简易函数波形发生器

合集下载

简易波形发生器设计

简易波形发生器设计
2.2 硬件设计
根据设计要求,可以考虑四种波形切换,用两个开关的四种状态来实现。需要两根口线,如果用按钮来切换波形就只需要一根I/O线,而且使用也方便一些。另外,波形频率的改变是通过电位器输入电压来实现的,所以需要一个模拟量输入,选用常用的A/D转换器芯片0809可以满足要求。波形输出是通过D/A转换器实现的,可以选用D/A专用芯片0832来完成。这样系统的主要器件就确定了。其系统原理图如图1所示。
DB 1,2,5,10,15,21,29,37,47,57,67,79,90,103,115,128
2.三角波
三角波的产生较为简单,因为它的上升沿遵循数据加1的规律。下降沿则按数据减1的规律产生。所以在波形的上升沿只要判断上一次的数据是否为最大值FFH,如果不是最大值,将原数据加1输出;而在波形的下降沿只要判断上一次数据是否为0,如果不是0,则将原数据减1即可,当数据为FFH或0时,应当及时调整升降标志,以便下一次能输出正确的数据。根据上述编程思想绘制的三角波程序框图如图3所示。
为了将这六个数顺次输出,可以采用列表或将原数加50再判断这两种方式。采用后者输出数据的阶梯波程序框图如图4所示。
5.频率控制
每种波形输出一个数据后程序都转到程序控制部分,各种波形的频率就是通过这一部分控制的。它的控制原理是首先读出0809的A/D转换值,并以此为基值延时,延时完毕后再启动0809开始采样模拟电压,为下一次读数做准备。当然,也可以隔几秒钟进行一次A/D转换,这样要用到定时器中断。若直接将A/D转换值作为延时基数去延时,则频率的变换范围有限。若将A/D转换值乘以一个倍率再去延时,虽然可扩大频率的变化范围,但波形的失真会明显增大。
1.2 设计的内容、要求
设计一个简易波形发生器,要求该系统能通过开关或按钮有选择性的输出正弦波、三角波、方波、及阶梯波等四种波形,并且这四种波形的频率均可通过输入电位器在一定范围内调节。

《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作

《模拟电子技术》简易函数信号发生器的设计与制作1 整机设计1.1 设计任务及要求结合所学的模拟电子技术知识,运用AD画图软件,设计并制作完成一简易函数信号发生器,要求能产生方波和三角波信号,且频率可调,并自行设计电路所需电源电路。

1.2 整机实现的基本原理及框图函数信号发生器能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形。

其电路中使用的器件可以是分立器件,也可以是集成电路。

本课题需要完成一个能产生方波、三角波的简易函数信号发生器。

产生方波、三角波的方案有很多种,本课题采用运放构成电压比较器出方波信号,采用积分器将方波变为三角波输出,其原理框图如图1所示。

直流电源电路一般由"降压--整流--滤波--稳压"这四个环节构成。

基本组成框图如图2所示。

电源变压器的作用是将电网220V的交流电压变成整流电路所需要的电压u。

因此,u 1=nui(n为变压器的变比)。

整流电路的作用是将交流电压u1变换成单方向脉动的直流U2。

整流电路主要有半波整流、全波整流方式。

以单相桥式整流电路为例,U2=0.9u1。

每只二极管所承受的最大反向电压URM =√2u1,平均电流I D(av)=12IR=0.45u1R对于RC滤波电路,C的选择应适应下式,即RC放电时间常数应该满足:RC=(3~5)T/2,T为50Hz交流电压的周期,即20ms。

2 硬件电路设计这是直流电源电路的原理图,由“降压——整流——滤波——稳压”这四个环节构成。

通过变压把电网 220V 的交流电压变成整流电路所需要的电压,4个二极管的作用是整流,电容起滤波的作用,再经过7812跟7912进行稳压,2个LED灯起指示作用。

这部分采用运放构成电压比较器出方波信号这部分采用运放构成积分器将方波变为三角波输出3 制作与调试过程根据要求画出实验电路的原理图,根据测量元器件来确定孔径的大小,元器件管脚间的距离以及元器件的大小,导入PCB后改好规则,布好局后连线,布局时要留出一定位置来放变压器,放置姓名学号,这样制版的第一步就做好了。

简易波形发生器

简易波形发生器

简易波形发生器一、实验目的1.掌握DAC0832和ADC0809的应用和编程方法。

2.熟悉几种典型波形的产生方法。

二、实验内容与要求利用微机实验平台编程实现一个波形发生器,可以产生正弦波、方波、三角波等各种波形,频率和幅度均可调。

1.基本要求(1)具有产生正弦波、方波、三角波三种周期性波形的功能。

(2)输出波形的频率范围为100Hz~1kHz,步进为100Hz。

(3)输出波形幅度范围1~5V(峰-峰值),可按步进1V(峰-峰值)调整。

(4)通过ADC0809采样DAC0832的输出,在屏幕上画出图形。

示波器查看波形发生器的输出和屏幕上的图形比较。

2.提高要求(1)增加输出波形的类型。

(2)扩展输出波形频率范围。

(3)减少幅度范围的步进量。

三、实验报告要求1.设计目的和内容2.总体设计3.硬件设计:原理图(接线图)及简要说明4.软件设计框图及程序清单5.设计结果和体会(包括遇到的问题及解决的方法)四、总体设计本次设计结合D/A和A/D转换,用键盘输入来选择DAC0832的输出波形,再通过ADC0809采集后在PC机上以图形方式显示。

