高频电子线路-第5章(1)

合集下载

高频电子线路(第五章 高频功率放大器)

高频电子线路(第五章 高频功率放大器)
①高效率输出 联想对比: ②高功率输出
高频功率放大器和低频功率放大器的共同 特点都是输出功率大和效率高。
7
(3)高频功率放大器的种类

谐振功率放大器(学习重点)
特点是负载是一个谐振回路,功率放大增益可
以很大,一般用于末级; 不易于自动调谐。

宽带功率放大器(了解即可)
特点是负载是传输线变压器,可在很宽的频带
工作状态 甲类 乙类 甲乙类 丙类 丁类 半导通角 c=180° c=90° 90° <c<180° c<90° 开关状态 理想效率 50% 78.5% 50%<h<78.5% h>78.5% 负 载 电阻 推挽,回路 推挽 选频回路 选频回路 应 用 低频 低频,高频 低频 高频 高频
90%~100%
由于这种周期性的能量补充,所以振荡回路能维持振 荡。当补充的能量与消耗的能量相等时,电路中就建立起 动态平衡,因而维持了等幅的正弦波振荡。
34
问题二:半流通角θc通常多大合适?
如果θc取值过大,趋向甲类放大器,则效率 太低; 如果θc取值过小,效率虽然提高了,但输出 功率的绝对值太小(因为iC脉冲太低); 这是一对矛盾,根据实验折中,人们通常 取
gC (vB VBZ )(当vB VBZ )
外部电路关系:
vB VBB Vbm cos t
v C V CC V cm cos t
31
(4)对2个问题的解释

问题一(可能会引起同学们困惑的问题)
为什么iC的波形时有时无,而输出的波形vo却能
是连续的?

问题二(有的题目已知条件不给θc,而解题 中又需要θc )
通过LC回路,滤去无用分量,只留下 Icm1cosωt分量

高频电子线路课后题答案(清华大学出版社宋树祥著)六

高频电子线路课后题答案(清华大学出版社宋树祥著)六

K(2t)gD
gD
2 3
3
cos 2t
3 2
cos 22t
3 4
cos 42t
3 5
cos 52t
......
高频电子线路习题参考答案
5-4 二极管平衡电路如图所示,u1及u2的注入位置如图所示, 图中, u1=U1COSω1t,u2=U2COSω2t且U2>>U1.求u0(t) 的表示式,并与图5-7所示电路的输出相比较.
试写出电流i中组合频率分量的频率通式,说明它们是由哪些
乘积项产生的,并求出其中的ω1、2ω1+ω2、ω1+ω2-ω3频率分 量的振幅。
解5-1 i a0 a1(u1 u2 u3 ) a2 (u1 u2 u3 )2 a3(u1 u2 u3 )3
a0
a1 (u1
u2
u3 )
a2 (u12
5-3 一非线性器件的伏安特性为
i
g 0
Du
u
u 0
0
式中,u=EQ+ul+u2=EQ+U1COSω1t+U2COSω2t。若U1 很小,满足线性时变条件,则在EQ=-U2/2时,求出时变电导 gm(t)的表示式。
解5-3,根据已知条件,
由 U2 2
U2
cos 2t
0得:cos 2t
1 2
,2t
arccos(
a3
U
2 2
U1
2
a3
U23U1 2
a3
3U13 4
cos 1t
a1U2
a3
U12U2 2
a3
U23U2 2
a3
3U
3 2
4
cos 2t
a1U3

Chapter5 高频功率放大器v1.0解析

Chapter5 高频功率放大器v1.0解析


故放大器效率:
Po Po c P Po Pc
21
第五章
高频功率放大器
高频电子线路
两点结论:
1)设法尽量降低集电极耗散功率Pc,则放大器效率c 自然会提高。这样,在给定P=时,晶体管的交流输出 功率Po就会增大;
2) 由式
c Po 1 Pc c
ic ic
Q
o
eb
o
t
o振放大器波形图 t
5
t
高频功率放大器波形图
第五章
高频功率放大器
高频电子线路
高频功率放大器与非谐振功率放大器的对比

相同点: ①输出功率大, ②输出效率高。

功率放大器实质上是一个能量转换器,把电源供给的直流能 量转化为交流能量,能量转换的能力即为功率放大器的效率。

不同点:

