热力学统计物理第六章课件
合集下载
热力学与统计物理学第六章(应用)_近独立粒子的最概然分布
al ln N E ln l al 0 l l al ln l 0 l 1,2,
l
al l e
l
或者
al
e
l
l
玻耳兹曼系统的最概然分布:麦克斯韦-玻耳兹曼分布(M.B) 拉氏乘子由下式确定:
不是独立变量
al 0
需满足条件:
N al 0
l
E l al 0
l
引入拉格朗日乘子 和
,建立辅助函数:
W (a1 , a2 , , al , ) ln N E
其全微分:
al ln N E ln l al 0 l l 26
l l
N ln N al ln al al ln l
当 al 有 al 的变化时,应有 ln 0
l l
ln ln al 1al ln lal
l l
25
的结论,因为
al ln ln l l
l
l
1
(经典极限条件或 所有的l 非简并性条件)
la
F . D.
l ! l l 1 l al 1 al ! ! l l a l ! l a l
l
M . B. al ! N!
l
l a
M . B. al ! N!
确定第 i 个粒子的力 学运动状态。
确定系统的微观运动状态需要
2 Nr
个变量。
qi1 ,, qir ; pi1 ,, pir i 1,2,, N
热力学统计 第六章 课件
系统的微观运动状态就是它的力学运动状态。
全同粒子组成的系统就是由具有完全相同的内禀属性 (相同的质量、电荷、自旋等)的同类粒子组成的系统。
近独立粒子组成的系统,是指系统中粒子之间相互作 用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而 可以忽略粒子间的相互作用,将整个系统的能量表达为单 个粒子能量之和
3
不确定关系指出,粒子坐标的不确定值Δq和与之共
轭的动量的不确定值Δp满足ΔqΔp≈h。
如果用坐标q和动量p来描述粒子的运动状态,一个状 态必然对应于μ空间的一个体积,称之为一个相格。
对于自由度为1的粒子,相格大小为h。如果粒子自由 度为r,各自由度的坐标和动量的不确定值Δqi和Δpi分别 满足ΔqiΔpi≈h,相格的大小为 Δq1…Δqr Δp1 … Δpr≈hr
由此,前一式可理解为,将μ空间的体积Vdpxdpydpz除以 相格大小h3而得到的三维自由粒子在Vdpxdpydpz内的量子
态数。
对于自由粒子的动量,若采用球极坐标p、θ、φ来描 写,则有 px p sin cos , py p sin sin , pz p cos 动量空间体积元为p2sinθdpdθdφ。
§6.2 粒子运动状态的量子描述
微观粒子普遍具有波粒二象性。
德布罗意提出,能量为ε、动量为 p 的自由粒子联系 着圆频率为ω、波矢为 k 的平面波(德布罗意波)。
能量ε与圆频率ω,动量 p 与波矢 k 的关系为
, p k
此式称为德布罗意关系,适用于一切微观粒子。常量h和
ħ=h/2π都称为普朗克常量,数值为
经典描述 设粒子的自由度为r。 经典力学指出,粒子在任一时刻的力学运动状态由粒
子的r个广义坐标
q1,q2 ,…,qr 和与之共轭的r个广义动量 p1,p2,…,pr
全同粒子组成的系统就是由具有完全相同的内禀属性 (相同的质量、电荷、自旋等)的同类粒子组成的系统。
近独立粒子组成的系统,是指系统中粒子之间相互作 用很弱,相互作用的平均能量远小于单个粒子的平均能量,因而 可以忽略粒子间的相互作用,将整个系统的能量表达为单 个粒子能量之和
3
不确定关系指出,粒子坐标的不确定值Δq和与之共
轭的动量的不确定值Δp满足ΔqΔp≈h。
如果用坐标q和动量p来描述粒子的运动状态,一个状 态必然对应于μ空间的一个体积,称之为一个相格。
对于自由度为1的粒子,相格大小为h。如果粒子自由 度为r,各自由度的坐标和动量的不确定值Δqi和Δpi分别 满足ΔqiΔpi≈h,相格的大小为 Δq1…Δqr Δp1 … Δpr≈hr
由此,前一式可理解为,将μ空间的体积Vdpxdpydpz除以 相格大小h3而得到的三维自由粒子在Vdpxdpydpz内的量子
态数。
对于自由粒子的动量,若采用球极坐标p、θ、φ来描 写,则有 px p sin cos , py p sin sin , pz p cos 动量空间体积元为p2sinθdpdθdφ。
§6.2 粒子运动状态的量子描述
微观粒子普遍具有波粒二象性。
德布罗意提出,能量为ε、动量为 p 的自由粒子联系 着圆频率为ω、波矢为 k 的平面波(德布罗意波)。