实验主要利用实验箱上的DAC0832 、ADC0809和8253等硬件电路和PC机资源。

设计要求该波形发生器能产生正弦波、方波、三角波等形状的波形,频率和幅度可调。

不同的波形主要是由输入DAC0832的不同规律的数据,所以在软件设计是主要是构造各种波形的数据表格。

方波只需要控制输出高低电平的时间,三角波的表格可以由数字量的增减来控制,产生正弦波关于构造一个正弦函数数值表,通过查该函数表来实现波形的输出。

波形的频率控制是通过对输出数据的时间间隔控制。

幅度是通过改变输出数据的大小来控制的。

为了程序实现方便,可以把每种波形的数据表构造好,再统一查表来实现。

硬件由于采用了PC机的资源和微机实验平台,不用外加其他的电路,比较简单。

将微机系统里面的中断、8253、 DAC0832以及ADC0832的电路弄清楚,通过相应的跳线就可以完成电路的设计。

简易波形发生器的设计

简易波形发生器的设计

目录第一章单片机开发板 (1)1.1 开发板制作 (1)1.1.1 89S52单片机简介 (1)1.1.2 开发板介绍 (2)1.1.3 89S52的实验程序举例 (3)1.2开发板焊接与应用 (4)1.2.1开发板的焊接 (4)1.2.2开发板的应用 (5)第二章函数信号发生器 (7)2.1电路设计 (7)2.1.1电路原理介绍 (7)2.1.2 DAC0832的工作方式 (9)2.2 波形发生器电路图与程序 (10)2.2.1应用电路图 (10)2.2.2实验程序 (11)2.2.3 调试结果 (15)第三章参观体会 (16)第四章实习体会 (17)参考文献 (18)第一章单片机开发板1.1 开发板制作1.1.1 89S52单片机简介图1.1 89s52 引脚图如果按功能划分,它由8个部件组成,即微处理器(CPU)、数据存储器(RAM)、程序存储器(ROM/EP ROM)、I/O口(P0口、P1口、P2口、P3口)、串行口、定时器/计数器、中断系统及特殊功能寄存器(SF R)的集中控制方式。

各功能部件的介绍:1)数据存储器(RAM):片内为128个字节单元,片外最多可扩展至64K字节。

2)程序存储器(ROM/EPROM):ROM为4K,片外最多可扩展至64K。

3)中断系统:具有5个中断源,2级中断优先权。

4)定时器/计数器:2个16位的定时器/计数器,具有四种工作方式。

5)串行口:1个全双工的串行口,具有四种工作方式。

6)特殊功能寄存器(SFR)共有21个,用于对片内各功能模块进行管理、监控、监视。

7)微处理器:为8位CPU,且内含一个1位CPU(位处理器),不仅可处理字节数据,还可以进行位变量的处理。

8)四个8位双向并行的I/O端口,每个端口都包括一个锁存器、一个输出驱动器和一个输入缓冲器。

这四个端口的功能不完全相同。

A、P0口既可作一般I/O端口使用,又可作地址/数据总线使用;B、P1口是一个准双向并行口,作通用并行I/O口使用;C、 P2口除了可作为通用I/O使用外,还可在CPU访问外部存储器时作高八位地址线使用;D、P3口是一个多功能口除具有准双向I/O功能外,还具有第二功能。

基于LM324的简易波形发生器

基于LM324的简易波形发生器

目录摘要 (1)一、课程设计的目标和设计的任务 (1)1.1设计培养的目标 (1)1.2设计任务 (1)1.3课程设计的要求及技术要求 (2)二、电路设计原理方案及电路图 (2)2.1设计方案及电路图 (2)2.2 Multisim仿真结果 (3)三、电路板的制作 (4)四、电路的安装与调试 (4)五、波峰焊、回流焊 (5)5.1波峰焊 (5)5.2回流焊 (6)六、心得体会 (6)附录:仪器仪表及元件清单 (7)摘要在电子系统中,经常要使用到方波、三角波等波形的波形信号产生电路,常用于产生各种电子信号,完成电子系统间的通信以及自动测量和自动控制等系统中。

本系统采用LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易波形发生器。

该波形发生器具有效率高、体积小、重量轻,输出稳定,能产生方波、三角波和正弦波等电子信号,可以作为其它电子系统的信号发生模块电路。

一、课程设计的目标和设计的任务1.1设计培养的目标1、总体目标:本课程的目标是让学生在掌握模拟和数字电子技术的基础上,通过典型实践题目的设计与实现,使其加深对模拟和数字电子技术知识的理解,初步掌握现代电子系统的设计方法和调试方法,培养分析、解决实际问题的能力,提高工程设计的技能。

2、知识目标:(1)熟悉各种模拟电路和数字电路的内容;(2)按要求完成整个电路的分析和设计;(3)对整个系统制作和调试;3、能力目标:(1)能熟练掌握操作万用表、信号发生器、示波器、稳压电源等常用电子仪器仪表;(2)能熟练查阅常用电子元器件和芯片的规格、型号等资料;(3)能熟练运用线路板设计软件制作电路图;(4)完成电路板制作和硬件连接,并学会排错、解决故障;1.2设计任务在电子系统中,经常要使用到方波、三角波等波形的波形信号产生电路,常用于产生各种电子信号,完成电子系统间的通信以及自动测量和自动控制等系统中。

本系统采用LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易波形发生器。

基于LM324的简易波形发生器

基于LM324的简易波形发生器

设计报告作品名称:基于LM324的简易波形发生器*者:***洪文娟吴丽萍基于LM324的简易波形发生器摘要在电子系统中,经常要使用到方波、三角波等波形的波形信号产生电路,常用于产生各种电子信号,完成电子系统间的通信以及自动测量和自动控制等系统中。

本系统采用LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易波形发生器。

该波形发生器具有效率高、体积小、重量轻,输出稳定,能产生方波、三角波和正弦波等电子信号,可以作为其它电子系统的信号发生模块电路。

关键词LM324 简易波形发生器目录1 方案设计与论证 (1)1.1 方案1 (1)1.2 方案2 (1)2 系统设计 (1)2.1 LM324芯片简介 (1)2.2 电路组成和工作原理 (2)2.3 电路设计与计算 (3)3 系统测试 (5)3.1 测试工具 (5)3.2数据测试与结果分析 (5)3.3 测试结论 (5)4 设计结论 (7)参考文献 (7)1 方案设计与论证1.1 方案1采用ICL8038集成函数信号发生器芯片外加电阻、电容元件,构成波形发生电路。

