三角函数周期的常用求法
求三角函数最小正周期的五种方法
求三角函数最小正周期的五种方法之邯郸勺丸创作一、定义法直接利用周期函数的定义求出周期。
例1. 求函数(m≠0)的最小正周期。
解:因为所以函数(m≠0)的最小正周期例2. 求函数的最小正周期。
解:因为所以函数的最小正周期为。
二、公式法利用下列公式求解三角函数的最小正周期。
1. 或的最小正周期。
2. 的最小正周期。
3. 的最小正周期。
4. 的最小正周期例3. 求函数的最小正周期。
解:因为所以函数的最小正周期为。
例4. 求函数的最小正周期。
解:因为,所以函数的最小正周期为。
三、转化法对较复杂的三角函数可通过恒等变形转化为等类型,再用公式法求解。
例5. 求函数的最小正周期。
解:因为所以函数的最小正周期为。
例6. 求函数的最小正周期。
解:因为其中,所以函数的最小正周期为。
四、最小公倍数法由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。
注:1. 分数的最小公倍数的求法是:(各分数分子的最小公倍数)÷(各分数分母的最大公约数)。
2. 对于正、余弦函数的差不克不及用最小公倍数法。
例7. 求函数的最小正周期。
解:因为csc4x的最小正周期,的最小正周期,由于和的最小公倍数是。
所以函数的最小正周期为。
例8. 求函数的最小正周期。
解:因为的最小正周期,最小正周期,由于和的最小公倍数是,所以函数的最小正周期为T=。
例9. 求函数的最小正周期。
sinx的最小正周期,的最小正周期,sin4x的最小正周期,由于,的最小公倍数是2。
所以函数的最小正周期为T=。
五、图像法利用函数图像直接求出函数的周期。
例10. 求函数的最小正周期。
解:函数的图像为图1。
图1由图1可知:函数的最小正周期为。
求三角函数最小正周期的五种方法
求三角函数最小正周期的五种方法一、定义法直接利用周期函数的定义求出周期;例1. 求函数m≠0的最小正周期;解:因为所以函数m≠0的最小正周期例2. 求函数的最小正周期;解:因为所以函数的最小正周期为;二、公式法利用下列公式求解三角函数的最小正周期;1. 或的最小正周期;2. 的最小正周期;3. 的最小正周期;4. 的最小正周期例3. 求函数的最小正周期;解:因为所以函数的最小正周期为;例4. 求函数的最小正周期;解:因为,所以函数的最小正周期为;三、转化法对较复杂的三角函数可通过恒等变形转化为等类型,再用公式法求解;例5. 求函数的最小正周期;解:因为所以函数的最小正周期为;例6. 求函数的最小正周期;解:因为其中,所以函数的最小正周期为;四、最小公倍数法由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得;注:1. 分数的最小公倍数的求法是:各分数分子的最小公倍数÷各分数分母的最大公约数;2. 对于正、余弦函数的差不能用最小公倍数法;例7. 求函数的最小正周期;解:因为csc4x的最小正周期,的最小正周期,由于和的最小公倍数是;所以函数的最小正周期为;例8. 求函数的最小正周期;解:因为的最小正周期,最小正周期,由于和的最小公倍数是,所以函数的最小正周期为T=;例9. 求函数的最小正周期;解:因为sinx的最小正周期,的最小正周期,sin4x的最小正周期,由于,的最小公倍数是2;所以函数的最小正周期为T=;五、图像法利用函数图像直接求出函数的周期;例10. 求函数的最小正周期;解:函数的图像为图1;图1由图1可知:函数的最小正周期为;。
高中数学解题方法系列:三角函数周期问题的3种方法
=(sin2 x+ cos2 x)(sin4 x-sin2 x·cos2 x+ cos4 x) =( sin2 x+ cos2 x)2-3 sin2 x·cos2 x =1-3 sin2 x·cos2 x =1- 3 sin22 x
cos x cos 3x
2.公式法: (1)如果所求周期函数可化为 y=Asin(x )、y=Acos(x )、
y=tg(x )形成(其中 A、 、 为常数,且 A 0、 >0、 R), 则可知道它们的周期分别是: 2 、 2 、 。
例 4:求函数 y=1-sinx+ 3 cosx 的周期
2
例 12:求函数 y=sin2x+sin3x 的周期
解:∵sin2x
的周期为
T1=
,sin3x
的周期为
T2=
2 3
而 T1
T2
=
3 2
,即是
T=2T1=3T2,
∴y=sin2x+sin3x 的周期为 T=2T1=2
例 13:求函数 y=cos x +sin x 的周期
3
4
解:∵cos x 的周期为 T1=6 ,sin x 的周期为 T2=8
的周期为 T=P2T1=P1T2,其中 P1、P2N,且(P1、P2)=1
事实上,由 T1
T2
P1 (既约分数),得 T=
P2
P2T1=P1T2
∵f(x+ P1T2)=f1(x+ P1T2)+f2(x+ P1T2) =f1(x+ P2T1)+ f2(x+ P1T2) = f1(x)+ f2(x) =f(x)
三角函数的周期公式总结
三角函数的的周期是三角函数的重要性质,下面整理了三角函数周期公式和求周期的
方法,希望能帮助到大家。
三角函数的周期公式
三角函数的周期T=2π/ω。