能量ε与圆频率ω,动量 p 与波矢 k 的关系为
, p k
此式称为德布罗意关系,适用于一切微观粒子。常量h和
ħ=h/2π都称为普朗克常量,数值为
经典描述 设粒子的自由度为r。 经典力学指出,粒子在任一时刻的力学运动状态由粒
子的r个广义坐标
q1,q2 ,…,qr 和与之共轭的r个广义动量 p1,p2,…,pr
热学-统计物理6 第6章 热力学第二定律
热功转换
3. 热传导
两个温度不同的物体放在一起,热量将自动地由高温物体 传向低温物体,最后使它们处于热平衡,具有相同的温度。 温度是粒子无规热运动剧烈程度即平均平动动能大小的宏观 标志。初态温度较高的物体,粒子的平均平动动能较大,粒 子无规热运动比较剧烈,而温度较低的物体,粒子的平均平 动动能较小,粒子无规热运动不太剧烈。若用粒子平均平动 动能的大小来区分它们是不可能了,也就是说末态与初态比 较,两个物体的系统的无序度增大了,这种自发的热传导过 程是向着无规热运动更加无序的方向进行的。
热机Q2
A , A
E
Q1
Q1
T1
A Q2
Q1 可
逆 热 机
T2 E’
用反证法,假设
得到
A A Q1 Q1
Q1 Q1
Q1 Q2 Q1 Q2
Q2 Q2
两部热机一起工作,成为一部复合机,结果外界不对复合
机作功,而复合机却将热量 Q1 Q2 Q1 Q2 从低温热源送到高温热源,违反热力学第二定律。
自然界中的自发热传导具有方向性。
通过某一过程,一个系统从某一状态变为另一状态, 若存在另一过程,能使系统与外界同时复原,则原来的过 程就是一个可逆过程。否则,若系统与外界无论怎样都不 能同时复原,则称原过程为不可逆过程。单摆在不受空气 阻力和摩擦情况下的运动就是一个可逆过程。
注意:不可逆过程不是不能逆向进行,而是说当过程逆向 进行时,逆过程在外界留下的痕迹不能将原来正过程的痕 迹完全消除。
现在考虑4个分别染了不同颜色的分子。开始时,4个分 子都在A部,抽出隔板后分子将向B部扩散并在整个容器内无 规则运动。隔板被抽出后,4分子在容器中可能的分布情形如 下图所示:
热力学统计物理 第6章
p , kT
-
kT
所以上述平衡条件相当于
p1 p2 ,
1 2
(力学平衡条件) (相平衡条件) 四、由微正则分布求热力学函数的方法 1 先计算Ω 2 再求 —积分 { 经典的 量子的—求和(三种系统)
S k ln ( E , N ,V ) S 1 得E , 3 由 E N ,V T p ln ( N , E ,V ) S 由 k k V N ,E T V N ,E 得 p( N ,V , T , E ) 再将 E ( N ,V , T ) 代入,即得状态方程 p( N ,V , T )
E2 1 E1
两边除以 Ω1(E1) Ω2(E2),
得
2(E2) 1 1(E1) 1 1(E1) E1 2(E2) E2
ln 1 ( E1 ) E1
ln ( E ) 令 1 2 N ,V E 这是两子系统通过热接触(交换能量)达到平衡时需要满足 的条件(热平衡条件):两子系统的β 相等。
( 0 ) ( E1,E2 ) 1 ( E1 ) 2 ( E2 ) ( 0) ( E1 , E ( 0) E1 ) 1 ( E1 ) 2 ( E ( 0) E1 )
A1
A2
即孤立系的Ω( 0) 取决于能量在两个子系统之间的分配。
总Ω( 0 ) 随能量E1 的变化而变化,故子系统 A1 必有一能量 值 E1 E 时,系统总微观状态数 Ω( 0) 有极大值. 1
d
微正则系综理论的热力学公式
三、熵与微观状态数Ω的关系
考虑由两个子系统 A1 和 A2 组成的复合孤立系统。
热力学统计物理第六章
l
l
l
N al 0 l
E lal 0 l
[lnlnBB.E.E
lNal[lEn(]l
精l 品a课la)件llnlnalla]l
al
l
0
33
…… ……
即:能级1上有a1个粒子, 能级2上有a2个粒
子,……。
精品课件
l
al
2
a2
1
a17 1
1、玻耳兹曼系统εl 上的ωl 个量子态时,第一个粒
子可以占据ω 个量子态中的任何一个态,有ωl 种可能的
占据方式。由于每个量子态能够容纳的粒子数不受限制,在第 一个粒子占据了某一个量子态以后,第二个粒子仍然有ωl种
的占据方式,这样al 个编了号的粒子占据ωl个la量l 子态共有
种可能的占据方式,
精品课件
18
(2) 各个能级都考虑在内,系统总的占据方式数:
al l
l
(3) 现在考虑将N个粒子互相交换,不管是否在同一能级上,交换
数是N!,在这个交换中应该除去在同一能级上al 个粒子的交换al !
