二维形式的柯西不等式

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这在以后证明不等式源自文库会用到
定理2: (柯西不等式的向量形式) 设 , 是两个向量,则
当且仅当 是零向量,或存在实数k , 使 k 时,等号成立.
一. 学习新课
(一)定理3 (二)例题 (三)练习
观察
y
0
P1(x1,y1)
y P1(x1,y1)
P2(x2,y2)
0
x
x P2(x2,y2)
作业: P37 第 8 题
例3.设a,b∈R+,a+b=1,求证
11 4 ab
注意应用公式: (a b)( 1 1 ) 4
ab
练习巩固:
练习一:
设a,b为正数,求
(a 1)(2b 1 )
b
2a
的最小值
练习二: P37 第6题
小结:
本节课实际上是柯西不等式的一些简单应 用,柯西不等式是一个经典不等式,是一 个重要的数学结论,在以后的证明某些不 等式和求最值时有重要作用,要学会灵活 运用。
一、二维形式的柯西不等式 (第二课时)
一. 课前复习
(一)定理1(二维形式的柯西不等式):
若a,b,c,d都是实数,则 (a2+b2)(c2+d2)≥(ac+bd)2
当且仅当ad=bc时,等号成立.
二维形式的柯西不等式经过变形后 可得到两个比较重要的不等式:
a2 b2 c2 d 2 ac bd a2 b2 c2 d 2 ac | | bd
根据两点间距离公式以及三角形 的边长关系:
x12 y12 x22 y22 (x1 x2)2 (y1 y2)2
定理3(二维形式的三角不等式)

x1,
y, 1
x
,
2
y R 2
,那么
x12 y12 x22 y22 (x1 x2 )2 ( y1 y2 )2
问题:
你能否利用柯西不等式,从代数的角度 证明这个不等式?
相关文档
最新文档