完成一次振动所需要的时间,称为振动的周期。
若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。
在计算机中,完成一个循环所需要的时间;或访问一次存储器所需要的时间,
亦称为周期。
周期函数的实质:两个自变量值整体的差等于周期的倍数时,两个自变量值整体的函数值相等
求三角函数的周期,若函数式比较简单,可利用定义或周期公式直接求解,若
函数式比较复杂,则需要把函数式变形后再利用定义或周期公式求解。
三角函数最小正周期
如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。
(1)y=Asin(ωx+φ)+h或y=Acos(ωx+φ)+h最小正周期T=2π/ω。
(2)y=Acot(ωx+φ)+h或y=Atan(ωx+φ)+h最小正周期T=π/ω。
(3)y=|sinωx|或y=|cosωx|的最小正周期T=π/|ω|。
(4)y=|tanωx|或y=|cotωx|的最小正周期T=π/|ω|。
三角函数的周期性质与计算方法
三角函数的周期性质与计算方法三角函数是高中数学中非常重要的内容之一,而其周期性质与计算方法更是我们需要深入了解和掌握的知识点。
本文将详细介绍三角函数的周期性质以及相关的计算方法。
一、正弦函数的周期性质与计算方法正弦函数是三角函数中最为常见的函数之一,其周期性质十分明显。
正弦函数的周期为2π,即在每个2π的正周期内,函数的值将会重复。
在计算正弦函数时,我们可以利用单位圆的概念来简化计算。
单位圆上任意一点的坐标(x, y)表示了角度为x的弧与x轴正半轴之间的关系。
因此,我们可以通过观察单位圆上的坐标值来计算正弦函数的值。
二、余弦函数的周期性质与计算方法与正弦函数类似,余弦函数也具有周期性质,其周期同样为2π。
在每个2π的周期内,函数的值也会重复。
计算余弦函数时,同样可以利用单位圆的概念来简化计算。
单位圆上任意一点的坐标(x, y)同样表示了角度为x的弧与x轴正半轴之间的关系。
通过观察单位圆上的坐标值,我们可以计算余弦函数的值。
三、正切函数的周期性质与计算方法正切函数的周期为π,即在每个π的周期内,函数的值会重复。
计算正切函数时,我们可以通过正切函数的定义来计算,即正切函数的值等于正弦函数值与余弦函数值的比值。
另外,我们也可以利用单位圆的概念来计算正切函数的值,找到单位圆上对应角度的坐标值。
四、割、余割和正割函数的周期性质与计算方法与正弦、余弦以及正切函数不同,割、余割和正割函数的周期性质稍有不同。
对于割函数,其周期为2π,即在每个2π的周期内,函数值会重复。
余割函数的周期也是2π,和割函数一样。
而正割函数的周期为π,即在每个π的周期内,函数值会重复。
在计算割、余割和正割函数时,我们可以利用相关函数之间的关系来简化计算。
五、三角函数的计算方法总结总结以上所述,我们可以利用单位圆的概念以及函数之间的关系来计算各种三角函数的值。
通过观察单位圆上的坐标值,我们可以快速计算正弦、余弦、正切、割、余割和正割函数的值,并利用它们的周期性质来处理针对周期的计算问题。
求三角函数最小正周期的五种方法
求三角函数最小正周期的五种办法之樊仲川亿创作时间:二O二一年七月二十九日一、定义法直接利用周期函数的定义求出周期.例1. 求函数(m≠0)的最小正周期.解:因为所以函数(m≠0)的最小正周期例2. 求函数的最小正周期.解:因为所以函数的最小正周期为.二、公式法利用下列公式求解三角函数的最小正周期.1. 或的最小正周期.2. 的最小正周期.3. 的最小正周期.4. 的最小正周期例3. 求函数的最小正周期.解:因为所以函数的最小正周期为.例4. 求函数的最小正周期.解:因为,所以函数的最小正周期为.三、转化法对较庞杂的三角函数可通过恒等变形转化为等类型,再用公式法求解.例5. 求函数的最小正周期.解:因为所以函数的最小正周期为.例6. 求函数的最小正周期.解:因为其中,所以函数的最小正周期为.四、最小公倍数法由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得.注:1. 分数的最小公倍数的求法是:(各分数份子的最小公倍数)÷(各分数分母的最大条约数).2. 对于正、余弦函数的差不克不及用最小公倍数法.例7. 求函数的最小正周期.解:因为csc4x的最小正周期,的最小正周期,由于和的最小公倍数是.所以函数的最小正周期为.例8. 求函数的最小正周期.解:因为的最小正周期,最小正周期,由于和的最小公倍数是,所以函数的最小正周期为T=.例9. 求函数的最小正周期.解:因为sinx的最小正周期,的最小正周期,sin4x的最小正周期,由于,的最小公倍数是2.所以函数的最小正周期为T=.五、图像法利用函数图像直接求出函数的周期.例10. 求函数的最小正周期.解:函数的图像为图1.图1由图1可知:函数的最小正周期为.时间:二O二一年七月二十九日。
三角函数的周期性质及计算
三角函数的周期性质及计算三角函数是数学中重要的一类函数,包括正弦函数、余弦函数和正切函数等。
它们具有周期性质,即它们的函数值在一定区间内具有重复的特点。
本文将介绍三角函数的周期性质,并给出相关的计算方法。