因此得因子
N!/ al!
A
A AA
⑤⑥ A
A
AA
两个玻色子占据3个量子态有6种方式
精品课件
10
(2)费米系统:即自旋量子数为半整数的粒子组成的系统
粒子不可分辨,每个个体量子态上最多能容纳一个 粒子(费米子遵从泡利原理)。
系统由两个粒子组成(定域子)。粒子的个体量子 态有3个, 讨论系统有那些可能的微观状态
量子态1 量子态2 量子态3
❖ 微观粒子的状态杂乱无章,一个系统的力学状态也是 杂乱无章的,有很多个可能的状态,那么,每个状态 出现的概率为多少呢,与什么因素有关
热力学与统计物理第6章
第六章 近独立粒子的最概然分布 3
自然现象与自然规律
现象分类 确定性现象 规律 动力学 规律 因果律 创始人 必然性 典型成果
伽利略 海王星 牛顿 彗星 拉普拉斯 随机性现象 统计规律 偶然性 玻耳兹曼 统计物理 吉布斯 量子力学 混沌现象 非线性 规律 非线性 庞加莱 混沌 分形 孤立子
4
第六章 近独立粒子的最概然分布
2
M 2 l (l 1) 2 l 0,1,2,
M Z m, m l ,l 1,, l
转子的自由度为2,一个量子态用(l, m)表示.
能级
l (l 1) l 2I
2
l 0,1,2,
基态非简并,激发态简并,简并度为 2l 1
第六章 近独立粒子的最概然分布 30
p1 p mr p2 p mr sin
2 2
1 1 1 2 2 2 2 2 2 ( p 2 p 2 ) 能量: m(r r sin ) 2 2I sin
第六章 近独立粒子的最概然分布 20
根据经典力学,在没有外力作用的情形下, 转子的总角动量 M r p 是一个守恒量,其大小 和时间都不随时间改变。由于 r 垂直于 M ,质点 的运动是在垂直于 M 的平面内运动。如果选择 轴z平行于 M ,质点的运动必在 xy平面上,这时
确定性的理论——动力学规律 在一定的初始条件和边界条件下,某一系统在 任意时刻必然处于确定状态。 非确定性的理论(概率性的)——统计规律 统计规律告诉我们,在一定宏观条件下,某一时 刻系统处在某一状态的概率,但不能预言在某一时刻 处在何种状态。 统计规律的普遍表述是,在一定条件下,某个事 件以一定的概率发生。 不仅大量组成的系统服从统计规律,各种无规现象 组成的大量事件整体也服从统计规律。
自然现象与自然规律
现象分类 确定性现象 规律 动力学 规律 因果律 创始人 必然性 典型成果
伽利略 海王星 牛顿 彗星 拉普拉斯 随机性现象 统计规律 偶然性 玻耳兹曼 统计物理 吉布斯 量子力学 混沌现象 非线性 规律 非线性 庞加莱 混沌 分形 孤立子
4
第六章 近独立粒子的最概然分布
2
M 2 l (l 1) 2 l 0,1,2,
M Z m, m l ,l 1,, l
转子的自由度为2,一个量子态用(l, m)表示.
