(完整word版)高中物理选修3-3知识点填空,推荐文档

合集下载

高中物理选修3-3知识点总结[1]

高中物理选修3-3知识点总结[1]

高中物理选修3-3知识点第一章分子动理论第二章固体、液体和气体第三章热力学定律及能量守恒2012年8月第1课时分子动理论一、要点分析1.命题趋势本部分主要知识有分子热运动及内能,在09年高考说明中,本课时一共有五个考点,分别是:1.物质是由大量分子组成的阿伏加德罗常数;2.用油膜法估测分子的大小(实验、探究);3.分子热运动布朗运动;4.分子间作用力;5.温度和内能.这五个考点的要求都是I级要求,即对所列的知识点要了解其内容及含义,并能在有关问题中识别和直接应用。

由于近几年《考试说明》对这部分内容的要求基本没有变化,江苏省近几年的考题中涉及到了几乎所有的考点, 试题多为低档题,中档题基本没有。

分子数量、质量或直径(体积)等微观的估算问题要求有较强的思维和运算能力。

分子的动能和势能、物体的内能是高考的热点。

2.题型归纳随着物理高考试卷结构的变化,所以估计今后的高考试题中,考查形式与近几年大致相同:多以选择题、简答题出现。

3.方法总结(1)对应的思想:微观结构量与宏观描述量相对应,如分子大小、分子间距离与物体的体积相对应;分子的平均动能与温度相对应等;微观结构理论与宏观规律相联系,如分子热运动与布朗运动、分子动理论与热学现象。

(2)阿伏加德罗常数在进行宏观和微观量之间的计算时起到桥梁作用;功和热量在能量转化中起到量度作用。

(3)通过对比理解各种变化过程的规律与特点,如布朗运动与分子热运动、分子引力与分子斥力及分子力随分子间距离的变化关系、影响分子动能与分子势能变化的因素、做功和热传递等。

4.易错点分析(1)对布朗运动的实质认识不清布朗运动的产生是由于悬浮在液体中的布朗颗粒(即固体小颗粒)不断地受到液体分子的撞击,是小颗粒的无规则运动。

布朗运动实验是在光学显微镜下观察到的,因此,只能看到固体小颗粒而看不到分子,它是液体分子无规则运动的间接反映。

布朗运动的剧烈程度与颗粒大小、液体的温度有关。

布朗运动永远不会停止。

高中物理选修3—3全部公式

高中物理选修3—3全部公式

高中物理选修3—3全部公式篇一:高中物理选修3—3全部公式如下:1. 牛顿第二定律公式F=ma其中,F是作用在物体上的力,m是物体的质量,a是物体的加速度。

这个公式可以用来描述物体受到力的作用时加速度的变化情况。

2. 动量守恒定律公式p=m×v其中,p是动量,m是物体的质量,v是物体的速度。

动量守恒定律表明,在一个系统中,系统的总动量保持不变。

3. 能量守恒定律公式E=mc2其中,E是能量,m是物体的质量,c是光速,这个公式表明,能量与物体的质量和光速成正比例关系。

4. 牛顿运动定律公式F=ma其中,F是作用在物体上的力,m是物体的质量,a是物体的加速度。

这个公式可以用来描述物体的运动状态和力的作用效果。

5. 动量定理公式p=m×v+m×v"其中,p是动量,m是物体的质量,v和v"是物体在两个时间点的速度差,这个公式可以用来描述物体在两个时间点之间的运动状态。

6. 能量定理公式p=m×v+m×(v-u)其中,p是动量,m是物体的质量,v和v"是物体在两个时间点的速度,u是物体在两个时间点的加速度,这个公式可以用来描述物体在两个时间点之间的能量变化。

7. 动量定理的应用动量定理可以用来描述物体在两个时间点之间的运动状态。

例如,可以用动量定理求解物体在受到力作用时的加速度。

能量定理可以用来描述物体在两个时间点之间的能量变化。

例如,可以用能量定理求解物体在受到力作用时的加速度。

动量定理和能量定理都是物理中重要的公式,可以帮助我们更好地理解物体的运动状态和能量的变化。

篇二:高中物理选修3—3全部公式如下:1. 运动的描述公式匀速直线运动:v = s / t速度公式:v = (v0 + vt) / 2匀变速直线运动:v = v0 + at加速度公式:a = (v - v0) / t匀加速曲线运动:a = v - (v0 + v) / t2. 匀速圆周运动:ω = (v0 + vt) / t角速度公式:ω = (v - v0) / t线速度公式:v = (ω× r) / t3. 万有引力定律:F =G × (m1 × m2) / r^2质量与引力公式:G = G0 / r^2引力与加速度公式:a = G × m1 × m2 / r^24. 牛顿第二定律:F = ma作用力与反作用力公式:如果物体A对物体B施加一个力F,则物体B也会对物体A施加大小相等、方向相反的力F"。

高中物理选修3-3知识复习提纲:第十章 热力学定律(人教版)

高中物理选修3-3知识复习提纲:第十章 热力学定律(人教版)

高中物理选修3-3知识复习提纲:第十章热力学定律(人教版)高中物理选修3-3知识点总结:第十章热力学定律(人教版)冷热变化是最常见的一种物理现象,本章主要将的就是热力学的有关问题,其中热力学的第一和第二定律是比较重要得,对于能量守恒定律必须要深刻的理解。

考试的要求:Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。

Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。

要求Ⅰ:热力学第一定律、能量守恒定律、热力学第二定律、热力学第二定律的微观结构等内容。

要求Ⅱ:这一章这项要求考察比较少。

知识网络:内容详解:一、功、热与内能●绝热过程:不从外界吸热,也不向外界传热的热力学过程称为绝热过程。

●内能:内能是物体或若干物体构成的系统内部一切微观粒子的一切运动形式所具有的能量的总和,用字母U表示。

●热传递:两个温度不同的物体相互接触时温度高的物体要降温,温度低的物体要升温,这个过程称之为热传递。

●热传递的方式:热传导、对流热、热辐射。

二、热力学第一定律、第二定律●第一定律表述:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所作的功的和。

表达式uWQ符号+-W外界对系统做功系统对外界做功Q系统从外界吸热系统向外界放热u系统内能增加系统内能减少●第二定律的表述:一种表述:热量不能自发的从低温物体传到高温物体。

另一种表述:(开尔文表述)不可能从单一热库吸收热量,将其全部用来转化成功,而不引起其他的影响。

●应用热力学第一定律解题的思路与步骤:一、明确研究对象是哪个物体或者是哪个热力学系统。

二、别列出物体或系统(吸收或放出的热量)外界对物体或系统。

三、据热力学第一定律列出方程进行求解,应用热力学第一定律计算时,要依照符号法则代入数据,对结果的正负也同样依照规则来解释其意义。

人教版高中物理选修3-3知识点汇总_一册全_

人教版高中物理选修3-3知识点汇总_一册全_

人教版高中物理选修3—3知识点总结第七章 分子动理论第一节 物体是由大量分子组成的一、实验:用油膜法估测分子的大小 二、分子的大小 阿伏加德罗常数1.分子的大小:除了一些有机物质的大分子外,多数分子大小的数量级为10-10m 。

2.阿伏加德罗常数:N A =6.02×1023_mol -1。

3.两种分子模型 分子 模型意义分子大小或分子间的平 均距离图例球形 模型固体和液体可看成是由一个个紧挨着的球形分子排列而成的,忽略分子间的空隙d =36V 0π(分子大小)立方体 模型 (气体)气体分子间的空隙很大,把气体分成若干个小立方体,气体分子位于每个小立方体的中心,每个小立方体是每个分子占有的活动空间,这时忽略气体分子的大小d =3V 0 (分子间平 均距离)设物质的摩尔质量为M 、摩尔体积为V 、密度为ρ、每个分子的质量为m 0、每个分子的体积为V 0,有以下关系式:(1)一个分子的质量:m 0=MN A=ρV 0。

(2)一个分子的体积:V 0=V N A =MρN A (只适用于固体和液体;对于气体,V 0表示每个气体分子平均占有的空间体积)。

(3)一摩尔物质的体积:V =Mρ。

(4)单位质量中所含分子数:n =N A M 。

(5)单位体积中所含分子数:n ′=N AV 。

(6)气体分子间的平均距离:d = 3VN A 。

(7)固体、液体分子的球形模型分子直径:d =36V πN A ;气体分子的立方体模型分子间距:d = 3VN A。

第二节 分子的热运动一、扩散现象1.定义:不同物质能够彼此进入对方的现象。

2.产生原因:物质分子的无规则运动。

3.意义:反映分子在做永不停息的无规则运动。

二、布朗运动1.概念:悬浮微粒在液体(或气体)中的无规则运动。

2.产生原因:大量液体(或气体)分子对悬浮微粒撞击作用的不平衡性。

3.影响因素:微粒越小、温度越高,布朗运动越激烈。

4.意义:间接反映了液体(或气体)分子运动的无规则性。

高中物理选修3-3知识复习提纲:第九章 物态变化(人教版)

高中物理选修3-3知识复习提纲:第九章 物态变化(人教版)

高中物理选修3-3知识点总结:第九章物态变化(人教版)第九章:物态变化物体是由分子组成的,分子无时无刻在做无规则的运动,他们之间存在着相互作用力,这种因素决定了物质的不同聚集形态(固体、液体、气体),本章内容相对比较简单,大所属于记忆性的内容。