ICL8038集成函数信号发生器芯片是一种多用途的波形发生器芯片,它可以用来产生正弦波、方波、三角波和锯齿波。

它的振荡频率可以通过外加的直流电压进行调节,是一种压控集成函数信号发生器。

虽然ICL8038集成函数信号发生器的功能强大,但是它的价格昂贵,而且市面上也较难买到。

如果用ICL8038芯片来制作简易波形发生器系统,则会大大增加系统的制作成本。

1.2 方案2采用LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易波形发生器。

LM324是一种集成运算放大器芯片,它的内部有四个独立的运算放大器。

根据所学的知识,运算放大器可以构成滞回比较器、积分器和二阶有源低通滤波器电路,可以分别产生方波、三角波和正弦波。

依靠这些电路的组合,就可以制作成简易波形发生器电路。

该电路具有效率高、体积小、重量轻,输出稳定等特点。

实验报告 简易波形信号发生器的制作

实验报告 简易波形信号发生器的制作
0x01,0x02,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,
0x0B,0x0D,0x0E,0x10,0x11,0x13,0x15,0x16,0x18,0x1A,0x1C,
0x1E,0x20,0x22,0x25,0x27,0x29,0x2B,0x2E,0x30,0x33,0x35,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x01,0x02,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0A,
0x0B,0x0D,0x0E,0x10,0x11,0x13,0x15,0x16,0x18,0x1A,0x1C,
TMOD=0x10;//置定时器1为方式1
while(1)
{
for(i=0;i<=255;i++)//形成锯齿波输出值,最大255
{
DA0832=i;//D/A转换输出
delay_1ms();
}
}
}
采用DAC0832产生正弦波的编程思路:把产生正弦波输出的二进制数据以数值的形式预先存放在程序存储器中,再按顺序依次取出送至D/A转换器,程序流程如下图所示:
void delay_1ms()
{
TH1=0xfc;//置定时器初值
TL1=0x18;
TR1=1;//启动定时器1
while(!TF1);//查询计数是否溢出,即定时1ms时间到,TF1=1
TF1=0;// 1ms时间到,将定时器溢出标志位TF1清零
}
void main()//主函数
{
uchar i;
#include<reg51.h>

简易波形产生器

简易波形产生器

简易波形产生器摘要函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块8038)。

为进一步掌握电路的基本理论及实验调试技术,本课题采用由555定时器所构成的多谐振动器产生方波,方波经过积分器的作用产生三角波,三角波在经过差分放大电路的非线性转换为正弦波。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

关键词:函数发生器555定时器积分器差动放大电路目录摘要 (1)1.方案的选择 (2)1.1 方案一 (2)1.2 方案二 (2)1.3 方案三 (2)2.系统方案设计 (2)2.1 系统组成框图 (2)2.2 方波的产生 (2)2.3 由方波输出为三角波 (2)2.4 由三角波输出正弦波 (2)2.5 结论 (2)3.总结 (2)致谢 (2)参考文献 (2)附录一:总原理图 (2)附录二:元器件选型 (2)附录三:555定时器的介绍 (2)1.方案的选择三种波形都是比较简单且常见的波形,产生的方法由很多种,可以先产生方波,然后得到三角波和正弦波,也可以先得到正弦波,然后翻过来再输出另外两种波形;可以用集成芯片,同时也可以运用各种元器件来实现振荡电路。

1.1 方案一采用集成片ICL8038做函数信号发生器图1 ICL8038原理图ICL8038是一种集成度很高的芯片,只需要外加少量调整电路即可以获得完美的方波-三角波-正弦波的波形1.2 方案二采用振荡电路获得正弦波,再由比较器获得方波,最后通过积分电路获得三角波图2函数发生器原理一1.3 方案三由555定时器所构成的多谐振动器产生方波,方波经过积分器的作用产生三角波,三角波在经过差分放大电路的非线性转换为正弦波。

简易DDS波形发生器设计

简易DDS波形发生器设计

实验二简易DDS波形发生器设计084775116 马丽丽084775117 潘奕颖一、实验目的:进一步熟悉绘制ASM图分析实验的方法;进一步掌握将VHDL程序符号化的使用方法;熟悉ROM表的制作与符号化;了解DDS波形发生器的基本原理。

二、实验内容:利用FPGA和DAC,设计一个简易的DDS波形发生器并发出正弦波。

三、设计要求:1.分辨率优于1Hz;2.ROM表长度8位,位宽10位;3.输出频率优于100kHz(每个周期数据点大于50);4.显示信号频率/频率控制字(可切换);5.直接输入频率控制字或输出频率。

四、实验仪器:计算机1台;QUARTUS II软件一套;试验箱1台。

五、方法步骤:1.绘制ASM图;阅读实验要求,分析实验过程,然后绘制ASM图如下页:2. 建立一个工程;打开QUARTUS II 软件,Files → New Project Wizard → 选择储存路径→ next → next → 选择芯片Cyclone II EP2C5T144C8 → next → finish 。

3. 编写累加器的VHDL 文件,并将其转换成图形文件;①Files → New → VHDL File → 开始编写程序; ②经过编写后,进行编译(Tools → Compiler Tool →Strart),改错,再编译,改错直至编译成功,保 存文件名为“dds1.vhd ”;程序如下:library ieee;library ieee;use ieee.std_logic_1164.all;use ieee.std_logic_unsigned.all;entity dds1 isport(m:in std_logic_vector(19 downto 0);cp,r:in std_logic;q:out std_logic_vector(7 downto 0));end dds1;architecture z of dds1 issignal t:std_logic_vector(22 downto 0);signal n:std_logic_vector(22 downto 0);beginprocess(cp)beginn<="000"&m;if cp'event and cp='1' thenif r='1' thent<="00000000000000000000000";elsif t+n>8388607 thent<="00000000000000000000000";elset<=t+n;end if;end if;q<=t(22 downto 15);end process;end z;③编译通过以后,File → Create/Update → Create Symbol Files For Current File。

简易波形发生器

简易波形发生器

题目:简易波形发生器的设计设计理念:利用单片机AT89C51采用程序设计方法产生锯齿波、正弦波、矩形波,三角波四种波形,再通过D/A转换器DAC0832将数字信号转换成模拟信号,滤波放大,最终由示波器显示出来。

通过键盘来控制四种波形的类型选择,使用按键开关调节频率变化,并通过数码管显示,系统大致包括信号发生部分、数/模转换部分以及数码管显示部分三部分,其中尤其对数/模转换部分和波形产生和变化部分进行详细论述。