1. 正弦函数的周期性质及计算正弦函数的周期为2π,即在每一个2π的区间内,正弦函数的函数值重复。
我们可以利用这个周期性质来计算正弦函数在给定角度下的函数值。
例如,计算正弦函数在角度为45度时的函数值。
首先,将角度转换为弧度,1度约等于0.01745弧度。
因此,45度约等于0.7854弧度。
然后,利用正弦函数的周期性质,可以将0.7854弧度对应到0到2π之间的区间。
即0.7854除以2π的余数为0.7854。
因此,正弦函数在角度为45度时的函数值等于正弦函数在0.7854弧度时的函数值。
通过查表或计算,我们可以得到正弦函数在0.7854弧度时的函数值为0.7071。
2. 余弦函数的周期性质及计算余弦函数的周期也是2π,与正弦函数相同。
同样地,我们可以利用这个周期性质来计算余弦函数在给定角度下的函数值。
例如,计算余弦函数在角度为30度时的函数值。
同样地,将角度转换为弧度,30度约等于0.5236弧度。
然后,通过将0.5236弧度对应到0到2π之间的区间,我们可以得到余弦函数在角度为30度时的函数值等于余弦函数在0.5236弧度时的函数值。
查表或计算可以得到余弦函数在0.5236弧度时的函数值为0.8660。
3. 正切函数的周期性质及计算正切函数的周期为π,即在每一个π的区间内,正切函数的函数值重复。
同样地,我们可以利用这个周期性质来计算正切函数在给定角度下的函数值。
例如,计算正切函数在角度为60度时的函数值。
将角度转换为弧度,60度约等于1.0472弧度。
然后,通过将1.0472弧度对应到0到π之间的区间,我们可以得到正切函数在角度为60度时的函数值等于正切函数在1.0472弧度时的函数值。
查表或计算可以得到正切函数在1.0472弧度时的函数值为1.7321。
三角函数周期的几种求法.doc
三角函数周期的几种求法深圳市福田区皇岗中学蔡舒敏高中数学第一册第二节中涉及到函数周期的问题,学生们往往对此类的问题感到比较困难。
本文就这个问题谈三角函数周期的几种求法。
1.定义法:定义:一般地y=c,对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值吋,f (x+T) = f ( X )都成立,那么就把函数y = f (x)叫做周期函数;不为零的常数叫做这个函数的周期。
对于一个周期函数來说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小的正周期。
下面我们谈到三角函数的周期时,一般指的是三角函数折最小止周期。
例1.求函数y=3sin (-% + -)的周期3 3解:Vy=f (x) =3sin (-x+—) =3sin (-% + —+2^-)3 3 3 3=3sin (拿+ 2兀 +彳)=3sin[|(x + 3^) + |]二f (x+3兀)这就是说,当自变量由x增加到x+3龙,且必增加至!J x+3龙时,函数值重复出现。
二函数y=3sin (-x + —)的周期是T二3龙。
3 3例2:求f (x) =sin6x+cos6x 的周期解Tf (x+—) = sin b (x+—) + cos6 (x+—)2 2 2二cos h x +sir?x二f (x).•.f (x) =sin6x+cos6x 的周期为T= —2例3:求f (x)二血兀+血3兀的周期cosx + cos3x解:Vf (x+兀)二曲(只+兀)+血如+兀)COS(X + 7l) + COS(X + 71)_ -sinx-sin3x-cox - cos3x_ sinx + sin 3xcos x +cos 3^二f (x)■求f(X)二Siz + sin3兀的周期:T Fcos x +cos 3x2.公式法:(1)如果所求周期函数可化为y二Asin (亦+ ©)、y二Acos (亦+炉)、y = tg (亦 + 0 )形成(其中X、co、cp为常数,且A H O、®>O、0W R),则可知道它们的周期分别是:—> —> -Oco co co例4:求函数y=l-sinx+V3 cosx的周期解:Vy=l-2 (- sinx- —cosx)- 2 2= 1-2 (cos —sinx-sin— cosx)3 3= l-2sin (x-—)3这里0二1 ・••周期T二2龙例5:求:y=2 (— sinx--cos3x) -12 2解:Vy=2 (— sinx-—cos3x) -12 2=2sin (3x-— ) -16这里⑵二3 ・•・周期为T二弐3例6:求y二tg (1+—)的周期解:这里g二丸,・•.周期为:T=^-/ —=-5 5 3(2)如果f (x)是二次或高次的形式的周期函数,可以把它化成sinox、COSGX、tgcox的形式,再确定它的周期。
求三角函数最小正周期的五种方法96233
求三⾓函数最⼩正周期的五种⽅法96233求三⾓函数最⼩正周期的五种⽅法spacetzs关于求三⾓函数最⼩正周期的问题,是三⾓函数的重点和难点,教科书和各种教参中虽有讲解,但其涉及到的题⽬类型及解决⽅法并不多,学⽣遇到较为复杂⼀点的问题时,往往不知从何⼊⼿。
本⽂将介绍求三⾓函数最⼩正周期常⽤的五种⽅法,仅供参考。
⼀、定义法直接利⽤周期函数的定义求出周期。
例1.求函数y m x =-cos()56π(m ≠0)的最⼩正周期。