考试的要求:Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。

Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。

要求Ⅰ:固体的微观结构、晶体、非晶体、液晶的微观结构、液体的表面张力、饱和蒸汽、未饱和蒸汽、饱和蒸汽压、相对湿度等有关的内容。

要求Ⅱ:这一章基本没有这一项的要求。

知识网络:内容详解:一、固体●晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性。

●非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性。

①判断物质是晶体还是非晶体的主要依据是有无固定的熔点。

②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)。

●单晶体:如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)。

●多晶体:如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。

●各向异性:沿不同方向的导热与导电性等不同或是光学性质不同的晶体的这种性质称为各向异性。

●各项同性:非晶体一般沿各个方向的物理性质是一样的,这种属性称之为各项同性。

二、液体●表面张力:当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力。

如露珠。

●液晶:分子排列有序,各向异性,可自由移动,位置无序,具有流动性。

●浸润:一种液体会润湿一些固体并且附着在固体的表面,这种现象称之为浸润。

●毛细现象:浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象称为毛细现象。

高中物理选修3-3知识点梳理及习题

高中物理选修3-3知识点梳理及习题

高中物理选修3-3知识点梳理及习题一、电流和电阻1.电流的概念:电荷在单位时间内通过导体的量。

电流的单位是安培(A),1A等于1C/s。

2.电流的计算:I=Q/t,其中I为电流,Q为通过截面的电荷量,t为通过截面的时间。

3.电阻的概念:材料对电流的阻碍程度。

电阻的单位是欧姆(Ω),1Ω等于1V/A。

4.欧姆定律:U=IR,其中U为电压,I为电流,R为电阻。

5.导体和绝缘体:导体具有较低的电阻,能够很容易地传导电流;绝缘体具有很高的电阻,不容易传导电流。

二、电阻的影响因素1.长度:电阻与电阻长度成正比,R∝l。

2.截面积:电阻与截面积的倒数成正比,R∝1/A。

3.材料电阻率:电阻与材料电阻率成正比,R∝ρ。

4.电阻串联:串联电阻等效电阻等于各电阻的总和。

5.电阻并联:并联电阻等效电阻满足倒数之和的倒数。

三、电压、电流和功率1.电压的概念:电荷的电位差,也称为电势差。

电压的单位是伏特(V),1V等于1J/C。

2.电流和电压的关系:U=IR,其中U为电压,I为电流,R为电阻。

3.功率的概念:单位时间内做功的量。

功率的单位是瓦特(W),1W等于1J/s。

4.功率的计算:P=IV,其中P为功率,I为电流,V为电压。

5.电阻的功率计算:P=I^2R=V^2/R,其中P为功率,I为电流,R为电阻,V为电压。

四、电路中的能量变换1.电源的作用:提供电压差,驱动电荷在电路中流动。

2.电源的类型:干电池、蓄电池、发电机等。

3.电路的分类:串联电路、并联电路和混联电路。

4.串联电路中的电压:串联电路中各电器所接收的电压等于总电压。

5.并联电路中的电流:并联电路中各电器所接受的电流等于总电流。

综合练习题:1.一根电阻为10Ω的导线中通过电流2A,求导线两端的电压。

解:U=IR=10Ω×2A=20V2.一个电阻为5Ω的电灯接在12V的电压源上,求电灯的功率。

解:P=(12V)^2/5Ω=28.8W3.有一个串联电路,其中包括一个电阻为20Ω的灯泡和一个电阻为30Ω的电热器,接入220V的电压源,求电路总电阻和总电流。

2019版创新设计总复习高中物理讲义:选修3-3+热学选修3-3+基础课3+Word版含答案【KS5U+高考】

2019版创新设计总复习高中物理讲义:选修3-3+热学选修3-3+基础课3+Word版含答案【KS5U+高考】

基础课3热力学定律与能量守恒定律知识排查热力学第一定律1.改变物体内能的两种方式(1)做功;(2)热传递。

2.热力学第一定律(1)内容:一个热力学系统的内能增量等于外界向它传递的热量与外界对它所做的功的和。

(2)表达式:ΔU=Q+W。

(3)ΔU=Q+W中正、负号法则:能量守恒定律1.内容能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者是从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量保持不变。

2.条件性能量守恒定律是自然界的普遍规律,某一种形式的能是否守恒是有条件的。

3.第一类永动机是不可能制成的,它违背了能量守恒定律。

热力学第二定律1.热力学第二定律的两种表述(1)克劳修斯表述:热量不能自发地从低温物体传到高温物体。

(2)开尔文表述:不可能从单一热库吸收热量,使之完全变成功,而不产生其他影响。

或表述为“第二类永动机是不可能制成的”。

2.用熵的概念表示热力学第二定律在任何自然过程中,一个孤立系统的总熵不会减小。

3.热力学第二定律的微观意义一切自发过程总是沿着分子热运动的无序性增大的方向进行。

4.第二类永动机不可能制成的原因是违背了热力学第二定律。

小题速练1.思考判断(1)外界压缩气体做功20 J,气体的内能可能不变。

()(2)电冰箱的工作过程表明,热量可以从低温物体向高温物体传递。

()(3)科技的进步可以使内燃机成为单一热源的热机。

()(4)对能源的过度消耗将使自然界的能量不断减少,形成能源危机。

()(5)一定量100 ℃的水变成100 ℃的水蒸气,其分子之间的势能增加。

()2.(多选)对于热力学第一定律和热力学第二定律的理解,下列说法正确的是()A.一定质量的气体膨胀对外做功100 J,同时从外界吸收120 J的热量,则它的内能增大20 JB.物体从外界吸收热量,其内能一定增加;物体对外界做功,其内能一定减少C.凡与热现象有关的宏观过程都具有方向性,在热传递中,热量只能从高温物体传递给低温物体,而不能从低温物体传递给高温物体D.第二类永动机违反了热力学第二定律,没有违反热力学第一定律E.热现象过程中不可避免地出现能量耗散现象,能量耗散符合热力学第二定律热力学第一定律与能量守恒定律1.做功和热传递的区别做功与热传递在改变内能的效果上是相同的,但是从运动形式、能量转化的角度上看是不同的。