1.信号发生电路方案论证方案一:通过单片机控制D/A,输出四种波形。

优点:此方案电路简单、成本低。

缺点:输出的波形不够稳定,抗干扰能力弱,不易调节。

方案二:使用锁相频率合成方法。

通过芯片IC145152,压控振荡器搭接的锁相环电路输出稳定性极好的正弦波,再利用过零比较器转换成方波,积分电路转换成三角波。

缺点:此方案,电路复杂,干扰因素多,不易实现。

方案三:利用MAX038芯片组成的电路输出波形。

MAX038是精密高频波形产生电路,能够产生准确的三角波、方波、正弦波三种周期性波形。

但此方案成本高,程序复杂度高。

以上三种方案综合考虑,选择方案一。

2.单片机的选择论证方案一:AT89C51单片机是一种高性能8位单片微型计算机。

它把构成计算机的中央处理器CPU、存储器、寄存器、I/O接口制作在一块集成电路芯片中,从而构成较为完整的计算机,而且其价格便宜。

方案二:C8051F005单片机是完全集成的混合信号系统级芯片,具有与8051兼容的微控制器内核,与MCS-51指令集完全兼容。

除了具有标准8052的数字外设部件,片内还集成了数据采集和控制系统中常用的模拟部件和其他数字外设及功能部件,而且执行速度快。

但其价格较贵以上两种方案综合考虑,选择方案一。

3.显示方案论证方案一:采用LED数码管。

LED数码管由8个发光二极管组成,每只数码管轮流显示各自的字符。

使用数码管显示编程较易。

方案二:采用LCD液晶显示器1602。

简易函数波形发生器

简易函数波形发生器

系统框图1、系统设计1.1总体设计系统采用±12V双电源供电,由LM324集成运放芯片构成滞回比较器、积分器和二阶有源低通滤波器。

它由滞回比较器产生方波信号,方波信号经过积分器后产生三角波信号。

三角波信号一路反馈回滞回比较器,作为滞回比较器的V REF(反馈电压);另一路经二阶有源低通滤波器滤波以后产生正弦波信号。

使用时可以在电路系统的不同输出点得到不同的波形信号。

正弦波信号通过LM358集成芯片构成全波整流电路。

2.2 单元电路设计2.2.1方波——三角波发生电路方波-三角波发生电路由滞回比较器和积分运算电路组成。

通过滞回比较器产生方波,方波通过积分电路产生三角波。

积分运算电路既作为延迟环节又作为方波变三角波电路,滞回比较器和积分运算电路的输出互为另一个电路的输入。

方波的输出电压幅度由稳压管ZD1、ZD2共同决定。

稳压幅度Uz为+Uz=3.9+0.7=4.6(V)其中,0.7V为二极管D1正向导通的管压降。

-Uz=-(3.9+0.7)=-4.6 (V)其中,0.7V为二极管D2正向导通管压降。

所以U o1=±U Z=±4.6(V)V pp(方波)=9.2V电路的第二级是一个积分器,用于输出三角波。

当电路的第一级输出的方波信号U01送入该级电路后,由该级电路对信号进行积分变换以后,产生三角波信号U02。

U02分成两路,一路输入第三级电路,另一路反馈回滞回比较器,作为滞回比较器的V REF。

R1为10KΩ,R2为10 kΩ,R4=10kΩ,C1=0.1uF。

第二级电路的输出电压幅度为:错误!未找到引用源。

=(10K/10K)*4.6V=4.6(V)V pp(三角波)=9.2(V)第一级电路和第二级电路的振荡周期相同,可以由以下的公式求得:=4×(10x103)×(10x103)×0.1×10-6/(10×103)T=4 (ms)则振荡频率为:f=1/ T=1/(0.172×10-3)=250(Hz)2.2.2正弦波发生电路C2第三级电路是二阶有源低通滤波器,用于对第二级电路送来的信号U02进行滤波。

基于msp430g2553单片机简易波形发生器

基于msp430g2553单片机简易波形发生器

桂林理工大学博文管理学院实习报告实习名称:电子设计与应用实践专业班级:电信11-1学生姓名:谢栋树学号:81111126指导老师:朱昌洪实习时间:2014年05 月04日至2014年05月23日基于MSP430G2553的简易波形发生器一、引言波形函数发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。

本函数发生器采用msp430g2553单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(TL082)、按键和LCD 显示电路等。

此电路设计清晰,出现故障容易查找错误,操作简单方便。

电路采用msp430g2553单片机与一片DAC0832数模转换器组成低频信号发生器。

通过按键控制可分别控制选择输出的幅值和频率,同时用LCD12864显示器显示频率。

所产生的波形幅值范围为0到5V;本系统设计简单、性能优良,具有一定的实用性。

二、课题设计1.基本原理在信号产生和处理方面。

通过MSP430G2553内部的TA定时器,外加DAC0832产生四种波形,在DA输出后,通过一个由运算放大器TL082和精密可调电位器组成的运算放大电路,以实现信号的增益控制。

最后在负载电阻上输出电压。

2.原理框图Ω图(1)系统总体框图正弦波锯齿波三角波增频减频短按P2.2长按P2.1长按P2.0短按P2.1短按P2.0长按时间大于1s 短按时间大于10ms图(2)按键功能说明 3.硬件电路原理图图(3)硬件模块框图 (1)显示模块12864显示模块msp430g2553模块 电源模块 按键模块DAC0832模块输出模块本作品使用LCD12864作为人机交互模块,由于MSP430G2553的I/O口很少,所以通过对LCD的进行串行数据输入,以节约I/O口。

图(4)LCD12864硬件连接(2)DAC0832转换与幅度放大模块由于是通过MSP430G2553输出数字量的信号来产生波形,因此需要用到DA将数字量转换为模拟量。