解:因为y m x =-cos()56π=-+=+-cos()cos[()]m x m x m 5625106ππππ所以函数y m x =-cos()56π(m ≠0)的最⼩正周期T m =10π||例2.求函数y xa =cot 的最⼩正周期。
解:因为y x a x a ax a ==+=+cot cot()cot[()]ππ1 所以函数y x a =cot 的最⼩正周期为T a =||π。
⼆、公式法利⽤下列公式求解三⾓函数的最⼩正周期。
1.y A x h =++sin()ωφ或y A x h =++cos()ωφ的最⼩正周期T =2πω||。
2.y A x h y A x h =++=++tan()cot()ωφωφ或的最⼩正周期T =π3.y x y x ==|sin ||cos |ωω或的最⼩正周期T =πω||。
4.y x y x ==|tan ||cot |ωω或的最⼩正周期T =πω||例3.求函数y x =|tan |3的最⼩正周期。
解:因为T ==πωω||⽽3 所以函数y x =|tan |3的最⼩正周期为T =π3。
例4.求函数y n m x =-cot()3π的最⼩正周期。
解:因为T n m==-πωωπ||||⽽,所以函数y n mx =-cot()3π的最⼩正周期为T n mmn =-=ππ||||。
三、转化法对较复杂的三⾓函数可通过恒等变形转化为y A x h =++sin()ωφ等类型,再⽤公式法求解。
三角函数的周期公式总结
三角函数的周期公式总结
三角函数的的周期是三角函数的重要性质,下面整理了三角函数周期公式和求周期的方法,希望能帮助到大家。
三角函数的周期公式
三角函数的周期T=2π/ω。
完成一次振动所需要的时间,称为振动的周期。
若f(x)为周期函数,则把使得f(x+l)=f(x)对定义域中的任何x都成立的最小正数l,称为f(x)的(基本)周期。
在计算机中,完成一个循环所需要的时间;或访问一次存储器所需要的时间,亦称为周期。
周期函数的实质:两个自变量值整体的差等于周期的倍数时,两个自变量值整体的函数值相等
求三角函数的周期,若函数式比较简单,可利用定义或周期公式直接求解,若函数式比较复杂,则需要把函数式变形后再利用定义或周期公式求解。
三角函数最小正周期
如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。
(1)y=Asin(ωx+φ)+h或y=Acos(ωx+φ)+h最小正周期T=2π/ω。
(2)y=Acot(ωx+φ)+h或y=Atan(ωx+φ)+h最小正周期T=π/ω。
(3)y=|sinωx|或y=|cosωx|的最小正周期T=π/|ω|。
(4)y=|tanωx|或y=|cotωx|的最小正周期T=π/|ω|。
三角函数求周期的方法
三角函数的的周期是三角函数的重要性质,下面整理了三角函数求周期的方法,希望能帮助到大家。
1、定义法:题目中提到f(x)=f(x+C),其中C为已知量,则C为这个函数的一个最小周期。
2、公式法:将三角函数的函数关系式化为:y=Asin(wx+B)+C或
y=Acos(wx+B)+C,其中A,w,B,C为常数。
则周期T=2π/w,其中w为角速度,B为相角,A为幅值。
若函数关系式化为:Acot(wx+B)+C或者tan(wx+B)+C,则周期为T=π/w。
3、定理法:如果f(x)是几个周期函数代数和形式的,即是:函数
f(x)=f1(x)+f2(x),而f1(x)的周期为T1, f2(x)的周期为T2,则f(x)的周期为T=P2T1=P1T2,其中P1、P2N,且(P1、P2)=1。
sinx周期为2π/1=2π。
|sinx|周期为1/2*(2π )=π。
sin2x周期为2π/2=π。
|sin2x|周期为1/2*π=π/2。
sin1/2x周期为2π/(1/2)= 4π。
|sin1/2x|周期为1/2*(4π)=2π。
sin(x+π)周期与sinx周期相同(平移不改变周期),为2π。
|sin(x+π)||周期为1/2*(2π)= π。
sin(x+2π)周期与sinx周期相同,为2π。
|sin(x+2π|周期为1/2*(2π)= π。
cos周期变化规律与sin完全一样,只是tanx周期为π ,atan(ωx+θ)周期为π/ω,但其绝对值,x轴下方部分翻上去以后与原有x轴上方部分不同,故其周期不变,即|tanx|周期为π 。
如何求三角函数的周期解读
如何求三⾓函数的周期解读如何求三⾓函数的周期三⾓函数的的周期是三⾓函数的重要性质,对于不同的三⾓函数式,如何求三⾓函数的周期也是⼀个难点,下⾯通过⼏个例题谈谈三⾓函数周期的求法.1、根据周期性函数的定义求三⾓函数的周期例1 求下列函数的周期 x y 2sin )1(= , 32tan )2(x y =. (1)分析:根据周期函数的定义,问题是要找到⼀个最⼩正数T ,对于函数定义域内的每⼀个x 值都能使x T x2sin )(2sin =+成⽴,同时考虑到正弦函数x y sin =的周期是π2.解:∵ )(2sin )22sin(2sin ππ+=+=x x x , 即 x x 2sin )(2sin=+π.∴当⾃变量由x 增加到π+x 时,函数值重复出现,因此x y 2sin =的周期是π.