果和3个橘子。
最后橘子分完了,苹果还剩下12个。
那么一共分给了____________名小朋友。
5.有这样一种算式:三个不同的自然数相乘,积是100。
这样的算式有____________种。
(交换因数位置的算同一种。
)6.在右边的数阵中,如果按照从上往下,从左往右的顺序数数,可以知道第1个数是1,第3个数是2,第6个数是3,……那么第99个数是____________。
7.一天,小慧和刘老师一起谈心。
小慧问:“老师,您今年有多少岁?”刘老师回答说:“你猜猜,当我像你这么大时,你才1岁;当你到我这么大时,我就34岁了。
”刘老师今年的年龄是____________岁。
8.小华同学为了在“希望杯”数学大赛中取得好成绩,自己做了四份训练题(每份训练题满分为120分)。
他第一份训练题得了90分,第二份训练题得了100分,那么第三份训练题至少要得____________分才能使四份训练题的平均成绩达到105分。
9.某小学五年级有9名同学进入了“希望杯”数学大赛的决赛。
已知他们在初赛中前3名同学的平均分比前6名同学的平均分多3分,后6名同学的平均分比后3名同学的平均分多3分。
那么前3名同学的总分比后3名同学的总分多____________分。
10.在右图中,已知正方形ABCD 的面积是正方形EFGH 面积的4倍,正方形AMEN 的周长是4厘米,那么正方形ABCD 的周长是____________厘米。
2024新希望杯五年级竞赛模拟数学试卷
1.对于非零自然数,,规定运算“”的含义是:,已知,的值 .2.计算:的结果个位数字是 .个3.把分解质因数是 。
4.将至六个数填入下图所示球体的圆内,使球体的各个大圆上每四个数的和都相等。
这个和是 。
5..6.有若干名小朋友,第一名小朋友的糖果比第二名小朋友的糖果多块,第二名小朋友的糖果比第三名小朋友的糖果多块……即前一名小朋友总比后一名小朋友多块糖果.他们按次序围成圆圈做游戏,从第一名小朋友开始给第二名小朋友块糖果,第二名小朋友给第三名小朋友块糖果……即每一名小朋友总是将前面传来的糖果再加上自己的块传给下面的小朋友.当游戏进行到最后一名小朋友无法按规定给出糖果时,有两名相邻的小朋友的糖果数之比是,最多有 名小朋友.7.新希望杯五年级竞赛模拟数学试卷①猴子和狮子的总数要比熊猫的数量多,②熊猫和狮子的总数要比猴子的两倍还多,③猴子和熊猫的总数要比狮子的三倍还多,④熊猫的数量没有狮子数量的两倍那么多,可知猴子有 只,熊猫有 只,狮子有 只.8.某天早上,一只怪物攻击了奥拉星球.为了拯救星球,从怪物出现时亚比英雄们就对怪物进行反击.怪物出现时有点生命值,每位亚比英雄每个白天可以消耗怪物点生命值,但在晚上亚比英雄们都休息时,怪物会恢复点生命值.如果在天内怪物被消灭,至少需要 位亚比英雄.9.在这个数中,十位数字是奇数的数共有 个.,,,,10.欢欢和乐乐同时出发去集市,他们以不同的速度沿同一条直路匀速前行,开始时两人相距米,小时后两人仍相距米.再过小时他们都没有到达集市,这时候他们相距 米.11.艾迪、 薇儿和大宽是好朋友, 住在同一个镇上, 靠着同一条镇中小道. 大宽在中间些,艾迪和薇儿在小道的两端. 三个好朋友每天都要聚一次. 第一天, 艾迪和薇儿从同一时刻出发, 从各自的家沿着小道走, 结果同时到达大宽家. 第二天, 艾迪比第一天提早小时出发,薇儿比第一天又推迟半个小时出发, 艾迪和薇儿比第一天提前了分钟相遇. 第三天薇儿比第一天提早小时出发, 艾迪比第一天推迟半个小时出发, 艾迪和薇儿在离大宽家千米处相遇. 问艾迪的速度是 .12.的分数单位是 ,再增加 个这样的单位就是最小的质数.13.边长是厘米的正方形纸片,正中间挖了一个正方形的洞,成为一个宽厘米的方框.把五个这样的方框放在桌面上,成为一个这样的图案(如图所示).桌面上被这些方框盖住的部分面积是 平方厘米.14.从这个自然数中删掉若干个连续的自然数,使得余下数的和能被整除,最少要删掉 个数.15.自然数、、、、都大于,其乘积,则其和的最大值是 ,最小值是 .16.三位数是一个质数,巧的是,,,,也都是质数, .17.个连续自然数的和恰好是三个不同质数的积,那么这三个质数的和最小是 .18.在这个数中,最多可取出 个数,使所取出的数中,任意两个数的和能被整除.19.若六位数能被和整除,则两位数 .20.的个位是 .21.平面内有个点,其中任意个点均不在同一条直线上,以这些点为端点连接线段,则除这个点外,这些线段至少还有 个交点.22.如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有 种不同的样式.(不可旋转、翻转)23.用,,,这个数字任意写出一个一万位数,从这个一万位数中任意截取相邻的个数字,可以组成许许多多的四位数,这些四位数中,至少有 个相同.24.甲、乙、丙、丁兄弟四人各收藏了一些宝石.每天早上他们都要聚在一起,重新分配宝石.分配的规则是:拥有宝石最多的人分给其他三人每人颗.如果第天早上分配完后,甲、乙、丙、丁四人分别有、、、颗宝石,那么第天早上分配完后,甲有 颗宝石.25.舞台中央有一个音效区,被分隔成个不同区域,每个区域安装个音箱(音箱无差别),音箱朝向只能向东、西、南或北,且相邻两个区域的音箱朝向不能面对面(有公共边的两个区域视为相邻).共有 种安装方案.东南西北(1)可以组成 个不同的三位数.26.有张卡,分别写有数字,,,,.如果允许可以作用,那么从中任意取出张卡片,并排放在一起.27.在平面上有个点,其中任意个点都不在同一条直线上.如果在这个点之间连结条线段,那么这些线段最多能构成 个三角形.28.计算 .29.计算: .30.定义新运算:,(个相乘),则.31.已知三个不同的非零自然数、、满足算式, 且.那么代表的自然数是 .32.下面表格所有数的和是 ?33.三位数(,,互不相同),是,,的最小公倍数,是,,的最大公因数,等于的因数个数,这样的三位数有 个.34.35.一个两位数,在它的前面写上,得到一个三位数.这个三位数比原两位数的倍多,那么原来的两位数为 .36.左图一个由小正方体组成的的大正方体.从这个大正方体中抽出若干个小正方体,把大正方体中相对的两面打通.右图中的阴影部分是抽空的状态.右图的正方体中还剩 个小正方体.37.有一个两位数,除以余,除以余,除以余,那么这个数最小是 .38.小明全家拍全家福,家里有爷爷、奶奶、爸爸、妈妈和小明人,爷爷必须站最中间,小明不站两边,请问:一共有 种不同的排队方式.39.图中有四个等边三角形,边长分别为,,,,那么阴影部分的总面积是最小的等边三角形面积的 倍.乐乐老师想把件相同的礼物全部分给个小朋友,要使每个小朋友都分到礼物,则分礼物的不同方法一共有 种.41.题图中共有 个正方形.42.龙猫家的大花园是一个平行四边形.如图,线段和将花园分成四块,其中的和的面积分别是和,则四边形的面积是 .43.如图所示,正六边形的面积为,则阴影部分的面积为 .44.一张卡片如左图所示,从中选个数字,分别写在个部分上,“”已经写好,然后将卡片折成右图的正方体纸盒.这个纸盒三组相对面上的数字和都相等,这个和是 .45.在一个的方阵中,任意填上自然数,从中任选出个的方格.如果选出的方格中必有个方格为原方阵中一个矩形的个角,上面所填的个数的和是偶数,那么的最小值是 .46.潘多拉星球遭到只飞龙和只地虎的袭击,机甲战士奋力抗击.潘多拉星球上的机甲战士共名,每个战士击退只飞龙需要分钟,击退只地虎需要分钟.那么,战士们击退全部敌人至少需要 分钟.47.自动扶梯以匀速由下往上行驶,两个急性子的孩子嫌扶梯走的太慢,于是在行驶的扶梯上,男孩每秒向上走梯级,女孩每秒钟走梯级.结果男孩用秒到达楼上,女孩用秒到达楼上.该楼梯共有 级.48.小明读一本小说,已读页数比全书页数的多页,未读的页数比全书页数的少页.这本书共有 页.49.父亲节来临之际,商店进行优惠促销.领带原价元条,现在买条送条,妈妈和两位阿姨现在合买条领带,每条领带比原来便宜 元.50.年父亲的年龄是儿子年龄的倍,年父亲年龄是儿子年龄的倍.儿子是在 年出生的.51.一辆汽车的速度是每小时千米,现有一个每小时比标准表多走秒的计时器,若用该计时器计时,则测得这辆汽车的速度是每小时 千米.52.放暑假真棒啊下面算式中不同的汉字代表不同的数字,六位数“”的最小值是 .放放放暑暑暑假假假真真棒啊53.若,则整数的所有数位上数字的和是 .个个54.甲、乙、丙三位同学去买书,他们买的本数都是两位数,且甲买的最多,丙买的最少,又知这些书本数的总和是偶数,它们的积是,那么乙最多买 本.55.已知、两地相距千米,从到是下坡路.小高同学早上点骑车从地去地,点整到达;第天早上点,他从地原路返回,中午点整才到达地.他在两天往返的过程中曾在同一时刻到达同一地点,那么小高同学 时 分到达这一地点,此地距离地 千米.56.有这样一类四位数,它满足的形式,如.这样的四位数中偶数有 个.57.下图有五个圆,它们相交相互分成个区域,现在两个区域里已经填上与,要求在另外七个区域里分别填进、、、、、、七个数,使每个圆内的和都等于.则所表示的三位数是 .58.四个边长都是整数的正方形如下图摆放,正方形的三个顶点分别是正方形,,的中心.若红色部分的总面积和绿色部分的面积相等,则正方形的边长最小是 .59.名工人小时加工零件个,按这个效率,小时加工个零件,需要 名工人.60.一只蚂蚁从正方体某个面的中心出发,每次走到相邻面的中心,每个中心恰好经过一次最终回到出发点,所有经过的中心排出的序列共有 种.(两条序列不同指沿着行走方向经过的中心点顺序不一样)61.若一个能被整除的两位数,既不能被整除,又不能被整除,它的倍是偶数,十位数字不小于,则这个两位数是 .62.除以的余数是 .63.一个正方体被切成个大小形状一模一样的小长方体(如图所示),这些小长方体的表面积之和为平方厘米。
五年级希望杯赛前模拟专题练习