基于51单片机的简易函数信号发生器资料

基于51单片机的简易函数信号发生器资料

创新性实验研究报告实验项目名称_简易函数信号发生器四、实验内容1、运用keil软件对程序进行编写,运行程序,并进行程序修改。

2、运用protues软件进行硬件电路仿真设计。

3、将程序下载到仿真单片机中,并观测输出波形。

4、对程序进行修改,再次运行仿真软件,直到输出理想的波形。

5、仿照仿真软件进行硬件电路的焊接。

6、将程序下载到单片机,并用示波器测试输出波形。

7、对程序进行修改,直到输出满意的波形为止。

3、实验步骤1、首先打开keil软件.2、运用keil软件对程序进行编写,程序见附件。

3、打开protues软件.4、运用protues软件对硬件电路进行设计。

9C51单片机是该信号发生器的核心,具有2个定时器,32个并行I/O口,1个串行I/O口,5个中断源。

由于本设计功能简单,数据处理容易,数据存储空间也足够,因为我们采用了片选法选择芯片,进行芯片的选择和地址的译码。

在单片机最小最小系统中,单片机从P1口接收来自键盘的信号,并通过P0口输出控制信号,通过DA转换芯片最终由示波器显示输出波形。

单片机引脚分配如下:�XTAL1,XTAL2:外接晶振,产生时钟信号。

�RST:复位电路;�P2口:8位数字信号输出输出,外接DAC0832;�P3.6口和P3.7口:DAC0832的时钟信号;单片机模块单片机输出的是数字信号,因为要得到模拟信号的波形就必须对其进行数模转换。

我们采用了DAC0832数模转换器,该芯片具由8位输入锁存器、8位DAC寄存器、8位D/A转换器及转换控制电路四部分构成。

由于其输出为电流输出,因为外加运算放大器LM324使之转换为电压输出。

最后通过示波器显示输出的波形。

数模转换模块运放模块整体硬件电路图五、实验结果与分析1、实验现象、数据记录仿真波形2、对实验现象、数据及观察结果的分析与讨论:经过观察调试,再观察,再调试,最终输出的波形较为理想。

此次试验经过一系列的调试,最终输出的波形为正弦波、方波、三角波。

波形发生器

波形发生器

Up从 -Ut 跃变为 +Ut,电容又开始正相充电。 上述过程周而复始, 电路产
生了自激振荡。
± UT=± R2∕(R6+RW)U02m
T=2R6(R6+RW)C3∕ R7
运放的反相端接基准电压,即 U-=0,同相输入端接输入电压 Uia ,
R6称为平衡电阻。比较器的输出 Uo1的高电平等于正电源电压 +Vcc,低
正弦波输入信号 Vo1在上升到 Vt+之前, Vo2保持不变,超过 Vt+后
Vo2翻转,直到 Vo1 下降到 Vt- , Vo2 再翻转,如此反复便形成 Vo2方波
输出。
3
简易波形发生器
图 3-2 正弦波——三角波产生电路
3.3 方波——三角波变换电路
图 3-3 方波——三角波变换电路
此电路由反相输入的过零比较器和 RC电路组成。 RC回路既作为延 迟环节,又作为反馈网络,通过 RC充、放电实现输出状态的自动转换。 设某一时刻输出电压 Uo=+Uz,则同相输入端电位 Up=+UT。Uo通过 R3 对电 容 C 正向充电,如图中实线箭头所示。反相输入端电位 n 随时间 t 的增
1. 概述
波形发生器是一种常用的信号源,广泛地应用于电子电路、自动控 制系统和教学实验等领域。函数信号发生器是一种能够产生多种波形, 如三角波、锯齿波、矩形波(含方波) 、正弦波的电路。函数信号发生器 在电路实验和设备检测中具有十分广泛的用途。通过对函数波形发生器 的原理以及构成分析,可设计一个能变换出三角波、正弦波、方波的函 数波形发生器。 本课程采用采用 RC正弦波振荡电路、 电压比较器、 积分 电路共同组成的正弦波—方波—三角波函数发生器的设计方法。先通过 RC正弦波振荡电路产生正弦波,再通过电压比较器产生方波,最后通过 积分电路形成三角波。

简易波形发生器

简易波形发生器

目录摘要 (1)一、项目可行性研究 (2)二、项目方案选择 (2)控制器模块: (2)信号发生模块 (2)输出显示模块 (3)系统最终方案 (3)三、硬件设计 (4)单片机最小系统 (4)串口模块 (4)参数的计算 (5)四、软件设计 (5)(1)上位机软件的设计与实现 (5)(2)下位机软件设计与实现 (6)五、调试与结果分析 (6)附录: (7)1、信号发生电路 (7)2、上位机软件界面 (7)3、单片机程序流程图 (8)4、最终实物 (9)5、部分程序代码 (9)简易波形发生器摘要信号发生器是一种常用的信号源,广泛地应用于电子电路、自动控制系统和教学实验等领域。

本设计主要介绍了MAX038的基本性能,给出了一种以STC89C52为主控制器,以MAX038为主函数发生芯片的程控函数信号发生器的硬件电路及软件设计方法。

该方法采用STC89C52并通过程控D/A转换器和八选一模拟开关CD4051来实现对MAX038频率的调控,可以输出正弦波、方波和三角波等三种波形,其频率范围为0.1Hz~20MHz。

一、项目可行性研究函数信号发生器根据用途不同,有产生三种或多种波形的函数发生器,其电路中使用的器件可以是分离器件,也可以是集成器件,产生方波、正弦波、三角波的方案有多种,如先产生正弦波,根据周期性的非正弦波与正弦波所呈的某种确定的函数关系,再通过整形电路将正弦波转化为方波,经过积分电路后将其变为三角波。

也可以先产生三角波-方波,再将三角波或方波转化为正弦波。

随着电子技术的快速发展,新材料新器件层出不穷,开发新款式函数信号发生器,器件的可选择性大幅增加,例如MAX038就是一种技术上很成熟的可以产生正弦波、方波、三角波的主芯片。

所以,可选择的方案多种多样,技术上是可行的。

二、项目方案选择控制器模块:方案1:采用可编程逻辑期间CPLD作为控制器。

CPLD可以实现各种复杂的逻辑功能、规模大、密度高、体积小、稳定性高、IO资源丰富、易于进行功能扩展。

简易波形发生器设计报告

简易波形发生器设计报告

电子信息工程学院硬件课程设计实验室课程设计报告题目:波形发生器设计年级:13级专业:电子信息工程学院学号: 6学生:覃凤素指导教师:罗伟华2015年11月12 日波形发生器设计波形发生器亦称函数发生器,作为实验信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。

