弧度制和角度制的换算
弧度制及弧度制和角度制的换算
弧度制的概念和换算总结要点1. 角度制与弧度制:这是两种不同的度量角的制度.角度制是以“度”为单位;弧度制是以“弧度”为单位.2. 度与弧度的相互换算:10≈0.01745弧度, 1弧度≈57018/.3. 在同一个式子中,两种制度不能混用.如:与600终边相同的角的集合不能表示为{x|x=2k π+600,k ∈Z},正确的表示方法是x|x=2k π+3π,k ∈Z }或{ x|x=k ·3600 +600,k ∈Z } 同步练习1. 若α=-3.2,则角α的终边在 ( ) (A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限2.①4π, ② -45π,③419π,④-43π,其中终边相同的角是 ( )(A) ①和② (B) ②和③ (C) ③和④ (D) ①和④ 3. 若4π<α<6π,且与-32π角的终边相同,则α=_________. 4.正三角形,正四边形,正五边形, 正六边形, 正八边形, 正十边形, 正n 边形的一个内角的大小分别_____,____ ,_____,_____,_____,_____, ______.(用弧度表示) 5.把下列各角用另一种度量制表示. ⑴1350⑵ -67030/⑶2 ⑷-67π1. 将下列各数按从小到大的顺序排列.Sin40, sin21, sin300, sin12. 把下列各角化成2k π+α(0≤α<2π,)的形式, 并求出在(-2π,4π)内和它终边相同的角.(1)-316π; (2)-6750.3. 若角θ的终边与1680角的终边相同,求在[0,2π]内终边与3θ角的终边相同的角.练习四 弧度制(二)要点1. 弧长公式和扇形面积公式:弧长公式 L=|α|r 扇形面积公式 S=21Lr=21|α|r 2 其中α是圆心角的弧度数,L 为圆心角α所对的弧长,r 为圆半径.2. 无论是角度制还是用弧度制,都能在角的集合与实数集之间建立起一一对应的关系,但用弧度制表示角时,容易找出与角对应的实数. 同步练习1.半径为5 cm 的圆中,弧长为415cm 的圆弧所对的圆心角等于 ( ) (A)145(B) 1350(C)π135 (D)π1452.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C) 6π (D)-6π 3. 半径为 4 的扇形,基它的周长等于弧所在的半圆周的长,则这个扇形的面积是_________.4. 已知一弧所对的圆周角为600,圆的半径为10cm,则此弧所在的弓形的面积等于___________.5. 已知扇形的周长为6cm,面积为2cm 2,求扇形圆心角的弧度数.6. 2弧度的圆心角所对的弦长为2,求这个圆心角所夹扇形的面积.7. 一条弦的长度等于其所在圆的半径r.(1) 求这条弦所在的劣弧长;(2) 求这条弦和劣弧所组成的弓形的面积.【数学2】二、弧度制第一课时教学要求:1.理解弧度制的意义,熟练掌握弧度制与角度制的互换. 教学过程:1.为什么要引入新的角的单位弧度制.(1)为了计算的方便,角度制单位、度、分、秒是60进制,计算不方便; (2)为了让角的度量结果与实数一一对应. 2.弧度制的定义先复习角度制,即1度的角的大小是怎样定义的. 1弧度角的规定.把等于半径长的圆弧所对的圆心角叫做1弧度的角. 弧度的单位符号是rad ,读作弧度.如上图,AB 的长等于半径r ,∠AOB 的大小就是1弧度的角.弧AC 的长度等于2r,则∠AOC=2rad.问半圆所对的圆心角是多少弧度,圆周所对的圆心角是多少弧度?答:半圆弧长是∴=,,πππrrr 半圆所对的圆心角是π弧度.同样道理,圆周所对的圆心角(称谓周角)的大小是2π弧度.角的概念推广后,弧的概念也随之推广.所以任意一正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.3.弧度制与角度制的互化因为周角的弧度数是2π,角度是360°,所以有 radrad radrad 01745.018011802360≈===ππποοοοο1803602==rad rad ππ815730.57)180(1'=≈=οοοrad rad π例1:把.0367化成弧度'ο解:.835.671805.670367rad rad ππ=⨯=='οο例2:把rad 53π化成角度. οο1081805353=⨯=rad π 今后用弧度制表示角时,把“弧度”二字或“rad ”通常省略不写,比如66ππ就表示 rad ,角.2,2rad 等于就是角αα= rad 33sinππ表示角的正弦.οο360~0之间的一些特殊角的度数与弧度数的互化必需熟练掌握.例3:用弧度制表示 (1)与π32终边相同的角; (2)第四象限的角的集合. 解:(1)与.,32232Z k k ∈+πππ终边也相同的角是 (2)第四象限的角的集合是},22223|{Z k k k ∈+<<+ππαππα 也可能写成},222|{Z k k k ∈<<-παππα注意两种角度制不准混合用,如写成.,2120是不对的Z k k ∈+=παο布置作业,课本P 12,1~5题.第二课时教学要求:1.熟练弧度制与角度制的互化,理解角的集合与实数集R 的一一对应. 2.会用弧长公式,扇形面积公式,解决一些实际问题. 教学过程:复习角的弧度制与角度制的转化公式.017453.01801,81.573.573.57)180(1rad rad rad ≈='==≈=πποοοο1.学生先练习,老师再总结.(1)10 rad 角是第几象限的角? (2)求sin1.5的值.解:(1)有两种方法. 第一种方法οοο21336057310+==rad ,是第三象限的角第二种方法πππππ23210),210(210<-<-+=而 ∴10 rad 的角是第三象限的角. (2)9975.07585sin 5.1sin 75855.1='=∴'=οο也可以直接在计算器上求得,先把角的单位转至RAD ,再求sin1.5即可得. 2.总结角的集合与实数集R 之间的一一对应关系. 正角的弧度数是一个正数,负的弧度数是一个负数, 零角的弧度是零.反过来,每个实数都对应唯一的角(角 的弧度数等于这个实数)这样就在角的集合(元素是角)与实数集R (元素是数) 之间建立了一一对应的关系.3.弧长公式,扇形面积公式的应用由弧度制的定义||αr l rld ==得弧长 例1:利用弧度制证明扇形面积公式l lR S 其中,21=是扇形弧长,R 是圆的半径. 证明:因为圆心角为1 rad 的扇形的面积是ππ22R ,而弧长为l 的扇形的圆心角为rad Rl,所以它的面积 lR R R l S 2122=⋅=ππ.若已知扇形的半径和圆心角,则它的面积又可以写成||21||21212ααR R R lR S =⋅==例2:半径R 的扇形的周长是4R ,求面积和圆心角. 解:扇形弧长为4R-2R=2R ,圆心角)(22rad RR==α 面积2221R R S ==θ. 例3:在扇形AOB 中,∠AOB=90°,弧长为l , 求它的内切圆的面积. 解:先求得扇形的半径ππllr 22==设圆的半径为x ,圆心为C ,x OC 2||=由πlx x 22=+解得ππll x )12(2)12(2-=+=lS ⊙C ππ22)223(4l x -==4.学生课堂阅读课本P 10~11 例5、例6 并作P 11练习7、8两题.布置作业,课本P 12—13,习题4.2 6、8、9、10、11§4.2弧度制[教学目标](1)通过本小节的学习,要使学生理解弧度的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数;(2)了解角的集合与实数集R 之间可以建立起一一对应的关系;(3)掌握弧度制下的弧长公式,会利用弧度解决某些简单的实际问题。