谐振功率放大器通常用来放大窄带高频信号(信号的通带宽度 只有其中心频率的1%或更小),其工作状态通常选为丙类工作 状态(导通角c<90),为了不失真的放大信号,它的负载必 须是谐振回路

非谐振放大器可分为低频功率放大器和宽带高频功率放大器。 低频功率放大器的负载为无调谐负载,工作在甲类或乙类工 作状态;宽带高频功率放大器以宽带传输线为负载。
π

sin c c cos c I cM o ( c ) π(1 cos c )
I c1m

cos t cos c 1 c ic cosωt dt I cM costdt π π c (1 cos c )
π

I cM
c sin c cos c I cM 1 ( c ) π(1 cos c )

(完整版)高频电子线路第5章习题答案

(完整版)高频电子线路第5章习题答案

第5章 振幅调制、振幅解调与混频电路5.1 已知调制信号()2cos(2π500)V,u t t Ω=⨯载波信号5()4cos(2π10)V,c u t t =⨯令比例常数1a k =,试写出调幅波表示式,求出调幅系数及频带宽度,画出调幅波波形及频谱图。

[解] 5()(42cos 2π500)cos(2π10)AM u t t t =+⨯⨯54(10.5cos 2π500)cos(2π10)V t t =+⨯⨯20.5,25001000Hz 4a m BW ===⨯= 调幅波波形和频谱图分别如图P5.1(s)(a)、(b)所示。

5.2 已知调幅波信号5[1cos(2π100)]cos(2π10)V o u t t =+⨯⨯,试画出它的波形和频谱图,求出频带宽度BW 。

[解] 2100200Hz BW =⨯=调幅波波形和频谱图如图P5.2(s)(a)、(b)所示。

5.3已知调制信号3[2cos(2π210)3cos(2π300)]Vu t t Ω=⨯⨯+⨯,载波信号55cos(2π510)V,1c a u t k =⨯⨯=,试写出调辐波的表示式,画出频谱图,求出频带宽度BW 。

[解] 35()(52cos2π2103cos2π300)cos2π510c u t t t t =+⨯⨯+⨯⨯⨯3555353555(10.4cos2π2100.6cos2π300)cos2π5105cos2π510cos2π(510210)cos2π(510210)1.5cos2π(510300) 1.5cos2π(510300)(V)t t tt t t t t t =+⨯⨯+⨯⨯⨯=⨯⨯+⨯+⨯+⨯-⨯+⨯++⨯- 3max 222104kHz BW F =⨯=⨯⨯=频谱图如图P5.3(s)所示。

5.4 已知调幅波表示式6()[2012cos(2π500)]cos(2π10)V u t t t =+⨯⨯,试求该调幅波的载波振幅cm U 、调频信号频率F 、调幅系数a m 和带宽BW 的值。

《高频电子线路》课件-05频谱的线性搬移电路

《高频电子线路》课件-05频谱的线性搬移电路
(2) 线性时变电路并非线性电路,而是非线性 电路在一定条件下的近似。
u1
线性时变 器件
滤波器
uo
u2
图5-3 线性时变电路完成频谱的搬移
《高频电子线路》
20
西华师范大学 陈亚军制作
第5章 频谱的线性搬移电路
5.2
二极管频率搬移电路的特点:电路简单、工作频带宽 等。 一、 单二极管电路
单二极管电路的原理电路如图5-4所示,输入信号u1 和控制信号(参考信号)u2相加作用在非线性器件二极 管上。图中用传输函数为H(j)的滤波器取出所需信号。
A、从非线性器件的特性考虑,使其非线性接近平方律特性。
B、从电路考虑,如采用多个电路组合成平衡电路,以抵消 部分无用成分。
C、从两个输入信号的大小配合上考虑。
《高频电子线路》
12
西华师范大学 陈亚军制作
第5章 频谱的线性搬移电路
二、 线性时变电路分析法 1、线性时变参数分析法的原理 对式(5-1)在EQ+u2上对u1用泰勒级数展开,有
根据我们所学知识,线性电路是不能产生新的频率成分 的(为什么?),因此要实现频谱搬移,必须使用非线性电 路,在非线性电路中,其核心是非线性器件。
线性电路的分析方法在非线性电路中是不适用的,它有 其特有的分析方法,主要有级数展开发和时变参数分析法等。
《高频电子线路》
4
西华师范大学 陈亚军制作
第5章 频谱的线性搬移电路
i f (EQ u1 u2 )
f (EQ
u2 )
f (EQ
u2 )u1
1 2!
f (EQ
u2 )u12
1 n!
f
(n) (EQ
u2 )u1n
(5-11)

