3D Integration
c++ 基于相位立体匹配的亚像素插值
c++ 基于相位立体匹配的亚像素插值标题:深度探讨C++基于相位立体匹配的亚像素插值技术在计算机视觉和图像处理领域,C++编程语言在相位立体匹配的亚像素插值技术中扮演着重要的角色。
本文将以C++为工具,深入探讨这一技术,并为您带来全面的了解和灵活的运用。
1. 相位立体匹配的基本概念相位立体匹配是一种用于计算机视觉中立体成像的技术,它通过对左右两幅图像之间的对应点进行匹配,从而得到深度信息。
常用的匹配方法包括互相关匹配、视差空间匹配等。
而亚像素插值技术则能够提高匹配的精度,使得匹配结果更加精准。
2. C++在相位立体匹配中的作用C++作为一种高效的编程语言,能够充分发挥在相位立体匹配算法的实现中。
其高性能和灵活性使得C++成为了许多相位立体匹配算法的首选开发语言。
借助C++的强大功能,开发者可以更加方便地实现各种亚像素插值算法,提高立体匹配的精度和鲁棒性。
3. 亚像素插值的优势和应用亚像素插值技术能够对匹配结果进行亚像素级别的修正,从而提高立体匹配的准确度和稳定性。
在实际应用中,亚像素插值技术广泛应用于三维重建、物体识别、立体测量等领域。
借助亚像素插值技术,可以使得立体匹配在复杂环境下依然具有较高的匹配精度和稳定性。
4. C++中的亚像素插值算法实现在C++中,可以借助OpenCV等开源库,实现各种亚像素插值算法。
通过双三次插值、Horn-Schunck算法等方法,可以有效地提高立体匹配的效果。
C++中还有许多优化的数据结构和算法,能够加速亚像素插值的计算过程,提高算法的运行效率。
5. 个人观点和总结相位立体匹配的亚像素插值技术是计算机视觉和图像处理领域的重要技术之一,在C++编程语言的支持下,这一技术得以更好地发展和应用。
我个人认为,C++在相位立体匹配的亚像素插值中发挥着重要作用,它为立体成像和三维重建提供了丰富的技术支持和解决方案。
总结来看,本文通过深入探讨C++基于相位立体匹配的亚像素插值技术,从理论到实践,为您呈现了一份全面的技术分析和应用指南。
英语作文3D
英语作文3DTitle: The Impact of 3D Technology on Education。
Introduction。
In recent years, the integration of 3D technology into education has garnered significant attention. This advancement has revolutionized the traditional methods of teaching and learning, offering immersive experiences that enhance comprehension and engagement. In this essay, wewill delve into the profound impact of 3D technology on education and explore its implications for the future.Enhanced Learning Experience。
One of the primary benefits of 3D technology in education is its ability to provide a more immersive learning experience. By incorporating three-dimensional visuals, simulations, and interactive models, educators can effectively illustrate complex concepts across varioussubjects, such as science, mathematics, and history. For instance, in biology classes, students can explore the intricacies of cellular structures through interactive 3D models, fostering a deeper understanding of biological processes.Moreover, 3D technology allows students to engage with educational content in a dynamic and interactive manner. Instead of passive learning through textbooks or lectures, learners can actively participate in virtual simulations and experiments, promoting critical thinking and problem-solving skills. This hands-on approach not only makes learning more enjoyable but also facilitates knowledge retention and application.Accessibility and Inclusivity。
3d3s中的导荷载封闭面生成技巧 -回复
3d3s中的导荷载封闭面生成技巧-回复三维建模软件3d3s是一种常用于结构分析与设计的工具,它在工程界广泛应用。
在进行结构分析时,往往需要给模型施加导荷载。
而对于封闭面的导荷载的生成,是一个需要注意的问题。
本文将介绍在3d3s中生成封闭面导荷载的技巧,帮助工程师更好地应用3d3s进行结构分析。
步骤一:准备工作在使用3d3s生成导荷载之前,首先要进行一些准备工作。
首先,确定需要施加导荷载的结构模型,并进行相应的建模。
其次,要对结构模型进行网格划分,这样才能正确施加导荷。
另外,为了方便导入导荷载,还需要准备好导荷文件,该文件格式根据具体需求而定。
步骤二:选择合适的导荷类型根据实际需求选择合适的导荷类型。
3d3s提供了多种导荷类型的选择,如均布载荷、均匀压力、离散点载荷等。
不同的导荷类型适用于不同的工程场景。
例如,均布载荷适用于施加在结构面上的均匀分布载荷;而离散点载荷则适用于在特定点对结构进行局部的集中载荷施加。
步骤三:施加导荷在已经选定导荷类型后,即可在3d3s软件中施加导荷。
具体步骤如下:1. 打开3d3s软件,加载需要施加导荷的结构模型。
2. 进入“导荷载施加”界面,在界面上方选择导荷类型。
3. 在下方的“导入导荷”选项中,选择导入导荷文件,导入到结构模型中。
4. 选择需要施加导荷的面或点,可以通过选框或手动选择操作。
5. 根据需要的导荷大小进行设置,例如设置均布载荷的大小、离散点载荷的位置等。
6. 点击“应用”按钮,将导荷施加到选择的面或点上。
步骤四:检查导荷施加结果施加导荷后,需要对导荷的施加结果进行检查,以确保其正确性。
在3d3s 中,可以通过以下方式进行检查:1. 查看导荷施加前后的结构变化,比较差异。
2. 查看导荷施加后的载荷分布情况,是否满足工程需求。
3. 进行结构分析,查看导荷对结构的影响,如位移、应力、变形等。
步骤五:调整导荷参数如果发现导荷施加结果不符合要求,可以进行参数的调整。
Die-on-waferandW...