角度制和弧度制的转化
角度制和弧度制的转化
弧度制和角度值转换:弧度数/π=角度值/180°。
角的度量单位通常有两种,一种是角度制,另一种就是弧度制。
1度=π/180≈0.01745弧度,1弧度=180/π≈57.3度。
角度制,就是用角的大小来度量角的大小的方法。
在角度制中,我们把周角的1/360看作1度,那么,半周就是180度,一周就是360度。
由于1度的大小不因为圆的大小而改变,所以角度大小是一个与圆的半径无关的量。
弧度制,顾名思义,就是用弧的长度来度量角的大小的方法。
单位弧度定义为圆周上长度等于半径的圆弧与圆心构成的角。
由于圆弧长短与圆半径之比,不因为圆的大小而改变,所以弧度数也是一个与圆的半径无关的量。
角度以弧度给出时,通常不写弧度单位,有时记为rad或R。
第2讲---弧度制和弧度制和角度制的换算
第2讲弧度制和弧度制与角度制的换算一、基本内容1、角度制:角度制规定60分等于,60秒等于 .2、弧度制:(1)长度等于半径的长的圆弧所对的圆心角叫做的角,记作 ,这种以弧度为单位来度量角的制度叫做 .(2)在半径为r的圆中,弧长为L的弧所对的圆心角为rad,则=.3、角度制与弧度制的换算= rad,=rad rad,1rad= .4、弧度制下扇形的面积公式为 S=LR=∣∣.二课堂探究互动题型一弧度制的概念问题例1、下列各命题中,假命题是()A、“度”与“弧度”是度量角度的两种不同的度量单位;B、1度的角是周角的,1弧度的角是周角的;C、根据弧度的定义,一定等于弧度;D、不论是用角度制还是用弧度制度量角,它们均与圆的半径长短有关.解析:思考题1、下列各种说法中正确的是()A、一弧度是一度的圆心角所对的弧;B、一弧度是长为半径的弧;C、一弧度是一度的弧与一度的角之和;D、一弧度是长度等于半径的弧所对的圆心角,它是角的一种度量单位.解析:题型二角度与弧度的互化问题例2、(1)将化成弧度;解析:(2)将13.5 rad化成度;解析:(3)时间经过4小时,时针、分针个转过多少度?等于多少弧度?解析:思考题2、(1)把化成弧度;(精确到0.001)解析:(2)把-化成度.解析:题型三用弧度制表示终边相同的角、象限角及区间角例3、把下列各角化成0到2的角加上2k(k)的形式,并指出它们是第几象限角.(1);(2)-;(3);(4)-.解析:思考题3、将下列用弧度制表示的角化为2k,,的形式,并指出它们所在的象限.(1)-;(2);(3)-20;(4)-2.解析:题型四扇形的弧长与面积公式的运用问题例4、求下列各题:(1)已知扇形的周长为20cm,面积为9,求扇形圆心角的弧度数;解析:(2)若某扇形的圆心角为,半径为15cm,求扇形面积;解析:(3)若一扇形的周长为60cm,那么当它的半径和圆心角各为多少时,扇形面积达到最大?最大值是多少?解析:思考题4、已知圆上的一段弧长等于该圆的内接正方形的边长,求这段弧所对的圆周角的弧度数.解析:题型五弧度制下角的集合关系问题例5、集合M={x∣x=,},N={x∣x=,}.则()A、M=N; B、M N; C、N M; D、M.解析:思考题5、已知集合M={x∣x=,},P={x∣x=,},则P与M 之间的关系是()A、P M;B、M P;C、M=P;D、M N=.解析:三课堂练习1、终边在第三象限的角平分线上的角的集合为()A、{∣=2k+,k};B、{∣=2k+,k};C、{∣=2k-,k};D、{∣=2k-,k}.解析:2、与角终边相同的最小正角是 .解析:3、扇形圆心角为2弧度,所对弦长为2,求所对的弧长.解析:4、如图,动点P、Q从点A(4,0)出发沿圆周运动,点P按逆时针方向每秒钟转弧度,点Q方向每秒钟转弧度,求P、Q时间及P、Q点各自走过的弧度.解析:5、已知扇形OAB的圆心角为=,半径为6,求扇形弧长及所含弓形的面积. 解析:弧长L=r=,OA=OB=6,∴AB=6,圆心到AB的距离d=3,∴弓形的面积S=扇形=.。
弧度制和弧度制与角度制的换算
2 180
28
2、把弧度换成角度:
[总结]
2rad 360
带 者常可用来
rad 180
180º 代 换; 不 带
1rad 180 57.30 5718
者 可用 其 弧 度 数 乘 以57.30º 来 求近似 值。
例2、把 3 rad ,-2.1 rad 化成度。
5
解: 3 rad 3 180 108
5
5
2.1rad 2.157.30 120.33
注意:
1、用弧度制表示角时,“弧度”二字或“rad” 可省略,而只写这个角所对应的弧度数;但用 角度制表示角时,“度”或“0”不能省去。
2、用“弧度”为单位度量角时,常把弧度数写
r 作 为 圆 心 角 时 所 对 弧 的长 ,r是 圆 的 半 径 , 这 种 以 弧 度 作 为 单 位 来 度 量角 的 单 位 制 , 叫 做 弧 度制
二、角度与弧度的换算:
1、把角度换成弧度:
360 2rad
180 rad
1
180
rad
0.01745rad
[总结]
C o
B
r
1 rad
r
A
弧AB的长等于半径r,则弧 AB所对的圆心角是 1弧度的角.
请问:周角、平角、直角的弧度数分别是多少?
B r
o
r
A
B’ r’
o’ r’ A’
2、弧度制的定义:
正角的弧度数是一个正数,负角的弧度数是一
个负数,零角的弧度数是0; 角的弧度数的绝对值| | l ,其中l是以角
(1)仅出现度的,可以直
接乘以
弧度转度数公式(一)
弧度转度数公式(一)
弧度转度数公式
在数学中,角度的度量单位有弧度和度数两种。
弧度是一种较常用的角度单位,特别适用于三角函数的运算。
度数则是我们常见的角度单位,用于日常生活中的角度测量。
弧度制与度数制的换算公式
弧度制与度数制之间可以通过以下公式进行换算:
1.弧度制转度数制公式弧度数× 180°/π
2.度数制转弧度制公式度数× π/180°
举例说明
弧度制转度数制
假设我们有一个角的弧度为π/6,要将其转换为度数制。
根据公式,我们可以进行如下计算:
弧度数× 180°/π = π/6 × 180°/π = 30°
所以,π/6弧度等于30°。
度数制转弧度制
假设我们有一个角的度数为90°,要将其转换为弧度制。
根据公式,我们可以进行如下计算:
度数× π/180° = 90° × π/180° = π/2
所以,90°等于π/2弧度。
总结
弧度转度数公式和度数转弧度公式是角度单位间进行换算的关键公式。
通过弧度制与度数制之间的转换,我们可以在数学计算和三角函数运算中灵活使用不同的角度单位。
在实际问题中,根据需求选择合适的角度单位进行计算,可以更好地解决问题。
弧度制及弧度制与角度制的换算
例2. 把
8 5Leabharlann 化成度。解:1rad=
(
1
8
0
)
8 8 (180) 5 5
288
弧度制及弧度制与角度制的换算
例3. 填写下表:
角度 0° 30° 45° 60° 90° 120°
弧度 0
6
2
4
3
2
3
角度 135° 150° 180° 210° 225° 240°
弧度制及弧度制与角度制的换算
例5. 在半径为R的圆中,240º的中心角所对的
弧长为
,面积为2R2的扇形的
中心角等于
弧度。
解:(1)240º= 4 ,根据l=αR,得 3
l 4R
3
(2)根据S=
1 2
lR=
1 2
αR2,且S=2R2.