高频电子线路课后习题答案-曾兴雯.(DOC)

高频电子线路课后习题答案-曾兴雯.(DOC)

高频电子线路习题集第一章 绪论1-1 画出无线通信收发信机的原理框图,并说出各部分的功用。

答:上图是一个语音无线电广播通信系统的基本组成框图,它由发射部分、接收部分以及无线信道三大部分组成。

发射部分由话筒、音频放大器、调制器、变频器(不一定必须)、功率放大器和发射天线组成。

低频音频信号经放大后,首先进行调制后变成一个高频已调波,然后可通过变频,达到所需的发射频率,经高频功率放大后,由天线发射出去。

接收设备由接收天线、高频小信号放大器、混频器、中频放大器、解调器、音频放大器、扬声器等组成。

由天线接收来的信号,经放大后,再经过混频器,变成一中频已调波,然后检波,恢复出原来的信息,经低频功放放大后,驱动扬声器。

话筒扬声器1-2 无线通信为什么要用高频信号?“高频”信号指的是什么?答:高频信号指的是适合天线发射、传播和接收的射频信号。

采用高频信号的原因主要是:(1)频率越高,可利用的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率,这样,可以采用较小的信号功率,传播较远的距离,也可获得较高的接收灵敏度。

1-3无线通信为什么要进行凋制?如何进行调制?答:因为基带调制信号都是频率比较低的信号,为了达到较高的发射效率和接收效率,减小天线的尺寸,可以通过调制,把调制信号的频谱搬移到高频载波附近;另外,由于调制后的信号是高频信号,所以也提高了信道利用率,实现了信道复用。

调制方式有模拟调调制和数字调制。

在模拟调制中,用调制信号去控制高频载波的某个参数。

在调幅方式中,AM普通调幅、抑制载波的双边带调幅(DSB)、单边带调幅(SSB)、残留单边带调幅(VSSB);在调频方式中,有调频(FM)和调相(PM)。

在数字调制中,一般有频率键控(FSK)、幅度键控(ASK)、相位键控(PSK)等调制方法。

第5章频谱的线性搬移电路资料

第5章频谱的线性搬移电路资料
第5章 频谱的线性搬移电路
引言
前面在分析高频电路基础上介绍了: 1、高频放大器(小信号、功率) 2、正弦波振荡器
下面将介绍另一类电路:频率搬移与控制电路,包括: 1、线性搬移及应用(5、6章):主要用于幅度调制与解调、
混频等 2、非线性搬移及应用(7章):频率调制与解调、相位调
制与解调 3、反馈控制(8章):包括AGC、AFC、APC(PLL)
《高频电子线路》
11
第5章 频谱的线性搬移电路
二、 线性时变电路分析法 1、线性时变参数分析法的原理 对式(5-1)在UQ+u2上对u1用泰勒级数展开,有
i f (UQ u1 u2 )
f
(UQ
u2 )
f
(UQ
u2 )u1
1 2!
f
(UQ
u2 )u12
1 n!
f
(n) (UQ
u2 )u1n
n
i
anCnmu1nmu2m
n0 m0
(5-5)
下面分别进行分析。
《高频电子线路》
6
第5章 频谱的线性搬移电路
2、只输入一个余弦信号时
先来分析一种最简单的情况。令u2=0,即只有一个输入信
号,且令u1=U1cosω1t,代入式(5-2),有:
(5-6)
i anu1n anU1n cosn 1t
1、非线性函数的泰勒级数
非线性器件的伏安特性,可用下面的非线性函数来
表示:
i f (u)
(5-1)
式中,u为加在非线性器件上的电压。一般情况下,
u=UQ+u1+u2,其中UQ为静态工作点,u1和u2为两个输入 电压。用泰勒级数将式(5-1)展开,可得