Die-on-wafer and Wafer-level 3D Integration for Millimeter-Wave Smart Antenna TransceiversM.M. Hella, S. Devarajan, J.-Q. Lu, K. Rose and R.J. GutmannCenter for Integrated Electronics RensselaerPolytechnicInstitute,Troy,NewYork12180,***************.eduAbstract — A three-dimensional (3D) IC technology platform for high-performance, heterogeneous integration of silicon ICs for mm-wave smart antenna transceivers is presented. The platform uses dielectric adhesive bonding of fully-processed wafer-to-wafer aligned ICs, followed by a three-step thinning process and copper damascene patterning to form inter-wafer interconnects. A low noise amplifier (LNA), power amplifier (PA), and an analog-to-digital converter (ADC) are designed in RF-enhanced SiGe BiCMOS process to operate in the 24GHz ISM band. These critical design blocks serve as a step towards the realization of a complete system integrated with I/O matching networks, switches, antennas, and digital processing in a 3D configuration.I. I NTRODUCTIONThe next wave of wireless communications seeks to improve data rates and channel capacity by employing larger bandwidths with higher efficiencies. One promising technology to attain this goal involves the use of smart-antenna technology whereby multiple antennas are combined intelligently at the transmitter and the receiver, both at the subscriber and the base station. Various forms of multiple antenna systems provide solutions for communications and radars, such as multiple-input-multiple-output (MIMO) diversity transceivers and synthetic aperture radars (SARs) [1]. The industrial, scientific, and medical (ISM) band at 24GHz is regarded as a potential candidate for such applications. Traditionally, communications systems working in the microwave/mm-wave band are realized using multiple microwave modules implemented mainly in GaAs, adding to overall cost and complexity. It is envisioned that single-chip silicon-based technologies will replace current solutions in a way similar to the trend that commercial cellular and PCS systems have taken for their implementation. System integration is the main key in the development of any low cost/high performance wireless networking system [2-3].The major drive behind the 3D integration for mm-wave applications is the impact of interconnect losses at these frequencies (For example, the interconnect loss for a flip-chip packaged circuit is near 1.2dB at 60GHz [4]), reconfigurable/smart silicon-based transceivers that interface with CMOS memory-intensive digital processors and possibly NMOS-based imagers.In this paper various issues related to the 3D integration for mm-wave transceivers will be addressed. The 3D technology platform is presented in section II. Some basic building blocks in the transceiver chain including a SiGe-based low noise amplifier ( LNA), a power amplifier (PA) and a high performance SiGe analog-to-digital converter (ADC) are introduced.II. 3D IC T ECHNOLOGY P LATFORMDie-to-die, die-to-wafer and wafer-to-wafer approaches are in various stages of research and development [5]. Alternative wafer-to-wafer technology platforms are under development involving oxide-to-oxide bonding, copper-to-copper bonding, and dielectric adhesive bonding [5]. Our dielectric adhesive bonding approach accommodates wafer distortions and interface contaminants; in addition, a handling wafer is not required and wafers are thinned only after bonding to a host wafer.A three-wafer stack depicting our IC technology platform is shown in Figure 1(a) [6]. Fully processed wafers are aligned to within a micron after spin coating a micron thick benzocyclobutene (BCB) and soft baking the BCB to remove volatile components. The wafer pair is then bonded together in a bonder with a specified ambient, temperature and pressure cycle. After bonding, the top-(Face-to-face)SubstrateSubstrateDielectricDielectric(Face-to-back)SubstrateMulti-level on-chip interconnectsLevelFig. 1. (a) Schematic of a 3D integration platform, showing wafer bonding interface, vertical inter-wafer vias (plug- and bridge-type), and "face-to-face" and "face-to-back" bonding; (b) three-wafer/three-die stack for SiGe-based mm-wave transceiver.side donor wafer is thinned by backside grinding, polishing and selective etching. Finally, inter-wafer interconnects are formed by copper damascene patterning. The upper level device wafer can be integrated in a similar process flow.An attractive wafer-level partitioning depicted in Figure 1(b) is to have the top wafer in a three-wafer stack as a thermal-coefficient-of-expansion (TCE) matched glass, in which high-Q passives can be processed (inductors, with or without magnetic thin films, high density capacitors with high dielectric constant thin films, and/or multiple antennas for beam forming applications); the middle wafer is a SiGe-based transceiver wafer, with vias connecting to the high-Q passives in the upper wafer; the bottom layer isthe CMOS-based processor and memory. This partitioning, is particularly attractive for mm-wave applications, since the interconnect length between the core of the transceiver and both the passives in the upper layer, as well as the digital control in the bottom layer, can be controlled. This allows extensive computing capabilities as well as minimum interconnect losses.The BCB-based bond has a critical adhesion energy between 25 and 35 J/m2 depending upon bonding conditions [6], well above