能级
l (l 1) l 2I
2
l 0,1,2,
基态非简并,激发态简并,简并度为 2l 1
第六章 近独立粒子的最概然分布 30
p1 p mr p2 p mr sin
2 2
1 1 1 2 2 2 2 2 2 ( p 2 p 2 ) 能量: m(r r sin ) 2 2I sin
第六章 近独立粒子的最概然分布 20
根据经典力学,在没有外力作用的情形下, 转子的总角动量 M r p 是一个守恒量,其大小 和时间都不随时间改变。由于 r 垂直于 M ,质点 的运动是在垂直于 M 的平面内运动。如果选择 轴z平行于 M ,质点的运动必在 xy平面上,这时
确定性的理论——动力学规律 在一定的初始条件和边界条件下,某一系统在 任意时刻必然处于确定状态。 非确定性的理论(概率性的)——统计规律 统计规律告诉我们,在一定宏观条件下,某一时 刻系统处在某一状态的概率,但不能预言在某一时刻 处在何种状态。 统计规律的普遍表述是,在一定条件下,某个事 件以一定的概率发生。 不仅大量组成的系统服从统计规律,各种无规现象 组成的大量事件整体也服从统计规律。
热力学与物理统计第六章03讲述
微观粒子的运动不是轨道运动。
第六章 近独立粒子的最概然分布
经典力学中,粒子同时具有确定的动量和坐标,因 此可以用某一时刻粒子的动量和坐标描述粒子的运 动状态。
量子力学中,粒子不可能同时具有确定的动量和坐 标,那么,该如何描述粒子的运动状态?
在量子力学中,微观粒子的运动状态称为量子态。 量子态是用一组量子数表征,且这组量子数的数目 等于粒子的自由度数。
S 2 s(s 1) 2
其中s称为自旋量子数,可以是整数或半整数。 例如电子的自旋量子数为1/2 对自旋状态的描述还需要知道自旋角动量在其 本征方向(z轴)上的投影Sz。
共2s+1个可能的值。对于电子,有2个可能值。
第六章 近独立粒子的最概然分布
自旋角动量与自旋磁矩 质量为 m ,电荷为 - e 的电子,
在py到py+dpy可能的py有dny个
在pz到pz+dpz可能的pz有dnz个
第六章 近独立粒子的最概然分布
体积V=L3内,在px到px+dpx,py到py+dpy,pz到 pz+dpz的动量范围内自由粒子的量子态数
p
由于不确定关系,xp h 。
p p
即在体积元 h 内的各运动状态,
p
它们的差别都在测量误差之内,
其自旋磁矩 μ 与自旋角动量 S 大小的比值为:
e
S
m
当存在外磁场时,自旋角动量的本征方向沿外
磁场方向。以z表示外磁场方向,B为磁感应强
度。电子自旋角动量在z投影为
第六章 近独立粒子的最概然分布
自旋磁矩在z投影为
电子在外磁场中能量为
第六章 近独立粒子的最概然分布
三、系统微观运动状态的描述
系统的微观运动状态就是指它的力学运动状态。这 里讨论由全同和近独立粒子组成的系统
第六章 近独立粒子的最概然分布
经典力学中,粒子同时具有确定的动量和坐标,因 此可以用某一时刻粒子的动量和坐标描述粒子的运 动状态。
量子力学中,粒子不可能同时具有确定的动量和坐 标,那么,该如何描述粒子的运动状态?
在量子力学中,微观粒子的运动状态称为量子态。 量子态是用一组量子数表征,且这组量子数的数目 等于粒子的自由度数。
S 2 s(s 1) 2
其中s称为自旋量子数,可以是整数或半整数。 例如电子的自旋量子数为1/2 对自旋状态的描述还需要知道自旋角动量在其 本征方向(z轴)上的投影Sz。
共2s+1个可能的值。对于电子,有2个可能值。
第六章 近独立粒子的最概然分布
自旋角动量与自旋磁矩 质量为 m ,电荷为 - e 的电子,
在py到py+dpy可能的py有dny个
在pz到pz+dpz可能的pz有dnz个
第六章 近独立粒子的最概然分布
体积V=L3内,在px到px+dpx,py到py+dpy,pz到 pz+dpz的动量范围内自由粒子的量子态数
p
由于不确定关系,xp h 。
p p
即在体积元 h 内的各运动状态,
p
它们的差别都在测量误差之内,
其自旋磁矩 μ 与自旋角动量 S 大小的比值为:
e
S
m
当存在外磁场时,自旋角动量的本征方向沿外
磁场方向。以z表示外磁场方向,B为磁感应强
度。电子自旋角动量在z投影为
第六章 近独立粒子的最概然分布
自旋磁矩在z投影为
电子在外磁场中能量为
第六章 近独立粒子的最概然分布
三、系统微观运动状态的描述
系统的微观运动状态就是指它的力学运动状态。这 里讨论由全同和近独立粒子组成的系统
热力学统计物理第六章
4Vp2 dp h3
sind d 4
0 0
2
在体积 V 内,在 p ~ p dp 的动量大小范围内 自由粒子可能的量子态(非相对论情况下)
p2 2m
代入上式,则有
2V 2m 3 h
3 2 1 2d
D d
统计物理学