所以 α=4. 弧度制及弧度制与角度制的换算
例6.与角-1825º的终边相同,且绝对值最小 的角的度数是___,合___弧度。
弧度制及弧度制与角度制的换算
3. 弧度制与角度制相比:
(1) 弧度制是以“弧度”为单位的度量角的单 位制,角度制是以“度”为单位来度量角的 单位制;1弧度≠1º;
(2)1弧度是弧长等于半径长的圆弧所对的圆 心角的大小,而1度是圆周 1 的所对的圆心
360 角的大小;
弧度制及弧度制与角度制的换算
(3)弧度制是十进制,它的表示是用一个实 数表示,而角度制是六十进制; (4)以弧度和度为单位的角,都是一个与 半径无关的定值。
解:-1825º=-5×360º-25º,
所以与角-1825º的终边相同,且绝对值
最小的角是-25º.
弧度制和角度制的换算方法
弧度制和角度制的换算方法在数学中,角度的表示方法有两种,分别是弧度制和角度制。
弧度制是一种用弧长比来表示角的大小的方法,而角度制则是将一个圆分为360个等份,以度来表示角的大小。
本文将介绍弧度制和角度制之间的换算方法。
一、弧度制与角度制的基本概念在介绍具体的换算方法之前,我们先来了解一下弧度制和角度制的基本概念。
1. 弧度制(Radian)弧度制是一种用弧长比来表示角的大小的方法。
它是以单位圆的半径为1的圆周上所对应的弧长与半径的比值定义的。
一个完整的圆周对应的弧长是2π,所以一个圆周的角度大小用2π弧度表示。
一个直角所对应的角度是π/2弧度。
2. 角度制(Degree)角度制是将一个圆分为360个等份,用度来表示角的大小。
一个完整的圆周对应360度,一个直角所对应的角度是90度。
二、弧度制和角度制的换算方法下面是弧度制和角度制之间的换算方法。
1. 弧度制转角度制弧度制转角度制的换算方法是将弧度值乘以180再除以π。
用公式表示为:角度制 = 弧度制× 180 / π2. 角度制转弧度制角度制转弧度制的换算方法是将角度值乘以π再除以180。
用公式表示为:弧度制 = 角度制× π / 180三、实例演算为了更好地理解弧度制和角度制之间的换算方法,下面通过几个实例来进行演算。
例1:将2π弧度转换为角度制。
根据弧度制转角度制的换算公式,可得:角度制= 2π × 180 / π = 360度所以,2π弧度等于360度。
例2:将180度转换为弧度制。
根据角度制转弧度制的换算公式,可得:弧度制= 180 × π / 180 = π弧度所以,180度等于π弧度。
例3:将30度转换为弧度制。
根据角度制转弧度制的换算公式,可得:弧度制= 30 × π / 180 = π/6弧度所以,30度等于π/6弧度。
通过以上实例演算,我们可以清楚地看到弧度制和角度制之间的转换关系。
弧度制和弧度制与角度制的换算
2.将下列角度与弧度互化.;2210°;3错误!;4错误!.;6-1120°;7-错误!;8错误!.3.把下列各角化成2kπ+α0≤α<2π,k∈Z的形式,并指出它们是第几象限角.;2-1600°;32005π;4-5.3求下列各角所在的象限.错误!;2错误!;3-错误!;4-错误!. 4.一扇形周长为20,问扇形的半径和圆心角各取何值时,才能使扇形的面积最大4.已知扇形的半径为10,圆心角为错误!,求该扇形的周长及面积.作业2:§1.1.2 弧度制和弧度制与角度制的换算1.-225°化为弧度为B.-错误!C.-错误!D.-错误!化为角度为A.75°B.105°C.135°D.175°3.下列各对角中,终边相同的是与错误!B.-错误!与错误!C.-错误!与错误!错误!与错误!4.下列所给角中,是第二象限角的是B.-错误!C.-错误!错误!5.一钟表的分针长10 cm,经过35分钟,分针的端点所转过的长为A.70 cm cm cm cm6.一条弦长等于圆的半径,则这条弦所对的圆心角的弧度数为C.1 D.π7.已知集合M={x|x=kπ+错误!,k∈Z},N={x|x=错误!+π,k∈Z},则A.M=N B.M⊆NC.M⊇N D.M∩N=∅8.圆的半径变为原来的2倍,而弧长也增加到原来的2倍,则A.扇形的面积不变B.扇形的圆心角不变C.扇形的面积增大到原来的2倍D.扇形的圆心角增大到原来的2倍9.如果一扇形的圆心角是72°,半径是20 cm,则扇形的面积为________.10.已知一扇形所在圆的半径为10 cm,扇形的周长是45 cm,那么这个扇形的圆心角为________弧度.11. 已知扇形内切圆半径与扇形半径之比为13,则内切圆面积与扇形面积之比为________.12.如图,用弧度制表示下列终边落在阴影部分的角的集合不包括边界.13.已知一扇形AOB的周长为8,若这个扇形的面积为3,求圆心角的大小.14.圆心在原点的单位圆上两个动点M、N,同时从P1,0点出发,沿圆周运动,M点按逆时针方向旋转错误!弧度/秒,N点按顺时针转错误!弧度/秒,试求它们出发后第三次相遇时的位置和各自走过的弧度.。
π和rad怎么转换
π和rad怎么转换
π和rad(弧度)之间的转换主要涉及到角度和弧度的换算。
在数学和物理中,弧度是角的度量单位,其定义是:弧长等于半径的弧,其所对的圆心角为1弧度。
1弧度等于π/180度,也等于180度/π弧度。
因此,π和rad之间的转换可以通过以下公式进行:
1.角度转换为弧度:弧度= 角度×π/ 180
2.弧度转换为角度:角度= 弧度×180 / π
以上公式表明,π和rad之间的转换实际上是角度和弧度之间的转换,而π作为一个常数(约等于3.14159),在转换过程中起到了桥梁的作用。
请注意,以上转换是基于弧度制和角度制之间的换算关系,其中角度制以度(°)为单位,而弧度制以弧度(rad)为单位。
在进行转换时,需要明确所使用的单位制,并根据需要进行相应的换算。
角度的换算的技巧
角度的换算的技巧
角度的换算有以下几种常用的技巧:
1. 弧度与角度之间的换算:一个圆的周长为2π,而360度是一个圆的角度。
所以1弧度约等于57.3度,换算公式为:弧度= 角度×π/ 180,角度= 弧度×180 / π。
2. 分、秒与角度之间的换算:1度有60分,1分有60秒。
所以1度约等于60分,1分约等于60秒。
换算公式为:度= 分/ 60,度= 秒/ 3600;分= 度×60,分= 秒/ 60;秒= 度×3600,秒= 分×60。
3. 不同角度制之间的换算:我们常用的是度角度制,但还有其他常用的角度制,如弧度制和百分度制。
弧度制下,一个圆的角度为2π,所以1度等于π/180弧度;百分度制下,一个直角为100度,所以1度等于1/100百分度。
换算公式为:度= 弧度×180 / π,度= 百分度×(0.9),弧度= 度×π/ 180,百分度= 度×(10/9)。
这些换算技巧可以帮助我们在角度换算时准确快速地进行计算。
角的度量和换算
角的度量和换算角的度量和换算角是几何学中的一个重要概念,用于描述两条射线之间的夹角大小。
角的度量方式有两种,一种是弧度制,另一种是角度制。
弧度制是以弧长为单位来度量角的大小,而角度制则是以度为单位来度量角的大小。
下面将详细介绍角的度量和换算。
一、弧度制弧度制是以弧长为单位来度量角的大小。
弧度制中,一个圆的周长为2πr,其中r为圆的半径。
一个圆的弧度数为360度,因此一个圆的弧度数为2π弧度。
弧度制中,一个角的弧度数等于该角所对应的圆弧长度与圆的半径之比。
例如,一个角所对应的圆弧长度为3厘米,圆的半径为2厘米,则该角的弧度数为3/2=1.5弧度。
二、角度制角度制是以度为单位来度量角的大小。
角度制中,一个圆的周长为360度,因此一个圆的弧度数为2π弧度。
角度制中,一个角的度数等于该角所对应的圆弧长度与圆的半径之比乘以180度/π弧度。
例如,一个角所对应的圆弧长度为3厘米,圆的半径为2厘米,则该角的度数为3/2*180/π=85.94度。