the 5-10 J/m2 required for IC processing. Moreover, inter-wafer via chains have been fabricated that demonstrated the validity of the process flow with micron-sized vias and 1-µm wafer-to-wafer alignment, as described in detailed elsewhere [6].The impact of our bonding and thinning processes on IC interconnects (copper with oxide and copper with ultra-low-k dielectric) has been investigated with SEMATECH [7], and on 130 nm SOI CMOS devices and test circuits having four-level copper/low-k interconnects with Freescale [8]. While the ultra-low-k dielectric structure shows some change due to the fragile structure, changes in resistance and line-to-line leakage are small [7]. CMOS device and circuit parameters (threshold voltage, subthreshold leakage and ring oscillator delay) vary by less than one-third of the original 10%-90% spread across the wafer [8]. A FIB-SEM cross-section of a SOI CMOS wafer BCB-bonded to a prime Si wafer after a double-bonding/thinning process is shown in Figure 2 [8].While 3D die stacks with micron-size, through-wafer vias may have comparable performance to wafer-level 3D implementation, the manufacturing cost will be higher due to the die handling and the die-by-die stack processing of the vertical interconnects. Monolithic wafer-level 3D implementations are more challenging than system-in-a-package (SiP) until a viable manufacturing base is established. However, the performance advantages with short inter-wafer interconnects, high integration density, and low interconnectivity cost, make monolithic 3D attractive for future wireless networking solutions.III. B ASIC B UILDING B LOCKS IN S I G E B I CMOS FOR24GH Z T RANSCEIVERHaving presented our current 3D technology platform, it is worth noting that in RF/mm-wave applications, the techniques of SiP and Multi-Chip-Module (MCM) are currently being pursued as more-realistic cost- performance solutions. However, the long-term cost of either 2D or 3D die-stack packaging solutions is affected by chip-handling and assembly. Clearly wafer-to-wafer implementations are a longer-term solution, but also have the lowest cost for high-volume products since chip handling is minimized and vertical interconnectivity is maximized by a batch monolithic process.In the following subsections, the designs of an ADC, an LNA, and a PA are presented. These are the active circuit blocks that will interface with both the bottom and upper layers.3.1. A SiGe-based Analog-to-Digital ConverterThe increasingly challenging requirements on ADC performance posed by: 1) new high-bandwidth standards, 2) the trend of low-IF single-heterodyne receivers, and 3) advanced power amplifier linearization techniques, call for device flexibility available only in BiCMOS technologies [9]. The impact of including an ADC with an RF/microwave transceiver IC on one wafer and combining with digital processing IC in a second wafer is significant, particularly for smart/reconfigurable wireless terminals.A conventional pipeline A/D converter is designed using gain-of-2 sample/hold (S/H) amplifiers realized with an operational transconductance amplifier (OTA) in a negative feedback loop using precise-value capacitors. IBM’s SiGe 6HP technology, which provides 47 GHz SiGe HBTs and 250 nm node CMOS, was used. The ADCchip architecture, micrograph, and summary of measured BCBSiCMOSSOI DieSiO2Fig. 2. FIB-SEM cross-section of SOI CMOS wafer BCB-bonded toa prime Si wafer after the double-bonding/thinning process [8].Measured Pipeline ADC Performance:Resolution: 12-Bits Sampling Rate: 34 MS/sSimulated OTA Performance:DC Gain: 88 dBUnity Gain Frequency: 430 MHzSettling Time (0.01%): 10 nsSiGe OTAChip PhotographChip Layout (3x3 mm )Pipeline ADC Block Diagram Fig. 3. SiGe BiCMOS pipeline A/D converter. results are shown in Figure 3 [10]. High DC gain, fastsettling, low noise OTAs capable of driving largesampling capacitors without sacrificing output swing areneeded for realizing high-performance pipelined ADCs. A folded cascode configuration using SiGe NPN HBTs as cascodes with PMOS inputs resulted in a wide-bandwidth, high-gain, fast-settling OTA. The 34 MS/s sampling rate with 12 bit resolution was limited by capacitor mismatch and the lack of self-calibration techniques [10]. More recently, an improved SiGe BiCMOS OTA was designed that uses a triple-cascode architecture and NMOS-NPN SiGe HBT Darlington inputs with cascode SiGe HBTs to achieve fast settling response, with a predicted 115 MS/s sampling rate at 12 bit resolution [11]; with digital self-calibration [12] using a 7-bit pipeline seed, 205 MS/s is predicted. Using the A/D figure-of-merit (FoM) from the 2003 ITRS [13], we obtain a conservative estimate of 2.2 x 103 GHz/W without self-calibration and 4.0 x 103GHz/W with self-calibration, both using the 6HP process introduced in 2000. In comparison, the 2003 ITRS predicts CMOS A/Dconverters to reach a FoM of 2.2 x 103GHz/W in 2009 and 4.0 x 103 GHz/W in 2012 [13].3.2. Low Noise Amplifier The LNA designed is a typical common-emitter amplifier with inductive degeneration and an isolation cascode. To get sufficient gain two identical stages were cascaded, similar to the design presented in [14]. Hence, each stage was designed to have 50 ohm input and output matching. While the design presented in [14] used a 120 GHz process to realize a 24 GHz SiGe LNA, we were able to realize similar performance with a 60 GHz f T process with careful