高中物理第八章气体3理想气体的状态方程教材梳理素材新人教版选修3_3

高中物理第八章气体3理想气体的状态方程教材梳理素材新人教版选修3_3

3 理想气体的状态方程庖丁巧解牛知识·巧学一、理想气体1.严格遵守气体实验定律的气体叫做理想气体.2.微观模型:①与分子间的距离相比,分子本身的大小可以忽略不计;②除碰撞的瞬间外,分子之间没有相互作用;③具有分子动能而无分子势能,内能由温度和气体物质的量决定,只是温度的函数,内能的变化与温度的变化成正比.3.理想气体是一种经科学的抽象而建立的理想化模型,实际上是不存在的,实际气体,特别是那些不易液化的气体,在压强不太大(和大气压强比较)、温度不太低(和室温比较)的条件下,都可视为理想气体,例如氢气、氧气、氮气、空气等在常温、常压的条件下,都可看作理想气体.深化升华 (1)宏观上讲,理想气体是指在任何条件下始终遵守气体实验定律的气体,实际气体在压强不太大、温度不太低的条件下,可视为理想气体.(2)微观上讲,理想气体应有如下性质:分子间除碰撞外无其他作用力;分子本身没有体积,即它所占据的空间认为都是可以被压缩的空间.显然这样的气体是不存在的,只是实际气体在一定程度上近似.(3)从能量上看,理想气体的微观本质是忽略了分子力,所以其状态无论怎么变化都没有分子力做功,即没有分子势能的变化,于是理想气体的内能只有分子动能,即一定质量的理想气体的内能完全由温度决定.联想发散 理想气体实际上是不存在的,它只是为了研究问题的方便,突出事物的主要因素,忽略次要因素而引入的一种理想化模型,就像力学中引入质点、静电学中的点电荷模型一样,这些理想化模型的引入使我们对物体运动规律的研究大大简化.二、理想气体的状态方程1.状态方程的推导方法一:(1)条件:一定质量的理想气体(2)推导过程:设想气体状态变化过程,即气体由状态Ⅰ先经等温变化使气体体积由V 1变到V 2,然后再经过等容变化到状态Ⅱ,如图8-3-1所示.图8-3-1等温变化过程:p 1V 2=p c V 2p c =211V V p 等容变化过程:1T p C =22T p p C =212T T p 得111T V p =222T V p ,这就是理想的气体状态方程,即T pV =恒量.方法二:推导推导过程:p A 、V A 、T A 、p C 、V C 、T C 的关系首先画出p-V 图象,如图8-3-2所示.图8-3-2由图8-3-2可知,A→B 为等温过程,根据玻意耳定律可得p A V A =p B V B ①从B→C 为等容过程,根据查理定律可得:B B T p =CC T p ② 又T B =T A ,V B =V C联立①②可得1A A A T V p =C C C T V p 上式表明,一定质量的某种理想气体在从一个状态1变化到另一个状态2时,尽管其p 、V 、T 都可能变化,但是压强跟体积与热力温度的比值保持不变,也就是说111T V p =222T V p 或T pV =C (C 为恒量). 学法一得 选定状态变化法设一定质量的气体由状态1(p 1、V 1、T 1)变化到状态2(p 2、V 2、T 2),我们给它选定一个中间过渡状态C ,遵守玻意耳定律,从状态C 至2遵守查理定律,所以p 1V 1=p C V 2,1T p C =22T p ,从两式消去p C 得111T V p =222T V p . 深化升华 中间状态的选定应使这一状态前后的状态变化各自遵守某一实验定律,并注意一定质量气体状态变化时,只有一个状态量变化是不可能的.2.理想气体状态方程(1)内容:一定质量的某种理想气体,从一个状态变化到另一个状态,压强和体积的乘积与热力学温度的比值保持不变.它是一定质量的某种理想气体处于某一状态时,三个状态参量必须满足的关系,即为理想气体的状态方程.(2)表达式一定质量的理想气体的状态方程为T pV =C (恒量)或111T V p =222T V p ①深化升华 (1)把①式两边分别除以被研究气体的质量m ,可以得到方程111T p ρ=222T p ρ② 即某种气体的压强除以这种气体的密度与绝对温度的乘积所得的商是一个常量.②式适用于密度变化的问题,如漏去气体或补充气体的情况,但等式两边所讨论的气体属于同种气体.(2)若理想气体在状态变化过程中,质量为m 的气体分成两个不同状态的部分m 1、m 2,或者由同种气体的若干个不同状态的部分m 1、m 2、…,m n 混合而成,有T pV =111T V p +222T V p +…+nn n T V p ③ ③式表示在总质量不变的前提下,同种气体进行分、合变态过程中各参量之间的关系,很多问题 可用这个来处理,显得较为简便.典题·热题知识点一 理想气体例1 关于理想气体,下列说法正确的是( )A.理想气体能严格遵守气体实验定律B.实际气体在温度不太高,压强不太大的情况下,可看成理想气体C.实际气体在温度不太低,压强不太大的情况下,可看成理想气体D.所有的实际气体在任何情况下,都可以看成理想气体解析:理想气体是在任何温度,任何压强下都能遵守气体实验定律的气体,A 选项正确.理想气体是实际气体在温度不太低,压强不太大情况下的抽象,故C 正确.答案:AC巧妙变式 能遵守气体实验定律的气体就是理想气体吗?不是.知识点二 理想气体的状态方程例2 一个半径为0.1 cm 的气泡,从18 m 深的湖底上升,如果湖底水的温度是8 ℃,湖面的温度是24 ℃,湖面的大气压强是76 cmHg ,那么气泡升至湖面时体积是多少?解析: 气泡从湖底上升过程中气泡的温度随上升而升高,可认为是水的温度.另外,气泡的压强和体积也发生变化.先确定初、末状态,再应用理想气体状态方程进行计算.此题的关键是确定气泡内气体的压强.由题意可知V 1=34πr 3=4.19×10-3 cm 3 p 1=p 0+汞水水p h p =76+6.1310182⨯ cmHg=208 cmHg T 1=273+8 K=281 Kp 2=76 cmHgT 2=273+24 K=297 K根据理想气体的状态方程111T V p =222V V p 得V 2=12211T p T V p =28176297104.19208-3⨯⨯⨯⨯ cm 3=0.012 cm 3. 方法归纳 ①应用理想气体状态方程解题,关键是确定气体初、末状态的参量;②注意单位的换算关系;③用公式111T V p =222T V p 解题时,要求公式两边p 、V 、T 的单位分别一致即可,不一定采用国际单位.例3 用销钉固定的活塞把水平放置的容器分隔成A 、B 两部分,其体积之比为V A ∶V B =2∶1,如图8-3-3所示.起初A 中有温度为27 ℃、压强为1.8×105Pa 的空气,B 中有温度为127 ℃、压强为2×105 Pa 的空气.现拔出销钉,使活塞可以无摩擦地移动(无漏气),由于容器壁缓慢导热,最后气体都变到室温27 ℃,活塞也停止移动,求最后A 中气体的压强.图8-3-3解析:分别对A 、B 两部分气体列气态方程,再由A 、B 体积关系及变化前后体积之和不变、压强相等列方程,联立求解.(1)以A 中气体为研究对象:初态下:p A =1.8×105 Pa ,V A ,T A =300 K.末态下:p A ′=? V A ′=? T A ′=300 K.根据理想气体状态方程:p A V A =p A ′V A ′.(2)以B 中气体为研究对象:初态下:p B =2×105 Pa ,V B ,T B =400 K.末态下:p B ′=? V B ′=? T B ′=300 K.根据理想气体状态方程:B B B T V p ='''B B B T V p . (3)相关条件:V A ∶V B =2∶1,V A ′+V B ′=V A +V B ,p A ′=P B ′联立可解得:p A ′=1.7×105 Pa.方法归纳 本题涉及的两部分气体,虽然它们之间没有气体交换,但它们的压强或体积之间存在着联系,在解题时首先要用隔离法对各部分气体分别列式,再找出它们的压强和体积间的相关条件联立求解.知识点三 关于理想气体和力学知识的综合问题例4 如图8-3-4所示,一根一端封闭、一端开口向上的均匀玻璃管,长l=96 cm ,用一段长h=20 cm 的水银柱封住长h 1=60 cm 的空气柱,温度为27 ℃,大气压强p 0=76 cmHg ,问温度至少要升高到多少度,水银柱才能全部从管中溢出?图8-3-4解析:实际上,整个过程可分为两个阶段.第一阶段,水银柱尚未溢出阶段,加热气体,气体作等压变化,体积增大,温度升高;第二阶段,水银溢出,气体体积增大,但压强却减小,由T pV =C 可知,当p 、V 乘积最大时,温度应为最高. 由于第二个过程中,体积增大,压强减小,则可能出现温度的极值.以封闭气体为研究对象则初始状态下p 1=p 0+h=96 cmHgV 1=h 1S=60S T 1=300 K设管中剩余水银柱长为x cm 时,温度为T 2p 2=(p 0+x) cmHg=(76+x) cmHgV 2=(96-x)S根据理想气体状态方程111T V p =222T V p 有3006096⨯=2x)-x)(96(76T + 显然,要使T 2最大,则(76+x )(96-x )应最大,即x=10 cm 时,T 2有极大值是385.2 K. 温度至少要升至385.2 K ,水银柱才能全部排出.误区警示 当温度升高到T 2时管内水银柱全部排出,则1110)(T h h p +=20T l p T 2=100)(h h p L p +T=6020)(769676⨯+⨯×300 K=380 K 错误地认为温度升高后,水银逐步被排出管外,水银全部被排出时,对应温度最高,起初一看,似乎是合理的,但如果将末状态的压强和体积数值交换,即p 2=96 cmHg,h 2=76 cm ,这时温度仍为380 K ,但水银柱与气体的总和度却是(96-76+76) cm=96 cm ,恰好与管等长,也就是水银柱尚未溢出玻璃管.例5 如图8-3-5所示,粗细均匀的U 形玻璃管如图放置,管的竖直部分长为20 cm ,一端封闭,水平部分长40 cm ,水平段管内长为20 cm 的水银柱封住长35 cm 的气柱.已知所封闭的气体温度为7 ℃,大气压强为75 cmHg ,当管内温度升到351 ℃时管内空气柱的总长度是多少?(弯管部分体积忽略不计)图8-3-5解析:温度升高时,气体体积增加,水银柱可能进入直管也可能溢出,所以要首先分析各临界状态的条件,然后针对具体情况计算.设水银柱刚好与竖直管口平齐而正好不溢出,此时气柱高度为60 cm ,设温度为T 2. 以封闭气体为研究对象:初状态:p 1=p 0=75 cmHg,l 1=35 cm,T 1=280 K末状态:p 2′=95 cmHg,l 2=60 cm,T 2=?根据理想气体状态方程:111T S l p =222T S l p 所以T 2=1122l p l p T 1=35756095⨯⨯×280 K=608 K 即t 2=(608-273) ℃=335 ℃<351 ℃,所以水银柱会溢出.设溢出后,竖直管内仍剩余水银柱长为h cm ,则初状态:p 1=75 cmHg,l 1=35 cm,T 1=280 K末状态:p′2=(75+h) cmHg,l′2=(80-h) cm,T′2=(351+273) K=624 K根据理想气体状态方程得:111T S l p =222T S l p 即28035S 75⨯=624h)S h)(80(75++ h=15 cm故管内空气柱的长度为l 2′=(80-15) cm=65cm.方法归纳 理想气体状态方程的应用要点:(1)选对象:根据题意,选出所研究的某一部分气体,这部分气体在状态变化过程中,其质量必须保持一定.(2)找参量:找出作为研究对象的这部分气体发生状态变化前后的一组p 、V 、T 数值或表达式,压强的确定往往是个关键,常需结合力学知识(如力的平衡条件或牛顿运动定律)才能写出表达式.(3)认过程:过程表示两个状态之间的一种变化方式,除题中条件已直接指明外,在许多情况下,往往需要通过对研究对象跟周围环境的相互关系的分析中才能确定,认清变化过程是正确选用物理规律的前提.(4)列方程:根据研究对象状态变化的具体方式,选用气态方程或某一实验定律,代入具体数值,T 必须用热力学温度,p 、V 的单位统一,最后分析讨论所得结果的合理性及其物理意义.问题 ·探究交流讨论探究问题 为什么实际气体不能严格遵守气体实验定律?探究过程:郝明:分子本身占有一定的体积分子半径的数量级为10-10 m ,把它看成小球,每个分子的固有体积约为4×10-30 m 3,在标准状态下,1 m 3气体中的分子数n 0约为3×1025,分子本身总的体积为n 0V 约为1.2×10-4 m 3,跟气体的体积比较,约为它的万分之一,可以忽略不计.当压强较小时,由于分子本身的体积可以忽略不计,因此实际气体的性质近似于理想气体,能遵守玻意耳定律,当压强很大时,例如p=1 000×105 Pa ,假定玻意耳定律仍能适用,气体的体积将缩小为原来的千分之一,分子本身的总体积约占气体体积的1/10.在这种情况下,分子本身的体积就不能忽略不计了.由于气体能压缩的体积只是分子和分子之间的空隙,分子本身的体积是不能压缩的,就是说气体的可以压缩的体积比它的实际体积小.由于这个原因,实际气体当压强很大时,实测的p-V 值比由玻意耳定律计算出来的理论值偏大. 胡雷:分子间有相互作用力实际气体的分子间都有相互作用,除了分子相距很近表现为斥力外,相距稍远时则表现为引力,距离再大,超过几十纳米(纳米的符号是nm ,1 nm=10-9 m )时,则相互作用力趋于零.当压强较小时,气体分子间距离较大,分子间相互作用力可以不计,因此实际气体的性质近似于理想气体.但当压强很大时,分子间的距离变小,分子间的相互吸引力增大.于是,靠近器壁的气体分子受到指向气体内部的引力,使分子对器壁的压力减小,因而气体对器壁的压强比不存在分子引力时的压强要小,因此,当压强很大时,实际气体的实测p-V 值比由玻意耳定律计算出来的理论值偏小.探究结论:实际气体在压强很大时不能遵守玻意耳定律的原因,从分子运动论的观点来分析,有下述两个方面.(1)分子本身占有一定的体积;(2)分子间有相互作用力.上述两个原因中,一个是使气体的p-V 实验值偏大,一个是使气体的p-V 实验值偏小.在这两个原因中,哪一个原因占优势,就向哪一方面发生偏离.这就是实际气体在压强很大时不能严格遵守玻意耳定律的原因.同样,盖·吕萨克定律和查理定律用于实际气体也有偏差.思想方法探究问题 理想气体状态方程的推导可以有哪些种情况?探究过程:一定质量理想气体初态(p 1、V 1、T 1)变化到末态(p 2、V 2、T 2),因气体遵从三个实验定律,我们可以从三个定律中任意选取其中两个,通过一个中间状态,建立两个方程,解方程消去中间状态参量便可得到气态方程,组成方式有6种,如图8-3-6所示.图8-3-6我们选(1)先等温、后等压来证明从初态→中间态,由玻意耳定律得p 1V 1=p 2V′①从中间态→末态,由盖·吕萨克定律得2'V V =21T T ② 由①②得 111T V p =222T V p其余5组大家可试证明一下.探究结论:先等温后等压;先等压后等温;先等容后等温;先等温后等容;先等压后等容;先等容后等压.。