三、弧度制和角度制的换算弧度制和角度制是两种不同的角度量方式,它们之间可以通过一定的换算关系进行转换。
1. 弧度制转角度制将一个角的弧度数乘以180度/π弧度即可得到该角的度数。
例如,一个角的弧度数为2.5弧度,则该角的度数为2.5*180/π=143.24度。
2. 角度制转弧度制将一个角的度数乘以π弧度/180度即可得到该角的弧度数。
例如,一个角的度数为120度,则该角的弧度数为120*π/180=2.09弧度。
总之,弧度制和角度制是两种不同的角度量方式,它们之间可以通过一定的换算关系进行转换。
在实际应用中,需要根据具体情况选择合适的角度量方式,并进行相应的换算。
数学课前导引:弧度制和弧度制与角度制的换算
学必求其心得,业必贵于专精
1。
1。
2 弧度制和弧度制与角度制的换算
课前导引
情景导入
北京到上海有多远?我们回答约1 463公里,但也有人回答约914英里,请问哪一种回答是正确的?显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同.它们的长度单位是不同的,但是,它们之间可以换算:1英里=1.6公里。
在角度的度量里面,是否也有类似的情况呢?
提示:度量角也有两种方法,角度制和弧度制,它们的换算关系为 1°=180π弧度,1弧度=(π
180)°,以“弧度”为单位度量角,更容易建立起角与实数之间的一一对应关系.
知识预览
1.周角的
360
1为一度的角。
用度作单位来度量角的单位制叫角度制.
2.长度等于半径的弧所对的圆心角叫做1弧度的角.用弧度作单位来度量角的单位制叫弧度制.弧度用符号rad 表示。
3.正角的弧度数是一个正数.负角的弧度数是一个负数。
零角的弧度数是0。
如果半径为r 的圆的圆心角α所对弧的长为l ,那么,角α的弧度数的绝对值是|α|=r l 。
比值r l 与所取圆的半径大小无关.而仅与角的大小有关.
4。
180°= π rad。
1°=
180π rad 。
1 rad=(π180)°≈57°18′。
1.2弧度制及弧度制与角度制的换算
位制,角度制是以“度”为单位来度量角的
单位制;1弧度≠1º; (2)1弧度是弧长等于半径长的圆弧所对的圆
1 心角的大小,而1度是圆周 的所对的圆心 360
角的大小;
(3)弧度制是十进制,它的表示是用一个实
数表示,而角度制是六十进制;
(4)以弧度和度为单位的角,都是一个与 半径无关的定值。
3、讨论: B
度转化为弧度
180
注意几点: 1.度数与弧度数的换算也可借助“计算 正实数 正角 器” 零角 0 2 .今后在具体运算时,“弧度”二字和 《中学数学用表》进行 单位 负实数 负角 符号“rad”可以省略 如:3表示3rad 任意角的集合 实数集R sin表示rad角的正弦 3.一些特殊角的度数与弧度数的对应值应 该记住(见课本P8表) 4.应确立如下的概念:角的概念推广之后, 无论用角度制还是弧度制都能在角的集合 与实数的集合之间建立一种一一对应的关系。
平角= rad、周角=2 rad.
③ 正角的弧度数是正数,负角的弧度数是 负数,零角的弧度数是0.
l ④角的弧度数的绝对值: r
(l为弧长,r为半径)
⑤ ∵ 360=2 rad ,∴180= rad
∴ 1 =
180
rad 0.01745rad
180 1 rad 57.30 57 18' 弧度转化为度 180
1米=3.28043英尺 1米=0.4536磅
1.定义: 长度等于半径长的圆弧所对的圆心角叫做1弧 度的角,弧度记作rad。这种以弧度为单位来 度量角的制度叫做弧度制。 注:今后在用弧度制表示角的时候,弧度二字 或rad可以略去不写。
2. 弧度制与角度制相比: (1) 弧度制是以“弧度”为单位的度量角的单
弧度与角度的转换
弧度与角度的转换在数学中,弧度和角度是描述角度大小的两种不同的度量单位。
弧度是以弧长所对应的半径长度为单位的角度度量,而角度则是以度数为单位的角度度量。
在解决几何问题,尤其是涉及弧长、扇形面积、三角函数等计算时,弧度和角度之间的转换是非常重要的。
一、弧度与角度的定义及关系弧度是指在单位圆上的弧长所对应的角度大小。
当单位圆上的弧长等于半径时,所对应的角度为1个弧度。
即弧度的定义为:单位圆的弧长等于半径时所对应的角度。
角度则是指一个平面角所占的比例关系,通常以“°”来表示。
一个完整的圆共有360°,所以一个直角为90°。
在角度制中,我们以360°作为一圈,以90°作为直角。
弧度和角度之间的转换关系可以通过下面的公式来表示:弧度= (π / 180) × 角度角度= (180 / π) × 弧度其中,π(pi)是一个无限不循环的小数,约等于3.14159。
二、弧度与角度的应用举例1. 弧度转角度的实例假设有一个角的弧度为π/4,我们希望将其转换为角度制。
根据上述的公式,我们可以计算出:角度 = (180 / π) × (π/4) = 45°。
因此,该角的角度为45°。
2. 角度转弧度的实例如果一个角的角度为60°,我们需要将其转换为弧度制。
根据上述的公式,我们可以计算出:弧度= (π / 180) × 60° = π/3。
因此,该角的弧度为π/3。
三、弧度与角度转换的意义弧度和角度的转换在数学和物理等领域都有广泛的应用。
以下是一些常见的应用场景:1. 计算弧长和扇形面积:在圆的几何中,通过弧度可以方便地计算弧长和扇形面积。
弧度的大小直接决定了弧长和扇形面积的数值。
2. 三角函数的计算:三角函数在解决各种几何问题中起着重要的作用。
弧度制是计算三角函数的常用单位,而角度制则是平时生活中经常使用的单位。
(完整版)弧度制和角度制的换算
(完整版)弧度制和⾓度制的换算练习三弧度制 (⼀)要点1. ⾓度制与弧度制:这是两种不同的度量⾓的制度.⾓度制是以“度”为单位;弧度制是以“弧度”为单位. 2. 度与弧度的相互换算:10≈0.01745弧度, 1弧度≈57018/.3. 在同⼀个式⼦中,两种制度不能混⽤.如:与600终边相同的⾓的集合不能表⽰为{x|x=2k π+600,k ∈Z},正确的表⽰⽅法是x|x=2k π+3π,k ∈Z }或{ x|x=k ·3600 +600,k ∈Z } 同步练习1. 若α=-3.2,则⾓α的终边在 ( ) (A)第⼀象限 (B) 第⼆象限 (C) 第三象限 (D) 第四象限2.①4π, ②-45π,③419π,④-43π,其中终边相同的⾓是 ( )(A) ①和② (B) ②和③ (C) ③和④ (D) ①和④ 3. 若4π<α<6π,且与-32π⾓的终边相同,则α=_________. 4.正三⾓形,正四边形,正五边形, 正六边形, 正⼋边形, 正⼗边形, 正n 边形的⼀个内⾓的⼤⼩分别_____,____ ,_____,_____,_____,_____, ______.(⽤弧度表⽰) 5.把下列各⾓⽤另⼀种度量制表⽰. ⑴1350⑵-67030/⑶2 ⑷-67π1. 将下列各数按从⼩到⼤的顺序排列.Sin40, sin21, sin300, sin12. 把下列各⾓化成2k π+α(0≤α<2π,)的形式, 并求出在(-2π,4π)内和它终边相同的⾓.(1)-316π; (2)-6750.3. 若⾓θ的终边与1680⾓的终边相同,求在[0,2π]内终边与3θ⾓的终边相同的⾓.练习四弧度制(⼆)要点1. 弧长公式和扇形⾯积公式:弧长公式 L=|α|r 扇形⾯积公式 S=21Lr=21|α|r 2 其中α是圆⼼⾓的弧度数,L 为圆⼼⾓α所对的弧长,r 为圆半径.2. ⽆论是⾓度制还是⽤弧度制,都能在⾓的集合与实数集之间建⽴起⼀⼀对应的关系,但⽤弧度制表⽰⾓时,容易找出与⾓对应的实数. 同步练习1.