波形发生器一般是指能自动产生方波、三角波、正弦波等电压波形的电路。

产生方波、三角波、正弦波的方案有多种,如先产生正弦波,再通过运算电路将正弦波转化为方波,经过积分电路将其转化为三角波,或者是先产生方波-三角波,再将三角波变为正弦波。

本课程所设计电路采用第二种方法,利用集成运放构成的比较器和电容的充放电,实现集成运放的周期性翻转,从而在输出端产生一个方波。

再经过积分电路产生三角波,最后通过正弦波转换电路形成正弦波。

一、设计要求:(1) 设计一套函数信号发生器,能自动产生方波、三角波、正弦波等电压波形; (2) 输出信号的频率要求可调;(3) 根据性能指标,计算元件参数,选好元件,设计电路并画出电路图; (4) 在面包板上搭出电路,最后在电路板上焊出来; (5) 测出静态工作点并记录;(6) 给出分析过程、电路图和记录的波形。

扩展部分:(1)产生一组锯齿波,频率围为10Hz~100Hz ,V V8p-p =;(2)将方波—三角波发生器电路改成矩形波—锯齿波发生器,给出设计电路,并记录波形。

二、技术指标(1) 频率围:100Hz~1kHz,1kHz~10kHz ;(2) 输出电压:方波V V24p-p ≤,三角波V V6p-p =,正弦波V V1p-p ≥;(3) 波形特性:方波s tμ30r< (1kHz ,最大输出时),三角波%2V<γ,正弦波y~<2%。

三、选材:元器件:ua741 2个,3DG130 4个,电阻,电容,二极管仪器仪表:直流稳压电源,电烙铁,万用表和双踪示波器四、方案论证方案一:用RC 桥式正弦波振荡器产生正弦波,经过滞回比较器输出方波,方波在经过积分器得到三角波。

LM324波形发生器

LM324波形发生器

大连海事大学电子线路课程设计题目:函数波形发生器专业班级:电子信息工程四班姓名:***学号:**********指导老师:***时间:基于LM324的简易波形发生器在电子系统中,经常要使用到方波、三角波等波形的波形信号产生电路,常用于产生各种电子信号,完成电子系统间的通信以及自动测量和自动控制等系统中。

本系统采用LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易波形发生器。

该波形发生器具有效率高、体积小、重量轻,输出稳定,能产生方波、三角波和正弦波等电子信号,可以作为其它电子系统的信号发生模块电路。

目录1 方案设计与论证 (1)1.1 方案1 (1)1.2 方案2 (1)2 系统设计 (1)2.1 LM324芯片简介 (1)2.2 电路组成和工作原理 (2)2.3 电路设计与计算 (3)3 系统测试 (5)3.1 测试工具 (5)3.2数据测试与结果分析 (5)3.3 测试结论 (5)4 设计结论 (7)参考文献 (7)1 方案设计与论证1.1 方案1采用ICL8038集成函数信号发生器芯片外加电阻、电容元件,构成波形发生电路。

ICL8038集成函数信号发生器芯片是一种多用途的波形发生器芯片,它可以用来产生正弦波、方波、三角波和锯齿波。

它的振荡频率可以通过外加的直流电压进行调节,是一种压控集成函数信号发生器。

虽然ICL8038集成函数信号发生器的功能强大,但是它的价格昂贵,而且市面上也较难买到。

如果用ICL8038芯片来制作简易波形发生器系统,则会大大增加系统的制作成本。

1.2 方案2采用LM324集成运放芯片,外加电阻、电容等元器件调整、滤波,构成简易波形发生器。

LM324是一种集成运算放大器芯片,它的内部有四个独立的运算放大器。

根据所学的知识,运算放大器可以构成滞回比较器、积分器和二阶有源低通滤波器电路,可以分别产生方波、三角波和正弦波。

依靠这些电路的组合,就可以制作成简易波形发生器电路。

简易波形产生器 (1)

简易波形产生器 (1)

引言波形发生器又称为振荡器,它不需要输入信号的激励,电路通过正反馈,将直流电源的能量转换为各种稳定的、随时间周期性变化的交流信号的能量而输出。

即没有输入就有输出,根据输出信号波形的不同,分为正弦波振荡器和非正弦波振荡器两大类。

波形发生器是一种广泛应用于电子电路、自动控制和科学实验等领域的信号源。

比如电参量的测量、雷达、通信、电子对抗与电子系统、宇航和遥控遥测技术等等。

RC桥式正弦波振荡电路产生正弦波,正弦波频率可通过调节电阻R 及电容C实现100HZ—20KHZ的变换,再通过电压跟随器输出正弦波。

正弦波通过过零比较器,整形为方波,同样经过电压跟随器输出方波。

方波通过积分运算电路,整形为三角波。

1 简易波形发生器原理级框图1.1 基本原理RC桥式正弦波振荡电路产生正弦波,正弦波频率可通过调节电阻R 及电容C实现100HZ—20KHZ的变换,再通过电压跟随器输出正弦波。

正弦波通过过零比较器,整形为方波,同样经过电压跟随器输出方波。

方波通过积分运算电路,整形为三角波。

1.2 原理框图本课题采用的是正弦波发生器产生正弦波信号,然后用过零比较器产生方波,再经过积分电路产生三角波,其电路框图如图1.1所示。

正弦波发生器方波三角波正弦波过零比较器积分器图1.12 正弦波发生电路2.1 正弦波振荡器原理和结构正弦波振荡器由一个基本放大器和一个带有选频功能的正反馈网络组成,它没有输入信号。

如果在放大电路的输入端外接一定频率、一定幅度的正弦波信号,经过基本放大电路和反馈网络所构成的环路传播后,在反馈网络输出端,得到反馈信号.fX ,如果.f X 与.i X 在大小和相位上都一致,那么就可以除去外接信号,如图2.1所示形成闭环系统,其输出端可能继续维持与开环时一样的输出信号。