完整word版,高中物理知识点归纳总结,推荐文档

完整word版,高中物理知识点归纳总结,推荐文档

高中物理知识点总结一、力物体的平衡1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。

2.重力(1)重力是由于地球对物体的吸引而产生的.[注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力.但在地球表面附近,可以认为重力近似等于万有引力(2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g(3)重力的方向:竖直向下(不一定指向地心)。

(4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上.3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的.(2)产生条件:①直接接触;②有弹性形变.(3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面;在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面.①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等.②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆.(4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解.★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m.4.摩擦力(1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可.(2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反.(3)判断静摩擦力方向的方法:①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向.②平衡法:根据二力平衡条件可以判断静摩擦力的方向.(4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解.①滑动摩擦力大小:利用公式f=μF N进行计算,其中F N是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.②静摩擦力大小:静摩擦力大小可在0与f max 之间变化,一般应根据物体的运动状态由平衡条件或牛顿定律来求解.5.物体的受力分析(1)确定所研究的物体,分析周围物体对它产生的作用,不要分析该物体施于其他物体上的力,也不要把作用在其他物体上的力错误地认为通过“力的传递”作用在研究对象上.(2)按“性质力”的顺序分析.即按重力、弹力、摩擦力、其他力顺序分析,不要把“效果力”与“性质力”混淆重复分析.(3)如果有一个力的方向难以确定,可用假设法分析.先假设此力不存在,想像所研究的物体会发生怎样的运动,然后审查这个力应在什么方向,对象才能满足给定的运动状态.6.力的合成与分解(1)合力与分力:如果一个力作用在物体上,它产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力.(2)力合成与分解的根本方法:平行四边形定则.(3)力的合成:求几个已知力的合力,叫做力的合成.共点的两个力(F 1 和F 2 )合力大小F的取值范围为:|F 1 -F 2 |≤F≤F 1 +F 2 .(4)力的分解:求一个已知力的分力,叫做力的分解(力的分解与力的合成互为逆运算).在实际问题中,通常将已知力按力产生的实际作用效果分解;为方便某些问题的研究,在很多问题中都采用正交分解法.7.共点力的平衡(1)共点力:作用在物体的同一点,或作用线相交于一点的几个力.(2)平衡状态:物体保持匀速直线运动或静止叫平衡状态,是加速度等于零的状态.(3)★共点力作用下的物体的平衡条件:物体所受的合外力为零,即∑F=0,若采用正交分解法求解平衡问题,则平衡条件应为:∑F x =0,∑F y =0.(4)解决平衡问题的常用方法:隔离法、整体法、图解法、三角形相似法、正交分解法等等.二、直线运动1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动.2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。

(word完整版)高三物理知识点总结(整理打印版),推荐文档

(word完整版)高三物理知识点总结(整理打印版),推荐文档

力知识要点:一、力的概念:力是物体之间的相互作用。

力的一种作用效果是使受力物体发生形变;另一种作用效果是使受力物体的运动状态发生变化,即产生加速度。

这两句话既提示我们研究力学问题首先要确定研究对象(突出相互作用双方中的主体研究方向),又指出分析或量度受力可以从形变或加速度两个方面下手,这也就成为了研究力学问题的总出发点。

二、力的单位:在国际单位制中,力的单位是牛顿。

三、对力的概念的几点理解:1、力的物质性。

不论是直接接触物体间力的作用,还是不直接接触物体间力的作用;不论是宏观物体间力的作用,还是微观物体间力的作用,都离不开施力者,都离不开物质。

2、力的相互性。

施力者同时是受力者,作用力和反作用力大小相等,方向相反,同种性质,分别作用在相应的两个物体上。

并同时存在,同时消失。

3、力的矢量性。

物体受力所产生的效果,不但与力的大小有关,还跟力的作用方向和作用位置有关。

所以,力的大小、方向和作用点叫力的三要素。

力的合成和分解遵从矢量平行四边形法则。

4、力的作用离不开空间和时间。

力的空间累积效应往往对应物体动能的变化;力的时间累积效应往往对应物体动量的变化。

5、在力学范围内,所谓形变是指物体形状和体积的变化。

所谓运动状态的改变是指物体速度的变化,包括速度大小或方向的变化,即产生加速度。

四、力的种类:力的分类方法非常多,常用的有按力的性质命名;按力的效果命名;按力的本质归结。

比如:重力、弹力、摩擦力、分子力、电磁力、核力等等是按力的性质命名的。

张力、压力、支持力、阻力、向心力等等是按力的效果命名的。

自然界一切实在的相互作用,按本质说,都可以归结为四种,即:万有引力,电磁力,强相互作用力和弱相互作用力。

高中物理课中出现的弹力、摩擦力、分子力从本质上看都是微观粒子间的电磁相互作用。

核力又包括具有不同本质的强相互作用和弱相互作用。

五、重力:1、重力的定义一般有以下两种。

(1)重力是由于地球的吸引而使物体受到的力。

高中物理选修3-3知识点梳理及习题

高中物理选修3-3知识点梳理及习题

选修3-3知识点梳理及习题定义特点说明扩散现象不同物质彼此进入对方(分子热运动)温度越高,扩散越快分子不停息地做无规则运动分子间有间隙扩散现象是分子运动的直接证明布朗运动悬浮在液体中的固体微粒的无规则运动微粒越小,温度越高,布朗运动越明显不是固体微粒分子的无规则运动布朗运动不是液体分子的运动.布朗运动示意图路线不是固体微粒运动的轨迹布朗运动间接证明了液体分子的无规则运动,不是分子运动1 分子间的作用力分子势能引力和斥力同时存在,都随r增加而减小,斥力变化更快,分子力本质为电磁力分子间距离f引与f斥对外表现分子力分子势能r=r0f引= f斥F=0Ep最小r<r0f引< f斥F为斥力Ep随减小而增大r>r0f引> f斥F为引力Ep随增大而减小r>10 r0f引f斥十分微弱F可以认为是零Ep可以认为是零2 分子动能,势能,内能及物体机械能项目定义决定微观量值分子的动能物体内分子永不与温度有关,温度是分分子永不停息永远不等于内能改变方法:做功和热传递对于改变内能来说,是等效的3 热力学第一定律与能的转化及守恒定律(注: 1 不能说物体具有多少热量,只能说物体吸收或放出了多少热量,热量是过程量,不能说“物体温度越高,所含热量越多”。

2绝热过程:系统只通过做功而与外界交换能量,它不从外界吸热,也不向外界放热.3 物体对外界做功,内能可能增加,如果它从外界吸热.反之亦然)4 热力学第二定律的三种表述(1)克劳修斯表述:热量不能自发地从低温物体传递到高温物体。

(热传导的方向性表述)(2)开尔文表述:不可能从单一热源吸收热量并把它全部用来做功,而不收起其它变化。

热机效率不可能达到100%(内能和机械能转化的方向性表述)(3) 第二类永动机不可能制成.原因是第二类永动机虽然不违反能量守恒定律,但是其违反了机械能与内能的转化具有方向性.热力学第二定律的微观意义:一切自然过程总是沿着分子热运动无序性(熵)增大的方向进行.5 热力学第三定律:不可能通过有限的过程把一个物体冷却到绝对零度。

高中物理_选修3-3知识点(完整版)

高中物理_选修3-3知识点(完整版)

选修3—3考点汇编一、分子动理论1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径(2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=⨯(3)对微观量的估算①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) Ⅰ.球体模型直径d = 36V 0π.Ⅱ.立方体模型边长d =3V 0.②利用阿伏伽德罗常数联系宏观量与微观量Ⅰ.微观量:分子体积V 0、分子直径d 、分子质量m 0.Ⅱ.宏观量:物体的体积V 、摩尔体积V m ,物体的质量m 、摩尔质量M 、物体的密度ρ. a.分子质量:A mol N M m =0=AmolN V ρ b.分子体积:Amol N V v =0=M ρN A (气体分子除外) c.分子数量:A A A A mol mol mol molM v M v n N N N N M M V V ρρ==== 特别提醒:1、固体和液体分子都可看成是紧密堆集在一起的。