半径为5 cm 的圆中,弧长为415cm 的圆弧所对的圆⼼⾓等于 ( ) (A)145(B) 1350(C)π135 (D)π1452.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C) 6π (D)-6π 3. 半径为 4 的扇形,基它的周长等于弧所在的半圆周的长,则这个扇形的⾯积是_________.4. 已知⼀弧所对的圆周⾓为600,圆的半径为10cm,则此弧所在的⼸形的⾯积等于___________.5. 已知扇形的周长为6cm,⾯积为2cm 2,求扇形圆⼼⾓的弧度数.6. 2弧度的圆⼼⾓所对的弦长为2,求这个圆⼼⾓所夹扇形的⾯积.7. ⼀条弦的长度等于其所在圆的半径r.(1) 求这条弦所在的劣弧长;(2) 求这条弦和劣弧所组成的⼸形的⾯积.【数学2】⼆、弧度制第⼀课时教学要求:1.理解弧度制的意义,熟练掌握弧度制与⾓度制的互换.教学过程:1.为什么要引⼊新的⾓的单位弧度制.(1)为了计算的⽅便,⾓度制单位、度、分、秒是60进制,计算不⽅便;(2)为了让⾓的度量结果与实数⼀⼀对应. 2.弧度制的定义先复习⾓度制,即1度的⾓的⼤⼩是怎样定义的. 1弧度⾓的规定.把等于半径长的圆弧所对的圆⼼⾓叫做1弧度的⾓. 弧度的单位符号是rad ,读作弧度.如上图,AB 的长等于半径r ,∠AOB 的⼤⼩就是1弧度的⾓.弧AC 的长度等于2r,则∠AOC=2rad.问半圆所对的圆⼼⾓是多少弧度,圆周所对的圆⼼⾓是多少弧度?答:半圆弧长是∴=,,πππrrr 半圆所对的圆⼼⾓是π弧度.同样道理,圆周所对的圆⼼⾓(称谓周⾓)的⼤⼩是2π弧度.⾓的概念推⼴后,弧的概念也随之推⼴.所以任意⼀正⾓的弧度数是正数,负⾓的弧度数是负数,零⾓的弧度数是零.3.弧度制与⾓度制的互化因为周⾓的弧度数是2π,⾓度是360°,所以有 radrad radrad 01745.018011802360≈===ππποοοοο1803602==rad rad ππ815730.57)180(1'=≈=οοοrad rad π例1:把.0367化成弧度'ο解:.835.671805.670367rad rad ππ=?=='οο例2:把rad 53π化成⾓度. οο1081805353=?=rad π今后⽤弧度制表⽰⾓时,把“弧度”⼆字或“rad ”通常省略不写,⽐如6 6ππ就表⽰ rad ,⾓.2,2rad 等于就是⾓αα= rad 33sinππ表⽰⾓的正弦.οο360~0之间的⼀些特殊⾓的度数与弧度数的互化必需熟练掌握.例3:⽤弧度制表⽰(1)与π32终边相同的⾓;(2)第四象限的⾓的集合. 解:(1)与.,32232Z k k ∈+πππ终边也相同的⾓是(2)第四象限的⾓的集合是},22223|{Z k k k ∈+<<+ππαππα也可能写成},222|{Z k k k ∈<<-παππα注意两种⾓度制不准混合⽤,如写成.,2120是不对的Z k k ∈+=παο布置作业,课本P 12,1~5题.第⼆课时教学要求:1.熟练弧度制与⾓度制的互化,理解⾓的集合与实数集R 的⼀⼀对应. 2.会⽤弧长公式,扇形⾯积公式,解决⼀些实际问题.教学过程:复习⾓的弧度制与⾓度制的转化公式.017453.01801,81.573.573.57)180(1rad rad rad ≈='==≈=πποοοο1.学⽣先练习,⽼师再总结.(1)10 rad ⾓是第⼏象限的⾓?(2)求sin1.5的值.解:(1)有两种⽅法. 第⼀种⽅法οοο21336057310+==rad ,是第三象限的⾓第⼆种⽅法πππππ23210),210(210<-<-+=⽽∴10 rad 的⾓是第三象限的⾓. (2)9975.07585sin 5.1sin 75855.1='=∴'=οο也可以直接在计算器上求得,先把⾓的单位转⾄RAD ,再求sin1.5即可得. 2.总结⾓的集合与实数集R 之间的⼀⼀对应关系.正⾓的弧度数是⼀个正数,负的弧度数是⼀个负数,零⾓的弧度是零.反过来,每个实数都对应唯⼀的⾓(⾓的弧度数等于这个实数)这样就在⾓的集合(元素是⾓)与实数集R (元素是数)之间建⽴了⼀⼀对应的关系.3.弧长公式,扇形⾯积公式的应⽤由弧度制的定义||αr l rld ==得弧长例1:利⽤弧度制证明扇形⾯积公式l lR S 其中,21=是扇形弧长,R 是圆的半径. 证明:因为圆⼼⾓为1 rad 的扇形的⾯积是ππ22R ,⽽弧长为l 的扇形的圆⼼⾓为rad Rl,所以它的⾯积 lR R R l S 2122=?=ππ.若已知扇形的半径和圆⼼⾓,则它的⾯积⼜可以写成||21||21212ααR R R lR S =?==例2:半径R 的扇形的周长是4R ,求⾯积和圆⼼⾓. 解:扇形弧长为4R-2R=2R ,圆⼼⾓)(22rad R R==α⾯积2221R R S ==θ. 例3:在扇形AOB 中,∠AOB=90°,弧长为l ,求它的内切圆的⾯积. 解:先求得扇形的半径ππllr 22==设圆的半径为x ,圆⼼为C ,x OC 2||=由πlx x 22=+解得ππll x )12(2)12(2-=+=lS ⊙C ππ22)223(4l x -==4.学⽣课堂阅读课本P 10~11 例5、例6 并作P 11练习7、8两题.布置作业,课本P 12—13,习题4.2 6、8、9、10、11§4.2弧度制[教学⽬标](1)通过本⼩节的学习,要使学⽣理解弧度的意义,能正确地进⾏弧度与⾓度的换算,熟记特殊⾓的弧度数;(2)了解⾓的集合与实数集R 之间可以建⽴起⼀⼀对应的关系;(3)掌握弧度制下的弧长公式,会利⽤弧度解决某些简单的实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
练习三 弧度制 (一)要点1. 角度制与弧度制:这是两种不同的度量角的制度.角度制是以“度”为单位;弧度制是以“弧度”为单位. 2. 度与弧度的相互换算:10≈0.01745弧度, 1弧度≈57018/.3. 在同一个式子中,两种制度不能混用.如:与600终边相同的角的集合不能表示为{x|x=2kπ+600,k ∈Z},正确的表示方法是x|x=2k π+3π,k ∈Z }或{ x|x=k 〃3600 +600,k ∈Z } 同步练习1. 若α=-3.2,则角α的终边在 ( ) (A)第一象限 (B) 第二象限 (C) 第三象限 (D) 第四象限2.①4π, ② -45π,③419π,④-43π,其中终边相同的角是 ( )(A) ①和② (B) ②和③ (C) ③和④ (D) ①和④ 3. 若4π<α<6π,且与-32π角的终边相同,则α=_________. 4.正三角形,正四边形,正五边形, 正六边形, 正八边形, 正十边形, 正n 边形的一个内角的大小分别_____,____ ,_____,_____,_____,_____, ______.(用弧度表示) 5.把下列各角用另一种度量制表示. ⑴1350⑵ -67030/⑶2 ⑷-67π1. 将下列各数按从小到大的顺序排列.Sin40, sin21, sin300, sin12. 把下列各角化成2k π+α(0≤α<2π,)的形式, 并求出在(-2π,4π)内和它终边相同的角.(1)-316π; (2)-6750.3. 若角θ的终边与1680角的终边相同,求在[0,2π]内终边与3θ角的终边相同的角.练习四 弧度制(二)要点1. 弧长公式和扇形面积公式:弧长公式 L=|α|r 扇形面积公式 S=21Lr=21|α|r 2其中α是圆心角的弧度数,L 为圆心角α所对的弧长,r 为圆半径.2. 无论是角度制还是用弧度制,都能在角的集合与实数集之间建立起一一对应的关系,但用弧度制表示角时,容易找出与角对应的实数. 同步练习1.