component optimization. The designed LNA is shown in Figure4. The input transistor Q1 is inductively degenerated with Ls toprovide good input matching with a 50 ohm real part. Thebias current density is determined for low noise figure andQ1 is sized for input matching along with Ls and Lg. Q2is used to provide better isolation between the inputtransistor and the output node. While in typical cascadedsystems there is no need to match the output impedance ofthe first stage and the input impedance of the second stageto 50 ohms, Guan [14] suggests that at a high-frequencylike 24 GHz, sensitivity to variations in other adjacentblocks can be minimized by matching each to 50-Ohm. Also, in a two-stage LNA design, the first stage can exactly be replicated if it is designed with 50 ohm input and output matching. C1, C2 and Ld are sized for matching the output of the first stage to 50 ohms. Once the first stage is optimized, it is replicated in order to obtain a high gain (S21). The simulated plots of S11, S21 and NF are shown in Figure 4. It is worth noting that the 6.1dB noise figure can be lowered to around 4dB if the on-chip spiral inductors can be replaced with higher quality factor inductors. We anticipate that this can be realized using the 3D configuration by having high quality passives on TCE-matched glass in the upper layer.3.3. 24GHz Power AmplifierA 2-stage single-ended class AB power amplifier is designed using 0.18um FETs available in the SiGeBiCMOS technology used. High f T FETs are used rather than the high breakdown HBTs since the latter have a lower f T of 24GHz. Input, output, and inter-stagematching are implemented on-chip using the inductor line formed of the top metal layer over a deep trench to isolate the inductor from the substrate. This technique generates small value inductors with high quality factor. The amplifier has been simulated with the effect of parasitics, including ground inductances as shown in figure 5 (a) and (b). Using 5 ground bonding pads with their typical packaging parasitic inductances, the PA can deliver 11dBm of maximum output power. The output power is estimated to increase to 14dBm with around 6dB increase in gain by decreasing the ground inductance. The on-chipFig 4: 24 GHz SiGe LNA and simulated S-parameter / NF curves.3D integration will not enhance the performance of the amplifier.IV. S UMMARY AND C ONCLUSIONSWe have presented our 3D integration platform and its application for mm-wave smart antenna transceivers. Basic test blocks targeting the 24GHz ISM band are designed to serve as a step towards the realization of the complete system integrated with I/O matching network, switches, and antennas. Simulation results from various blocks indicate the possible increase in power gain, output power, and noise figure with the increase in the quality factor of inductors. Although the relative increase in performance does not justify the higher cost of 3D integration, the partitioning capability, possibility of integrating multiple antennas and switches on the top layer, and integrating processors with higher computational power can prove 3D to be a worthy long-term solution. Another possible application is the concept of digital assisted RF/analog design, where the performance of each RF/analog block can be optimized in real-time by monitoring its output and applying digital techniques for performance improvement. This requires high interconnect capacity, which if done in 2D can pose cross-talk issues, and consume higher area. 3D on the other hand can provide vertical interconnect from the digital processing core in the bottom layer to each block in the transceiver chain in the inter-mediate layer.A CKNOWLEDGEMENTThis research is partially supported through the Interconnect Focus Center for Hyperintegration, funded by MARCO, DARPA and NYSTAR.R EFERENCES[1] X. Guan, H. Hashemi, and Ali Hajimiri, “A Fully Integrated 24-GHz Eight-Element Phased-Array Receiver in Silicon,” IEEE J. Of Solid_State Circuits, vol. 39, NO. 12, pp. 2311-2320, Dec. 2004. [2] A. Smolders, N. Pulsford, P. Philippe, and F. Van Straten, “RF SiP:The Next Wave for Wireless System Integration,” Proc. of IEEE Radio Frequency Integrated Circuits Symposium, pp. 233-236, May 2004.[3] R. Tummala, and J. Laskar, “Gigabit Wireless: System-on-a-Package Technology,” Proceedings of the IEEE, Vol. 92, No. 2, Feb. 2004.[4] Modest Oprysko, “Building Millimeter-Wave Circuits in Silicon,”Workshop on Advances in RF and High-Speed System Integration, IEEE Radio and Wireless Conference, Atlanta 2004.[5] J.-Q. Lu, T.S. Cale and R.J. Gutmann, “Dielectric Adhesive WaferBonding for Back-End Wafer-Level 3D Hyper-integration,”Dielectrics for Nanosystems: Materials, Science, Processing, Reliability, and Manufacturing, edited by R. Singh, H. Iwai, R.R.Tummala, and S.C. Sun, pp. 312-323, ECS PV 2004-04, 2004. [6] J.-Q. Lu, A. Jindal, Y. Kwon, J.J. McMahon, K.-W. Lee, R.P.Kraft, B. Altemus, D. Cheng, E. Eisenbraun, T.S. Cale, and R.J.Gutmann, “3D System-on-a-Chip using Dielectric Glue Bonding and Cu Damascene Inter-Wafer Interconnects,” Thin Film Materials, Processes, and Reliability, Eds.: S. Mathad, T. S. Cale,D. Collins, M. Engelhardt, F. Leverd, and H. S. Rathore, pp. 381-389, ECS Proc. Vol. PV 2003-13, 2003.[7] J.-Q. Lu, A. Jindal, Y. Kwon, J.J. McMahon, M. Rasco, R. Augur,T.S. Cale, and R.J. Gutmann, “Evaluation Procedures for Wafer Bonding and Thinning of Interconnect Test Structures for 3D ICs,”IEEE International Interconnect Technology Conference (IITC), pp. 74-76, June 2003.