分子的体积V 0=V mN A,仅适用于固体和液体,对气体不适用,仅估算了气体分子所占的空间。

2、对于气体分子,d =3V 0的值并非气体分子的大小,而是两个相邻的气体分子之间的平均距离. 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有空隙,温度越高扩散越快。

可以发生在固体、液体、气体任何两种物质之间(2)布朗运动:它是悬浮在液体(或气体)中的固体微粒的无规则运动,是在显微镜下观察到的。

①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。

②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒......各个方向撞击的不均匀性造成的。

颗粒越小,各个方向的撞击越不均匀。

③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。

高中物理选修3-3知识点归纳

高中物理选修3-3知识点归纳

高中物理选修3-3知识点归纳选修3-3物理知识1、晶体与非晶体晶体:外观上有规则的几何外形,有确定的熔点,一些物理性质表现为各向异性。

非晶体:外观没有规则的几何外形,无确定的熔点,一些物理性质表现为各向同性。

①判断物质是晶体还是非晶体的主要依据是有无固定的熔点。

②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)。

2、单晶体、多晶体如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)。

如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体没有规则的几何外形,但同单晶体一样,仍有确定的熔点。

3、晶体的微观结构:固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的平衡位置附近做小范围的无规则振动。

晶体内部,微粒按照一定的规律在空间周期性地排列(即晶体的点阵结构),不同方向上微粒的排列情况不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质(即晶体的各向异性)。

4、表面张力当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力,如露珠。

(1)作用:液体的表面张力使液面具有收缩的趋势。

(2)方向:表面张力跟液面相切,跟这部分液面的分界线垂直。

(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。

5、液晶分子排列有序,光学各向异性,可自由移动,位置无序,具有液体的流动性。

各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的。

6、饱和汽;湿度(1)饱和汽:与液体处于动态平衡的蒸汽.(2)未饱和汽:没有达到饱和状态的蒸汽.(3)饱和汽压①定义:饱和汽所具有的压强。

②特点:液体的饱和汽压与温度有关,温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。

(4)湿度①定义:空气的干湿程度。

②描述湿度的物理量a.绝对湿度:空气中所含水蒸气的压强。

人教版高中物理选修3-3气体的等温变化知识点突破(解析版)

人教版高中物理选修3-3气体的等温变化知识点突破(解析版)

8.1 气体的等温变化学习目标1.了解玻意耳定律的内容、表达式及适用条件。

2.了解p-V图象的物理意义。

重点:1.掌握玻意耳定律的内容和公式。

2.理解气体等温变化的p-V图象的物理意义。

难点:1.理解气体等温变化的p-V图象的物理意义。

2.会用玻意耳定律计算有关的问题。

知识点一、等温变化1.气体的状态和状态参量:用以描述气体宏观性质的物理量,叫状态参量。

对于一定质量的某种气体来说,描述其宏观性质的物理量有温度、体积、压强三个。

(1)体积:指气体分子所能达到的空间,即气体所能充满的容器的容积。

(2)温度:从宏观角度看表示物体的冷热程度。

从微观角度看,温度是物体分子热运动的平均动能的标志。

(3)压强:垂直作用于容器壁单位面积上的压力。

单位:帕Pa。

2.气体的状态由状态参量决定,对一定质量的气体来说,当三个状态参量都不变时,我们就说气体的状态一定,否则气体的状态就发生了变化。

对于一定质量的气体,压强、温度、体积三个状态参量中只有一个量变而其他量不变是不可能的,起码其中的两个量变或三个量都发生变化。

3.等温变化:一定质量的气体,在温度不变的条件下其压强与体积变化时的关系。

【题1】下列过程可能发生的是A.气体的温度变化,但压强、体积保持不变B.气体的温度、压强保持不变,而体积发生变化C.气体的温度保持不变,而压强、体积发生变化D.气体的温度、压强、体积都发生变化【答案】CD【解析】p、V、T三个量中,可以两个量发生变化,一个量恒定;也可以三个量同时发生变化;一个量变化的情况是不存在的,故C、D选项正确。

【题2】(多选)一定质量的气体,在等温变化过程中,下列物理量中发生改变的有A.分子的平均速率B.单位体积内的分子数C.气体的压强D.分子总数【答案】BC【解析】温度不变,对于一定质量的气体,分子的平均动能不变,分子的平均速率也不会变;但体积和压强可以发生变化,故选B、C。

知识点二、实验:探究等温变化的规律1.实验器材:如图所示,有铁架台,带压力表的注射器、铁夹等。

物理选修3-3知识点

物理选修3-3知识点

物理选修3-3知识点物理选修3-3通常指的是高中物理课程中的一个选修模块,这个模块主要涉及分子动理论、热力学定律、气体的性质、振动和波等知识点。

以下是物理选修3-3的主要内容概述:1. 分子动理论- 物质是由大量分子组成的,分子在不停地做无规则运动。

- 分子间的相互作用力包括引力和斥力。

- 温度是分子热运动平均动能的标志。

- 扩散现象表明分子在不停地做无规则运动。

2. 热力学定律- 第零定律:如果两个系统分别与第三个系统处于热平衡状态,则这两个系统之间也处于热平衡状态。

- 第一定律:能量守恒定律在热力学中的表现形式,即系统的内能变化等于热量与做功的代数和。

- 第二定律:自然过程中熵总是增加的,或者不可能从单一热源吸热使之完全变为功,而不向其他热源排热。

3. 气体的性质- 理想气体状态方程:\( pV = nRT \),其中\( p \)是压强,\( V \)是体积,\( n \)是摩尔数,\( R \)是气体常数,\( T \)是温度。

- 气体压强的微观意义:大量分子对容器壁的频繁碰撞产生了压强。

- 气体分子的平均速率和根均方速率。

4. 振动和波- 简谐振动的特征和描述,包括位移、回复力、周期和频率。

- 阻尼振动、受迫振动和共振现象。

- 机械波的产生、传播和接收,包括横波和纵波。

- 波速、波长、频率和振幅的关系。

- 声波的特性,包括声速、响度、音调和音色。

5. 光学现象- 光的反射定律和折射定律。

- 平面镜、凹面镜和凸面镜的成像规律。

- 光的干涉、衍射和偏振现象。

- 光的粒子性和波动性,即波粒二象性。

6. 电磁学基础- 静电场的基本概念,包括电场强度、电势和电容。

- 直流电路的基本规律,如欧姆定律和基尔霍夫定律。

- 磁场的基本概念,包括安培力、洛伦兹力和磁通量。

- 电磁感应现象,包括法拉第电磁感应定律和楞次定律。

以上是物理选修3-3的主要知识点概述,每个知识点都需要通过实验、问题解决和理论学习来深入理解。

高中物理必刷题(选修3-3、3-4合订全册)word版可编辑打印(共124页)

高中物理必刷题(选修3-3、3-4合订全册)word版可编辑打印(共124页)