半径为5 cm 的圆中,弧长为415cm 的圆弧所对的圆心角等于 ( ) (A)145(B) 1350(C)π135 (D)π1452.将分针拨快10分钟,则分针转过的弧度数是 ( ) (A)3π (B)-3π (C) 6π (D)-6π 3. 半径为 4 的扇形,基它的周长等于弧所在的半圆周的长,则这个扇形的面积是_________.4. 已知一弧所对的圆周角为600,圆的半径为10cm,则此弧所在的弓形的面积等于___________.5. 已知扇形的周长为6cm,面积为2cm 2,求扇形圆心角的弧度数.6. 2弧度的圆心角所对的弦长为2,求这个圆心角所夹扇形的面积.7. 一条弦的长度等于其所在圆的半径r.(1) 求这条弦所在的劣弧长;(2) 求这条弦和劣弧所组成的弓形的面积.【数学2】二、弧度制第一课时教学要求:1.理解弧度制的意义,熟练掌握弧度制与角度制的互换. 教学过程:1.为什么要引入新的角的单位弧度制.(1)为了计算的方便,角度制单位、度、分、秒是60进制,计算不方便; (2)为了让角的度量结果与实数一一对应. 2.弧度制的定义先复习角度制,即1度的角的大小是怎样定义的. 1弧度角的规定.把等于半径长的圆弧所对的圆心角叫做1弧度的角. 弧度的单位符号是rad ,读作弧度.如上图,的长等于半径r ,∠AOB 的大小就是1弧度的角.弧AC 的长度等于2r,则∠AOC=2rad.问半圆所对的圆心角是多少弧度,圆周所对的圆心角是多少弧度?答:半圆弧长是∴=,,πππrrr 半圆所对的圆心角是π弧度.同样道理,圆周所对的圆心角(称谓周角)的大小是2π弧度.角的概念推广后,弧的概念也随之推广.所以任意一正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是零.3.弧度制与角度制的互化因为周角的弧度数是2π,角度是360°,所以有 例1:把.0367化成弧度'解:.835.671805.670367rad rad ππ=⨯=='例2:把rad 53π化成角度. 1081805353=⨯=rad π 今后用弧度制表示角时,把“弧度”二字或“rad ”通常省略不写,比如66ππ就表示rad ,角.2,2rad 等于就是角αα= r a d 33s i n ππ表示角的正弦.360~0之间的一些特殊角的度数与弧度数的互化必需熟练掌握.例3:用弧度制表示 (1)与π32终边相同的角; (2)第四象限的角的集合. 解:(1)与.,32232Z k k ∈+πππ终边也相同的角是 (2)第四象限的角的集合是},22223|{Z k k k ∈+<<+ππαππα 也可能写成},222|{Z k k k ∈<<-παππα注意两种角度制不准混合用,如写成.,2120是不对的Z k k ∈+=πα布置作业,课本P 12,1~5题.第二课时教学要求:1.熟练弧度制与角度制的互化,理解角的集合与实数集R 的一一对应. 2.会用弧长公式,扇形面积公式,解决一些实际问题. 教学过程:复习角的弧度制与角度制的转化公式.017453.01801,81.573.573.57)180(1rad rad rad ≈='==≈=ππ1.学生先练习,老师再总结.(1)10 rad 角是第几象限的角? (2)求sin1.5的值.解:(1)有两种方法. 第一种方法21336057310+==rad ,是第三象限的角 第二种方法πππππ23210),210(210<-<-+=而 ∴10 rad 的角是第三象限的角. (2)9975.07585sin 5.1sin 75855.1='=∴'=也可以直接在计算器上求得,先把角的单位转至RAD ,再求sin1.5即可得. 2.总结角的集合与实数集R 之间的一一对应关系.正角的弧度数是一个正数,负的弧度数是一个负数, 零角的弧度是零.反过来,每个实数都对应唯一的角(角 的弧度数等于这个实数)这样就在角的集合(元素是角)与实数集R (元素是数) 之间建立了一一对应的关系.3.弧长公式,扇形面积公式的应用由弧度制的定义||αr l rld ==得弧长 例1:利用弧度制证明扇形面积公式l lR S 其中,21=是扇形弧长,R 是圆的半径. 证明:因为圆心角为1 rad 的扇形的面积是ππ22R ,而弧长为l 的扇形的圆心角为rad Rl,所以它的面积 lR R R l S 2122=⋅=ππ.若已知扇形的半径和圆心角,则它的面积又可以写成||21||21212ααR R R lR S =⋅==例2:半径R 的扇形的周长是4R ,求面积和圆心角. 解:扇形弧长为4R-2R=2R ,圆心角)(22rad RR==α 面积2221R R S ==θ. 例3:在扇形AOB 中,∠AOB=90°,弧长为l , 求它的内切圆的面积. 解:先求得扇形的半径ππllr 22==设圆的半径为x ,圆心为C ,x OC 2||= 由πlx x 22=+解得ππll x )12(2)12(2-=+=S ⊙C ππ22)223(4l x -==4.学生课堂阅读课本P 10~11 例5、例6 并作P 11练习7、8两题.布置作业,课本P 12—13,习题4.2 6、8、9、10、11l§4.2弧度制[教学目标](1)通过本小节的学习,要使学生理解弧度的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数;(2)了解角的集合与实数集R 之间可以建立起一一对应的关系;(3)掌握弧度制下的弧长公式,会利用弧度解决某些简单的实际问题。
[教学重点]使学生理解弧度的意义,能正确地进行弧度与角度的换算。
弧度的概念及其与角度的关系,是本小节的乃至本章的难点;其中,讲清1弧度的角的意义,是建立弧度概念的关键。
[教学难点]使学生理解弧度的意义,能正确地进行弧度与角度的换算。
弧度的概念及其与角度的关系,是本小节的乃至本章的难点; [教学过程] 一.引入我们在初中几何里学习过角的度量,规定周角的3601为1度的角,这种用度作为单位来度量角的单位制度叫做角度制。
下面再介绍在数学和其他科学中常用到的另一种度量角的单位制——弧度制,它的单位符号是rad ,读作弧度。
二.新课定义:我们把长度等于半径长的弧所对的圆心角叫做1弧度的角,即用弧度制度量时,这样的圆心角等于1rad 。
C[说明]学生阅读课本,教师作要点说明,并进行归纳。
一般地,可以得到:正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0;角α的弧度数的绝对值rl =||α 其中l 是以角α作为圆心角时所对弧的长,r 是圆的半径。
概念:这种以弧度作为单位来度量角的单位制,叫做弧度制。
1.把角度换成弧度2.把弧度换成角度[例1]把'3067化成弧度。
[例2]把π53rad 化成度。
[约定]今后我们用弧度制表示角的时候,“弧度”二字或“rad ”通常略去不写,而只写这个角对应的弧度数。
特殊角的度数与弧度数的对应表:角的集合与实数集R 之间的对应关系:任意角的集合R实数集[复习]角度制下的弧长公式和扇形面积公式 弧度制下的弧长公式和扇形面积公式 (1)弧长公式:r l ||α=,(α弧度数)(2)扇形面积:lR S 21=(该结论在例讲解后给出) [例3]利用弧度制证明扇形面积公式lR S 21=,其中l 是扇形的弧长,R 是圆的半径。
[例4]计算:(1)4sinπ;(2)5.1tan 。
[例5]将下列各角化成0到π2的角加上)(2Z k k ∈π的形式: (1)π319;(2)315-。
[例6]求图4—9中公路弯道处弧AB 的长l (精确到1m 。