“希望杯”全国数学邀请赛模拟练习专题专题1 四则运算1.2.7+7.2+2.8+8.22.2280÷34-648÷34+476÷343.1÷﹙2÷3﹚÷﹙3÷4﹚÷﹙5÷6﹚4.0.2008+2.008+20.08+200.8+20085.7.5×23+3.1×256.19+199+1999+199997.﹙12.34+23.41+34.12+41.23﹚÷﹙1+2+3+4﹚8.﹙1+3+5+...+99﹚-﹙2+4+6+ (98)9.41.2×8.1+537×0.1910.1÷0.1÷0.1÷0.1÷0.111.﹙8.5×13.3×7.2﹚÷﹙1.7×1.8×1.9﹚12.99+99×99+99×99×9913.2009.2009+99.99×20.0914.1÷0.0625-1÷0.125-1÷0.25-1÷0.515.如果12345679×a=66666666, 12345679×b=555555555,那么a+b=____.专题2 自然数的性质1.用0,1,2,3这四个数字可以组成___个无重复的四位数。
2.有七张卡片:1,1,2,3,9,9,9,从中任取3张可排列成三位数。
若其中卡片9旋转后可看做6,则排列成偶数有___个。
3.有两组数,A组:1,3,5,7,9,B组:2,4,6,8,10.分别从A组和B组中任意选出一个数相加,能得到___个不同的和。
4.能同时被2,3,4,5,6,7,8,9整除的最小五位数是____。
5.p,q均为质数,且5p+7q=29,则p+q=___。
小学四年级希望杯历年数学竞赛试题与答案1-14届(最新全套完整版)
第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。
2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。
3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。
4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。
5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。
6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。
7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。
8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。
9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。
这时四个组的书一样多。
这说明甲组原来有书本。
10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。
11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。
12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。
13.甲、乙、丙三人中只有1人会开汽车。
甲说:“我会开。
”乙说:“我不会开。
”丙说:“甲不会开。
”三人的话只有一句是真话。
会开车的是。
14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。
回校后,小明补给小光28元。
小明、小光各带了元,每本书价元。
希望杯第1-8届五年级数学试题及答案(WORD版)
第一届小学“希望杯"全国数学邀请赛五年级第1试一、填空题1.计算=_______ 。
2.将1、2、3、4、5、6分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画5条直线,最多可有_______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ .5.,各表示一个两位数,若+=139,则=_______ 。
6.三位数和它的反序数的差被99除,商等于_______ 与_______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图2中,正方形有_______ 个,三角形有_______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第(4)块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长13厘米,这个正方形的面积是平方厘米.10.六位自然数1082□□能被12整除,末两位数有种情况.11.右边的除法算式中,商数是。
12.比大,比小的分数有无穷多个,请写出三个:。
13.A、B、C、D、E五位同学进行乒乓球循环赛(即每2人赛一场),比赛进行了一段时间后,A赛了4场,B赛了3场,C赛了2场,D赛了1场,这时,E 赛了场.14.观察5*2=5+55=60,7*4=7+77+777+7777=8638,推知9*5的值是。
15.警察查找一辆肇事汽车的车牌号(四位数),一位目击者对数字很敏感,他提供情况说:“第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的4倍刚好比后两位数少2"。
警察由此判断该车牌号可能是.16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9.小光,小亮二人随意往桌上扔放这个木块.规定:当小光扔时,如果朝上的一面写的是偶数,得1分。
当小亮扔时,如果朝上的一面写的是奇数,得1分。
每人扔100次,得分高的可能性最大。
17.从1,2,3,4,5,6,7,8,9.中随意取出两个数字,一个作分子,一个作分母,组成一个分数,所有分数中,最大的是,循环小数有个。
小学“希望杯”全国数学邀请赛五年级一试试卷解析
小学“希望杯” 全国数学邀请赛五年级一试 试卷解析1、计算:2015201.520.152.015--=2、9个13相乘,积的个位数字是 。
3、如果自然数a 、b 、c 除以14都余5,则a +b +c 除以14,得到的余数是 。
4、将1到25这25个数随意排成一行,然后将它们依次和1,2,3,…,25相减,并且都是大数减小数,则在这25个差中,偶数最多有 个。
5、如图l ,有3个长方形,长方形①的长为16厘米,宽为8厘米;长方形②的长、宽分别是长方形①长、宽的一半;长方形③的长、宽分别是长方形②长、宽的一半,则这个图形的周长是 厘米。
6.字母a ,b ,c ,d ,e ,f ,g 分别代表1至7中的一个数字,若a +b +c =c +d +e =e +f +g ,则c 可取的值有 个。
7、用64个体积为l 立方米的小正方体拼成一个大正方体,如果将大正方体8个顶点处的小正方体都去掉,则此时的几何体的表面积是____平方米。
8、有一个三位数,百位数字是最小的质数,十位数字是算式(0.3+π×13)的结果中的小数点后第1位数字,个位数字是三位数中能被17整除的最小数的个位数字,则这个三位数是 。
(π取3.14)9、循环小数0.0142857 的小数部分的前2015位数字之和是10、如图2,用若干个相同的小正方体摆成一个几何体,从上面、前面、左面看分别是图形①、②、③,则至少需要 个小正方体。
11、已知a 和b 的最大公约数是4,a 与c 及b 与c 的最小公倍数都是100,而且a 小于等于b,则满足条件的有序自然数对(a,b,c)共有组。
12、从写有1、2、3、4、5的五张卡片中,任取3张组成一个三位数,其中不能被3整除的有个。
因此,不能被3整除的共有:6×6=36(个)。
13、两位数ab和ba都是质数,则ab有个。
14、ab和cde分别表示两位数和三位数,如果ab+cde=1079,则a+b+c+d+e=。
新希望杯 全国数学大赛培训试题(五年级)
五年级训练题(一)一、选择题1.甲、乙两个数的和是201.3,其中甲数的小数点向左移动一位,就等于乙数,甲数与乙数的差是( )。
A. 164.3B.164.7C.165.3D.165.72.如图,平面上有12个点,上下或左右相邻的两点之间的距离都是1,选其中4个点围成一个正方形,不同的选法共有( )。
A.8种B.9种C.10种D.11种3.五年级两个班共100人参加智力竞赛,平均分是78分,其中男生平均分是80分,女生平均分是75分,男生比女生多( )。
A. 20人B.22人C.24人D.25人4.王伯去水果店买水果。
如果买4千克梨和6千克苹果,要付款84元;如果买5千克梨和6千克苹果,要付款91.5元。
那么买1千克梨和1千克苹果要付款 ( )。
A. 15元B.15.5元C.16元D.16.5元5.如下左图,某物体由14个小正方体堆积而成,从左边看该物体,看到的图形是( )。
999除以13所得的余数是( )。
6.1232012个9A.4 B.6 C.8 D.10二、填空题7.计算:(9.6×8.6×8.4)÷(4.3×3.2×2.1)=。
8.在400米长的环形跑道上,甲、乙两人同时同向从起跑线并排起跑,甲每秒跑5米,乙每秒跑4.2米。
两人起跑后第一次相遇时,乙共跑了米。
9.某校五年级举行篮球比赛,规定:胜一场积3分,平一场积1分,负一场积0分。
赛后统计,A班共积9分,其中平比胜多1局,负的局数是胜的2倍,A班负了局。
10.如图,连接大正方形各边的中点得到第二个正方形,再连接第二个正方形各边的中点得到第三个正方形,最后连接第三个正方形各边的中点得到第四个正方形。
大正方形的面积是图中阴影部分面积的倍。
11.如果+++=2.1, +++=2.5,+++=3, 则+++++=。
12.建设某项工程,原计划40名工人用90天完成。
现在这批工人工作30天后又增加了10人,完成剩下的部分需再做天。
五年级希望杯试题
19
★★★☆ 三、解答题 17
木材厂加工一批木材,原计划每天加工16.5吨,实际每
天比原计划多加工1.5吨,结果提前3.5天完成了任务。 实际完成任务用了多少天?