高中物理必刷题高二年级选修3-3、3-4合订全册电子档第七章分子动理论第1节物体是由大量分子组成的刷基础题型1对分子的认识1.(多选)下列说法正确的是()A.分子是保持物质化学性质的最小微粒B.物质是由大量分子组成的C.本节所说的“分子”,只包含化学中的分子,不包含原子和离子D.无论是有机物质,还是无机物质,分子大小数量级都是1010-m2.(多选)关于分子,下列说法正确的是A.把分子看成小球,是对分子的简化模型,实际上,分子的形状并不真的是球B.所有分子的直径都相同C.不同分子的直径一般不同,但数量级基本一致D.测定分子大小的方法有多种,油膜法只是其中的一种方法题型2油膜法估测分子直径3.[河北张家口2019高二下月考](1)如图所示的四个图反映“用油膜法估测分子的大小”实验中的四个步骤,将它们按操作先后顺序排列应是________(用符号表示).(2)该同学做完实验后,发现自己所测的分子直径d明显偏大.出现这种情况的原因可能是________.A.将滴入的油酸酒精溶液体积作为油酸体积进行计算B.油酸酒精溶液长时间放置,酒精挥发使溶液的浓度发生了变化C.计算油膜面积时,只数了完整的方格数D.求每滴溶液中纯油酸的体积时,1ml溶液的滴数多记了10滴(3)用油膜法测出油酸分子的直径后,要测定阿伏加德罗常数,还需要知道油滴的________.A.摩尔质量B.摩尔体积C.质量D.体积题型3阿伏加德罗常数的应用及相关计算4.由下列物理量可以算出氧气的摩尔质量的是()A.氧气分子的质量和阿伏加德罗常数B.氧气分子的体积和氧气分子的质量C.氧气的密度和阿伏加德罗常数D.氧气分子的体积和氧气的密度5.[江苏无锡2019高二上期末](多选)若以μ表示水的摩尔质量,V表示在标准状态下水蒸气的摩尔体积,ρ表示在标准状态下水蒸气的密度,A N 表示阿伏加德罗常数,0m 、0V 分别表示每个水分子的质量和体积,下面关系正确的有()A .A 0V N m ρ=B .0N V μρΛ=C .A 0N V μρ<D .0A m N μ=6.[江苏盐城新丰中学2019高二下期中]已知水的密度331.010kg /m ρ=⨯,其摩尔质量21.810kg /mol M -=⨯,阿伏加德岁常数231A 6.010mol N -=⨯.求:(1)320cm 的水内含的水分子数;(2)若将水分子看成一个接一个紧密排列的小球,则一个水分子的直径为多大.(结果均保留一位有效数字)7.[山东泰安2018高二下期末]在标准状况下,有体积为V 的水和体积为V 的氧气(可视为理想气体),已知水的密度为ρ,阿伏加德罗常数为A N ,水的摩尔质量为M ,在标准状况下1mol 氧气的体积为0V .求(1)水和氧气中各有多少个分子;(2)水分子的直径和氧气中相邻两个分子之间的平均距离.刷易错易错点将气体分子间距误认为是分子直径8.下列各组物理量可以估算出一团气体中分子间的平均距离的是()A .该气体的密度、体积和摩尔质量B .阿伏加德罗常数、该气体的摩尔质量和质量C .阿伏加德罗常数、该气体的摩尔质量和密度D .阿伏加德罗常数、该气体的质量和体积第2节分子的热运动刷基础题型1扩散现象1.[重庆巴蜀中学2019高二下月考改编](多选)关于扩散现象,下列说法正确的是()A .温度越高,扩散进行得越快B .扩散现象是不同物质间的一种化学反应C .扩散现象是由物质分子无规则运动产生的D .液体中的扩散现象是由于液体的对流形成的2.(多选)下列关于扩散现象的说法中正确的是()A .扩散现象只能发生在气体与气体之间B .扩散现象是永不停息的C .在热水中滴入墨水,热水很快变色,属于扩散现象D .靠近梅花能闻到梅花的香味属于扩散现象E .空气流动形成风属于扩散现象题型2布朗运动3.[江西南昌七校2019高二下期中]关于布朗运动,下列说法正确的是()A .固体小颗粒的体积越大,布朗运动越明显B .与固体小颗粒相碰的液体分子数越多,布朗运动越明显C .布朗运动的无规则性,反映了液体分子运动的无规则性D .布朗运动就是液体分子的无规则运动4.[甘肃静宁一中2019高二下月考](多选)较大的悬浮颗粒不做布朗运动,是由于()A .液体分子不与颗粒相撞B .各个方向的液体分子对颗粒冲力的平均效果相互平衡C .颗粒分子本身的热运动缓慢D .颗粒的质量大,不易改变运动状态5.[四川遂宁2019高二下期末]用显微镜观察悬浮在水中的花粉,追踪几粒花粉,每隔30s 记下它们的位置,用折线分别依次连接这些点,如图所示.则①从图中可看出花粉颗粒的运动是________.(填“规则的”或“不规则的”)②关于花粉颗粒所做的布朗运动,下列说法正确的是________.A .图中的折线就是花粉颗粒的运动轨迹B .布朗运动反映液体分子的无规则运动C .液体温度越低,花粉颗粒越大,布朗运动越明显D .布朗运动是由于液体分子从各个方向对花粉颗粒撞击作用的不平衡引起的题型3热运动6.分子热运动是指()A .分子水不停息地做无规则运动B .扩散现象C .热胀冷缩现象D .布朗运动7.(多选)下列哪些现象属于分子热运动()A .把一块平滑的铅板叠放在平滑的铝板上,经相当长的一段时间把它们再分开,会看到它们相接触的一面都是灰蒙蒙的B .把胡椒粉撒入菜汤中,最后胡椒粉会沉在汤碗底,而我们喝汤时尝到了胡椒的味道C .含有泥沙的水经一定时间会澄清D .用砂轮打磨而使零件温度升高8.[山东枣庄2019高二下期末]我国已开展空气中 2.5PM 浓度的监测工作. 2.5PM 是指空气中直径等于或小于2.5m 的悬浮颗粒物,其悬浮在空中做无规则运动,很难自然沉降到地面,吸入后对人体形成危害.矿物燃料燃烧的排放物是形成 2.5PM 的主要原因.下列关于 2.5PM 的说法正确的是()A . 2.5PM 在空气中的运动属于分子热运动B . 2.5PM 的质量越大,其无规则运动越剧烈C .温度越低, 2.5PM 的无规则运动越剧烈D . 2.5PM 的运动轨迹是由大量空气分子对 2.5PM 无规则碰撞的不平衡和气流运动决定的刷易错易错点布朗运动在显微镜下的现象9.[山东泰安2018高二下期末](多选)把墨汁用水稀释后取出一滴放在显微镜下观察,如图所示,下列说法中正确的是()A .在显微镜下既能看到水分子也能看到悬浮的小炭粒,且水分子不停地撞击炭粒B .小炭粒在不停地做无规则运动,这就是所说的布朗运动C .越小的炭粒,运动越明显D .在显微镜下看起来连成一片的液体,实际上就是由许许多多的静止不动的水分子组成的第3节分子间的作用力刷基础题型1分子间的作用力1.[福建莆田九中2019开学测试]两滴水银相互接近时能自动结合为一滴较大的水银滴,这说明()A .分子间存在斥力B .分子间有间隙C .物质间有扩散的现象D .分子间存在引力2.[山东新泰二中2019高二下期中]分子甲和分子乙相距较远时,它们之间的分子力可忽略.现让分子甲固定不动,将分子乙由较远处逐渐向甲靠近直到平衡位置,在这一过程中()A .先是分子力对乙做正功,然后是分子乙克服分子力做功B .分子力先对乙做正功,再对乙做负功,最后又对乙做正功C .分子力总是对乙做正功D .分子乙总是克服分子力做功3.[北京市西城区2019高二下期末](多选)分子间作用力和分子间距离的关系如图所示关于分子间的作用力和分子势能,下列说法正确的是()A .分子间的引力总是比分子间的斥力小B .在0r r =处,分子间的引力和斥力大小相等C 当分子间的作用力做正功时,分子势能减小D .当分子问的作用力做负功时,分子势能减小4.[江苏南京六校联合体2018高二下期末](多选)两分子间的作用力F 与分子间距离r 的关系如图中曲线所示,曲线与r 轴交点的横坐标为,0F >时表现为斥力,0F <时表现为引力.若将甲分子固定在坐标原点O ,乙分子从图中a 点处由静止释放,在它向甲分子靠近的过程中,下列说法正确的是()A.乙分子将一直做加速运动B在r r>阶段,乙分子做加速运动C.当乙分子到达r位置时,其加速度最大D.在r r>阶段,两分子的势能一直减小5.(多选)如图所小,横坐标r表示两个分子间的距离,纵坐标F表示两个分子间引力斥力的大小,图中两条曲线分别表示两分子间引力、斥力的大小随分子间距离的变化关系,e为两曲线的交点,则下列说法中正确的是()A.ab为引力曲线,cd为斥力曲线,e点横坐标的数量级10-m为10B.ab为斥力曲线,cd为引力曲线,e点横坐标的数量级10-m为10C.若两个分子间距离增加,分子间斥力减小得比引力更快D.若r r=,则分子间没有引力和斥力题型2分子动理论6.下列现象中,最能恰当地说明分子间有相互作用力的是()A.气体容易被压缩B.高压密封的钢桶中的油从桶壁渗出C.两块纯净的铅块紧压后合在一起D.滴入水中的墨汁炭粒向不同方向运动7.物质由大量分子构成,下列说法正确的是()A.1mol的液体和1mol的气体所含的分子数目不同B.分子间的引力和斥力均随分子间的距离减小而增大C.当分子间距离减小时,分子间斥力增大,引力减小D.当分子间距离减小时,一定克服分了力做功8.[江西南昌二中2019高二下月考]下列说法错误..的是()A.两分了间的距离在增大时,分子引力和斥力的合力必减小B.两分子从相距无穷远到无穷近的过程中,分子间的合力先增大后减小再增大C两分子从相距无穷远到无穷近的过程中,分子间的合力先做正功后做负功D.两分子从相距无穷远到无穷近的过程屮,分子动能先增大后减小刷易错易错点分子力作用范围9.[重庆市江津区第六中学2019高二下期中]关于分子间的相互作用力,以下说法中r表示分子间平衡距离)()正确的是(A.当分子问的距离r r=时,分子力为零,说明此时分子间的引力和斥力都为零B.当r r>时,随着分子间距离的增大,分子间引力和斥力都增大,但引力比斥力增加0得快,故分子力表现为引力C.当r r>时,随着分子间距离的增人,分子间引力和斥力都减小,但斥力比引力减小0得快,故分子力表现为引力D.我们将充满气的气球压扁时需要用力,这是因为分子间存在斥力的缘故第4节温度和温标刷基础题型1平衡态与热平衡1.[陕西西安中学2018高二下期末]关于热平衡及热力学温度,下列说法正确的是()A.处于热平衡的几个系统的压强一定相等B.热平衡定律是温度计能够用来测量温度的基本原理C.温度变化1℃,也就是热力学温度变化273.15KD.摄氏温度与热力学温度都可能取负值2.(多选)下列关于状态参量说法正确的是()A.体积是几何参量B.压强是力学参量C.温度是热学参量D.压强是热学参量3.[山东微山二中2018高二下段考](多选)两个原来处于热平衡状态的系统分开后,由于外界的影响,其中一个系统的温度升高了5K,另一个系统温度升高了5℃,则下列说法不正确的是()A.两个系统不再是热平衡系统了B.两个系统仍处于热平衡C.两个系统的状态都发生了变化D.两个系统的状态没有变化题型2温度、温标与温度计4.有关热力学温度的说法中正确的是()A.热力学温度的零度为-273.15℃B.热力学温标表示的温度数值和摄氏温标表示的温度数值不同,说明温度不同C.绝对零度即为0℃D.1℃就是1K5.根据下图判断,人们选择的温度计中的测量物质及其依据是()A.水,水的密度小B.水,水的密度随温度变化明显C.汞,汞的密度大D.汞,汞的密度与温度呈规则的线性关系6.[陕西褕林二中2019高二下期末](多选)关于温度的物理意义,下列说法中正确的是()A.温度是物体冷热程度的客观反映B.人如果感觉到某个物体很冷,就说明这个物体的温度很低C热量会自发地从含热量多的物体传向含热量少的物体D.热量会自发地从温度较高的物体传向温度较低的物体7.(多选)实际应用中,常用到一种双金属温度计,它是利用铜片与铁片压合在一起的双金属片的弯曲程度随温度变化的原理制成的,如图所示.已知甲图中双金属片被加热时,其弯曲程度会增大,则下列各种相关叙述中正确的有()A.该温度计的测温物质是铜铁两种热膨胀系数不同的金属B.双金属温度计是利用测温物质热胀冷缩的性质来工作的C.由甲图可知,铜的热膨胀系数大于铁的热膨胀系数D.由乙图可知,双金属的内层一定为铜,外层一定为铁刷易错易错点平衡态与热平衡的辨析8.