图中长度单位:m ).例1 把下列各角的度数化为弧度数:⑴ 150 ⑵'3037 ⑶'3022 - ⑷315- 解 因为1801π=rad ,所以⑴ rad rad 65180150150ππ=⨯= ⑵ rad rad 245180213721373037'ππ=⨯=⎪⎭⎫⎝⎛=⑶ rad rad 8180212221223022'ππ-=⨯-=⎪⎭⎫ ⎝⎛-=-⑷ rad rad 47180315315ππ-=⨯-=-例2 把下列各角的弧度数化为度数: ⑴rad 43π ⑵rad 5.3 ⑶rad 35π ⑷rad 49π- 解 因为 π rad = 180,所以⑴rad 43π=43× 180= 135; ⑵ rad 5.3=55.20030.575.315.3=⨯≈⨯rad ;⑶rad 35π=35× 180= 300; ⑷ rad 49π-=49-× 180= 405-. 度与弧度的换算可以利用计算器进行,具体操作方法可见本书的附录.今后我们用弧度制表示角的时候,“弧度”二字或“rad ”通常略去不写,而只写这个角所对应的弧度数.例如,角α=1表示α是1rad 的角,4sinπ表示rad 4π的正弦,即4sinπ=2245sin =. 根据常用特殊角间的倍数关系,可以列出下列特殊角的度数与弧度数对应值.例3 用弧度制表示终边在y 轴上的角的集合. 解 因为在角度制下,终边在y 轴上的角的集合为=S {α∣,18090 ⋅+=n αZ n ∈}所以,在弧度制下,终边在y 轴上的角的集合为=S {α∣ππαn +=2,Z n ∈}例4 计算:4tan6cos3sinπππ⋅+解 原式=45tan 30cos 60sin ⋅+=12323⨯+ =3课 题:4.2弧度制(一)教学目的:1.理解1弧度的角、弧度制的定义.2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.3.熟记特殊角的弧度数教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.教学难点:弧度的概念及其与角度的关系. 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 内容分析:讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解. 教学过程:一、复习引入: 1.角的概念的推广⑴“旋转”形成角一条射线由原来的位置OA ,绕着它的端点O 按逆时针方向旋转到另一位置OB ,就形成角α.旋转开始时的射线OA 叫做角α的始边,旋转终止的射线OB 叫做角α的终边,射线的端点O 叫做角α的顶点.⑵.“正角”与“负角”“0角”负规定周角的3601作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为180rn l π=3.探究30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长l ,再计算弧长与半径的比结论:圆心角不变,则比值不变,因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制二、讲解新课:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad , 2rad , 3rad ,αrad探究:⑴平角、周角的弧度数,(平角=π rad 、周角=2π rad )⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 ⑶角α的弧度数的绝对值 rl=α(l 为弧长,r 为半径) ⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同2. 角度制与弧度制的换算:∵ 360︒=2π rad ∴180︒=π rad∴ 1︒=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad三、讲解范例:例1 把'3067化成弧度解:⎪⎭⎫⎝⎛=2167'3067∴ rad rad ππ832167180'3067=⨯=例2 把rad π53化成度 解: 1081805353=⨯=rad π 注意几点:1.度数与弧度数的换算也可借助“计算器”进行;2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad , sin π表示πrad 角的正弦;3.一些特殊角的度数与弧度数的对应值应该记住:4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系任意角的集合 实数集R例3用弧度制表示:1 终边在x 轴上的角的集合2 终边在y 轴上的角的集合3 终边在坐标轴上的角的集合解:1 终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ 2 终边在y 轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ 3 终边在坐标轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 四、课堂练习:1.下列各对角中终边相同的角是( )A.πππk 222+-和(k∈Z) B.-3π和322πC.-97π和911πD. 9122320ππ和2.若α=-3,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.若α是第四象限角,则π-α一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 .5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .7.求值:2cos4tan6cos6tan3tan3sinππππππ-+.8.已知集合A={α|2kπ≤α≤π+2kπ,k∈Z},B ={α|-4≤α≤4},求A ∩B .9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角. 参考答案: 1.C 2.C 3.C4.{α|2k π<α<2π+2k π,k ∈Z } {α|k π<α<2π+k π,k ∈Z } 5.一 7-2π 6.3 7.28.A ∩B ={α|-4≤α≤-π或0≤α≤π} 9.2411π五、小结 1.弧度制定义 2.与弧度制的互化 2.特殊角的弧度数 六、课后作业:已知α是第二象限角,试求:(1)2α角所在的象限;(2)3α角所在的象限;(3)2α角所在范围.解:(1)∵α是第二象限角,∴2π+2k π<α<π+2k π,k ∈Z ,即4π+k π<2α<2π+k π,k ∈Z .故当k =2m (m ∈Z )时,4π+2m π<2α<2π+2m π,因此,2α角是第一象限角;当k =2m +1(m∈Z )时,45π+2m π<2α<23π+2m π,因此,2α角是第三象限角. 综上可知,2α角是第一或第三象限角.(2)同理可求得:6π+32k π<3α<3π+32k π,k ∈Z .当k =3m (m ∈Z )时,ππαππm m 23326+<<+,此时,3α是第一象限角;当k =3m +1(m ∈Z )时,πππαπππ322333226++<<++m m ,即3265αππ<+m <π+2m π,此时,3α角是第二象限角;当k =3m +2(m ∈Z )时,ππαππm m 2353223+<<+,此时,3α角是第四象限角.综上可知,3α角是第一、第二或第四象限角.(3)同理可求得2α角所在范围为:π+4k π<2α<2π+4k π,k ∈Z .评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如0°<α<90°这个区间角,只是k =0时第一象限角的一种特殊情况.