20
★★★☆ 三、解答题 18
如果长方形的长减少3.6厘米,宽减少2.5厘米,面积就
比原来减少57.8平方厘米,且剩下部分正好是一个正方 形,求这个正方形的面积。
③ 广西人与四川人、江苏人相隔的层数一样;
④ 广西人在的层数是湖南人和四川人在的层数的和。 根据以上条件可知,甲是( )。
A.广西人
B.湖南人
C.四川人
D.江苏人
9
★★ 二、填空题 计算:(81.8+818.818)÷8.18= 07
。
10
★★ 二、填空题 将两条长度分别是1.49米、1.17米的绳子接起来,接口处 08 共用去绳子0.28米,接好后的绳子长 米。
60
★★★☆
二、填空题
16
星星和贝贝各骑一辆自行车从学校出发,到相隔45千米的森林公园
游玩。贝贝比星星早出发20分,而星星比贝贝早到40分,星星到达 时,贝贝在他的后面10千米处。星星每小时行 千米。
61
★★★
三、解答题
17
食堂第一次运来6袋大米和5袋面粉,一共重360千克;第二次
又运来8袋大米和5袋面粉,一共重440千克。每袋大米和每袋 面粉各重多少千克?
子中各取一个球放入这个盒子;……如此继续,当第2017位小朋友
放完后,A、B、C、D、E五个盒子中各放有几个球?
44
五年级训练题(三)
45
★★ 一、选择题 01 下列说法正确的是(
)。
A. 一个分数的分母越小,它的分数单位就越小
2016年希望杯初赛真题及解析(五年级)
第十四届小学“希望杯”全国数学邀请赛五年级 第1试试题一、 以下每题6分,共120分.1. 计算: 20.16322.016680⨯+⨯=______.【答案】2016【考点】乘法巧算【解析】2.016320 2.0166802.016(320680)2.01610002016⨯+⨯=⨯+=⨯= 2. 小猫咪A 、B 、C 、D 、E 、F 排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后再到队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是______.【答案】B【考点】周期问题【解析】观察发现,A 、B 、C 、D 、E 、F 为一组不断重复出现,因此是以6为周期的周期现象,2786=46÷……2,因此最后一个领到鱼干的小猫咪是B .3. 某房间内的一堵墙上挂有一面镜子,且这堵墙的对面有一块电子表,李明从镜子中看到电子表显示的时间如图2所示,则此时的实际时间是______.【答案】2:55【考点】电子钟表【解析】从镜子看到的是22:50,通过反射原理,结果是2:55.4. 如果自然数a 、b 、c 、d 、e 除以6都余4,则a b c d +++除以3,所得的余数是______.【答案】1【考点】带余除法【解析】a 、b 、c 、d 的余数都是4,则444416,+++=163=51÷……5. 三位偶数A 、B 、C 、D 、E 满足A <B <C <D <E,若4306A B C D E ++++=,则A 最小是______.【答案】326【考点】偶数,最值问题【解析】A 最小,则B 、C 、D 、E 要尽可能的最大,最大的三位偶数分别为998,996,994,992,所以4306998996994992326A =----=.6. 将100按“加15,减12,加3,加15,减12,加3,……”的顺序不断重复运算,运算26步后,得到的结果是______.(1步指每“加”或“减”一个数).【答案】151【考点】周期问题【解析】100一直按照“加15,减12,加3”的顺序进行运算,151236-+=,把每3步看为一组,每组都能使结果加3,263=82÷……,最后的结果为100861512151+⨯+-=.7. 如图3,若每个小正方形的边长是2,则图中的阴影面积是______.【答案】72【考点】复杂几何,巧求面积【解析】运用平移法,最后阴影部分有18个小正方形,每个小正方形的边长为2,所以阴影部分的面积是2218=72⨯⨯.8. 某商店的同种点心有大小两种包装礼盒,大盒85.6元1盒,内有点心32块,小盒46.8元一盒,内有点心15块.若王雷用654元买了9盒点心,则他可得点心____块.【答案】237【考点】经济问题,方程法解应用题【解析】王雷用654元买了9盒蛋糕,设大盒买了x 盒,则小盒买了(9)x -盒.85.646.8(9)65438.8232.86x x x x ⨯+⨯-===所以大盒礼盒买了6盒,小盒礼盒买了3盒.总共有点心326153237(.⨯+⨯=块)9. 如图4,在梯形ABCD 中,若AB =8,DC =10,15BCM S ∆=,则梯形ABCD 的面积是______.【答案】45【考点】梯形面积【解析】101525AMD BCM S S ∆+=+=,所以梯形的高252105h =⨯÷=,梯形的面积是(810)5245.+⨯÷=10. 两个数的最大公约数和最小公倍数分别是3和135,则这两个数的差最小是______.【答案】12【考点】数论,最大公约数,最小公倍数.【解析】最大公约数和最小公倍数分别是3和135,1353=45÷,45=335⨯⨯,差最小是3(95)12,⨯-=则这两个数的差最小是12.11. 14袋糖果每袋的平均重量经四舍五入到小数小数点后第一位等于90.2克.若每袋糖果的重量都是整数,则这14袋糖果的总重量是_______克.【答案】1263【考点】数论,最大公约数,最小公倍数.【解析】90.2141262.8⨯=,所以总总量1263克.12. 从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是_______.【答案】3333【考点】位值原理,平均数问题【解析】从5个数中任意选取4个数,总共有5432=120(⨯⨯⨯种)可能,根据位值原理,千位上的数的和为(12345)241000360000,++++⨯⨯=百位上的数的和为(12345)2410036000,++++⨯⨯=十位上的数的和为(12345)24103600,++++⨯⨯=个位上的数的和为(12345)24360,++++⨯=所以平均数为(360+3600+36000+360000)1203333÷=.13. 某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A 、B 两人各自答题,得分之和是58,A 比B 多得14分,则A 答对_______道题.【答案】8【考点】和差倍问题,鸡兔同笼,方程法解应用题【解析】A 得分:(5814)236+÷=(分),设A 答对x 道题.52(10)368x x x --==,,所以A 答对8道题.14. 如图5,若60ABCD S =长方形平方米,4XYZR S =长方形平方米,则EFGH S =______平方米.【答案】32【考点】复杂几何【解析】观察发现,11112222EFR AFRE EDH EDHZ HGY HCGY GFX GBFX S S S S S S S S ∆∆∆∆====,,,, 所以11()=(604)43222EFGH ABCD XYZR XYZR S S S S =-+-+=(平方米). 15. 有一个三位数A ,在它的某位数字的前面添上小数点后得到数B ,若478.8A B -=,则A =_______.【答案】532【考点】差倍问题【解析】A 在添了小数点之后与原来的差为一位小数,所以小数点向添在了个位与十位之间,数字缩小了10倍,设原来的数A 为x ,0.1478.8,532x x x -==.16. 商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍,如果每天卖出30个西瓜和20个柚子,3天后,西瓜个数比柚子个数的4倍少26,则商店里原有______个柚子.【答案】176【考点】和差倍问题【解析】每天卖出西瓜30个,柚子20个,3天后共卖出西瓜90个,柚子60个.s 原来西瓜个数是柚子个数的3倍,设柚子个数为x ,则西瓜为3x390(60)426,390424026,176x x x x x -=-⨯--=--=所以原来有柚子176个.17. 已知a 、b 、c 是3个彼此不同的质数,若37a b c +⨯=,则a b c +-最大是______.【答案】32【考点】质数,最值问题【解析】a 、b 、c 是3个彼此不同的质数,符合题意的有:27537;317237;1113237;237237;313237+⨯=+⨯=+⨯=+⨯=+⨯=a b c +-最大,则a =31,b =3,c =2, 32a b c +-=.18. 李双骑车以320米/分钟的速度从A 地驶向B 地,途中因自行车故障推车继续向前步行,5分钟到距B 地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B 地,到达B 地时,比预计时间多用17分钟,则李双推车步行的速度是_____.【答案】72【考点】行程问题,方程解应用题【解析】设步行推车的路程为x ,比预计时间多用17分钟,而其中有15分钟是修车时间,实际上行车时间只比预计多2分钟,可列以下方程:320 1.5480/(1800)320251800480(1800)320 6.75360x x x ⨯=+÷+=+÷+÷==(米分钟)推车步行的速度是360572÷=(米/分钟)。