(2) 分析:根据周期函数的定义,问题是要找到⼀个最⼩正数T ,对于函数定义域内的每⼀个x 值都能使 32tan )(32tanx T x =+成⽴,同时考虑到正切函数x y tan =的周期是π.解:∵ )23(32tan )32tan(32tanππ+=+=x x x , 即32tan )23(32tan x x =+π.∴函数32tan x y =的周期是π23.注意:1、根据周期函数的定义,周期T 是使函数值重复出现的⾃变量x 的增加值,如),2()2(x f T x f =+周期不是T ,⽽是T 21; 2、”“)()(x f T x f =+是定义域内的恒等式,即对于⾃变量x 取定义域内的每个值时,上式都成⽴.2、根据公式求周期对于函数B x A y ++=)sin(?ω或B x A y ++=)cos(?ω的周期公式是||2ωπ=T ,对于函数B x A y ++=)tan(ω或B x y ++=)cot(?ω的周期公式是||ωπ=T .例3 求函数)623sin(3π-=x y 的周期解: 34232ππ==T . 3、把三⾓函数表达式化为⼀⾓⼀函数的形式,再利⽤公式求周期例4 求函数x x x y 2sin 2cos sin 32-=的周期解:12cos 2sin 3sin 2cos sin 322-+=-=x x x x x y1)62sin(21)2cos 212sin 23(2-+=-+=πx x x ∴ππ==22T .例5 已知函数),3cos 3(sin 3sin)(x x x x f +=求周期解:∵32sin 21)32cos 1(213cos 3sin 3sin )(2x x x x x x f +-=+= )432sin(2221)32cos 32(sin 2121π-+=-+=x x x ∴ππ3322==T . 4、遇到绝对值时,可利⽤公式 2||a a =, 化去绝对值符号再求周期例6 求函数 |cos |x y =的周期解:∵ 22cos 1cos |cos |2x x x y +=== ∴ππ==22T .例7 求函数|cos ||sin |x x y +=的周期解:∵()x x x x x x y 2sin 1|2sin |1|cos ||sin ||cos ||sin |22+=+=+=+= )4cos 1(21124cos 11x x -+=-+= ∴函数|cos ||sin |x x y +=的最⼩正周期 242ππ==T . 5、若函数)()()(21x f x f x f y k +++= ,且)(,),(),(21x f x f x f k ,都是周期函数,且最⼩正周期分别为k T T T ,,21,如果找到⼀个正常数T , 使k k T n T n T n T ==== 2211, (k n n n ,,,21 均为正整数且互质),则T 就是)()()(21x f x f x f y k +++= 的最⼩正周期.例8 求函数x x y 21cos sin +=的周期解:∵ x sin 的最⼩正周期是π21=T , x 21cos的最⼩正周期是π42=T .∴函数y 的周期2211T n T n T == ,把21T T ,代⼊得 21 4 2n n ππ=,即212n n =,因为21,n n 为正整数且互质,所以 1 ,221==n n .函数x x y 21cossin +=的周期ππ42211=?==T n T .例9 求函数x x y 43cos 32sin +=的周期解:∵ x 32s i n 的最⼩正周期是ππ33221==T ,x 43cos 的最⼩正周期是384322ππ==T ,由2211T n T n =, 2138 3n n ππ= ,2189n n = (21,n n 为正整数且互质), 得 9 ,821==n n .所以函数x x y 43cos 32sin +=的周期是ππ243811=?==T n T .函数的周期性--函数的周期性不仅存在于三⾓函数中,在其它函数或者数列中"突然"出现的周期性问题更能考查你的功底和灵活性,本讲重点复习⼀般函数的周期性问题⼀.明确复习⽬标1.理解函数周期性的概念,会⽤定义判定函数的周期;2.理解函数的周期性与图象的对称性之间的关系,会运⽤函数的周期性处理⼀些简单问题。
如何求三角函数周期
如何求三角函数周期三角函数周期的求解方法三角函数是数学中常见的函数类型之一,包括正弦函数、余弦函数和正切函数等。
对于每一个三角函数,它们都具有固定的周期,即在一定的区间内重复自身的模式。
本文将介绍如何求解三角函数的周期。
一、正弦函数的周期求解正弦函数的表示为y = sin(x),其中x为自变量,y为函数的值。
正弦函数的周期可以通过以下公式来求解:周期T = 2π/|a|其中a为正弦函数中x的系数。
例如,对于正弦函数y = sin(3x),我们可以求解其周期T:T = 2π/3所以,正弦函数y = sin(3x)的周期为2π/3。
二、余弦函数的周期求解余弦函数的表示为y = cos(x),其中x为自变量,y为函数的值。
余弦函数的周期可以通过以下公式来求解:周期T = 2π/|a|其中a为余弦函数中x的系数。