高频电子线路课后答案

高频电子线路课后答案

说明所有习题都是我们上课布置的作业题,所有解答都是本人自己完成,其中难免有错误之处,还望大家海涵。

第2章 小信号选频放大器已知并联谐振回路的1μH,20pF,100,L C Q ===求该并联回路的谐振频率0f 、谐振电阻p R 及通频带0.7BW 。

[解] 90-6120.035610Hz 35.6MHz 2π2π102010f LCH F-===⨯=⨯⨯6312640.71010022.4k 22.361022.36k 201035.610Hz35.610Hz 356kH z100p HR Q Ff BW Q ρρ--===Ω=⨯Ω=Ω⨯⨯===⨯=并联谐振回路如图所示,已知:300pF,390μH,100,C L Q ===信号源内阻s 100k ,R =Ω负载电阻L 200k ,R =Ω求该回路的谐振频率、谐振电阻、通频带。

[解] 0465kHz 2π2π390μH 300PFf LC≈==⨯0.70390μH100114k Ω300PF////100k Ω//114.k Ω//200kΩ=42k Ω42k Ω371.14k Ω390μH/300 PF/465kHz/37=12.6kHzp e s p Lee e R Q R R R R R Q BWf Q ρρ===========已知并联谐振回路的00.710MHz,C=50pF,150kHz,f BW ==求回路的L 和Q 以及600kHz f ∆=时电压衰减倍数。

如将通频带加宽为300 kHz ,应在回路两端并接一个多大的电阻? [解] 6262120115105μH (2π)(2π1010)5010L H f C --===⨯=⨯⨯⨯⨯ 6030.7101066.715010f Q BW ⨯===⨯2236022*********.78.11010p oU f Q f U ••⎛⎫⎛⎫∆⨯⨯=+=+= ⎪ ⎪⨯⎝⎭⎝⎭ 当0.7300kHz BW =时6030.746120101033.33001033.31.061010.6k 2π2π10105010e e e ef Q BW Q R Q f C ρ-⨯===⨯====⨯Ω=Ω⨯⨯⨯⨯g而471266.72.131021.2k 2π105010p R Q ρ-===⨯Ω=Ω⨯⨯⨯g 由于,p e pRR R R R =+所以可得10.6k 21.2k 21.2k 21.2k 10.6k e p p eR R R R R Ω⨯Ω===Ω-Ω-Ω并联回路如图所示,已知:360pF,C =1280μH,L ==100,Q 250μH,L = 12=/10,n N N =L 1k R =Ω。

高频电子线路第5章习题参考答案

高频电子线路第5章习题参考答案

高频电子线路习题参考答案
2 2 U1 U 3 U1 U 3 3a 3 cos(21 3 )t cos(21 3 )t 4 4 2 U 2 U1 U 3 U1 3 cos(23 1 )t cos(23 1 )t 4 4 2 U2U3 U2U3 2 cos(22 3 )t cos(22 3 )t 4 4 2 U2U2 U3U2 3 cos(23 2 )t cos(23 2 )t 4 4
答5-2 能出现50 kHz和 350 kHz的频率成分,因为在u2项中将会 出现以下2次谐波和组合频率分量。 200 kHz-150 kHz=50 kHz 200 kHz+150 kHz=350 kHz
2x200 kHz=400 kHz
2x150 kHz=300 kHz
高频电子线路习题参考答案
5-3 一非线性器件的伏安特性为 gDu u 0 i 0 u 0 式中,u=EQ+ul+u2=EQ+U1COSω1t+U2COSω2t。若U1 很小,满足线性时变条件,则在EQ=-U2/2时,求出时变电导 gm(t)的表示式。 解5-3,根据已知条件,
高频电子线路习题参考答案
设一个开关函数 1 K(w 2 t) 0 2 2 2n 2 t 2n 3 3 2 4 2n 2 t 2n 3 3
将 K(2 t)进行展开为富式级数为 K(2 t) 2 2 2n 2 3 sin cos n2t cos 2t 3 1 n 3 3 3 3 3 cos 22t cos 42t cos 52t ...... 2 4 5
a 2 U1U 3 cos( 1 3 )t U1U 3 cos( 1 3 )t a 2 U 3 U 2 cos(3 2 )t U 3 U 2 cos( 3 2 )t