统计物理学是从宏观物质系统是由大量微观粒子组 成这一事实出发,认为物质的宏观性质是大量微观粒子 行为的集体表现,宏观物理量是相应微观物理量的统计 平均值。因此,对于统计物理学来说,首要的问题是怎 样去描述组成热力学系统的微观粒子的运动状态。
运动状态是指粒子的力学运动状态,根据它遵从的是
经典的还是量子的运动规律,分为经典描述和量子描述。
三、系统微观运动状态的量子描述 量子的全同粒子一般来说是不可分辨的,在含有多个全同 粒子的系统中,将任何两个全同粒子加以对换,不改变整个系 统的微观状态,此为微观粒子的全同性原理。
但如果系统的微观粒子受到空间的限制(定域系统),那
么可用粒子的位置来分辨粒子。这时描述系统的微观运动状态 需要确定每一个粒子的量子态。 如果系统的微观粒子不受空间的限制(非定域统系统), 必须考虑微观粒子的全同性原理。 如果全同粒子是不可以分辨,确定由全同近独立粒子组 成的系统的微观状态归结为确定每一个体量子态上的粒子数。
p
h
2
一维自由粒子的能量
nx
2 2 p x 2 2 2 n x 2m m L2
nx 0,1,2,
(2)三维自由粒子
2 px nx L
边长为 L 的正方形空间
nx 0,1,2,
nx
2 n y 0,1,2, py ny L nz 0,1,2, 2 pz nz L n y nz 是表征三维自由粒子运动状态的量子数
sind d 4
0 0
2
在体积 V 内,在 p ~ p dp 的动量大小范围内 自由粒子可能的量子态(非相对论情况下)
p2 2m
代入上式,则有
2V 2m 3 h
3 2 1 2d
D d
统计物理学
统计物理学是从宏观物质系统是由大量微观粒子组 成这一事实出发,认为物质的宏观性质是大量微观粒子 行为的集体表现,宏观物理量是相应微观物理量的统计 平均值。因此,对于统计物理学来说,首要的问题是怎 样去描述组成热力学系统的微观粒子的运动状态。
运动状态是指粒子的力学运动状态,根据它遵从的是
经典的还是量子的运动规律,分为经典描述和量子描述。
三、系统微观运动状态的量子描述 量子的全同粒子一般来说是不可分辨的,在含有多个全同 粒子的系统中,将任何两个全同粒子加以对换,不改变整个系 统的微观状态,此为微观粒子的全同性原理。
但如果系统的微观粒子受到空间的限制(定域系统),那
么可用粒子的位置来分辨粒子。这时描述系统的微观运动状态 需要确定每一个粒子的量子态。 如果系统的微观粒子不受空间的限制(非定域统系统), 必须考虑微观粒子的全同性原理。 如果全同粒子是不可以分辨,确定由全同近独立粒子组 成的系统的微观状态归结为确定每一个体量子态上的粒子数。
p
h
2
一维自由粒子的能量
nx
2 2 p x 2 2 2 n x 2m m L2
nx 0,1,2,
(2)三维自由粒子
2 px nx L
边长为 L 的正方形空间
nx 0,1,2,
nx
2 n y 0,1,2, py ny L nz 0,1,2, 2 pz nz L n y nz 是表征三维自由粒子运动状态的量子数
热力学与统计物理第六章
L dnx dpx 2 L dpy dny 2 dn L dp z z 2
3
考虑到自由粒子的量子态由三个量子数的数值表征,这样在体 p 积V L3 内, 在 p x 到 px dp x , y 到 p y dp y ,p z 到 pz dp z的动 量范围内,三维自由粒子可能的量子数(或状态数)为:
微观状态的描述
(ii) 线性谐振子 :线性谐振子的自由度为1。任一时刻离开原点的位 移为x,相应得动量为 p mx,其能量是动能和势能之和,为
2 2 E= p + A x2 = p + 1 mω2x2 2m 2 2m 2
上式可化成标准形式:
p2 + x2 =1 2mE 2E mω2
以x和p为直角坐标构成二维µ空间, 由标准式可以看出振子的运动状态 轨迹为一个椭圆,E不同,对应的 椭圆就不同,如,qr; p1, p2, …, pr共2r个参量为直角坐标,构 成一个2r维空间称为µ空间 。粒子在任一时刻的力学运动状态可用该 空间内的一个点表示。
微观状态的描述
µ 空间的特点:
(i) µ 空间是人为想象出来的超越空间,是个相空间。µ 空间中的一个 代表点就表示一个粒子的微观运动状态而不是一个粒子。 (ii) 在经典力学范围,对于无相互作用的粒子系统,任何粒子总可以 找到和它相应的µ 空间来形象地描述它的运动状态,但不是所有的 粒子的运动状态可以在同一个µ 空间中描述。如一个3维自由度的 粒子,其µ空间为6维;而一个5维自由度的粒子,其µ空间为10维。
1 1 mV x2 mx 2 ) 2 2