[江苏沭阳2019高二下期中调研]关于平衡态和热平衡下列说法正确的是()A.热平衡就是平衡态B.只要系统的温度不变且处处相等,系统就处于平衡态C.处于热平衡的两个系统内能一定相同D.处于热平衡的两个系统温度一定相同第5节内能刷基础题型1分子动能1.[江苏苏州高新区一中2018高二下期中]关于分子热运动的动能,下列说法中正确的是()A.物体运动速度大,物体内分子热运动的动能一定大B.物体的温度降低,物体内分子热运动的平均动能一定减小C.物体的温度升高,物体内每个分子热运动的动能都增大D.1g100℃的水变成1g100℃的水蒸气,分子热运动的平均动能增大2.[重庆市巴蜀中学2019高二下期中](多选)某房间,上午9时的温度为18℃,下午3时的温度为26℃.假定房间内气压无变化,则下午3时与上午9时相比较,房间内的()A.气体分子单位时间撞击墙壁单位面积的数目减少B.所有空气分子的速率都增大C.气体密度减小D.空气分子的平均动能增大3.有关“温度”的概念,下列说法中正确的是()A.温度反映了每个分子热运动的剧烈程度B.温度是分子平均动能的标志C.一定质量的某种物质,内能增加,温度一定升高D.温度较高的物体,每个分了的动能一定比温度较低的物体分子的动能大题型2分子势能4.下列四幅图中,能正确反映分子间作用力f和分子势能E随分子间距离r变化关系P的图线是()5.[江苏南京六校联合体2018高二下期末]当质量相等的氢气和氧气温度相同时,下列说法中正确的是()A.两种气体分子的平均动能相等B.氢气分子的平均速率等于氧气分子的平均速率C.两种气体分子热运动的总动能相等D.不考虑分子间的势能,则两者内能相等6.[重庆市凤鸣山中学2019高二下期中]根据分子动理论,则以下关于分子力和分子势能的说法中正确的是()A.当分子间距离为平衡距离r时,分子具有最大势能B.当分子间距离为平衡距离r时,分子具有最小势能C.当分子间距离为平衡距离r时,引力和斥力都是最大值D.当分子间距离为平衡距离r时,引力和斥力都是零题型3内能7.[河北形台一中2019高二下月考](多选)关于内能和温度,下列说法正确的是()A.温度是分子平均动能的标志,物体温度高,则物体分子的平均动能大B.物体的内能跟物体的温度和体积有关C.温度低的物体,其分子运动的平均速率也必然小D.做加速运动的物体,由于速度越来越大,因此物体分子的平均动能越来越大8.[江苏扬州邗江中学2019高二下期中]下列关于物体内能的说法正确的是()A.同一个物体,运动时比静止时的内能大B.1kg0℃的水的内能比1kg0℃的冰的内能大C.一定质量的某种物质,内能增加,温度一定升高D.物体的内能损失时,机械能必然会减小9.(多选)现有18g水、18g水蒸气和32g氧气,在它们的温度都是100℃时()A.它们的分子数目相同,氧气的分子平均动能大B.它们的分子数目相同,分子的平均动能相同C.它们的分子数目相同,水蒸气的内能比水大D.它们的分子数目不相同,分子的平均动能相同刷易错易错点分子势能最小不是零10.分了势能随分子间距离r的变化情况可以在如图所示的图象中表示出来.(1)从图中看到分子间距离为r 时分子势能最小,试说明理由;(2)图中分子势能为零的点选在什么位置?在这种情况下分子势能可以大于零,也可以小于零,也可以等于零,对吗?(3)如果选两个分子相距0r 时分子势能为零,分子势能有什么特点?第八章气体第1节气体的等温变化课时1封闭气体的玻意耳定律计算刷基础题型1气体状态参量及气体压强1.[山东济宁鱼合一中2019高二下月考](多选)一定质量的气体,在等温变化中,下列物理量发生变化的是()A .分子的平均速率B .单位体积内的分子数C .气体的压强D .分子总数2.[吉林省吉林市第五十五中学2019高二下期中]如图所示,竖直放置的弯曲管A 端开口,B 端封闭,密度为ρ的液体将两段空气柱封闭在管内,管内液面高度差分别为1h 、2h 和3h ,则B 端气体的压强为(已知大气压强为0p )()A .()0123p g h h h ρ-+-B .()013p g h h ρ-+C .()0132p g h h h ρ-+-D .()012p g h h ρ-+3.[湖北荆州中学2019高二下月考]如图所示,一个横截面积为S 的圆桶形容器竖直放置,金属圆板的上表面是水平的,下表面是倾斜的,下表面与水平面的夹角为θ,圆板的质量为m ,不计圆板与容器内壁的摩擦若大气压强为0p ,则被圆板封闭在容器中的气体的压强p 等于()A .0cos mg p S θ+B .0cos cos p mg S θθ+C .20cos mg p S θ+D .0mgp S+题型2液体密封气体的计算4.[广东佛山一中2018高二下段考]如图所示为两端开口的U 形直管,右侧直管中有一部分空气被一段水银柱与外界隔开,若在右侧直管中再注入一些水银,则平衡后(外界温度恒定)()A .两侧水银面A 、B 高度差h 减小B .两侧水银面A 、B 高度差h 增大C .右侧封闭气柱体积变大D .两侧水银面A 、B 高度差h 不变5.[黑龙江大庆实验中学2019高二下月考]如图所示,上端封闭的玻璃管,开口向下,竖直插在水银槽内,管内长度为h 的水银柱将一段空气柱封闭,现保持槽内水银面上玻璃管的长度l 不变,将管向右倾斜30°,若水银槽内水银面的高度保持不变,待再次达到稳定时,则下列说法中不正确的是(外界环境温度保持恒定)()A .管内水银柱产生的压强变大B .管内水银柱的长度变大C .管内空气柱的密度变大D .管内空气柱的压强变大6.(多选)如图所示,一粗细均匀的U 形管竖直放置,A 侧上端封闭,B 侧上端与大气相通,下端开口处开关K 关闭;A 侧空气柱的长度为9.0l =cm ,B 侧水银面比A 侧的高5.0h =cm 现将开关K 打开,从U 形管中放出部分水银,当两侧水银面的高度差为1 3.0h =cm 时将开关K 关闭已知大气压强075.0p =cmHg ,环境温度不变则下列说法正确的是()A .此时A 侧气体压强为72.0cmHgB .此时A 侧空气柱长度为10.0cmC .此后再向B 侧注入水银,使A 、B 两侧的水银面达到同一高度,则注入的水银在管内的长度为3.8cmD .此后再向B 侧注入水银,使A 、B 两侧的水银面达到同一高度,则注入的水银在管内的长度为3.4cm7.[吉林吉化第一高级中学2019高二期中](多选)如图所小是医院给病人输液的部分装置示意图,在输液过程中(外界环境温度保持恒定)()A .A 瓶中的药液先用完B .B 瓶中的药液先用完C .随着液面下降,A 瓶内C 处气体压强逐渐增大D .随着液而下降,A 瓶内C 处气体压强保持不变8.如图所示,内径均匀的玻璃管长100L =cm ,其中有一段长15h =cm的水银柱把一部分空气封闭在管中,当管开口向上竖直放置时,封闭气柱A 的长度130L =cm ,现将玻璃管在竖直平面内缓慢转过180°至开口向下,之后保持竖直,把开口端向下缓慢插入水银槽中,直至B 端气柱长230L =cm 时为止,已知大气压强075p =cmHg ,整个过程中温度保持不变,求:(1)玻璃管旋转后插入水银槽前,管内气柱B 的长度;(2)玻璃管插入水银槽稳定后,管内气柱A 的长度.题型3活塞和汽缸内密封气体的计算9.(多选)如图所示,一导热性能良好的金属汽缸静放在水平面上,活塞与汽缸壁间的摩擦不计.汽缸内封闭了一定质量的理想气体现缓慢地向活塞上倒一定质量的沙土,忽略环境温度的变化,在此过程中()A .汽缸内气体的内能增大B .汽缸内气体分子平均动能增大C .汽缸内气体密度增大D .单位时间内撞击汽缸内壁单位面积上的分子数增多10.如图所示为一导热汽缸,内封有一定质量理想气体,活塞与汽缸壁的接触面光滑,活塞上方用弹簧悬挂.活塞质量m 与汽缸质量M ,大气压0p ,活塞横截面积S 均为已知,则缸内压强为多少;另当周围环境温度不变,大气压缓慢增大后,下列说法正确的是()A ,0Mg p S -,弹簧长度不变B .0()m M g p S ++,气体内能将增加C .0mg p S +,气体向外放出热量D .mg S,单位时间碰撞汽缸壁单位面积的分子数不变11.[福建莆田一中2019高三上期末]如图所示,固定不动的竖直圆筒的上部是开口封闭、直径较小的细筒,下部是直径较大的粗筒,粗筒横截面积是细筒的3倍.细筒内封闭有一定质量的理想气体Ⅰ,气柱长125L =cm ;粗筒中有A 、B 两个轻质活塞,A 、B 间充满空气Ⅱ(可视为理想气体),两个活塞之间的筒壁上有一个小孔.两活塞与筒壁间密封良好,不计活塞和筒壁间的摩擦开始时,A 、B 活塞间的空气柱长228L =cm ,小孔到活塞A 、B的距离相等,并与外面的大气相通,两个活塞都处于平衡状态,活塞A 上方有高15H =cm 的水银柱,水银面与粗筒上端相平.现使活塞B 缓慢上移,直至将水银质量的13推入细筒中(设整个过程中气柱的温度不变,大气压强为075p =cmHg ).求:(1)此时气体Ⅰ的压强;(2)活塞B 向上移动的距离.12.[湖北宜昌葛洲坝中学2019高二下月考]如图所示,活塞把密闭汽缸分成左、右两个气室,每室各与U 形管压强计的一臂相连,压强计的两臂截面处处相同,U 形管内盛有密度为237.510kg /m ρ=⨯的液体开始时左、右两气室的体积都为230 1.210m V -=⨯,气压都为30 4.010Pa p =⨯,且液体的液面处在同一高度如图所示,现缓慢向左推进活塞,直到液体在U 形管中的高度差40h =cm ,求此时左、右气室的体积1V 、2V .(假定两气室的温度保持不变,计算时可以不计U 形管和连接管道中气体的体积,g 取210m /s )题型4等温变化图象13.[江苏扬州邗汇中学2019高二下期中]用注射器做“探究气体等温变化规律”的实验中,取几组p 、V 值后,用P 作纵坐标,1V 作横坐标,画出1p V-图象是一条直线,把这条直线延长后未通过坐标原点,而与横轴相交,如图所示,可能的原因是()A .各组数据的取值范围太小B .堵塞注射器小孔的橡胶套漏气C 在实验中用手握住注射器而没能保持温度不变D .压强的测量值偏小刷易错易错点只考虑液体压强而忽略大气压强14.一个气泡由湖面下20m 深处缓慢上升到湖面下10m 深处,它的体积约变为原来体积的()A .3倍B .2倍C .1.5倍D .710刷提升1.一U 形玻璃管竖直放置,左端开口,右端封闭,左端上部有一光滑的轻活塞.初始时,管内汞柱及空气柱长度如图所示.现在左侧活塞上放置一个能产生69.0cm g 压强的物体,使活塞下降9.42cm .已知玻璃管的横截面积处处相同;在活塞向下移动的过程中,没有发生气体泄漏;大气压强075.0p =cmHg ,环境温度不变.求:(结果保留三位有效数字)(1)右侧液柱上升的长度;(2)石侧气体的压强.2.在一端封闭、内径均匀的光滑直玻璃管内,有一段长为16h =cm 的水银柱封闭着一定质量的理想气体当玻璃管水平放置达到平衡时如图甲所示,被封闭气柱的长度123l =cm ;当管口向上竖直放置时,如图乙所示,被封闭气柱的长度219l =cm .已知重力加速度210m /s g =,不计温度的变化.求:(1)大气压强0p (用cmHg 表示);。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二物理选修3—3知识点检测
1、物质是由大量组成的
(1)分子大小数量级
(2)1mol任何物质含有的微粒数相同N A=
(3)对微观量的估算
①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)
球模型分子大小:
立方体模型分子大小:
②利用阿伏伽德罗常数联系宏观量与微观量
已知物体的体积V、摩尔体积V
mol ,物体的质量M、摩尔质量M
mol
、物体的密度ρ、阿伏伽
德罗常数N
A
a. 分子数量:
b. 分子质量:
c.分子体积:特别提醒:
固体和液体分子都可看成是紧密堆集在一起的。