高频电子线路第5章ppt课件

高频电子线路第5章ppt课件
2
载波uc
已调波uAM
振荡器
倍频
高频 放大器
调制
话筒
调制信号 放大器 调制信号 uΩ
无线电通信发射机的组成框图
3
5.1.1 普通调幅波
所谓调制,就是使幅度、频率、或相位随调制信号 的大小而线性变化的过程。分别称为振幅调制、频率调 制或相位调制,简称调幅、调频和调相。
解调是调制的相反过程,即从已调波信号中恢复原 调制信号的过程。与调幅、调频和调相相对应,有振幅 解调、频率解调和相位解调,简称检波、鉴频和鉴相。
u A M =U cm (1+M acosΩ t)cosω ct
=U cm cosω ct+M a 2 U cm cos(ω c+Ω )t+M a 2 U cm cos(ω c-Ω )t
载波分量
上边带分量
下边带分量
电 压 振 幅
U Ωm
调幅波的频谱图
U cm
MaUcm / 2
MaUcm / 2

ω c - Ω ω c ωc + Ω
过调幅失真
Ma >1
8
U m (t)= U c m (1+ M a c o sΩ t)
U m m ax=U cm (1+M a) Um m in=Ucm(1-M a)
包络的振幅为:
Um=Umm ax2 -Umm in=UcmM a
调制度
包络振幅
Ma 载波振幅
Um Ucm
9
3. AM调幅波的频谱及带宽
ω
u A M = U c m (1 + M a c o s Ω t)c o s ω c t
= U c m c o s ω c t+ M a 2 U c m c o s ( ω c + Ω ) t+ M a 2 U c m c o s ( ω c -Ω ) t

高频电子线路课后答案 (1).

高频电子线路课后答案 (1).

2-4 解: 已知 输入信号vs 3cost,则vGS VGS vs ,得
iD
I DSS
1
vGS VGS off
2
15
1
VGS vs VGS off
2
151
4
3cost
2
8
151
4 3cost
8
2
15
1 2
3 8
cos t
2
15
1 4
3 8
cos
t
9 64
cos2
1 02 2 f02 2 6.8106 2 (0.068106) rad / s
2 QL2
2QL2
2 50
所以 ∆ωs >α ,为过参差
⑵ 平坦参差应为 ∆ωs =α 即
2 (0.068106 )
fs 2
2
0.068MHz
f01 f0 fs 6.5106 0.068106 6.432MHz
(1)
L
(2
1 f0 )2 C
1
(2 465103)2
200 1012
585.739H
QL
f0 BW
465103 8 103
58.125
1
1
S
2
2
1 QL2
ห้องสมุดไป่ตู้
0
0
1
QL2
f f0
f0 f
1
0.375
1
58.1252
465+10 465
465 465 10
2
第01章 小信号调谐放大器
1-14已以知及解晶:体AV管0 的1y0参0 数Gy,fTe 可,先f0算出10如M下H结z ,果BW 500 kHz

第5章 频谱的线性搬移电路1

第5章  频谱的线性搬移电路1
iD = g D K (ω2t )(u1 + u2 )
2 2 1 2 = g D + cos ω 2t − cos 3ω 2t + cos 5ω 2t − ⋅ ⋅ ⋅ (U1 cos ω1t + U 2 cos ω2t ) 3π 5π 2 π
高频电子线路 ——第5章 频谱的线性搬移电路 第
高频电子线路 ——第5章 频谱的线性搬移电路 第
本章内容: 本章内容: 5.1 5.2 5.3 5.4 非线性电路的分析方法 二极管电路 差分对电路 其它频谱线性搬移电路 其它频谱线性搬移电路
高频电子线路 ——第5章 频谱的线性搬移电路 第
非线性电路的分析方法 5.1 非线性电路的分析方法
令u1=U1cosω1t
iL = g DU1 cos ω1t + − 2
π
g DU1 cos(ω 2 + ω1 )t +
2
π
g DU1 cos(ω 2 − ω1 )t
2 2 g DU1 cos(3ω 2 + ω1 )t − g DU1 cos(3ω 2 − ω1 )t + ⋅⋅⋅ 3π 3π
频率分量: 输出电流i 中的频率分量 输出电流 L中的频率分量: ω1、 ω2±ω1 、(2n+1)ω2±ω1(n=1,2,3…) ) )
时变偏置电压 线性时变
i ≈ f ( EQ + u2 ) + f ′( EQ + u2 )u1
时变工作 点电流 时变跨导
i = I 0 (t ) + g (t )u1
高频电子线路 ——第5章 频谱的线性搬移电路 第
u1=U1cosω1t,u2=U2cosω2t, , , EQ(t)=EQ+U2cosω2t 为周期性函数 ) 故I0(t)、g(t)也必为周期性函数 ) () 用傅里叶级数展开