例如,对于余弦函数y = cos(2x),我们可以求解其周期T:T = 2π/2所以,余弦函数y = cos(2x)的周期为π。
三、正切函数的周期求解正切函数的表示为y = tan(x),其中x为自变量,y为函数的值。
正切函数的周期可以通过以下公式来求解:周期T = π/|a|其中a为正切函数中x的系数。
例如,对于正切函数y = tan(4x),我们可以求解其周期T:T = π/4所以,正切函数y = tan(4x)的周期为π/4。
综上所述,我们可以通过特定的公式来求解三角函数的周期。
对于正弦函数,周期T = 2π/|a|;对于余弦函数,周期T = 2π/|a|;对于正切函数,周期T = π/|a|。
根据这些公式,我们可以很方便地求解三角函数的周期,从而更好地理解和分析三角函数的性质和图像。
三角函数值的计算六法
三角函数值的计算六法三角函数是数学中非常基础而重要的一部分,它在很多领域都有着广泛的应用。
在计算三角函数值时,有许多方法和公式可供选择。
以下将介绍六种常用的计算三角函数值的方法。
1.平面直角坐标系法:在平面直角坐标系中,已知一个角的坐标(x, y),可以通过计算出点(x, y)到原点(0,0)的距离r和斜边与x轴的夹角θ来计算三角函数值。
其中,sinθ=y/r,cosθ=x/r,tanθ=y/x。
通过这种方法,我们可以利用平面直角坐标系中的几何关系直接计算出三角函数的值。
2.单位圆法:单位圆是一个半径为1的圆,在平面直角坐标系中心为原点(0,0)。
通过在单位圆上取角度θ与圆上的相应点P的坐标(x, y)之间的关系可以计算出三角函数值。
其中,sinθ=y,cosθ=x,tanθ=y/x。
以单位圆为基础的计算方法相对直观,易懂、易用。
3.三角函数的基本性质法:三角函数具有一些基本性质,例如,sinθ=cos(π/2-θ),sin^2θ+cos^2θ=1等。
通过这些基本性质,我们可以利用已知角度的三角函数值推算出其他角度的三角函数值。
4.三角函数的周期性法:三角函数是周期函数,即对于任意角度θ,sin(θ+2πn)=sinθ,cos(θ+2πn)=cosθ,tan(θ+πn)=tanθ,其中,n是任意整数。
通过利用这个周期性的特点,我们可以将任意角度的三角函数值转化为一些区间内的角度,然后计算出其对应的三角函数值。
5.三角函数的恒等变换法:三角函数具有许多恒等变换关系,例如,sin(-θ)=-sinθ,cos(-θ)=cosθ,tan(-θ)=-tanθ,sin(π/2-θ)=cosθ,sin(π/2+θ)=cosθ,等等。
通过利用这些恒等变换关系,我们可以将给定角的三角函数值转化为另一个角的三角函数值。
这种方法在计算一些特殊角度的三角函数值时非常有用。
6.特殊角度三角函数值表格法:在三角函数的学习中,存在一系列的特殊角度,如0度、30度、45度、60度、90度等。
求三角函数最小正周期的五种方法
求三角函数最小正周期的五种方法spacetzs关于求三角函数最小正周期的问题,是三角函数的重点和难点,教科书和各种教参中虽有讲解,但其涉及到的题目类型及解决方法并不多,学生遇到较为复杂一点的问题时,往往不知从何入手。
本文将介绍求三角函数最小正周期常用的五种方法,仅供参考。
一、定义法直接利用周期函数的定义求出周期。
例1.求函数y m x =-cos()56π(m ≠0)的最小正周期。
解:因为y m x =-cos()56π =-+=+-cos()cos[()]m x m x m 5625106ππππ 所以函数y m x =-cos()56π(m ≠0)的最小正周期 T m =10π||例2.求函数y x a =cot的最小正周期。
解:因为y x a x a a x a ==+=+cotcot()cot[()]ππ1 所以函数y x a=cot的最小正周期为T a =||π。
二、公式法利用下列公式求解三角函数的最小正周期。
1.y A x h =++sin()ωφ或y A x h =++cos()ωφ的最小正周期T =2πω||。
2.y A x h y A x h =++=++tan()cot()ωφωφ或的最小正周期T =πω||。
3.y x y x ==|sin ||cos |ωω或的最小正周期T =πω||。
4.y x y x ==|tan ||cot |ωω或的最小正周期T =πω||例3.求函数y x =|tan |3的最小正周期。
解:因为T ==πωω||而3 所以函数y x =|tan |3的最小正周期为T =π3。
例4.求函数y n mx =-cot()3π的最小正周期。
解:因为T n m==-πωωπ||||而, 所以函数y n m x =-cot()3π的最小正周期为T n m m n =-=ππ||||。
三、转化法对较复杂的三角函数可通过恒等变形转化为y A x h =++sin()ωφ等类型,再用公式法求解。
三角函数周期的几种求法解读
三角函数周期的几种求法深圳市福田区皇岗中学 蔡舒敏高中数学第一册第二节中涉及到函数周期的问题,学生们往往对此类的问题感到比较困难。
本文就这个问题谈三角函数周期的几种求法。
1.定义法:定义:一般地y=c ,对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值时,f(x+T )=f(x)都成立,那么就把函数y=f(x)叫做周期函数;不为零的常数叫做这个函数的周期。