分子的体积V
0=V
mol
/N
A
,仅适用
于,对气体不适用,对气体其表示。

2、分子永不停息的做无规则的热运动(布朗运动扩散现象)
(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在,同时还说明分子间有,越高扩散越快
(2)布朗运动:它是悬浮在液体中的的无规则运动,是在显微镜下观察到的。

①布朗运动的三个主要特点:;;。

②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的性造成的。

③布朗运动间接地反映了,布朗运动、扩散现象都有力地
说明物体内大量的分子都在。

(3)热运动:的无规则运动与有关,简称热运动,越高,运动越剧烈
3、分子间的相互作用力
(1)分子间 存在引力和斥力,两种力的合力又叫做分子力。

(2)画出分子间作用力与分子间距离关系图:
(3)分子之间的引力和斥力都随分子间距离增大而 ,随分子间距离的减小而 。

但总是斥力变化得 。

(4)r 0位置叫做 ,r 0的数量级为 m 。

(5)假定甲分子固定在坐标原点,乙分子从远处由静止释放,在乙分子向甲分子靠近的过程中:a.乙分子的运动状态 b.乙分子动能和分子势能如何变化 4、温度
宏观上的温度表示 ,微观上的温度是物体大量分子热运动 的标志。

热力学温度与摄氏温度的关系:
5、内能
在右边方框中画出分子势能与分子间距离的关系图 ①分子势能
分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。

分子势能的大小与 有关,分子势能的大小变化可通过宏观量 来反映。

当0r r >时,分子力为 ,当r 增大时,分子力做 ,分子势能 当0r r <时,分子力为 ,当r 减少时,分子力做 ,分子是能
当r =r 0时,分子势能最 ,但不为零,为负值,因为选两分子相距无穷远时分子势能为零 ②物体的内能
物体中所有分子热运动的 和 的总和,叫做物体的内能。

一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此 物体都是有内能的。

(理想气体的内能只取决于 )
③改变内能的方式: 与 (两种方式是 的)
特别提醒: (1)物体的体积越大,分子势能不一定就越大,如0 ℃的水结成0 ℃的冰后体积变大,但分子势能却减小了.
(2)理想气体分子间相互作用力为 ,故分子势能忽略不计,一定质量的理想气
体内能只与有关.
(3)内能都是对宏观物体而言的,不存在某个分子的内能的说法.由物体内部状态决定
6、分子热运动速率的统计分布规律
(1)气体分子间距较大,分子力可以忽略,因此分子间除碰撞外不受其他力的作用,故气
体能充满它能达到的整个空间.
(2)分子做无规则的运动,速率有大有小,大量分子的速率按“”的规
律分布.
(3)温度升高时,速率小的分子数减少,速率大的分子数增加,分子的平均速率(并不是每个分子的速率都增大),但速率分布规律不变.
T1 T2 T3
7、气体实验定律
①玻意耳定律:(等温变化)公式
微观解释:一定质量的理想气体,温度保持不变时,分子的平均动能是一定的,在这种
情况下,体积减少时,分子的密集程度,气体的压强就。

图象表达:在下面两个图像中分别画出两条等温线,并比较温度的高低
②查理定律:(等容变化)公式
微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这种情况下,温度升高时,分子的平均动能,气体的压强就
图象表达:在下面两个图像中分别画出两条等容线,并比较体积的大小
③盖吕萨克定律:(等压变化)公式
微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体积同时增大,使分子的密集程度 ,才能保持压强 图象表达:在下面两个图像中分别画出两条等压线,并比较压强的大小
8、理想气体

1)宏观上:严格遵守三个实验定律的气体,实际气体在 条件下可以看成理想气体
(2)微观上:理想气体的分子间除 外无 ,分子看成 .故一定质量的理想气体的内能只与 有关,与 无关(即理想气体的内能只看所用分子动能,没有分子势能)
(3)理想气体状态方程: 9、气体压强的微观解释
(1)气体压强产生:
(2)影响气体压强的因素:①

10、晶体:外观上 的几何外形, 确定的熔点,一些物理性质表现为 非晶体:外观 的几何外形, 确定的熔点,一些物理性质表现为 ①判断物质是晶体还是非晶体的主要依据是有
②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)
11、单晶体 多晶体
(1)如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗)
(2)如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体 几何外形,但同单晶体一样, 确定的熔点。

12、晶体的微观结构:
固体内部,微粒的排列非常紧密,微粒之间的引力较大,绝大多数微粒只能在各自的
平衡位置附近做小范围的无规则振动。

晶体内部,微粒按照一定的规律在空间周期性地排列(即晶体的点阵结构),不同方向上微粒的不同,正由于这个原因,晶体在不同方向上会表现出不同的物理性质(即晶体的各向异性)。

13、表面张力
(1)当表面层的分子比液体内部时,分子间距比内部,表面层的分子力表现为,宏观上表现为
(2)液面表面张力作用效果:
14、液晶
分子排列有序,各向性,可自由移动,位置无序,具有
各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的
15、改变系统内能的两种方式:和
①热传递有三种不同的方式:热传导、热对流和热辐射
②这两种方式改变系统的内能是的
③区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或物体的不同部分)之间内能的转移
16、热力学第一定律
①表达式

气体体积变化与W关系:
气体内能变化与u
∆关系:
17、热力学第二定律
(1)常见的两种表述
①克劳修斯表述(按热传递的方向性来表述):热量不能自发地从低温物体传到高温物体.
②开尔文表述(按机械能与内能转化过程的方向性来表述):不可能从单一热源吸收热量,使之完全变成功,而不产生其他影响.
a、“自发地”指明了热传递等热力学宏观现象的方向性,不需要借助外界提供能量的帮助.
b、“不产生其他影响”的涵义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热力学方面的影响.如吸热、放热、做功等.
(2)热力学第二定律的实质热力学第二定律的每一种表述,都揭示了大量分子参与宏观过程的方向性,进而使人们认识到自然界中进行的涉及热现象的宏观过程都具有方性.(3)热力学过程方向性实例
18、能量守恒定律
能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变
第一类永动机不可制成是因为其违背了
第二类永动机不可制成是因为其违背了(一切自然过程总是沿着分子热运动的无序性增大的方向进行)
熵是分子热运动无序程度的定量量度,在绝热过程或孤立系统中,熵是的。

19、能量耗散
系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。

相关文档
最新文档