图 2.12.2 产生振荡的条件2.2.1振荡平衡条件由于输入信号为零,所以..fi XX =便有...oi X A X =,...f o XF X =..1A F =在上式中,设.a A A ϕ=∠, .f F F ϕ=∠则 ..()1a f AF AF ϕϕ=∠+=即:1AF = ………………………………………振幅平衡条件2(0,1.2a f n n ϕϕπ+==…)…………………………相位平衡条件一个振荡器只有同时满足这两个条件,才能振荡。

简易波形发生器 毕业论文

简易波形发生器 毕业论文

任务书课题:简易波形发生器系别:电气工程系专业:电子信息工程技术班级:智能电子102学生姓名:指导老师:时间:2012-11-15摘要本系统是基于 AT89C52 单片机的数字式低频信号发生器。

采用 AT89C52 单片机作为控制核心,外围采用数字/模拟转换电路(DAC0832)、运放电路(LM324)、按键和8 位数码管等。

通过按键控制可产生方波、三角波、正弦波等,同时用数码管指示其对应的频率。

其设计简单、性能优好,可用于多种需要低频信号的场所,具有一定的实用性。

各种各样的信号是通信领域的重要组成部分,其中正弦波、三角波和方波等是较为常见的信号。

在科学研究及教学实验中常常需要这几种信号的发生装置。

为了实验、研究方便,研制一种灵活适用、功能齐全、使用方便的信号源是十分必要的。

本文介绍的是利用 AT89C52 单片机和数模转换器件 DAC0832 产生所需不同信号的低频信号源,其信号幅度和频率都是可以按要求控制的。

文中简要介绍了 DAC0832 数模转换器的结构原理和使用方法,AT89C52 的基础理论,以及与设计电路有关的各种芯片。

文中着重介绍了如何利用单片机控制 D/A 转换器产生上述信号的硬件电路和软件编程。

信号频率幅度也按要求可调。

本次关于产生不同低频信号的信号源的设计方案,不仅在理论和实践上都能满足实验的要求,而且具有很强的可行性。

该信号源的特点是:体积小、价格低廉、性能稳定、实现方便、功能齐全。

关键词:AT89C52 DAC0832 LM324 8位数码管显示AbstractWaveform The system is a digital signal generator based on single chip computer.AT89C52 is used as a control microcontroller core. The system is composed by digital/analog comversionDAC0832 imply circuit button and nixie tube. It can generate the square triangle and sine wave with nixietube. Te system can be used for a signal soure in the low-frequency signal soure. It is very practical.Various signals are an important part of correspondent area. In this area sine wave triangle wave and square wave are common signals. In science research and teaching experiment we often need the occurrence equipment of these signals. In order to make the experiment and research easier to develop a suitable full functional and easily used signals source is essential. This paper introduces the low frequency sources of different signals that are produced by AT89C52 SCM and DAC0832.Its signal range and frequency can be controlled by requirement. This paper briefly introduces the structure principle and usage of DAC0832 the basic theory of AT89C52 and various chips which relevant to design circuit. This paper emphasized how to use SCM to control the hardware circuit and software program of the signals above which produced by DAC0832.The signal frequency range also can be adjusted by requirement. This signal source design plan concerns on producing different low frequency signals not only meet the request of experiment in theory and in practice but also have strong feasibility. The trait of this signal source is :small volume low price stable function easily achievable and full function.Keywords :AT89C52 DA0832 LM324 8 nixie tube display目录摘要Abstract第1章绪论1.1 波形发生器的发展状况……………………………………………………….1.2 国内外波形发生器产品比较………………………………………………….1.3 波形发生器示意图…………………………………………………………….1.4 课题内容与设计要求…………………………………………………………. 第2章硬件电路构成2.1 MCS-51 单片机的内部结构………………………………………………………..2.1.1 内部结构概述…………………………………………………………………….2.1.2 AT89C52单片机……………………………………………...................................2.1.3 CPU 结构……………………………………………................................................2.1.4 存储器和特殊功能寄存器……………………………………………………….2.2 P0-P3 口结构…………………………………………………………………………….2.3 时钟电路和复位电路…………………………………………………………………..2.3.1 时钟电路. ……………………………………………………………………………2.3.2 单片机的复位状态…………………………………………………………………2.4 DAC0832 的引脚及功能………………………………………………………………2.4.1DAC0832芯片……………………………………………………………………….2.4.2 DAC0832引脚图和内部结构图………………………………………………….2.4.3 DAC0832 特性参数…………………………………………………………………2.5 数模转换电路……………………………………………………………………………..2.6 LM324集成运放………………………………………………………………………….2.7 8位数码管显示……………………………………………………………………………第3章软件原理3.1 主流程图…………………………………………………………………………………3.2 波形发生程序…………………………………………………………………………….第4章系统调试与测试4.1 波形发生器的调试……………………………………………………………………..4.2遇到的问题及解决方法……………………………………………………………….4.3 三角波仿真图. …………………………………………………………………………4.4 方波仿真图………………………………………………………………………………4.5 正弦波仿真图……………………………………………………………………………第5章总结致谢参考文献附录第1章绪论波形发生器也称函数发生器,作为实验信号源,是现今各种电子电路实验设计应用中必不可少的仪器设备之一。