对于一个周期函数来说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小的正周期。
下面我们谈到三角函数的周期时,一般指的是三角函数折最小正周期。
例1.求函数y=3sin (332π+x )的周期解:∵y=f (x )=3sin (332π+x )=3sin (332π+x +2π)=3sin (3232ππ++x )=3sin[3)3(32ππ++x ]= f (x+3π)这就是说,当自变量由x增加到x+3π,且必增加到x+3π时,函数值重复出现。
∴函数y=3sin (332π+x )的周期是T=3π。
例2:求f (x )=sin 6x+cos 6x 的周期解∵f (x+2π)= sin 6(x+2π)+ cos 6(x+2π) = cos 6x +sin 6x= f (x )∴f (x )=sin 6x+cos 6x 的周期为T=2π例3:求f (x )=xx xx 3cos cos 3sin sin ++的周期解:∵f (x+π)=)cos()cos()(3sin )sin(ππππ++++++x x x x=x cox xx 3cos 3sin sin ----=xx x x 3cos cos 3sin sin ++ = f (x )∴求f (x )=xx xx 3cos cos 3sin sin ++的周期:T=π2.公式法:(1)如果所求周期函数可化为y=Asin (ϕω+x )、y=Acos (ϕω+x )、y=tg (ϕω+x )形成(其中A 、ω、ϕ为常数,且A ≠0、ω>0、ϕ∈R ),则可知道它们的周期分别是:ωπ2、ωπ2、ωπ。
三角函数周期的三种求法
三角函数周期的三种求法作者:刘志军来源:《中学生数理化·教与学》2011年第07期职业高中数学(基础模块)上册第五章第三节中涉及函数周期的问题,学生往往对解决此类问题感到比较困难,而近年来职高对口升学又经常涉及三角函数周期的问题.本文结合职业高中学生知识水平的实际,总结了三角函数周期的三种求法.1.定义法周期函数的定义:一般地,对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,有f(x+T)=f(x)都成立,就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期.对于一个周期函数来说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小的正周期.以后我们说到三角函数的周期,一般指的都是三角函数的最小正周期.针对一些简单的三角函数问题,通过变形可以利用上面的定义求得三角函数的周期.例1 求函数y=2sin(2x+π3)的周期.解:∵y=f(x)=2sin(2x+π3)=2sin(2x+π3+2π)=2sin(2x+2π+π3)=2sin[2(x+π)+π3]=f(x+π).这就是说,当自变量由x增加到x+π,且至少增加到x+π时,函数值重复出现.∴函数y=2sin(2x+π3)的周期T=π.点评:针对例1这种类型的问题我们可以推广到形如:y=Asin()、y=Acos()、y=tan()(其中A、w、为常数,且A≠0、w>0、∈R),这些函数都可以通过以上的变形求出周期,事实上这些函数的周期和三角函数中w的值有关.例2 求f(x)=sin3x+sin5xcos3x+cos5x的周期.解:∵f(x+π)=sin3(x+π)+sin5(x+π)cos3(x+π)+cos5(x+π)=-sin3x-sin5x-cos3x-cos5x=sin3x+sin5xcos3x+cos5x=f(x).∴函数f(x)=sin3x+sin5xcos3x+cos5x的周期T=π.点评:类似例2的题目,可以结合三角函数的诱导公式变形而得.例3 求f(x)的周期.解:∵f(x+π2)(x+π2)(x+π2)(x).∴f(x)的周期为T=π2.2.公式法(1)如果所求周期函数可化为y=Asin()、y=Acos()、y=tan()的形式(其中A、w、为常数,且A≠0、w>0、∈R),则可知道上述三个函数的周期分别是:2πw、2πw、πw.例4 求f(x)-的周期.解:∵f(x)--这里w=2.∴周期T=π.∴f(x)-的周期为T=π.3.最小公倍数法由三角函数的代数和组成的三角函数式,可先找出其中每个函数的最小正周期,然后找出所有周期的最小公倍数.(1)分数的最小公倍数的求法是:各分数分子的最小公倍数÷各分数分母的最大公约数.(2)对于正、余弦函数的差不能用最小公倍数法.(3)本方法主要用于快速解决一些填空题或选择题,但本方法不能用作大题的解答过程.例5 求三角函数y=sin4x+sin8x的周期.解:y=sin4x的周期是T=π2,y=sin8x的周期是T=π4.所以函数y=sin4x+sin8x的最小正周期是π2和π4的最小公倍数π2.例6 求函数y=sinx+cos2x+sin4x的最小正周期.解:函数y=sinx的最小正周期是T=2π,cos2x的最小正周期是T=π,y=sin4x的最小正周期是T=π2.∵π2、π、2π的最小公倍数是2π,∴函数y=sinx+cos2x+sin4x的最小正周期为T=2π.以上三种求三角函数周期的方法适用于不同的题目类型,用的最多的是公式法,而最小公倍数法则可快速解答填空题和选择题.只要多练习,我们在求三角函数周期时就能灵活运用这三种方法,逐步提高解题效率.注:本文中所涉及到的图表、注解、公式等内容请以PDF格式阅读原文。