2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第2试)
2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第2试)一、填空题(每题5分,共60分).1.(5分)10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)= .2.(5分)小磊买3块橡皮,5支铅笔需付10.6元,若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是元.3.(5分)将1.41的小数点向右移动两位,得a,则a﹣1.41的整数部分是.4.(5分)定义:m⊗n=m×m﹣n×n,则2⊗4﹣4⊗6﹣6⊗8﹣…﹣98⊗100= .5.(5分)从1~100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是.6.(5分)如图,四边形ABCD是正方形,ABGF和FGCD都是长方形,点E在AB 上,EC交FG于点M.若AB=6,△ECF的面积是12,则△BCM的面积是.7.(5分)在一个除法算式中,被除数是12,除数是小于12的自然数,则可能出现的不同余数之和是.8.(5分)如图,是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方形垒成的,则这个几何体的体积最小是.9.(5分)正方形A、B、C、D的边长依次是15,b,10,d(b,d都是自然数),若它们的面积满足SA =SB+SC+SD,则b+d= .10.(5分)根据图所示的规律,推知M= .11.(5分)一堆珍珠共6468颗,若每次取质数颗,若干次后刚好取完,不同的取法有a种;若每次取奇数颗,若干次后刚好取完,不同的取法有b种,则a+b= (每次取珍珠的颗数相同)12.(5分)若A是质数,并且A﹣4,A﹣6,A﹣12,A﹣18也是质数,则A= .二、解答题(每题15分,共60分).13.(15分)张强骑车从公交的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟.若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?14.(15分)如图,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,则五边形EFGHI的面积是.15.(15分)定义:[a]表示不超过数a的最大自然数,如[0.6]=0,[1.25]=1.若[5a﹣0.9]=3a+0.7,则a的值.16.(15分)有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?2016年第十四届小学“希望杯”全国数学邀请赛试卷(五年级第2试)参考答案与试题解析一、填空题(每题5分,共60分).1.(5分)10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)= 0.25 .【分析】根据除法的性质a÷(b÷c)=a÷b×c以及乘法的交换律与结合律简算即可.【解答】解:10÷(2÷0.3)÷(0.3÷0.04)÷(0.04÷0.05)=10÷2×0.3÷0.3×0.04÷0.04×0.05=(10÷2)×(0.3÷0.3)×(0.04÷0.04)×0.05=5×1×1×0.05=0.25故答案为:0.25.【点评】仔细观察算式特点,通过转化的数学思想,使复杂的问题简单化.2.(5分)小磊买3块橡皮,5支铅笔需付10.6元,若他买同品种的4块橡皮,4支铅笔需付12元,则一块橡皮的价格是 2.2 元.【分析】根据“3块橡皮,5支铅笔需付10.6元;”知道买12块橡皮和20支铅笔需付的钱数,再根据“他买同品种的4块橡皮,4支铅笔需付12元.“可求出他买同品种的20块橡皮,20支铅笔的总钱数;两数相减就是8块橡皮的钱数,那问题即可解决.【解答】解:解:(12×5﹣10.6×4)÷(5×4﹣3×4)=(60﹣42.4)÷8=17.6÷8=2.2(元);答:每每块橡皮2.2元.故答案为:2.2.【点评】解答除以的关键是,合理利用题中的条件,构造新的数量关系,列式解答即可.(5分)将1.41的小数点向右移动两位,得a,则a﹣1.41的整数部分是139 .3.【分析】将1.41的小数点向右移动两位就变成141,再用141减1.41求出差,从而得出其整数部分即可.【解答】解:将1.41的小数点向右移动两位是141,即a=141,a﹣1.41=141﹣1.41=139.59,139.59的整数部分是139.故答案为:139.【点评】解决本题关键是掌握小数点移动的规律:一个小数的小数点向左移动一位,这个小数就缩小了10倍;移动两位,这个小数就缩小了100倍;移动三位,这个小数就缩小了1 000倍…;同理,如果一个小数的小数点向右移动一位,这个小数就扩大了10倍;移动两位,这个小数就扩大了100倍;移动三位,这个小数就扩大了1 000倍….4.(5分)定义:m⊗n=m×m﹣n×n,则2⊗4﹣4⊗6﹣6⊗8﹣…﹣98⊗100= 9972 .【分析】m⊗n=m×m﹣n×n=m2﹣n2【解答】解:原式=2⊗4﹣4⊗6﹣6⊗8﹣…﹣98⊗100=(22﹣42)﹣(42﹣62)﹣(62﹣82)﹣…﹣(982﹣1002)=22﹣42﹣42+62﹣62+82﹣…﹣982+1002=1002+22﹣42﹣42=10000+4﹣16﹣16=9972故答案为:9972.【点评】充分理解新定义,注意数列的加减抵消.同时注意每一个符号都是“﹣”.计算过程中添加括号减少失误率.注意此题并不需要平方差公式展开.5.(5分)从1~100这100个自然数中去掉两个相邻的偶数,剩下的数的平均数是50,则所去掉的两个数的乘积是5624 .【分析】首先求出从1~100这100个自然数的和是多少,再用剩下的数的平均数乘100﹣2,求出剩下的数的和是多少,进而求出去掉的两个数是多少;然后把去掉的两个数相乘即可.【解答】解:(1+2+…+99+100)﹣50×(100﹣2)=(1+100)×100÷2﹣4900=5050﹣4900=150因为去掉的两个数是相邻的偶数,所以去掉的两个数是:74、76,所以去掉的两个数的乘积是:74×76=5624故答案为:5624.【点评】此题主要考查了平均数问题,要熟练掌握,解答此题的关键是分别求出从1~100这100个自然数的和、剩下的数的和各是多少.6.(5分)如图,四边形ABCD是正方形,ABGF和FGCD都是长方形,点E在AB 上,EC交FG于点M.若AB=6,△ECF的面积是12,则△BCM的面积是 6 .【分析】可以先利用线段之间的比例,求得面积比,FM和MG的比例,可以通过三角形ECF的面积求得.【解答】解:根据分析,由△ECF的面积是12,可知,×FM×BG+×FM×CG=12,⇒×FM×(BG+GC)=×FM×BC=12⇒FM=,⇒MG=6﹣4=2,∴△BCM的面积:△ECF的面积=MG:FM=2:4=1:2,∴△BCM的面积=△ECF的面积=×12=6.故答案是:6【点评】本题考查了三角形的面积,突破点是:利用线段之间的比例,求得面积比,FM和MG的比例,可以通过三角形ECF的面积求得.7.(5分)在一个除法算式中,被除数是12,除数是小于12的自然数,则可能出现的不同余数之和是15 .【分析】被除数÷除数=商…余数,除数是小于12的自然数.0不能做除数,从1到11分类枚举.1,2,3,4,6都是12的因数余数为0,然后枚举其他除数.【解答】解:因为1,2,3,4,6是12的因数,所以余数为0,12÷5=2…2,12÷7=1…5,12÷8=1…4,12÷9=1…3,12÷10=1…2,12÷11=1…1,则不同余数相加为5+4+3+2+1=15.故答案为:15.【点评】本题需要特别注意的是说不同余数的和.不是所有余数的和,因此出现两个2只能加1个.8.