[8] R.J. Gutmann, J.-Q. Lu, S. Pozder, Y. Kwon, A. Jindal, M. Celik,J.J. McMahon, K. Yu and T.S. Cale, “A Wafer-Level 3D IC Technology Platform,” Advanced Metallization Conference in 2003 (AMC 2003), Eds. G.W. Ray, T. Smy, T. Ohta and M. Tsujimura, pp. 19-26, MRS Proceedings 2004.[9] A. Zanchi, F. Tsay, and I. Papantonopoulos, “Impact of DielectricRelaxation on a 14b Pipeline ADC in 3V SiGe BiCMOS,” ISSCC Digest of Technical Papers, pp. 330-331, Feb. 2003.[10] S. Devarajan, M. Hourihan and K. Rose, “High-speed 12-bitpipeline A/D converter for high-speed image capture,” SRC SiGe Design Challenge – Phase 2, July 2003.[11] S. Deverajan, R.J. Gutmann and K. Rose, “A 87dB, 2.3GHz, SiGeBiCMOS operational transconductance Amplifier,” IEEE International Symposium on Circuits and Systems”, May 2004, pp.1293-1296.[12] A. Karanicolas, Ph.D. Thesis, Massachusetts Institute ofTechnology, 1994.[13] International Technology Roadmap for Semiconductors (ITRS):2003 Edition, (Semiconductor Industry Association, 2003, ).[14] Xian Guan, Hossein Hashemi and Ali Hajimiri, “A Fully Integrated24-GHz Eight-Element Phased-Array Receiver in Silicon,” IEEE Journal of Solid-State Circuits, Vol. 39, No. 12, pp. 2311-2320, Dec 2004.(b)。
3D模型中英文对照表
/80/20-Inc./?prjpathinfo=8020//abb/?prjpathinfo=abb/abb_ww/?prjpathinfo=abb_ww/ACE-Shock-Absorbers/?prjpathinfo=ace_sto/agathon/?prjpathinfo=agathon/airtac/?prjpathinfo=airtac/Alfa-Laval/?prjpathinfo=alfalaval//AMF-ANDREAS-MAIER-GMBH-CO-KG/?prjpathinf/Aoki-Mecha-Tech/?prjpathinfo=aoki//apore/?prjpathinfo=apore/asahi/?prjpathinfo=asahi/ATEK-Antriebstechnik/?prjpathinfo=atek/ /Baldor-Dodge-Reliance/?prjpathinfo=baldor//balluff/?prjpathinfo=balluff/bando/?prjpathinfo=bando/belden/?prjpathinfo=belden/BENE-INOX-Raccords-Robinetterie-Accessoires-de-Tuyauterie/?prjpat/bimba/?prjpathinfo=bimba/Bosch-Rexroth/?prjpathinfo=bosch_rexroth/Boteco/?prjpathinfo=boteco//Brauer/?prjpathinfo=brauer//Buerkert/?prjpathinfo=buerkert//Bühler-Motor/?prjpathinfo=buehler_motor/ /Burger-Brown/?prjpathinfo=burger_brown//CA-BE/?prjpathinfo=ca_be//camozzi/?prjpathinfo=camozzi//captron/?prjpathinfo=captron//CCVI-Japan/?prjpathinfo=tashico//CKD/?prjpathinfo=ckd//CMB-Cilindri/?prjpathinfo=cmbcilindri/ /Codipro/?prjpathinfo=codipro//Colder/?prjpathinfo=colder//COMAT/?prjpathinfo=comat//Concens/?prjpathinfo=concens//Cumsa/?prjpathinfo=cumsa//CutTOOLity/?prjpathinfo=cuttoolity//DAI-ICHI-SOKUHAN-WORKS-CO./?prjpathinfo=issoku/ /Danly/?prjpathinfo=danly//DE-STA-CO/?prjpathinfo=destaco//DIM/?prjpathinfo=dim//Dirak/?prjpathinfo=dirak//D-M-E/?prjpathinfo=dme//DMS-Diemould-UK/?prjpathinfo=dms_diemould//DMS-Diemould-Service/?prjpathinfo=dms_diemould_na//Domino-Modul/?prjpathinfo=domino_modul//Duplomatic/?prjpathinfo=duplomatic//DYMCO,-LTD./?prjpathinfo=dymco//DZ-Trasmissioni/?prjpathinfo=dztrasmissioni//Eaton-Walterscheid/?prjpathinfo=eaton_walterscheid//Eaton's-Moeller%AE-series/?prjpathinfo=moeller//Eberhard/?prjpathinfo=eberhard//EGIS/?prjpathinfo=egis//Elesa/?prjpathinfo=elesa//EMB/?prjpathinfo=emb//EMILE-MAURIN-El%E9ments-d'Assemblage-Boulonnerie-Visserie/?prjpat/EMILE-MAURIN-El%E9ments-Standard-M%E9can/EMILE-MAURIN-Produits-M%E9tallurgiques/?prjpathinfo=emile_maurin_/EPS/?prjpathinfo=eps//EPSON/?prjpathinfo=epson//ERO/?prjpathinfo=ero//Ewikon/?prjpathinfo=ewikon//FAG/?prjpathinfo=fag//Farbo/?prjpathinfo=farbo//Fath/?prjpathinfo=fath//Febrotec/?prjpathinfo=febrotec//Ferry-Produits/?prjpathinfo=ferry_produits//Festo/?prjpathinfo=festo//Fibro/?prjpathinfo=fibro//Finder/?prjpathinfo=finder/ /Flexa/?prjpathinfo=flexa//FlexLink/?prjpathinfo=flexlink//Fluro/?prjpathinfo=fluro//Foehrenbach/?prjpathinfo=foehrenbach//Franke/?prjpathinfo=franke//FUJIKURA-RUBBER/?prjpathinfo=fujikura_ru/FYH-NIPPON-PILLOW-BLOCK-CO.,-LTD./?prjpathinfo=nippon_pb//Ganter/?prjpathinfo=ganter//GHV/?prjpathinfo=ghv//Giroud/?prjpathinfo=giroud//Grip/?prjpathinfo=grip//Grob-GmbH-Antriebstechnik/?prjpathinfo=grob_antriebstechnik/ /Groschopp/?prjpathinfo=groschopp//GSB-OILLESS/?prjpathinfo=gsb_oilless//Guizhou-Aerospace/?prjpathinfo=guizhou_a/Gutekunst-Federn/?prjpathinfo=gutekunst//Gysin/?prjpathinfo=gysin//Halder/?prjpathinfo=halder//Halfen/?prjpathinfo=halfen//halstrup-walcher/?prjpathinfo=halstrup_w/Hamilton-Caster/?prjpathinfo=hamiltoncaster//Hammer-Caster/?prjpathinfo=hammer_caster//Harmonic-Drive-Systems,Inc./?prjpathinfo=hardrive/ /HARTING/?prjpathinfo=harting//HATLAPA/?prjpathinfo=hatlapa//HBM/?prjpathinfo=hbm//Hettich/?prjpathinfo=hettich//HEB/?prjpathinfo=heb//Hephaist/?prjpathinfo=hephaist//HEPHAIST-SEIKO-CO.,LTD./?prjpathinfo=hephaist/ /Heiss/?prjpathinfo=heiss//HPC/?prjpathinfo=hpc//Hub-City/?prjpathinfo=hubcityinc//Huelsen/?prjpathinfo=huelsen//Hugro/?prjpathinfo=hugro//Hummel/?prjpathinfo=hummel//Hydropneu/?prjpathinfo=hydropneu//Hypertac/?prjpathinfo=hypertac//IAI/?prjpathinfo=iai//Idec/?prjpathinfo=idec//IEF-Werner/?prjpathinfo=ief_werner//IFM-Electronic/?prjpathinfo=ifm_electronic/ /IGUCHI-KIKO-CO.,-LTD./?prjpathinfo=isb/ /Igus/?prjpathinfo=igus//IKO-Nippon-Thompson/?prjpathinfo=iko//IMS-UNIVERSAL-Fastening-elements/?prjpat /inkoma/?prjpathinfo=inkoma//Inocon/?prjpathinfo=inocon//Intercom/?prjpathinfo=intercom//IPR/?prjpathinfo=ipr//ISOLOC/?prjpathinfo=isoloc//Italcuscinetti/?prjpathinfo=italcuscinetti/ /IWATA-MFG.-CO.,-LTD./?prjpathinfo=iwata/ /JTEKT-Corporation-Koyo/?prjpathinfo=koyo/ /Kabelschlepp/?prjpathinfo=kabelschlepp/ /Katayama/?prjpathinfo=kana//Kerb-Konus/?prjpathinfo=kerb_konus/ /Kern/?prjpathinfo=kern//KHK-Kohara-Gear/?prjpathinfo=khk/ /KIPP/?prjpathinfo=kipp//KIPP-USA/?prjpathinfo=kipp_usa/ /Kistler/?prjpathinfo=kistler//Komax/?prjpathinfo=komax//Konstandin/?prjpathinfo=konstandin/。