求三角函数最小正周期的五种方法
求三角函数最小正周期的五种方法一、定义法直接利用周期函数的定义求出周期。
例1. 求函数(m≠0)的最小正周期。
解:因为所以函数(m≠0)的最小正周期例2. 求函数的最小正周期。
解:因为所以函数的最小正周期为。
二、公式法利用下列公式求解三角函数的最小正周期。
1. 或的最小正周期。
2. 的最小正周期。
3. 的最小正周期。
4. 的最小正周期例3. 求函数的最小正周期。
解:因为所以函数的最小正周期为。
例4. 求函数的最小正周期。
解:因为,所以函数的最小正周期为。
三、转化法对较复杂的三角函数可通过恒等变形转化为等类型,再用公式法求解。
例5. 求函数的最小正周期。
解:因为所以函数的最小正周期为。
例6. 求函数的最小正周期。
解:因为其中,所以函数的最小正周期为。
四、最小公倍数法由三角函数的代数和组成的三角函数式,可先找出各个加函数的最小正周期,然后找出所有周期的最小公倍数即得。
注:1. 分数的最小公倍数的求法是:(各分数分子的最小公倍数)÷(各分数分母的最大公约数)。
2. 对于正、余弦函数的差不能用最小公倍数法。
例7. 求函数的最小正周期。
解:因为csc4x的最小正周期,的最小正周期,由于和的最小公倍数是。
所以函数的最小正周期为。
例8. 求函数的最小正周期。
解:因为的最小正周期,最小正周期,由于和的最小公倍数是,所以函数的最小正周期为T=。
例9. 求函数的最小正周期。
解:因为sinx的最小正周期,的最小正周期,sin4x的最小正周期,由于,的最小公倍数是2。
所以函数的最小正周期为T=。
五、图像法利用函数图像直接求出函数的周期。
例10. 求函数的最小正周期。
解:函数的图像为图1。
图1由图1可知:函数的最小正周期为。
THANKS !!!致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数周期的常用求法
河南 陈长松
三角函数的周期是三角函数的一个重要性质,也是高考的热点.本文通过实例介绍求三角函数周期的几种常用方法,供参考. 一、公式法
例1 函数)2
3sin(
x y -=π的最小正周期是 ( ) A.π B.2π C.-4π D.4π 解:由公式,得ππ42
12=-=T ,故选D. 评注:对于函数)sin(ϕω+=x A y 或)cos(ϕω+=x A y 可直接利用公式ωπ
2=T 求得;对于)tan(ϕω+=x A y 或)cot(ϕω+=x A y 可直接利用公式ωπ=
T 求得。
二、图像法
例2 求下列函数的最小正周期
① x y sin = ②x y sin
解:分别作出两个函数的图像知
三、解:∵ 2
cos()2sin(ππk x k x +++=x x cos sin + (Z k ∈) ∴
2πk 是函数x x y cos sin +=的周期.显然2πk 中最小者是2
π 下面证明2
π是最小正周期 假设2π不是x x y cos sin +=的最小正周期,则存在<<T 02π,使得: =+)(T x f )cos()sin(T x T x +++=x x cos sin +对R x ∈恒成立,
令0=x ,则=+)0(T f T T cos sin +=10cos 0sin cos sin =+=+T T ① 但<<T 02
π,∴1cos sin >+T T ②
∴ ①与②矛盾, ∴ 假设不成立,∴2
π是x x y cos sin +=最小正周期. 评注:这种方法依据周期函数的定义,从式子)()(x f T x f =+出发,设法找出周期T 中的最小正数(须用反证法证明).
四、转化法
例4 求函数x x y 66cos sin +=的最小正周期
解:∵ y =)cos sin 3cos sin 3()cos (sin 4224322x x x x x x +-+
=)4cos 1(831)cos (sin )cos (sin 31222x x x x x --
=+- =x 4cos 8
385+ ∴ 函数x x y 66cos sin +=的最小正周期是2
42ππ==T 评注:就是先根据三角公式已知式转化为一个脚的一个三角函数的形式,再利用公式去求.这是最常见的求周期题型,也是高考考察的热点.
五、最小公倍数法
例5 求函数y sin3x cos5x =+的最小整周期
解:设sin3x 、cos5x 的最小整周期分别为1T 、2T , 则12T 3π=,22T 5π=,2T 1
π==2π ∴y sin3x cos5x =+的最小整周期为2π
评注:设()f x 与()g x 是定义在公共集合上的两个三角周期函数,1T 、2T 分别是它们的周期,且1T ≠2T ,则()f x ±()g x 的最小整周期是1T 、2T 的最小公倍数.
分数的最小公倍数=分子的最小公倍数分母的最小公倍数。