(5分)如图,是某几何体从正面和左面看到的图形,若该几何体是由若干个棱长为1的正方形垒成的,则这个几何体的体积最小是 6 .【分析】首先分析图中的2个方块的位置,左视图中在左边是正视图是在第四个位置,需要同时满足这2个条件即可.【解答】解:依题意可知:画出俯视图的一种:在4号木块上是有2个木块即可满足条件.那么这个几何体的最小体积就是6块,1×6=6.故答案为:6【点评】本题考查对三视图的理解和分析,关键是找到图中的2个木块的位置.问题解决.9.(5分)正方形A、B、C、D的边长依次是15,b,10,d(b,d都是自然数),若它们的面积满足SA =SB+SC+SD,则b+d= 13或15 .【分析】按题意,则有:SA =SB+SC+SD⇒152=b2+102+d2,故可以求得b和d的平方和,根据b和d是自然数,可以得到b和d的值,从而求得b+d的值.【解答】解:根据分析,SA =SB+SC+SD⇒152=b2+102+d2,⇒b2+d2=125,∵b和d是自然数,∴①b=2,d=11,b+d=13;②b=10,d=5,b+d=15,故答案是:13或15.【点评】本题考查了等积变形,本题突破点是:可以求得b和d的平方和,根据b和d是自然数,可以得到b和d的值,从而求得b+d的值.10.(5分)根据图所示的规律,推知M= 1692 .【分析】首先发现数字的规律是数字和的关系,每一个方块都是前面所有的圆圈与12的和.根据这个规律即可求解.【解答】解:依题意可知:首先看规律是12+3=15;15+5=20;…每一个方块加上圆圈就是下一各数字.同时发现20=12+3+527=12+3+5+7规律总结圆圈的数字是以3为首项的公差为2的等差数列,每下一个方块就是之前的所以数字和.M=12+3+5+7+9+11+ (81)项数为+1=40.M=12+=12+84×20=1692故答案为:1692【点评】本题考查对数字规律的理解与运用,关键是发现数字和的规律结合等差数列.同时注意求项数时有加1,问题解决.11.(5分)一堆珍珠共6468颗,若每次取质数颗,若干次后刚好取完,不同的取法有a种;若每次取奇数颗,若干次后刚好取完,不同的取法有b种,则a+b= 13 (每次取珍珠的颗数相同)【分析】由于每次取珍珠的颗数相同,若干次正好取完,则取的个数是6468的因数,可先将6468分解质因数后,根据因数中质数与奇数的多少,即可确定分别有多少种取法,进而求出共有多少种取法.【解答】解:6468=2×2×3×7×7×11.由此可知,6468的因数中质数有2,3,7、11.则若每次取质数颗,若干次后刚好取完,不同的取法有4种.又3×7=21,3×7×7=147,7×7=49,7×7×11=539,3×7×7×11=1617,则若每次取奇数颗,若干次后刚好取完,不同的取法有9种:每次分别取:1、3,7,11,21,49,147,539,1617颗.则a+b=4+9=13.故答案为:13.【点评】首先将6468分解质数是完成本题的关键.完成本题要注意确定6468奇数因数的个数.12.(5分)若A是质数,并且A﹣4,A﹣6,A﹣12,A﹣18也是质数,则A= 23 .【分析】首先分析100以内的质数,2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97.共25个,找到数字相差2的A﹣4,A﹣6质数工有多少组.再找出数字A.A﹣4相差4和相差6的.最后找到一定是大于18的质数.【解答】解:依题意可知:A﹣18是质数,所以A>18,A﹣6>12,A﹣4>14枚举出相差2符合题意的质数共有(17,19),(29,31),(41,43),(59,61),(71,73)五组.∵A﹣4与A相差4,把组合中较大的数字加上4是质数则符合题意.∴19+4=23(符合),31+4=35(不符合),43+4=47(符合),61+4=65(不符合),73+4=77(不符合).∵A﹣6与A﹣12相差6,较小的数字减去6还是质数.17﹣6=11(符合),41﹣6=35(不符合).同时满足A﹣18也是质数,与A﹣12相差6,11﹣6=5(符合条件).∴A,A﹣4,A﹣6,A﹣12,A﹣18是23,19,17,11,5.故答案为:23.【点评】100以内的质数是重点考察内容,然后根据其中一个条件相差2的质数能够筛选出很多不符合的数字,在根据条件一步一步筛选,.在接下来的计算中比较容易枚举.同时不要忘记检验.二、解答题(每题15分,共60分).13.(15分)张强骑车从公交的A站出发,沿着公交路线骑行,每分钟行250米,一段时间后,一辆公交车也从A站出发,每分钟行450米,并且每行驶6分钟需靠站停1分钟.若这辆公交车出发15分钟的时候追上张强,则该公交车出发的时候,张强已经骑过的距离是多少米?【分析】首先分析公交车的周期时间是7分钟,然后把公交车的时间和距离对比张强的时间和距离,做差即可求解.【解答】解:依题意可知:公交车每7分钟比张强多行驶(450﹣250)×6﹣250×1=950(米);因为15÷7=2…1(分).公交车行驶2次后再行1分钟即可追上张强.所以该公交车出发时,张强行驶的距离为:950×2+(450﹣250)=2100(米);另解再15分钟内张强骑行了:250×15=3750(米);公交车实际行驶了15﹣2=13(分),行驶的距离是450×13=5850(米).再这个时间公交车落后张强5850﹣3750=2100(米);答:该公交车出发的时候,张强已经骑过的距离是2100米.【点评】本题是考查追击问题的理解和综合运用,关键问题是找到行驶的距离.根据公交车的时间周期即可求解,问题解决.14.(15分)如图,水平方向和竖直方向上相邻两点之间的距离都是m,若四边形ABCD的面积是23,则五边形EFGHI的面积是28 .【分析】格点面积=(内部格点数+周界格点数÷2﹣1)×2,据此数出内部格点=23,可数、周界格点数,求出图中五边形的面积是多少即可.根据S四边形ABCD 知(10+5÷2﹣1)×2=23,那么五边形EFGHI的面积为(12+6÷2﹣1)×2,解决问题.【解答】解:(12+6÷2﹣1)×2=14×2=28答:五边形EFGHI的面积是28.古达安慰:28.【点评】先数出内部格点数和周边的格点数,然后根据毕克定理:(内部格点数+周界格点数÷2﹣1)×2求解.15.(15分)定义:[a]表示不超过数a的最大自然数,如[0.6]=0,[1.25]=1.若[5a﹣0.9]=3a+0.7,则a的值.【分析】理解新定义的意义,[5a﹣9]在两个相邻整数之间,即3a+0.7≤5a﹣0.9≤3a+1.7【解答】解:3a+0.7≤5a﹣0.9≤3a+1.73a+1.6≤5a≤3a+2.61.6≤2a≤2.60.8≤a≤1.3∴2.4≤3a≤3.93.1≤3a+0.7≤4.6∵3a+0.7是整数3a+0.7=4a=1.1综上所述:a=1.1【点评】充分理解新定义.放在两个自然数中间找出a的范围.16.(15分)有4个书店共订400本《数理天地》杂志,每个书店订了至少98本,至多101本,问:共有多少种不同的订法?【分析】4个书店共订400本,每个书店订了至少98本,至多101本,可以先每个书店分98本,余下8本再分给这4个书店.【解答】解:先每个书店分98本,还余下8本,为题转化为把8本书分给4个书店,每个书店可以分0、1、2、3本,可能的分配情况有:这4类,①3、3、2、0分配情况有×=12种,②3、3、1、1分配情况有=6种,③3、2、2、1分配情况有×=12种,④2、2、2、2分配情况有1种,所以共有:12+6+12+1=31种订法,共有31种不同的订法.【点评】把分400本书转化成分8本书,有利于简化分析问题.。
2016第十四届希望杯2试_五年级解析
3/5
资料下载、家长交流、信息分享权威论坛:
左斜侧方圆圈中数之和. M 12 3 5 7 81
12 3 81 40 2
12 1680 1692
11. 一堆珍珠共 6468 颗, 若每次取相同的质数颗, 若干次后刚好取完, 不同的取法有 a 种; 若每次取相同的奇数颗,若干次后刚好取完,不同的取法有 b 种,则 a b _________. 【答案】16 【考点】分解质因数 【解析】 6468 2 2 7 7 3 11 ,其中质数有:2、3、7、11,即取法有 4 种, a 4 ;其 中奇数有: 1、 3、 7、 11、3 7 、3 11 、7 7 、7 11 、3 7 7 、3 7 11 、7 7 11 、 3 7 7 11 ,即取法有 12 种, b 12 ;所以, a b 4 12 16 .
【答案】0.25 【考点】计算 【解析】 10 2 0.3 0.3 0.04 0.04 0.05
10 2 0.3 0.3 0.04 0.04 0.05 10 2 0.05
0.25
2.