单片机课程设计简易波形发生器

单片机课程设计简易波形发生器

单片机课程设计简易波形发生器波形发生器是电子实验中经常使用的一种仪器,它能够产生各种不同形式的周期信号。

在单片机课程设计中,我们可以通过编写程序控制单片机来实现一个简易的波形发生器。

本文将介绍使用单片机实现波形发生器的设计思路和实现过程。

首先,我们需要确定需要实现的波形类型。

常见的波形类型包括正弦波、方波、三角波等。

在本设计中,我们将选择实现方波和三角波两种波形。

其次,我们需要确定单片机的硬件资源。

根据波形发生器的要求,我们需要使用单片机的数模转换功能,将数字信号转换为模拟信号输出。

因此,我们需要选择一个具有这一功能的单片机。

在确定了波形类型和硬件资源后,我们可以开始编写程序。

首先,我们需要编写一个初始化函数,用于初始化单片机的相关寄存器和引脚设置。

然后,我们需要编写一个生成方波的函数。

方波信号是一个固定频率的矩形信号,其周期可通过设置定时器的计数值和频率来实现。

我们可以通过控制输出引脚的高低电平来生成方波信号。

接下来,我们需要编写一个生成三角波的函数。

三角波信号是一个类似于正弦波的周期信号,其产生过程可以通过一个计数器和一个增减状态位来实现。

通过控制计数器的递增和递减,我们可以得到一个周期为正弦波信号的三角波信号。

最后,我们需要在主函数中调用这些函数,以及设置相应的延时函数,来实现波形信号的输出。

在输出信号时,我们可以通过设置引脚的电平来控制波形的高低电平。

在实际的实验中,我们可以通过连接示波器来观察并验证所产生的波形信号。

根据波形的输出结果,我们可以调整相应的参数,如频率、周期等,以获得所需的波形效果。

总结起来,通过单片机实现一个简易的波形发生器是一个很有趣的课程设计项目。

通过控制单片机的计数器和引脚状态,我们可以实现方波和三角波等不同形式的周期信号输出。

这不仅有助于理解波形发生器的工作原理,还可以提升对单片机编程和硬件控制的技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统框图
1、系统设计
1.1总体设计
系统采用±12V双电源供电,由LM324集成运放芯片构成滞回比较器、积分器和二阶有源低通滤波器。

它由滞回比较器产生方波信号,方波信号经过积分器后产生三角波信号。

三角波信号一路反馈回滞回比较器,作为滞回比较器的V REF(反馈电压);另一路经二阶有源低通滤波器滤波以后产生正弦波信号。

使用时可以在电路系统的不同输出点得到不同的波形信号。

正弦波信号通过LM358集成芯片构成全波整流电路。

2.2 单元电路设计
2.2.1方波——三角波发生电路
方波-三角波发生电路由滞回比较器和积分运算电路组成。

通过滞回比较器产生方波,方波通过积分电路产生三角波。

积分运算电路既作为延迟环节又作为方波变三角波电路,滞回比较器和积分运算电路的输出互为另一个电路的输入。

方波的输出电压幅度由稳压管ZD1、ZD2共同决定。

稳压幅度Uz为
+Uz=3.9+0.7=4.6(V)
其中,0.7V为二极管D1正向导通的管压降。

-Uz=-(3.9+0.7)=-4.6 (V)
其中,0.7V为二极管D2正向导通管压降。

所以
U o1=±U Z=±4.6(V)
V pp(方波)=9.2V
电路的第二级是一个积分器,用于输出三角波。

当电路的第一级输出的方波信号U01送入该级电路后,由该级电路对信号进行积分变换以后,产生三角波信号U02。

U02分成两路,一路输入第三级电路,另一路反馈回滞回比较器,作为滞回
比较器的V REF。

R1为10KΩ,R2为10 kΩ,R4=10kΩ,C1=0.1uF。

第二级电路的输出电压幅度为:
错误!未找到引用源。

=(10K/10K)*4.6V=4.6(V)
V pp(三角波)=9.2(V)
第一级电路和第二级电路的振荡周期相同,可以由以下的公式求得:
=4×(10x103)×(10x103)×0.1×10-6/(10×103)
T=4 (ms)
则振荡频率为:
f=1/ T=1/(0.172×10-3)=250(Hz)
2.2.2正弦波发生电路
C2
第三级电路是二阶有源低通滤波器,用于对第二级电路送来的信号U02进行滤波。

U02经过第三级电路的滤波之后,变换成正弦波信号后由U03输出。

U03输出信号的周期与U02输出信号的周期相同。

根据集成运算放大器的工作原理,集成运算放大器的两输入端“虚短”,即两输入端的电压相等。

所以在第三级电
路中,运放的第9引脚和第10引脚的电位相等。

因为R8=R9=10kΩ,所以
M点的电流方程为
P 点的电流方程为错误!未找到引用源。

联立上面两式,得
把,f=268.8Hz代入上式,得
又因为
所以
所以
所以V pp(正弦波)=13.1(V)
而第三级电路的上限截止频率为:
上述公式中,
R=错误!未找到引用源。

=6.8(KΩ)
f H=1/(2×3.14159×6.8X103×0.1×10-6)=234.05(H Z)
这说明,第三级电路将阻止频率高于234.05H Z的信号通过。

没修改之前错误!未找到引用源。

=3.9(KΩ),上限截止频率=1/(2×3.14159×3.9X103×0.1×10-6)=408.1Hz,而错误!未找到引用源。

(三角波)的输入频率为268.8Hz,在268.8~408.1区间通过傅里叶展开可知这区间的频率(谐波的频率)会影响正弦波的波形,使它有点尖,要使谐
波减少到最小,要使上限截止频率与三角波输入频率接近,由得
R=6.8K Ω,所以我们取错误!未找到引用源。

=6.8(K Ω),观察测试的波形,正弦
波波形理想。

2.2.3全波整流电路
当正弦波的输入电压大于0V 时,二极管D1导通,D2截止,左边电路实现反相比例运算,错误!未找到引用源。

错误!未找到引用源。

当正弦波的输入电压小于0V 时,二极管D2导通,D1截止,错误!未找到引用源。

中电流为零,因此输出电压错误!未找到引用源。

=0。

根据错误!未找到引用源。

可知,当正弦波的输入电压大于0V 时,输出电压,当正弦波的输入
电压小于0V 时,
,所以
,从而实现全波整流。

我们把二极管D2旁边的电阻错误!未找到引用源。

(2 K Ω)的电阻去掉,使电压跟随效果更好,所以全波整流后的波形和没去掉电阻错误!未找到引用源。

的波形相比,有明显的改善,波形更为理想。

2、系统测试2.1数据及波形的测量
2.1.1方波的测量
2.1.2三角波的测量
2.1.3正弦波的测量
错误!未找到引用源。

=3.9(KΩ),上限截止频率等
于408.1Hz时的波形
错误!未找到引用源。

=6.8(KΩ),
2.1.4 全波整流的测量
11
去掉二极管D2旁边的电阻错误!未找到引用源。

(2 KΩ)的电阻时的波形
12。

相关文档
最新文档