三维集成技术的现状和发展趋势
三维集成技术的现状和发展趋势吴际;谢冬青【摘要】The definition of 3D technologies is given in this paper. A clear classification of variety 3D technologies is pro-posed,in which there are 3D packaging,3D wafer-level packaging,3D system-on-chip,3D stacked-integrated chip and 3D in-tegrated chip. Two technologies (3D system-on-chip and 3D stacked-integrated chip) with application prospect and their TSV technical roadmap are analyzed and compared. 3D integrated circuit's some problems in the aspects of technology,testing,heatdissipation,interconnection line and CAD tool are proposed and analyzed. Its research prospect is pointed out.%给出了三维技术的定义,并给众多的三维技术一个明确的分类,包括三维封装(3D-P)、三维晶圆级封装(3D-WLP)、三维片上系统(3D-SoC)、三维堆叠芯片(3D-SIC)、三维芯片(3D-IC)。
分析了比较有应用前景的两种技术,即三维片上系统和三维堆叠芯片和它们的TSV技术蓝图。
给出了三维集成电路存在的一些问题,包括技术问题、测试问题、散热问题、互连线问题和CAD工具问题,并指出了未来的研究方向。
虚拟现实技术——VRML篇
虚拟现实技术――VRML篇一、VRML介绍1.什么是VRML?VRML是“Virtual Reality Modeling Language”的缩写形式,意思是“虚拟现实造型语言”。
第一代Web是以HTML为核心的二维浏览技术,受HTML语言的局限性,VRML 之前的网页只能是简单的平面结构,而且实现环境与参与者的动态交互是非常烦琐的。
第二代Web是以VRML为核心的三维浏览技术。
第二代Web把VRML与HTML、Java、媒体信息流等技术有机地结合起来,形成一种新的三维超媒体Web。
VRML是用来描述三维物体及其行为的,可以构建虚拟境界(Virtural World), 可以集成文本、图像、音响、MPEG影像等多种媒体类型,还可以内嵌用Java、ECMAScript等语言编写的程序代码。
以VRML为核心构建的虚拟世界中用户如身处真实世界,可以和虚拟物体交互,人们可以以习惯的自然方式访问各种场所,在虚拟社区中“直接”交谈和交往。
事实上,目前采用VRML技术取得成功的案例已经很多,例如探路者到达火星后的信息就是利用VRML在因特网上即时发布的,网络用户可以以三维方式随探路者探索火星。
2.VRML的工作原理VRML定义了一种把3D图形和多媒体集成在一起的文件格式。
从语法角度看,VRML文件是显式地定义和组织起来的3D多媒体对象集合;从语义角度看,VRML 文件描述的是基于时间的交互式3D多媒体信息的抽象功能行为。
VRML文件描述的基于时间的3D空间称为虚拟境界(Virtual World),简称境界,所包含的图形对象和听觉对象可通过多种机制动态修改。
VRML文件可以包含对其他标准格式文件的引用。
可以把JPEG、PNG和MPEG 文件用于对象纹理映射,把WAV和MIDI文件用于在境界中播放的声音。
另外,还可以引用包含Java或ECMAScript代码的文件,从而实现对象的编程行为。
VRML使用场景图(Scene Graph)数据结构来建立3D实境,VRML的场景图是一种代表所有3D世界静态特征的节点等级:几何关系、质材、纹理、几何转换、光线、视点以及嵌套结构。
多晶材料织构的又一表示法——三维取向分布函数(odf)分析法
多晶材料织构的又一表示法——三维取向分布函数(odf)分析法
近年来,随着多晶材料的迅速发展,多晶织构的表示方法亦在不断完善。
目前,除了常用的晶体布朗定律及其经典的Fourier变换方法外,另一种描述多晶织构的表示法─三维取向分布函数(odf)分析法也逐渐成为研究多晶材料织构的重要参考
依据。
首先,odf分析法针对每一个取向拟合一个单独的参数,确定材料在每个方向
上的取向分布,而这些参数便是其三维取向分布函数,因此,这种方法经过拟合可比较准确地描述多晶材料的取向结构,可以在呈现更新的结构特征方面发挥作用。
此外,利用odf分析可以更好的获取非等向性的研究结果,从而可以更准确地
描述材料的织构特性,在预测材料力学行为时发挥重要作用。
而且,此外此种分析可以提供非常明确的结构信息,可以帮助解释化学与多晶织构之间的相互影响。
总而言之,odf分析是多晶织构表示法中重要的参考依据,它既可以准确描述
材料取向结构,又能提供易于理解的结构信息,从而帮助进一步研究多晶材料的力学特性。
因此,odf分析法的开发和应用具有重要的意义。
三维GIS数据融合的基本方法与进展
三维GIS数据融合的基本方法与进展三维GIS数据融合是将多源感知数据进行融合与集成,提供具有空间、时间和属性信息的三维地理实体模型的过程。
它通过将不同数据源的信息进行融合,能够提供更真实、全面、准确的地理信息,为决策制定提供支持。
以下是三维GIS数据融合的基本方法与进展。
1.数据预处理:不同源的数据需要进行预处理,包括去噪、配准、校正等。
同时,还需要将数据进行归一化,以确保不同数据源之间具有一致的空间和属性参考。
2.数据匹配与配准:在融合不同数据源之前,需要进行数据匹配与配准。
这涉及到将不同数据源的坐标系进行统一,使得它们在相同空间范围内具有一致的坐标和尺度。
3.数据融合方法:三维GIS数据融合的方法主要包括几何融合、属性融合和语义融合。
-几何融合:将不同数据源的几何信息进行融合。
常用的方法包括三维形状匹配、三维形状变换和三维三角网格融合。
-属性融合:将不同数据源的属性信息进行融合。
常用的方法包括数据插值、反演和统计分析。
-语义融合:将不同数据源的语义信息进行融合。
主要通过分析特征、分类和规则对地理实体进行语义匹配和关联,从而实现数据融合。
4.数据集成与更新:在融合不同数据源之后,需要将融合后的数据进行集成和更新。
这些数据集成的过程包括数据格式转换、数据压缩和数据存储,以适应不同应用的需求。
5.算法优化与模型改进:为了提高三维GIS数据融合的效果与效率,还需要进行算法优化与模型改进。
传统的数据融合算法可以结合深度学习方法进行改进,提高对复杂地理数据的融合精度和速度。
6.应用拓展:三维GIS数据融合的应用领域十分广泛,包括城市规划、地理环境分析、地质勘探和交通管理等。
随着技术的不断发展,三维GIS数据融合的应用也在不断拓展,为相关领域提供更全面、准确的地理信息。
总结起来,三维GIS数据融合的基本方法与进展主要包括数据预处理、数据匹配与配准、几何融合、属性融合、语义融合、数据集成与更新、算法优化与模型改进以及应用拓展等方面。
3d封装技术的演进过程
3d封装技术的演进过程
3D封装技术的演进过程可以分为以下几个阶段:
1. 焊盘式封装(BGA、QFN):这是最早期的3D封装技术,通过在封装底部增加焊盘,来提供更多的连接点,增加器件的密度和性能。
2. 堆叠封装(3D IC):随着半导体技术的进步,可以在同一器件内部堆叠多个芯片,从而进一步提高器件的密度和性能。
这种封装技术可以使不同功能的芯片互相连接,实现更高级的集成。
3. 空间封装(3D Packaging):与堆叠封装类似,空间封装是指在垂直方向上将多个硅片堆叠在一起,并使用硅薄片或者封装底部腔体连接它们。
这种封装技术可以提供更高的集成度和更小的尺寸。
4. 组合封装(Chiplet):组合封装是指将不同功能的芯片(Chiplet)分别封装,然后通过高密度互连技术在芯片级别上互相连接。
这种封装技术可以实现芯片级别的定制化,同时还可以提供更灵活、可升级的解决方案。
5. 整体封装(Wafer-level packaging):整体封装是指在芯片级别上进行封装,即将多个芯片分别封装在同一块硅片上,并通过互连技术进行连接。
这种封装技术可以在尺寸和性能方面提供更大的优势。
总的来说,3D封装技术的演进过程是从焊盘式封装开始,经过堆叠封装、空间封装、组合封装,最终发展到整体封装。
这些技术的发展使得半导体器件的集成度和性能得到了极大的提升,为电子行业的发展提供了更多的可能性。
abaqus单元属性大总结
S3/S3R 单元可以作为通用壳单元使用。
由于单元中的常应变近似,需要划分较细的网格来模拟弯曲变形或高应变梯度。
S4R 单元性能稳定,适用围很广对于复合材料,为模拟剪切变形的影响,应使用适于厚壳的单元(例如S4、S4R、S3、S3R、S8R),并要注意检查截面是否保持平面。
对于几何非线性分析,在ABAQUS/Standard中的小应变壳单元(S4R5, S8R, S8R5, S8RT, S9R5, STRI3, 和STRI65)使用总体拉格朗日应变算法,应力应变可以相对于参考构型的材料方向改定。
垫片单元是小应变小位移单元,默认情况下其应力应变值也是以初始参考构型定义的行为方向输出。
对于有限膜应变单元(所有的膜单元以及S3/S3R, S4, S4R, SAX,和 SAXA单元)和在ABAQUS/Explicit中的小应变单元,其材料方向是随着曲面的平均刚性旋转运动而变以形成当前构型的材料方向。
此时这些单元的应力应变则是根据当前的参考构型中的材料方向给出的。
(更详细地说明可以参考ABAQUS相关手册)。
用户可以决定与*section print和*section file相关的局部坐标系统是固定不动还是随着曲面的平均刚性运动而旋转。
C3D20RP 20-node brick, triquadratic displacement, trilinear pore pressure, reducedintegration20节点实体,三重二次位移,三线孔隙压力,缩减积分C3D20R PH 20-node brick, triquadratic displacement, trilinear pore pressure, hybrid, linearpressure, reduced integration20节点实体,三重二次位移,三线孔隙压力,混合动力,线压力,缩减积分。
TSV 转接板
Law chips C. Passive Interposers as the Integrators for Moore’s Law Chips (3D IC
250
200
(a)
PCB
Ordinary solder joint 150
125MPa
Mirco solder joint Moore’s law Chip BT-Substrate
Special Underfill
100
42MPa
50
0
Conventional FCBGA with FCBGA with interposer
Testing and yield challenges give way for package stacking
Maturity
Commercialization
Die Stacking with wire
bonds
Applied R&D
Package on
Package Stacking
(PoP)
Basic/A pplied R&D
Active applied R&D is undertaken by Research Institutes. System level challenges are key. In the phase of industrialization.