小磊买 3 块橡皮, 5 支铅笔需付 10.6 元.若他买同品种的 4 块橡皮, 4 支铅笔需付 12 元, 则一块橡皮的价格是_________元. 【答案】2.2 元 【考点】消去问题 【解析】 3 橡+5 铅=10.6 元 4 橡+4 铅=12 元 橡+铅=3 元 橡-铅=1.4 元 橡皮: 3 1.4 2 2.2 (元)
小书灯家长社区整理发布 让家长无忧·让学习无忧
4பைடு நூலகம்5
资料下载、家长交流、信息分享权威论坛:
2024年希望杯五年级竞赛数学试卷培训题含答案
2024年希望杯五年级竞赛数学试卷培训题1 .计算:.2 .计算:.3 ..4 ..5 .在横线上填上“”“”或“”.6 .已知:,则.7 .现定义一种新运算“”:,则.8 .表示的整数部分,如:,.计算:.9 .小强在计算除法时,把除数写成,结果得到的商是且余数是,正确的商是,余数是.10 .小虎在计算时,先算了减法,最后得到的结果是,正确的计算结果应该是.11 .在的两个里填入相同的数,使等式成立,里应填.12 .一个数的小数点向右移动一位后,比原来的数大,原来的数是.13 .循环小数小数点后第位数字是.14 .把化成小数,小数点后面第位上的数字是.15 .请你根据题图所示向日葵上的数字规律,在方框中填入正确的数字.16 .在一个四位数的前、后分别加上,组成两个五位数.若这两个五位数相差,则.17 .王冬有存款元,张华有存款元.王冬每月存元,张华每月存元,个月后张华的存款才能和王冬的一样多.18 .,要使商的中间有,里可以填.19 .题图算式中的,,分别代表不同的数字.式中的,和分别表示,和的倒置数字(如的倒置数字是,的倒置数字还是).那么是,是,是.20 .请把图中的除法竖式补充完整.21 .这个自然数的和是三位数,且这个三位数各个数位上的数字相同,则.22 .九位数能被中任何一个自然数整除,且数字、、互不相同,则三位数.23 .一个自然数的个位数字是,将这个移动到最左边,得到的新数恰好是原数的倍.原数最小是.24 .已知三个最简真分数的分母分别为,和,它们的乘积是.则这三个最简真分数中,最大的数是.25 .在等差数列1,8,15,22,29,36,43,…中,如果前个数乘积的末尾0的个数比前个数乘积的末尾0的个数少3个,那么最小是 .26 .是的倍数,则.27 .有一篮鸡蛋,每次取出个,最后剩下个,如果每次取出个或个,最后都剩下个,篮子里的鸡蛋至少有个.28 .自然数除以的余数是,则除以的余数是.29 .Given and are two non-zero digits and the digit numbers formed by these two digits have the following properties:.can be expressed by a product of and;.is a square number;Find the digit number.已知和为两个非零数位.且利用这两个数位组成的两位数有以下性质:.可以被写成和的积;.是个平方数;求两位数.30 .快速公交路线有四个站点,把这四个站点两两之间的距离从小到大排列,分别是:,,,,,,则“”.31 .有个因数且能被整除的最小自然数是.32 .从开始做乘法:,当乘到时,乘积的末尾有个连续的.33 .的计算结果末尾有个.34 .一个正整数与的积是一个完全平方数,则的最小值是.35 .,都是非零自然数.如果是的倍,那么和的最大公因数是;如果,那么和的最小公倍数是.36 .已知存在三个小于的自然数,它们的最大公因数是,且两两不互质,将这三个数相加,最大可能是.37 .定义,则有个因数.38 .选一选..A..B..C..D..E.39 .九张卡片上分别写有数,,,,,,,,(不能倒过来看).甲,乙,丙,丁四人分别抽取了其中两张:甲说:“我拿到的两个数互质,因为它们相邻.”乙说:“我拿到的两个数不互质,但也不是倍数关系.”丙说:“我拿到的两个数都是合数,但它们却互质.”丁说:“我拿到的两个数是倍数关系,它们不互质.”如果这四人说的都是真话,那么剩下的一张卡片上写的数是.40 .用、、、四个数字可以组成个双数,其中最大的是.(每个数字都要用且不重复)41 .将一个能被整除的三位数的首、末数字交换后,还是三位数,原数的倍也是三位数,原数的后两位数字的和是的约数,满足条件的最大的三位数是.42 .如图,大长方形被两条互相垂直的线段分成了四个小长方形.已知四个小长方形面积均为整数,其中两块面积分别为和.大长方形面积最大是.(注:图中各部分大小并不代表其面积大小关系)43 .如图,正方形的面积是,是中点,连接、交于点.是中点,连接并延长交于点.阴影部分的面积是.44 .如图,分别以一个正六边形的顶点和各边的中点为圆心,以正六边形的边长为直径画了个圆和个半圆.若阴影部分的面积和是,那么正六边形内部的阴影面积是.45 .正方形的面积是,,,,是正方形各边的中点,那么阴影部分的总面积是.46 .如图,在四边形中,,分别是,边的三等分点.已知四边形的面积是平方厘米,求四边形的面积是平方厘米.47 .如图所示,如果一块正方形土地的两边各增加米,面积将增加平方米.原来正方形的面积是平方米.48 .如图,两个正方形并排放在一起,、、在同一条直线上,大正方形边长为厘米,小正方形边长为厘米,那么阴影三角形的面积为平方厘米.49 .下图中,平行四边形的面积是,点是线段的中点.三角形的面积是.50 .如图,若大正方形的周长是,小正方形的周长是,则蓝色阴影部分的面积是.51 .正方形的边长为,,,是对角线的四等分点.图中阴影部分的总面积是.52 .学校校园里有一块宽为米的长方形空地,后勤部门准备从空地中划分出一块米宽的形区域作为绿植区,剩下的部分作为休闲区,而且休闲区和绿植区的面积刚好相等,如图所示(单位:米).那么这块空地的面积是平方米.53 .如图所示,梯形的面积为平方厘米,,厘米,厘米,又已知于点,那么阴影部分的总面积为平方厘米.54 .如图,长方形中有四个完全相同的直角三角形,这四个直角三角形的面积总和是.55 .鲁西西最近爱上了折纸,她发现如果把折纸按照图中的样子翻折一下,以直线为折痕将点翻折到,,.当阴影部分的面积与空白部分的面积相等时,如果知道折纸的面积就能算出折痕的长度.如果鲁西西的这张折纸(正方形)的面积是平方厘米,折痕厘米.56 .如图,长方形的广告牌长为,宽为,,,,分别在四条边上,并且比低,在的左边,四边形的面积是.57 .如图的一个骰子,其中对面的数字之和等于,首先将骰子如图放置,然后将骰子向右滚动次,再向前滚动次,此时面朝上.58 .,它一定是由个相同大小的正方体摆成的.59 .一个正方体木块,棱长是,从它的八个顶点处各截去棱长分别是、、、、、、、的小正方体.这个木块剩下部分的表面积最少是.60 .如图,在一个棱长为厘米的正方体密闭容器的下底固定了一个实心圆柱体,容器内盛有一定量的水且水面恰好经过圆柱体的上底面.如果将容器倒置,圆柱体有厘米露出水面.已知圆柱体的底面积是正方体底面积的,则实心圆柱体的体积为立方厘米.61 .琳琳、彤彤各带一些钱去书店,她们看上了一本元的书.如果这元由琳琳出,则琳琳剩下的钱是彤彤的倍;如果这元由彤彤出,琳琳的钱是彤彤剩下的钱的倍.那么开始时琳琳带了元,彤彤带了元.62 .一片牧场,每天草的生长速度相同,这片牧场可供头牛吃天,或者可供只羊吃天.如果只羊的吃草量相当于头牛的吃草量,那么头牛和只羊一起吃这片牧场上的草,可以吃天.63 .大黄蜂从赛博坦星球飞往潘多拉星球,原计划每小时行驶万千米,实际途中遇到电子风暴,只有一半的路程能按原计划的速度行驶,其余路程每小时行驶万千米,结果比原计划推迟了小时抵达潘多拉星球.赛博坦星球到潘多拉星球的路程是万千米.64 .张强晚上六点多外出锻炼身体,此时时针与分针的夹角;回家时还未到七点,此时时针与分针的夹角仍是,则张强外出锻炼身体用了分钟.65 .一条线段上最初有个点(包含端点),第一次在每相邻的两点之间增加一个点,第二次同样在每相邻的两点之间增加一个点.这时线段上共有个点.66 .冰墩墩练习滑雪一周,其中后四天平均每天滑雪的长度比前三天平均每天滑雪的长度多千米,后三天平均每天滑雪的长度比前四天平均每天滑雪的长度多千米.冰墩墩后三天滑雪的总长度比前三天滑雪的总长度多千米.67 .个数的平均数是,如果其中一个数变为,则这个数的平均数为.原来这个数是.68 .小林和叔叔的年龄和是岁.69 .若干年后,爷爷的年龄比小高年龄的倍多岁;再过几年,爷爷的年龄比小高年龄的倍多岁,已知今年小高岁,那么爷爷今年岁(今年爷爷年龄不到岁).70 .某汽车厂同时建成两条生产线.第一条生产线第一个月生产了辆汽车,以后每个月比前一个月多生产辆;第二条生产线第一个月也生产了辆汽车,以后每半个月比前半个月生产辆.那么,该厂生产辆汽车需要个月.71 .张三、李四两人一起加工一批零件,用时天完成了任务,李四中途有事请假天.已知张三每天比李四多做个零件,且最终李四加工的零件数恰好是张三的一半.这批零件的总数是个.72 .一项工程,甲单独做天完成,乙单独做天完成,若甲先做若干天后乙接着做,共用天完成.甲做了天.73 .