5章 高频电子线路njc

5章 高频电子线路njc

0 输出特性及理想化 vCE
第5章高频功率放大器-18
2 动态特性方程 vBE VBB Vim cos(ωt )
vCE VCC Vcm cos(ωt )
iC
iB
+
+ vi
-
+ vBE
VT vCE
+
vc -
C
L
--
RL
+VBB
-+ VCC
iC gc (vBE VBE(on))
消去cos(ωt)
5.3.3丙类谐振功率放大器的外部特性
1 负载特性 VCC 、VBB 、Uim 不变时,放大器的输出电流、
电压、功率和效率等随谐振回路的谐振电阻 RP 变化 的特性称为放大器的负载特性。
iC
iC
iC
iC
O
ωt O ωt
欠压
临界
O ωt O 过压
Re增大
ωt
第5章高频功率放大器-26
谐振功放的负载特性
vCE VCC Vcm cost
vBE VBE(on) VBB
O
iB iBmax
O iC
iCmax
O
vCE VCC
t
t
ICti0c1 ic2 vc
O
t
谐振功放电流、电压波形
第5章高频功率放大器-12
vc与 vi 反相 。 当vBE为vBEmax时,iC 为 iCmax ,而vCE为vCE min。 ic不仅出现时间短
ωi=ω0时
Ze( j0) Re
ωi=2ω0时
Ze( j20 )
ωi=nω0时,由于Qe>>1
Re 1 (2Qe )2

0910高频电子线路正弦波振荡器

0910高频电子线路正弦波振荡器
第5章 正弦波振荡器
• 不需外加输入信号,便能自行产生输出信号的电路称为 振荡器.
• 按照所产生的波形,振荡器可分为正弦波振荡器和非正 弦波振荡器,按照产生振荡的工作原理可分为反馈式振 荡器和负阻式振荡器.
• 正弦波振荡器的应用可分为两类:频率输出和功率输出. 所谓频率输出是指用正弦波振荡器产生具有准确而稳定 的频率的电信号.它的应用范围极为广泛.如无线电通信 中所需的载波信号和本地振荡信号,在各种无线电测量 仪器中要用的正弦波信号源,在数字系统中的时钟信号 源等.功率输出则将振荡器用作高频功率源.
• 与发射极相连接的两个电抗元件同为电容时的三点式电 路,称为电容回授三点式振荡器电路,也称为考毕兹电路.
• 与发射极相连接的两个电抗元件同为电感时的三点式电 路,称为电感回授三点式振荡器电路,也称为哈特莱电路.
• 由于要求与发射极相连的两个电抗元件为同性质,而与 基极相连的则为异性质,所以这个法则又称为“射同基 反”原则。以此准则可迅速判断振荡电路组成是否合理, 能否起振。也可用于分析复杂电路与寄生振荡现象。
考毕兹振荡器分析
(1) 振荡器的工作频率
在工程设计的近似条件下,可认为振荡器的工作频率
ωg等于由L、C1、C2组成的回路的谐振频率。即
g 0
1 L C
或f g
f021 L NhomakorabeaC 因此根据此电路的交流通路可以求得该振荡器的工
作频率为
C
C1串C2
C1
/ /C2
C1 • C2 C1 C2
g 0
1 L C1C2
C4 C3 C4
C1 C2 C3
C1 C2
振荡器的振荡频率为
g
1 L(C3 C4 )
晶体振荡器
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