蒙特卡洛仿真-3D随机游走、积分
蒙特卡洛方法求任意函数的积分%Monte Carlo methodclearclcdisp('Please enter the function f=@(x)');keyboarddisp('Please enter the range of integration,a and b (a<b)'); keyboarddisp('Please enter the number n of repeat');keyboardsum=0;for i=1:nk=rand(1);x=(b-a)*k+a;sum=sum+f(x);endfmean=sum/n;intf=(b-a)*fmean;disp('The value of this integral is');disp(intf);syms yintr=int(f(y),y,a,b);intr=double(intr);disp('The real value of this integral is');disp(intr);dis=abs(intf-intr);disp('The distance of two values is ');disp(dis);蒙特卡洛方法仿真模拟三维随机游走%The drunk walkclearclcdisp('Please enter the number n of steps');keyboard;x=0;y=0;z=0;for i=1:nx0=x;y0=y;z0=z;direction=rand(1);if (direction<1/6)x=x+1;%move right.elseif (direction<2/6)x=x-1;%move leftelseif (direction<3/6)y=y+1;%move forwardelseif (direction<4/6)y=y-1;%move backwardelseif (direction<5/6)z=z+1;%move upwardelseif (direction<6/6)z=z-1;%move downwardenddistance=sqrt(x^2+y^2+z^2);if (distance<5);col='g';elseif (distance<10);col='b';elseif (distance<15)col='y';elsecol='r';endplot3([x0;x],[y0;y],[z0;z],col);hold on.grid onendxlabel('x');ylabel('y');zlabel('z');distance=sqrt(x^2+y^2+z^2);disp('The distance is');disp(distance);如有侵权请联系告知删除,感谢你们的配合!。
机械制图全部符号及表示含义
camera相机照相机
camera angle相机角度相机角度
Cancel取消取消
cap封口封口
cascade层叠(的)重叠排列
case(大小)写大小写
cast投射投射
catalog目录目录
cell单元储存格
Center圆心中心
center mark圆心标记中心点标记
centerline中心线中心线
aseadmin ASE管理ASE管理
aseexport ASE输出ASE汇出
aselinks ASE链接ASE连结
aserows ASE行ASE列
aseselect ASE选择ASE选取
asesqled SQL编辑ASE SQL编辑器
Aspect纵横向间距纵横向间距
aspect ratio宽高比纵横比
3d objects三维物体3D物件
3D Orbit三维轨道3D动态
3D Orbit三维动态观察3D动态
3D Studio 3D Studio 3D Studio
3D Viewpoint三维视点3D检视点
3dpoly三维多段线3D聚合线
3dsin 3DS输入3D实体汇入
3DSolid三维实体3D实体
device设备设备
Device and Default Selection设备和默认
General基本一般
generate生成产生
geometric characteristic symbols几何特性几何特性符号
Geometric Tolerance形位公差几何公差
geometry几何图形几何图形
default drawing缺省图形预设图面
提高3D计算精度的关键策略与措施
提高3D计算精度的关键策略与措施提高3D计算的精度需要综合多种方法和技术,以下是一些具体的建议和措施,包括相关的数字和信息参考:1.2.选择高精度的设备和技术:o使用高精度的扫描仪、相机和测量设备来获取3D数据,以减少数据输入误差。
o选择具有高性能的摄影设备,并进行精确的校准工作,以消除设备本身引起的误差。
o利用高性能计算资源进行复杂的3D数据处理和分析。
3.4.优化算法:o改进和优化3D重建、渲染和计算过程中的算法,如使用更先进的插值算法、表面重建算法和光照模型。
o在特征提取和匹配过程中,使用先进的算法和设置合理的阈值,以提高特征点的提取和匹配精度。
5.6.采用多视图和立体匹配技术:o利用多视图几何原理进行三维点云的重建,通过对不同影像之间的视差信息进行分析和计算,得到更准确的三维坐标信息。
o立体匹配技术可以通过对影像中的纹理和深度信息进行匹配,进一步提高几何坐标的精度。
7.8.滤波和优化处理:o对生成的三维点云进行滤波和优化处理,如高斯滤波、统计滤波等,去除噪声和异常值,平滑点云数据。
o通过迭代优化操作对三维模型进行修正和细化,提高拟合度和准确性。
9.10.结合多种技术:o将不同的3D计算技术结合起来,如将基于几何的方法与基于物理的方法相结合,利用各自的优点来弥补彼此的不足。
o利用聚类分析、归一化技术等进一步提高3D计算的精度。
11.12.合理设置参数和阈值:o根据具体的应用场景和需求,合理设置算法中的参数和阈值,以达到最佳的精度和性能。
13.14.后期精细处理:o在获取初步三维模型后,进行后期的精细处理和编辑,如手动或半自动的方式对模型进行进一步的调整、修复和优化。
需要明确的是,准确率为99%的3D计算方法在实际应用中是非常具有挑战性的,因为3D计算涉及的因素非常复杂,包括数据输入误差、设备精度限制、算法自身的局限性等。
因此,在实际应用中,我们需要根据具体的需求和场景来选择合适的计算方法和精度,以达到最佳的计算效果。
(仅供参考)3D IC TSV 介绍与工艺流程
Advanced Reliable Systems (ARES) Lab.
Jin-Fu Li, EE, NCU
19
Fabrication Steps for Face-to-Back Stacking
1
2
3
4
5
Die2
Die2
Handle wafer
Metal Active Si Bulk Si
Die1
Jin-Fu Li, EE, NCU
6
Via-First TSV Technology
Via-First TSV
(1) Before CMOS
(2) After CMOS & BEOL
Advanced Reliable Systems (ARES) Lab.
Jin-Fu Li, EE, NCU
Source: Yole, 2007.
Substrate
Jin-Fu Li, EE, NCU
MOSFET
Ref :ITRI
10
An Exemplary Via-Last Process Flow (3/6)
Step 3: via filling
… …
…
Via filling
MOSFET
Advanced Reliable Systems (ARES) Lab.