游艇在静水中的速度是千米时,水速是千米时,喜羊羊驾驶游艇从下游的地到上游的地,然后立即返回下游地.游艇从到的时间是从到的倍,那么.74 .一位考古学家乘坐游艇从尼罗河上游码头出发,沿河行驶米到下游,然后原路返回.水流速度是千米时,游艇逆流而上比顺流而下多用小时,那么游艇在静水中的速度是每小时千米.75 .从地球到沙拉达行星有光年(注:光年是一个长度单位).贝吉塔和孙悟空从地球出发前往沙拉达行星.贝吉塔比孙悟空先出发天,如果贝吉塔和孙悟空沿直线飞行,他们每天都能飞行光年,那么孙悟空出发天后,贝吉塔正好在孙悟空和沙拉达行星的正中间.76 .有甲、乙两个村,小王从甲村步行到乙村,小李骑摩托车从乙村与小王同时出发,并不停地往返于甲、乙两村之间,过分钟后两人第一次相遇,分钟时小李第一次追上小王,那么当小王到达乙村时,小李追上小王的次数是.77 .甲乙两车分别从、两地同时出发,相向而行,在距离地米处的地相遇.相遇后乙的速度保持不变,甲的速度变为原来一半,甲继续行驶到地后立即掉头返回.当甲再次到达地时,乙刚好第一次到达地.、两地的距离是米.78 .甲乙两站相距,某天上午,车以的速度从甲站开往乙站,当天上午时,车以每小时的速度从乙站开往甲站,那么两车在点分时相遇.79 .如图所示,一个边长为米的正方形围墙,甲、乙两人分别从两个对角处沿围墙按逆时针方向同时出发.已知甲每秒走米,乙每秒走米.至少经过秒甲才能看到乙.80 .边长为的正方形的顶点,各有一只小虫,它们同时出发沿正方形的边顺时针爬行,小虫甲每秒爬,小虫乙每秒爬,它们在顶点处转弯时都需要耗秒.经过秒其中一只小虫将首次追上另一只小虫.81 .在校运动会上,三班参加跳绳比赛的有人,参加踢毽比赛的有人,那么参加这两项比赛的最多有人,最少有人.82 .数一数,下图一共有个“☆”.83 .如图,若干边长为的小等边三角形组成一个边长为的大等边三角形.现在每个小三角形的顶点涂上黑色或白色,可以按照任意顺序涂色.如果某个小三角形有两个顶点的颜色相同,那么第三个顶点涂黑色;否则第三个顶点涂白色.完成涂色后的大三角形有种不同的样式.(不可旋转、翻转)84 .用三种颜色去涂如图所示的三块区域,要求一个区域中只能涂一种颜色,相邻区域涂不同颜色,那么共有种不同的涂法.86 .从以内的个质数中任取两个构成真分数,这样的真分数有个.87 .池塘中片莲叶如下图排列.青蛙在莲叶间跳跃,每次只能从一片莲叶跳到相邻的另一片莲叶.一只青蛙盘算着从其中一片莲叶上起跳,连跳步,那么它有种不同的跳法.88 .数一数,下图中共有个梯形.89 .图中共有个平行四边形.90 .如图,在的网格中,每一个小正方形的面积为,点可以是每个小正方形的顶点,则满足的点的个数是.91 .把本书分给某班学生,不论怎么分总有一个学生至少分到本,那么这个班最多有人.92 .桌上有编号至的张卡片,小明每次取出张卡片,要求一张卡片的编号是另一张卡片的倍多,则小明最多取出张卡片.93 .果蔬王国正在举行国王竞选,全国人每人投票,从番茄勇士、香蕉超人、胡萝卜博士中选择人,票数最多的人当选.截至目前番茄勇土得票,香蕉超人得票,胡萝卜博士得票.那么,番茄勇士至少再得票就能够保证当选国王.94 .找规律填数.95 .一列慢车长米,一列快车长米,如果两车在并行的轨道上同向而行,从快车追上慢车到快车超过慢车要秒,如果两车相向而行,从两车相遇到完全错开要秒.慢车的速度是米秒.96 .小明手里有一盒棋子,最初盒子里全是白子.他先取出颗白子,然后放入颗黑子,再取出颗白子,再放入颗黑子.此时小明发现盒子里的白子恰好是黑子颗数的一半,那么最初盒子里有颗白子.97 .在六位数的某一位数字后面再插入一个同样的数字(例如,可以在的后面插入得到),这样得到的七位数最大是,最小是.98 .从、、、、、、、、这串奇数中至少取个数,才能保证其中一定有两个数之和是.99 .左图的表格中分别填入了,我们把对角相邻的两个数同时加上或同时减去一个相同的数叫做一次操作(如和同时加,变成和),经过若干次操作得到右图,那么和的乘积是.100 .将数字填入空白方格中,使得每一行、每一列、每个粗线围成的区域数字都只恰好出现一次,那么最下面的一行个数字组成的位数是.2 、【答案】3 、【答案】4 、【答案】5 、【答案】6 、【答案】7 、【答案】8 、【答案】9 、【答案】10 、【答案】11 、【答案】12 、【答案】略13 、【答案】14 、【答案】15 、【答案】.16 、【答案】17 、【答案】18 、【答案】,,,,19 、【答案】20 、【答案】.21 、【答案】22 、【答案】23 、【答案】24 、【答案】25 、【答案】 10826 、【答案】27 、【答案】28 、【答案】29 、【答案】.30 、【答案】31 、【答案】34 、【答案】35 、【答案】36 、【答案】37 、【答案】38 、【答案】 DECAB39 、【答案】40 、【答案】41 、【答案】42 、【答案】43 、【答案】44 、【答案】45 、【答案】46 、【答案】47 、【答案】48 、【答案】49 、【答案】50 、【答案】51 、【答案】52 、【答案】53 、【答案】54 、【答案】55 、【答案】56 、【答案】57 、【答案】58 、【答案】59 、【答案】60 、【答案】61 、【答案】62 、【答案】63 、【答案】66 、【答案】67 、【答案】68 、【答案】69 、【答案】70 、【答案】71 、【答案】72 、【答案】73 、【答案】74 、【答案】75 、【答案】76 、【答案】77 、【答案】78 、【答案】79 、【答案】80 、【答案】81 、【答案】82 、【答案】83 、【答案】84 、【答案】85 、【答案】86 、【答案】87 、【答案】88 、【答案】89 、【答案】90 、【答案】91 、【答案】92 、【答案】93 、【答案】94 、【答案】95 、【答案】97 、【答案】98 、【答案】99 、【答案】100 、【答案】。
2022年教学教材第14届希望杯五年级第1试模拟练习及参考答案配套精选卷
2021年第14届希望杯五年级第1试试题一、填空题。
1、计算:×32+×680=。
2、小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后再到队尾继续排队,直到鱼干发完,假设猫妈妈有278条鱼干,那么最后一个领到鱼干的小猫咪是。
3、某房间内的一堵墙上挂有一面镜子,且这堵墙的对面有一块电子表,李明从镜子中看到电子表显示的时间如图2所示,那么此时的实际时间是。
4、如果自然数a,b,c,d除以6都余4,那么a+b+c+d除以3,所得的余数是。
5、三位偶数A、B、C、D、E满足A<B<C<D<E,假设A+B+C+D+E=4306,那么A最小是。
6、将100按“加15,减12,加3,加15,减12,加3,……〞的顺序不断重复运算,运算26步后,得到的结果是。
〔1步指每“加〞或“减〞一个数〕7、如图3,假设每个小正方形的边长是2,那么图中阴影局部的面积是。
8、某商店的同种点心有大小两种包装礼盒,大盒元1盒,内有点心32块,小盒元1盒,内有点心15块。
假设王雷用654元买了9盒点心,那么他可得点心块。
9、如图4,在梯形ABCD中,假设AB=8,DC=10,S△AMD=10,S△BCM=15,那么梯形ABCD的面积是。
10、两个数的最大公因数和最小公倍数分别是3和135,那么这两个数的差最小是。
11、14袋糖果每袋的平均重量经四舍五入到小数点后第一位等于克,假设每袋糖果的重量都是整数,那么这14袋糖果的总重量是。
12、从数字1,2,3,4,5中任意取4个组成四位数,那么这些四位数中的平均数是。
13、某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分。
A、B 两人各自答题,得分之和是58,A比B多得14分,那么A答对道题。
14、如图5,假设S正方形ABCD=60平方米,S长方形XYZR=4平方米,那么S四边形EFGH=平方米。
15、有一个三位数A,在它的某位数字的前面添上小数点后得到数B,假设A—B =,那么A=。
“希望杯”全国数学邀请赛真题五年级.docx
“希望杯” 全国数学邀请赛真题(五年级)第一届小学“希望杯”五年级第 1 试一、填空题1.计算= _______ 。
2.将 1、 2、3、 4、 5、 6 分别填在图中的每个方格内,使折叠成的正方体中对面数字的和相等。
3.在纸上画 5 条直线,最多可有 _______ 个交点。
4.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是______ ,温差最大的景区是______ 。
5.,各表示一个两位数,若和它的反序数+=139,则=_______ 。
6.三位数的差被 99 除,商等于 _______ 与 _______ 的差。
7.右图是半个正方形,它被分成一个一个小的等腰三角形,图 2 中,正方形有 _______ 个,三角形有 _______ 个。
8.一次智力测验,主持人亮出四块三角形的牌子:在第 (4) 块牌子中,?表示的数是_______ 。