=
Ucm
(1
+
kf U Ωm Ucm
cosΩt
)
=
Ucm (1
+
MacosΩt
)
Ma 称为调幅度、调幅指数或调制系数。
kf 为比例系数,称为调制灵敏度。
2. 调幅信号的波形
uAM = Ucm (1 + MacosΩt )cosωct
包络函数: Um (t ) = Ucm (1 + MacosΩt )
vC(t)
0
t
(a) vo(t)
0
t
(b)
3.主要性能指标
(1) 电压传输系数 d
设输入为高频等幅波vs = Vsmcosωct
= arccos VAV
Vsm
d
=
U AV U sm
cos
Imax = (Vsm -VAV )gD
=
gDVsm
(1
-
VAV Vsm
)
= gDVsm (1 - cos )
❖ 在无线电通信系统中,将信号从发射端传输到接收 端时,信号的原始形式一般不适合传输,必须进行 调制和解调,所谓调制是将需要传送的信息装载到 某一高频振荡信号(载波)上去的过程。
❖ 在接收端收到了已调波信号后,需要将载波去掉, 还原成原有的信息,即调制信号,这个过程是与调 制相反的过程,称为解调。
❖ 调制可分为振幅调制、频率调制和相位调制,简称 为调幅、调频和调相,分别对应的解调有检波、鉴 频和鉴相。
载波uc
已调波uAM
振荡器
倍频
高频 放大器
调制
话筒
调制信号 放大器 调制信号 uΩ
无线电通信发射机的组成框图
5.1.1 普通调幅波
所谓调制,就是使幅度、频率、或相位随调制信号 的大小而线性变化的过程。分别称为振幅调制、频率调 制或相位调制,简称调幅、调频和调相。
解调是调制的相反过程,即从已调波信号中恢复原 调制信号的过程。与调幅、调频和调相相对应,有振幅 解调、频率解调和相位解调,简称检波、鉴频和鉴相。
u=UQ+u1+u2,其中UQ是静态偏置电压,u1和u2都是交流信号:。
如果,则可以认为器件的工作状态主要由UQ与u1决定,若在交
变工作点(UQ+u1)处将输出电流i展开为幂级数,可以得到:
i = f (u) = f (U + u + u ) = f (U + u ) + f'(U + u )u + 1 f"(U + u )u2 + L
为什么 是2RL
i
=
iD1
- iD2
=
2v2 K1(ω1t ) RD + 2RL
v2 K1(ω1t ) RL
1 = RL V2mcos(ω2t )[
RL RD
➢ i 含频谱分量:ω2,ω1±ω2,3ω1±ω2 … …
怎相样2乘实?现12二1极1管平2 衡31相乘23器1 3输1出信2 号5的1频谱25图1 512
(2) 二极管环形调幅器
v1=vc=Vcmcosωct v2=vΩ=VΩmcosΩt
Vcm>>VΩm,Vcm>>VD(on)
i
iI
- iII
2vΩ K 2 (ωct ) RD 2RL
i 经过LC带通滤波器中心频率ωc,BW3dB=2Ω, 得输出vo为不失真的vDSB 。
二极管环形调幅器的电流波形
(3) 集成模拟相乘器调幅电路
5.2.3 高电平调幅电路
1.集电极调幅电路
要实现集电极调幅,应使放大器工作在过压区。
集电极调幅的波形
2. 基极调幅电路
要实现基极调幅,应使放大器工作在欠压区。
基极调幅的波形
5.3 振幅检波电路
➢ 检波:是从已调幅波中还原出原调制信号的过程。 它是振幅调制的逆过程。
M aVcm Vcm
0 < Ma 1
Ma < 1 Ma = 1
过调幅失真
Ma > 1
Um (t ) = Ucm (1 + MacosΩt )
Ummax = Ucm (1 + Ma ) Ummin = Ucm (1 - Ma )
包络的振幅为:
Um
= Um max - Um min 2
= Ucm Ma
1 (2nπ + π) < ωt < (2nπ + 3π)
2
2
0 (2nπ - π) < ωt < (2nπ + π)
2
2
n 0,1,2,3,
将K1(ωt π) 波形按傅氏级数展开,表示为
12
2
K1 (ωt
-
π) =
- cosωt + cos3ωt + L