对于一位自由粒子的运动,如图所示 : x和Px组成的二维µ空间。L表示一维容器的 长度,所以x可以取0到L中的任何数值,Px可以 取-∞到+∞中的任何数值,这样粒子的任何一个 运动状态(x , Px),可由µ空间在上述范围中 的一个点表示。 同样对于n维的自由粒子,它的µ 空间为2n维,可以把它2n维的µ 空间分成 n个2维的子空间进行描述。
3
考虑到自由粒子的量子态由三个量子数的数值表征,这样在体 p 积V L3 内, 在 p x 到 px dp x , y 到 p y dp y ,p z 到 pz dp z的动 量范围内,三维自由粒子可能的量子数(或状态数)为:
微观状态的描述
(ii) 线性谐振子 :线性谐振子的自由度为1。任一时刻离开原点的位 移为x,相应得动量为 p mx,其能量是动能和势能之和,为
2 2 E= p + A x2 = p + 1 mω2x2 2m 2 2m 2
上式可化成标准形式:
p2 + x2 =1 2mE 2E mω2
以x和p为直角坐标构成二维µ空间, 由标准式可以看出振子的运动状态 轨迹为一个椭圆,E不同,对应的 椭圆就不同,如,qr; p1, p2, …, pr共2r个参量为直角坐标,构 成一个2r维空间称为µ空间 。粒子在任一时刻的力学运动状态可用该 空间内的一个点表示。
微观状态的描述
µ 空间的特点:
(i) µ 空间是人为想象出来的超越空间,是个相空间。µ 空间中的一个 代表点就表示一个粒子的微观运动状态而不是一个粒子。 (ii) 在经典力学范围,对于无相互作用的粒子系统,任何粒子总可以 找到和它相应的µ 空间来形象地描述它的运动状态,但不是所有的 粒子的运动状态可以在同一个µ 空间中描述。如一个3维自由度的 粒子,其µ空间为6维;而一个5维自由度的粒子,其µ空间为10维。
1 1 mV x2 mx 2 ) 2 2
对于一位自由粒子的运动,如图所示 : x和Px组成的二维µ空间。L表示一维容器的 长度,所以x可以取0到L中的任何数值,Px可以 取-∞到+∞中的任何数值,这样粒子的任何一个 运动状态(x , Px),可由µ空间在上述范围中 的一个点表示。 同样对于n维的自由粒子,它的µ 空间为2n维,可以把它2n维的µ 空间分成 n个2维的子空间进行描述。
热力学统计第六章
0 项被弃去了.在温度足够高时可以忽略
但是在低温下情况有所不同,在绝对零度时,粒子将尽可能地占据 最低能态. 由于一个量子态所能容纳的玻色子的数目是不受限制的, 绝对零度下玻色粒子将全部处在的最低能级。在足够低的温度下, 处在能级
0
的粒子数也将是相当可观而不能忽略的,
1 2
在 T Tc
一、玻色系统
把 , 和y看作由实验确定的参量。系统的平均总粒子数为
N l
l l
e l 1
l
l
(6.1.1)
1、巨配分函数
l 1 e
l l
l
ln l ln 1 e l
l
(6.1.2) (6.1.3)
dU TdS Ydy dN (开系的热力学方程)
与化学势的关系
计算过程 巨配分函数的对数 ln 系统的全部平衡性质
kT
(6.1.11)
系统的基本热力学函数
T ,V , 为变量的特性函数
J F N U TS N
巨热力势J与配分函数的关系
(6.1.9)
将(6.1.2)式代人(6.1.9)式,与(6.1.4)式比较,得
S k ln
玻耳兹曼关系
第六章 玻色子统计和费米统计
(6.1.10)
第5页
扬州大学物理科学与技术学院
ˆ du Ydy d ln ln ln dN
n 0
3 2 d 3 2 2 2 x dx 2 T 3 2m 3 2mkT 2 x 0 n h 0 e 1 kT h e 1 Tc 1 2
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
兼并度:不同能级,简并度不同。n=1时,w=6. h2/m数量级10-30,平动能很小,间隔很小,能级很密集。
例3:转子 r = 2, 量子数: l, m
量子理论要求,转子的角动量取一系列分立的值:
M 2 l (l 1) 2
l 0,1,2,
一定的l,角动量在z轴的投影也只能取分立的值
量子态1 1
2 3 4 5 A A
量子态2
量子态3
AA
AA AA
A
A
A
A
6
对于费米系统,可以有3个不同的微观状态。
量子态1 量子态2 量子态3
1
2
A
A
A A
3
A
A
分属玻耳兹曼系统、玻色系统和费米系统的两个粒子占据三个量子态给出的微观状态数
粒子类别 量子态1
A B A B
量子态2
量子态3
A
A B A A B A B A A A A A A A A A A A A A A A A A B A B A
六、粒子状态数的半经典的求解
1、测不准关系 --不能完全测定粒子的坐标和位置。 不可确定度为:Δx· x≤ Δp 2、µ空间中 1)相格(相元)hr--粒子的运动状态 2)一定的µ空间体积中包含的粒子的状 态数有限。 3)从相空间的角度求粒子的量子态数或者 态密度?