(2)要会正确运用不等式进行角的表达,同时会以k 取不同值,讨论形如θ=α+32k π(k ∈Z )所表示的角所在象限.(3)对于本例(3),不能说2α只是第一、二象限的角,因为2α也可为终边在y 轴负半轴上的角23π+4k π(k ∈Z ),而此角不属于任何象限. 七、板书设计(略)八、课后记:课题:4.2弧度制(一)教学目的:1.理解1弧度的角、弧度制的定义.2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.3.熟记特殊角的弧度数教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.教学难点:弧度的概念及其与角度的关系.授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.弧度制都是度量角的制度,二者虽单位不同,但是互相联系的、辩证统一的.进一步加强对辩证统一思想的理解.教学过程:一、复习引入:1.角的概念的推广⑴“旋转”形成角一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射线OB叫做角α的终边,射线的端点O叫做角α的顶点.⑵.“正角”与“负角”“0角”我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负规定周角的3601作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为180rn l π=3.探究30°、60°的圆心角,半径r 为1,2,3,4,分别计算对应的弧长l ,再计算弧长与半径的比结论:圆心角不变,则比值不变,因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制二、讲解新课:1. 定义:长度等于半径长的弧所对的圆心角称为1弧度的角它的单位是rad 读作弧度,这种用“弧度”做单位来度量角的制度叫做弧度制.如下图,依次是1rad , 2rad , 3rad ,αrad探究:⑴平角、周角的弧度数,(平角=π rad 、周角=2π rad )⑵正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是0 ⑶角α的弧度数的绝对值 rl=α(l 为弧长,r 为半径) ⑷角度制、弧度制度量角的两种不同的方法,单位、进制不同,就像度量长度一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同⑸用角度制和弧度制来度量零角,单位不同,但数量相同(都是0) 用角度制和弧度制来度量任一非零角,单位不同,量数也不同2. 角度制与弧度制的换算:∵ 360︒=2π rad ∴180︒=π rad∴ 1︒=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad三、讲解范例:例1 把'3067化成弧度解:⎪⎭⎫⎝⎛=2167'3067∴ rad rad ππ832167180'3067=⨯=例2 把rad π53化成度 解: 1081805353=⨯=rad π 注意几点:1.度数与弧度数的换算也可借助“计算器”进行;2.今后在具体运算时,“弧度”二字和单位符号“rad ”可以省略 如:3表示3rad , sin π表示πrad 角的正弦;3.一些特殊角的度数与弧度数的对应值应该记住:4.应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系任意角的集合 实数集R例3用弧度制表示:1 终边在x 轴上的角的集合2 终边在y 轴上的角的集合3 终边在坐标轴上的角的集合解:1 终边在x 轴上的角的集合 {}Z k k S ∈==,|1πββ 2 终边在y 轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈+==Z k k S ,2|2ππββ3 终边在坐标轴上的角的集合 ⎭⎬⎫⎩⎨⎧∈==Z k k S ,2|3πββ 四、课堂练习:1.下列各对角中终边相同的角是( )A.πππk 222+-和(k∈Z) B.-3π和322πC.-97π和911πD. 9122320ππ和2.若α=-3,则角α的终边在( )A.第一象限B.第二象限C.第三象限D.第四象限 3.若α是第四象限角,则π-α一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.(用弧度制表示)第一象限角的集合为 ,第一或第三象限角的集合为 .5.7弧度的角在第 象限,与7弧度角终边相同的最小正角为 .6.圆弧长度等于截其圆的内接正三角形边长,则其圆心角的弧度数为 .7.求值:2cos4tan6cos6tan3tan3sinππππππ-+.8.已知集合A={α|2kπ≤α≤π+2kπ,k∈Z},B ={α|-4≤α≤4},求A ∩B .9.现在时针和分针都指向12点,试用弧度制表示15分钟后,时针和分针的夹角. 参考答案: 1.C 2.C 3.C4.{α|2k π<α<2π+2k π,k ∈Z } {α|k π<α<2π+k π,k ∈Z } 5.一 7-2π 6.3 7.28.A ∩B ={α|-4≤α≤-π或0≤α≤π} 9.2411π五、小结 1.弧度制定义 2.与弧度制的互化 2.特殊角的弧度数 六、课后作业:已知α是第二象限角,试求:(1)2α角所在的象限;(2)3α角所在的象限;(3)2α角所在范围.解:(1)∵α是第二象限角,∴2π+2k π<α<π+2k π,k ∈Z ,即4π+k π<2α<2π+k π,k ∈Z .故当k =2m (m ∈Z )时,4π+2m π<2α<2π+2m π,因此,2α角是第一象限角;当k =2m +1(m∈Z )时,45π+2m π<2α<23π+2m π,因此,2α角是第三象限角.综上可知,2α角是第一或第三象限角.(2)同理可求得:6π+32k π<3α<3π+32k π,k ∈Z .当k =3m (m ∈Z )时,ππαππm m 23326+<<+,此时,3α是第一象限角;当k =3m +1(m ∈Z )时,πππαπππ322333226++<<++m m ,即3265αππ<+m <π+2m π,此时,3α角是第二象限角;当k =3m +2(m ∈Z )时,ππαππm m 2353223+<<+,此时,3α角是第四象限角.综上可知,3α角是第一、第二或第四象限角.(3)同理可求得2α角所在范围为:π+4k π<2α<2π+4k π,k ∈Z .评注:(1)注意某一区间内的角与象限角的区别.象限角是由无数个区间角组成的,例如0°<α<90°这个区间角,只是k =0时第一象限角的一种特殊情况.(2)要会正确运用不等式进行角的表达,同时会以k 取不同值,讨论形如θ=α+32k π(k ∈Z )所表示的角所在象限.(3)对于本例(3),不能说2α只是第一、二象限的角,因为2α也可为终边在y 轴负半轴上的角23π+4k π(k ∈Z ),而此角不属于任何象限. 七、板书设计(略) 八、课后记:4.2 弧度制教学目标1.使学生理解弧度的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数;2.了解角的集合与实数集R 之间可以建立起一一对应的关系;3.掌握弧度制下的弧长公式,会利用弧度解决某些简单的实际问题;4.在理解弧度制定义的基础上,领会弧度制定义的合理性; 重点:理解弧度的意义,能正确地进行角度制与弧度制的换算; 难点:弧度的概念,弧度与角度的关系。