(3)双向余弦开关函数
K2 (ωt ) = K1(ωt ) - K1(ωt - π)
2 π
sinω1t
2 3π
s in 3ω1t
➢ 单向反相正弦开关函数
K1 (ω1t

)
1 2
2 π
sinω1t
2 3π
s in 3ω1t
➢ 双向正弦开关函数
K2 (ω1t)
4 π
sinω1t
4 3π
s in 3ω1t
5.2.2 低电平调幅电路
1. 二极管电路 (1)二极管电路平衡相乘器
a) D1、D2为理想开关二极管 b) v1同相加到D1、D2上,
用傅氏级数对i进行分解,其中直流分量为
IAV = Imax0 ( )
0
(
)
=
sin -cos π(1 - cos)
I AV
=
Imaxα0 ( )
=
gDVsm (sin
π
-cos )
负载RL上得到的平均电压:
VAV
=
IAV RL
=
gDRLVsm (sin
π
-cos )
VAV = gD RL (sin -cos ) = cos
调制度
包络振幅
Ma 载波振幅
Um Ucm
3. AM调幅波的频谱及带宽
uAM = Ucm (1 + MacosΩt )cosωct
=
Ucmcosωct
+
M aU cm 2
cos(ωc
+
Ω)t
+
M aU cm 2
cos(ωc
-
Ω)t
载波分量
上边带分量
下边带分量
电 压 振 幅
UΩm
调幅波的频谱图
U cm
+
M aU cm 2
cos(ωc
- Ω)t
DSB波的波形与频谱:
5.1.3 单边带调幅信号(SSB)
双边带调制波的上下边带包含的信息相同,两个边 带发射是多余的,为节省频带,提高系统的功率和频带 的利用率,常采用单边带调制系统。
SSB的数学表达式
uSSB
MaUcm 2
cos(ωc
Ω)t
上边带

MaUcm 2
第5章 振幅调制、解调与混频电路
❖ 调制、解调与混频在通信电路起何作用?处于发射 机和接收机什么位置?
❖ 振幅调制、解调与混频电路的输入和输出信号频谱 有何特点?
❖ 振幅调制、解调与混频电路如何构成?有哪些类型?
❖ 如何分析振幅调制、解调与混频电路?有哪些性能 参数?如何计算?
5.1 振幅调制的基本原理
}相乘器
SSB、FM波) 集成模拟调制器
5.2.1 非线性电路的线性时变分析法
若一个非线性电路有两个不同频率的交流信号同时输入,如
果其中一个交流信号的振幅远远小于另一个交流信号的振幅时,
可以采用下面介绍的线性时变分析法来分析该电路的输出频谱
分量。
设 一 个 非 线 性 器 件 的 伏 安 特 性 为 i=f(u) , 器 件 上 的 电 压
K1(ωt )
1(2nπ
π )
ωt
(2nπ
π )
2
2
0( 2n ) t ( 2n 3 )
2
2
n 0,1,2,3,
将 K1(ωt) 波形按傅氏级数展开,表示为
12
2
K1(ωt) = 2 + π cosωt - 3π cos3ωt + L
(2) 单向反相余弦型 开关函数
{ K1(ωt - π) =
MaUcm / 2
MaUcm / 2

ωc - Ω ωc ωc + Ω
ω
单音调幅波频谱宽度等于调制信号频率F 的二倍即
2
BWAM 2F
2) 多音调幅波的频谱
频谱宽度是最高频率Fmax
Ωmax 2π
的二倍即:
BWAM = 2Fmax
4. AM调幅波的功率分配




VΩm
调幅波的频谱图
Vc m
{ 1(2nπ
K2 (ωt ) =
π )
ωt
(2nπ
π )
2
2
3
-1( 2n ) t ( 2n )
2
2
n 0,1,2,3,
4
4
K2(ωt) = π cosωt - 3π cos3ωt + L
(4) 正弦型
若v1 ( t ) =V1msinω1t
➢ 单向正相正弦开关函数
K1 (ω1t)
1 2
⑴ ⑵
载波功率 Po = 上下边带功率
1 Uc2m 2 RL
相关文档
最新文档