例、求在V=L3内, 1)Px→Px+dPx,Py → Py+dPy,Pz → Pz+dPz 间的自由粒子的量子态数与态密度? 2)ε→ε+d ε的量子态数与态密度?
1 , 2 ,, l ,
1 , 2 ,, l ,
a1, a2 ,, al ,
1 , 2 ,, l ,
l l
al
1)ε l能级上,al个粒子在wl上的占据方式为: 2)考虑不同能级上的总的占据方式:
1 2 l
3)考虑粒子可以分辨,将N个粒子按{al}分布的方式为: (任意交换能级间的粒,对应不同的微观态) N !
L L L 2 2 2 2 2 2 En nx n y nz 2 mL
量子力学中,微观粒子的运动状态由波函数来描述,由一组 量子数来表征,量子数的数目即粒子的自由度数。
§6.1 粒子运动状态的描述
2、量子描述
粒子不 可追踪
1、自由度:r
2、独立变量:r个量子数( n1,n2,…,nr) 3、能量: ε=ε(n1, n2,…,nr) 4、简并度wn:能级εn上的状态数 5、状态数(0-εn 上的状态数)
§6.2 系统微观运动状态的描述 一.系统 1)全同粒子:具有完全相同属性的同类粒子组成 N 2)近独立粒子 E i 二.经典物理中微观运动状态的描述
i 1
1)可分辨 (可跟踪的经典轨道运动)
2)描述方式: 相空间中N个点。 三.量子物理中微观运动状态的描述 1)不可分辨 (物质波的非轨道几率运动) 2)描述方式: a.对于某一个粒子的各个量子态 b.对应于每一个量子态的粒子数
M Z m, m l ,l 1,, l
转子的能量为:
l (l 1) 2 l 2I
l 0,1,2,
简并度:
wl 2l 1
n n l 0 l 0
状态数: n l (2l 1) l 12
§6.1 粒子运动状态的描述
描述核外电子运动状态需要四个量子数(n,l,m,ms) 主量子数 n:表示原子的大小, 核外电子离核的远近和电子能量的高低。 角量子数 l:决定了原子轨道的形状. 磁量子数m:轨道在空间分布的方向. S2 S S 1 2 自旋磁量子数 ms:自旋在本征方向的投影。
V H 3 4 V 2m 2 3
假设一个态占据相空间体积为h0r--相格,h0由测量 的精度确定。则以上相体积包含的状态数为: µ/h0r。
§6.1 粒子运动状态的描述
2、一维线性谐振子 r = 1, x,Px
p 1 m 2 x 2 2m 2
2
p2 x2 1 2 2m m 2
A
x
o
y
M2 2I 2I P
2
H
dddP dP
8 2 I
§6.1 粒子运动状态的描述
四、粒子运动状态的量子描述 1、微观粒子的波粒二象性
黑体辐射问题--普朗克公式 普朗克:能量子 爱因斯坦 :光电效应--光量子(光子)
德布罗意: 微观粒子具有波粒二象性
统计物理的基本思想:
1、宏观的系统是由大量的微观粒子组成的。 2、大量粒子组成的系统的特点
特点一:动力学的决定性和微观状态的随机性
动力学的确定性
问题:
H q p p H q
1)大量粒子,且有复杂的相互作用--求解这样的方程不可
能。 2)实际的系统,绝大多数的解具有不稳定性。 3)宏观问题不等于对微观粒子运动状态的简单、机械的累加。 特点二:系统具有统计规律(系统处于某个微观态是偶然 的,但在一定的宏观条件下,处于某个微观态的概 率是一定的)
3)玻色子与费米子 a)费米子:自旋量子数为半整数的基本粒子或复合粒子。 如:电子、质子、中子等。 b)玻色子:自旋量子数为整数的基本粒子或复合粒子。 如:光子、Л介子等。 c)泡利不相容原理:对于含有多个全同近独立的费米子 的系统中,一个个体量子态最多能容纳一个费米子。 4)玻耳兹曼系统、玻色系统、费米系统 玻耳兹曼系统:由可分辨的全同近独立粒子组成,且处在 一个个体量子态上的粒子数不受限制的系统。