Substrate
Jin-Fu Li, EE, NCU
MOSFET
Ref :ITRI
11
An Exemplary Via-Last Process Flow (4/6)
Step 4: wafer thinning
… …
…
50 ~ 100 μm
fdm-熔融层积 3d打印 英文
fdm-熔融层积 3d打印英文FDM: Fused Deposition Modeling熔融层积: Fused Deposition Modeling1. FDM is a popular method of 3D printing.FDM是一种流行的3D打印方法。
2. Fused Deposition Modeling involves the layer-by-layer deposition of melted material.熔融层积涉及逐层堆积熔化材料。
3. The FDM process utilizes a thermoplastic filament.FDM过程使用热塑性细丝。
4. FDM printers can create complex three-dimensional objects.FDM打印机可以创建复杂的三维物体。
5. The FDM technology offers a cost-effective solutionfor rapid prototyping.FDM技术为快速原型制作提供了经济实惠的解决方案。
6. Fused Deposition Modeling is widely used in various industries, including automotive and aerospace.熔融层积广泛应用于各个行业,包括汽车和航空航天。
7. FDM allows for the creation of functional prototypes.FDM允许创建功能性原型。
8. The Fused Deposition Modeling process requires precise control of temperature and deposition speed.熔融层积过程需要对温度和堆积速度进行精确控制。
9. FDM printers use a heated nozzle to melt the thermoplastic filament.FDM打印机使用加热喷头来将热塑性细丝熔化。
3D-interconnect
专利名称:3D-interconnect发明人:Chok J. Chia,Qwai H. Low,Patrick Variot申请号:US16245925申请日:20190111公开号:US11031362B2公开日:20210608专利内容由知识产权出版社提供专利附图:摘要:A method of making a microelectronic package includes bonding a conductive structure to a carrier. The conductive structure can include a base and a plurality of interconnections extending continuously away from the base toward the carrier. The microelectronic element can be positioned between at least two adjacentinterconnections of the plurality of interconnections. The conductive structure may be bonded to the carrier so that the conductive structure overlies a rear surface of a microelectronic element disposed on the carrier and an exposed top surface of the carrier. The plurality of interconnections and the microelectronic element may beencapsulated. The carrier may be removed to expose free ends of the interconnections and bond pads of the microelectronic element. The free ends of the interconnections and bond pads of the microelectronic element may be conductively connected with terminals of the microelectronic package. The conductive structure may be patterned to formexternal contacts.申请人:Invensas Corporation地址:San Jose CA US国籍:US代理机构:Lerner, David, Littenberg, Krumholz & Mentlik, LLP 更多信息请下载全文后查看。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Samsung’s Stacked Flash Memories
Samsung Electronics
A small foot-print wafer-level processed stack package (WSP) 16Gbit memory prototype sample (Apr., 2006).
ASTRI Proprietary
Toshiba Image Sensor with TSV
Production started in January 2008. TSV Technology
Reduced wire bond substrate area by mounting components directly on the wafer and running electrodes through the vias on the circuit board, attached with solder balls; Reduced pixel size, contributing to 64% smaller size module.
ASTRI Proprietary
Functionality Motivation
Heterogeneous Integration
Integrate different functional chips (RF, memory, logic, MEMS, imagers, etc.)
8
ASTRI Proprietary
• Smaller capacitor not needed; • Shorter wires, leading to less delay.
DRAM
• Under 65nm may not lower cost; • Difficulty in large DRAM.
2009 – 2010: Elpida
6
Applications
WLAN; Source: IBM Cellular applications; High-performance server and supercomputer chips.
Benefits
40% better power efficiency in SiGe-based wireless products; Increases processor speed by reducing grid power consumption up to 20%; Allows stacking of high-performance chips, e.g., processor-onprocessor or memory-on-processor.
4
More than Moore
• Reduce wire length to shorten delay; • Stacked transistors to achieve faster CMOS circuit.
CPU
• No suitable photolith system available; • Unstable cell operation.
Outline
Background & Motivation Technology Development Status Worldwide Market Development Status & Forecast ASTRI’s R&D in 3D Integration
Package-on-Package (PoP) Through-Silicon-Via (TSV)
ASTRI Proprietary
Performance Motivation
TSV Chip (IBM: Apr. 13, 2007)
Shorten data-travel distances by up to 1000X; Allow for 100X more pathways than 2D chips; Sample 2Q’07 and production 2008.
CMOS Imaging Sensor
CIS 1Q’07 Market Share
Hale Waihona Puke 14Source: Tech System Research ASTRI Proprietary
ST’s TSV Interconnect
2MPixel (2.6x2.6um pixel) CIS: Leti & ST (Jun. 2007)
2
Summary Acknowledgements
ASTRI Proprietary
3
Background & Motivation
ASTRI Proprietary
Technology Challenges
Moore
• Wire delay limits chip speed; • Unclear if CMOS circuit possible under 32nm.
Cost Motivation
100
M an u f. C o st / b it (16-G b it = 100)
90 80 70 60 50 40 5Xnm Conventional smaller design rule 4X~3Xnm 3Xnm 3X ~2Xnm
9
• Limit for further reduction; • No photolith system available; • Cell operation unstable.
• Lower manuf. Cost even with same 90nm; • Stacking bigger DRAM by different processes.
DRAM + Logic 90nm
Problems with smaller design rule Advantages using 3D integration
Assembly Compatibility
Available in both wire bond and BGA formats.
ASTRI Proprietary
3D System Roadmap
17
Source: Yole Develop. 2007
ASTRI Proprietary
18
Market Development Status & Forecast
NAND Flash Capacity (Gbit)
ASTRI Proprietary
10
Technology Development Status Worldwide
ASTRI Proprietary
Flash Memory Market Evolution
Flash Memory has many applications: PDAs, laptop computers, digital audio players, digital cameras and mobile phones, etc.
End 2005: Sony
ASTRI Proprietary
65-45nm
32-22nm
5
What is 3D Packaging?
2D Interconnect Die Stacking
SOC Solution Package-on-Package (PoP)
3D Interconnect Through Silicon Via (TSV)
New Architecture
Photosensitive elements are placed on top of the circuit read-out leading to ~ 100% light fill factor
Tessera’s WLC Technology
Size Reduction
ASTRI Proprietary
Form Factor Motivation
Major Requirements of Future Electronic Products
Smaller, faster, thinner, & affordable, etc.;
7
Connect anywhere and anytime to information, entertainment, communication, monitoring and control.
< 2Xnm 30
2D App.
20
3D Int. Moore R
3D integration of 2 memory cells
Moore rule continuity (cost drops ~40% / per bit with capacity increase.
10
16 32 64 128 256
2011 – 2015: Intel / IBM
• Use proven photolith system; • Stable cell operation.
NAND
• Difficult to make smaller capacitor; • Longer wire delays.
2011 – 2015: Samsung
15
Photosensitive elements are placed on top of the CMOS circuit readout, allowing 100% light collection across the CMOS imager full die area; Key idea is to use hydrogenated amorphous silicon as the photosensitive layer element.