9.正方形的一条对角线长 13 厘米,这个正方形的面积是平方厘米。
10. 六位自然数 1082□□能被 12 整除,末两位数有种情况。
11. 右边的除法算式中,商数是。
第1页共87页12.比 2/3 大,比 3/4 小的分数有无穷多个,请写出三个:。
、B、C、D、E 五位同学进行乒乓球循环赛,比赛进行了一段时间后, A 赛了 4 场, B 赛了 3 场, C赛了 2 场, D赛了1场,这时, E 赛了场。
14. 观察 5*2 = 5+55= 60,7*4 = 7+77+ 777+ 7777= 8638,推知 9*5 的值是。
15. 警察查找一辆肇事汽车的车牌号,一位目击者对数字很敏感,他提供情况说:―第一位数字最小,最后两位数是最大的两位偶数,前两位数字的乘积的 4 倍刚好比后两位数少 2‖。
警察此判断该车牌号可能是。
16.一个小方木块的六个面上分别写有数字2,3,5,6,7,9。
小光,小亮二人随意往桌上扔放这个木块。
规定:当小光扔时,如果朝上的一面写的是偶数,得 1 分。
2022年第十四届小学“希望杯全国数学邀请赛培训题(五年级)-
2022年第十四届小学“希望杯全国数学邀请赛培训题(五年级)-1、计算:2022+201.5+20.15+985+98.5+9.85的值。
2、201.5某2022.2022-201.6某2022.2022。
..3、(0.45+0.2)÷1.2某11。
4、计算:0.875某0.8+0.75某0.4+0.5某0.2。
第1页5、定义A&B=A某A÷B,求3&(2&1)的值。
+,它的运算规则是:a+6、定义新运算○○b=a某b+2a,求2.5+○9.6。
7、规定:a△b=(b-0.2a)(a-0.2b),a□b=ab-a+b,求5△(4□3)的值。
8、在下面的每个方框中填入符号“+”,“-”,“某”,“÷”中的一个,且每个符号恰用一次,使计算结果最小。
300□9□7□5□3第2页9、a,b,c都是质数,若a+b=13,b+c=28,求a,b,c的乘积。
10、若两个自然数的乘积是75,且这两个自然数的差小于15,求这两个数和的个位数字。
11、A、B都是自然数,A>B,且A某B=2022,求A-B的最大值。
第3页12、有6个连续的奇数,其中最大的奇数是最小的奇数的3倍,求这6个奇数的和。
13、有一个两位数,在它的两个数字中间添加2个0,所得到的数是原来数的56倍,求原来的两位数。
14、有一个四位数,在它的某位数字的前面添上一个小数点后,再和原来的四位数相加得2036.16,求这个四位数。
15、已知两个自然数的乘积是2022,这两个数的最小公倍数是168,求这两个数的最大公约数。
第4页16、两个数的最大公约数和最小公倍数分别是4和80,求这两个数。
17、2022的约数中,偶数有多少个?18、有6个数排成一列,从第2个数起每个数都是前一个数的2倍,且6个数的和是78.75,求第2个数。
第5页19、从左到右排列的31个数,到第16个数为止,后面一个数比前面相邻的数大3;从第16个数开始,到第31个数为止,后面的数比前面的数小4,若31个数的和是2022。
希望杯五年级历届试题与答案
2011年第九届初赛1.计算:1.25×31.3×24= 。
2.把0.123,0.1·23·,0.12·3·,0.123·按照从小到大的顺序排列:< < <。
4.如图1,从A到B,有条不同的路线。
(不能重复经过同一个点)5.数数,图2中有个正方形。
6.—个除法算式中.被除数、除数、商与余数都是自然数,并且商与余数相等若被除数是47.则除数是,余数是。
7.如果六位数2011□□能被90整除.那么它的最后两位数是。
8.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”。
那么,1000以内最大的“希望数”是。
9.将等边三角形纸片按图3所示步骤折叠3次(图3中的虚线是三边的中点的连线然后沿过两边的中点的直线减去一角(如图4)将剩下的纸片展开,平铺.得到的图形是。
10.如图5,甲、乙两人按箭头方向从A点问时出发,沿着正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E点第一次相遇,则三角形ADE的面积比EBC三角形的面积大平方米。
11.星期天早晨,哥哥和弟弟去练习跑步。
哥哥每分钟跑110米,弟弟每分钟跑80米。
弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米。
那么,哥哥跑了米。
12.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元。
那么,笔记本每个元,笔每支元。
13.数学家维纳是控制论的创始人。
在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄。
维纳的问答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0?9这10个数字全都用上了,不重也不漏。
”那么.维纳这一年岁。
(注:数a的立方等于a×a×a,数a 的四次方等于a×a×a×a)14.鸡与兔共100只,鸡的脚比兔的脚多26只。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四届“希望杯”数学邀请赛五年级1试试题
1.计算:20.16×32÷
2.016×680=________。
2.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,
领完后再到队尾继续排队领,直到鱼干发完。
若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是________。
3.某房间内的一堵墙上有一面镜子,且这堵墙的对面有一块电子表,李明从名字中看到电
子表显示的时间如图2所示,则此时的实际时间是________。
4.如果自然数a,b,c,d除以6都余4,则a+b+c+d除以3,所得的余数是________。
5.三位偶数A,B,C,D,E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小是________。
6.将100按“加15,减12,加3,加15,减12,加3,……”的顺序不断重复运算,运
算26步,得到的结果是________。
(1步指“加”或“减”一个数)
7.如图3,若每个小正方的边长是2,则图中阴影部分的面积是________。
8.某商店的同种点心有大小两种包装礼盒,大盒85.6元1盒,内有点心
32块。
小盒46.8元1盒,内有点心15块。
若王雷用654元买了9盒
点心,则他可得点心________块。
9.如图4,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△ABCM=15,
则梯形ABCD的面积是________。
10.两个数的最大公约数和最小公倍数分别是3和135,则这两个数的差最
小是________。
11.14袋糖果每袋的平均重量经四舍五入到小数点后第一位等于90.2克,若每袋糖果的重
量都是整数,则这14袋糖果的总重量是________克。
12.从数字1,2,3,4,5中任意取4个组成四位数,则这些四位数的平均数是________。
13.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分。
A、B两人各自答
题,得分之和是58,A比B多得14分,则A答对________道题。
14.如图5,若S□ABCD=60平方米,S□XYZR=4平方米,则
S□EFGH=________平方米。
15.有一个三位数A,在它的某位数字的前面添上小数点后得到数B,
若A-B=478.8,则A=________。
16.商店里有若干个柚子和西瓜,其中西瓜个数是柚子个数的3倍,如果每天卖出30个西
瓜和20个柚子,3天后,西瓜个数比柚子个数的4倍少26,则商店里原有________个柚子。
17.已知a,b,c是3个彼此不同的质数,若a+b×c=37,则a+b-c最大是________。
18.李双骑车以320米/分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行
5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用了17分钟,则李双推车步行的速度是________米/分钟。
19.如图6,将一个等腰三角形ABC沿EF对折,其中顶点A与底边的中点D
重合,若△ABC的周长是16厘米,四边形BCEF的周长是10厘米,则
BC=________厘米。
20.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需要45分
钟,20人需要20分钟,则14人修好大坝需________分钟。