例4:电子的自旋
自由度:r = 1 量子数:S , S= ½
S z ms , mS S , S 1,,S
e S m
e e z Sz m 2m
e eB B B B mS 2m m
w=1,σ=2
§6.1 粒子运动状态的描述
, p k
测不准关系:△p △q≈h 微观粒子不可能有确定的动量和坐标
薛定谔:微观粒子的运动方程--薛定谔方程
§6.1 粒子运动状态的描述
ˆ i H t
波函数的意义:粒子出现的几率 波函数必须满足:单值、连续、有限 求解薛定谔方程发现,粒子的能量不连续,粒子只能处于 一系列的能级上。 n yy nxx n z 例如:在盒中运动的微观粒子 A sin sin sin z
二、µ空间
1、定义:以广义坐标和广义动量为坐标基矢的2r维空间。 2、相点: 相空间的一个点(粒子的一个运动状态)。 3、相轨道:
相空间里的一条曲线(粒子运动状态的变化)。
4、相体积: 粒子运动状态代表点在µ空间充斥的范围
(等能面所包围的相空间体积)
说明:
1)自由度不同的粒子不能在同一相空间里描述; 2)代表点在相空间的轨道或者是一条封闭曲线,或者是自身永不相交的曲线。
设系统由两个粒子组成,粒子的个体量子
态有3个,如果这两个粒子分属玻耳兹曼
系统、玻色系统、费米系统时,试分别
讨论各种系统可能具有的微观状态数?
对于定域系统可有9种不同的微观状态
量子态1 量子态2 1 AB 量子态 3
2
3 4 5 A B
AB
AB B A
6
7 8 A B
A
B
B
A B A
9
对于玻色系统,可以有6种不同的微观状态。
a
l
l
N
a
l
l l
E
系统具有确定的宏观状态:
3、 系统的微观状态
指系统的各个微观粒子在能级的各个量子态的占据情况.
二、 {al}分布在不同的系统下的微观状态数 1、 玻耳兹曼系统
系统特点:1)粒子全同,但粒子可以分辨 2)粒子占据态不受限制
§6.3 最概然分布
能级: 简并度: 粒子数: 状态数:
{al }
能级:
给出粒子数在各能级中的分布和量子态简并度在各能级的分布 即:
1 , 2 ,, l ,
1 , 2 ,, l ,
简并度: 粒子数:
a1, a2 ,, al ,
{al }
§6.3 最概然分布
若系统有确定的粒子数N、能量E和体积V,则分布必满足: 物质守恒和能量守恒
2 、独立变量(2r)
广义坐标:qi i 1...r 广义动量:pi i 1...r
3、粒子的能量
H q i p i p H i qi
能量 (q1, q2 ,qr;p1, p2 , pr)
§6.1 粒子运动状态的描述
3、宏观量等于微观量的统计平均
量子力学+统计物理 经典力学+统计物理
量子统计物理 经典统计物理
任何的统计理论都要涉及解决的三个问题:
1、研究对象是什么?(确定系统 ) 2、如何求概率分布?
3、如何求热力学量的统计表达式?
§6.1 粒子运动状态的描述
一、粒子的状态的经典描述 1、 粒子的自由度(r) 独立的坐标数目
五、两种描述的关系
状态数: () n
态密度:D() n/n 例如:转动
l (l 1) 2 2 l , wl 2l 1, n l 1 2I
8 I h2
2
取:
h2
2
8 I n l l 1, l 2l
p
H
dxdp
x
2
x
§6.1 粒子运动状态的描述
3、转动(双原子分子的空间转动)
r=2
,, P , P
z
1 m x2 y2 z 2 2 1 m r 2 r 2 2 r 2 sin 2 2 2 2 2 P 1 P 2 2I sin