第十三章 函数项级数

合集下载

函数列与函数项级数

函数列与函数项级数


2021/6/21
n=2y3=x.^6;y4=x.^100;
plot(x,y1,x,y2,x,y3,'b',x,y4,'r','linewidth',2)
2021/6/21
19
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
1 2.
0 ,
2021/6/21
7
所以该函数列是不一致收敛的。 例 函数列 {xn}在[0,1]上不一致收敛,但在 [0, ] , 1 上一致收敛。 先看看该函数列的图象
clf,x=0:1/100:1; y1=x.^4;y2=x.^10;y3=x.^50; plot(x,y1,x,y2,x,y3,'linewidth',2)
对定义在区间 I 上的函数列{ fn (x) }, x E ,设 x0 E ,若数列 { fn (x0 ) } 收 敛,则称函数列{ fn (x) }在点 x0 收敛, x0 称为函数列{ fn (x) }收敛点;若数列 { fn (x0 ) }发散,则称函数列{ fn (x) }在点 x0 发散。
clf,x=0:1/100:1; y1=8*x./(1+64*x.^2); y2=20*x./(1+400*x.^2); y3=50*x./(1+2500*x.^2); plot(x,y1,x,y2,x,y3,'linewidth',2) hold on plot([-0.1,1],[0,0],'b',[0,0],[-0.1,0.6],'b') axis([-0.1,1.2,-0.1,0.6]) legend('y1,n=8','y2,n=20','y3,n=50')

13第十三章 级数

13第十三章   级数

数 1) 的 n项 之 记 级 ( ) 前 项 和 为Sn , 即
Sn = u1 + u2 +L+ un +L.
称Sn 为 数 1) 前 n 项 分 . n 依 取 , , , 级 () 的 部 和. 和 当 次 1, 3, 2, … , 得 一 新 数 时 就 到 个 的 列
S1 = u1, S2 = u1 + u2 , L, Sn = u1 + u2 +L+ un , L,
a − aqn a aq − = , 1− q 1− q 1− q
n
0, 当 q <1时, lim qn = 0,从而 lim Sn =
n→∞ n→∞
a 所以级数( ) ,所以级数(2) 1− q
a 收敛,其和为 收敛, ; 1− q
没有极限,所以级数( ) 当 q >1时,lim qn = ∞,从而 lim S 没有极限,所以级数(2)
u1, u2 , L, un , L,
则式子
u + u + L+ u + L
1 2 n
称为常数项无穷级数,简称数项级数或级数. 称为常数项无穷级数,简称数项级数或级数. 记为 ∑un ,即

∑u =
n=1 n

n=1
u1 + u2 + L+ un +L,
(1)
称为级数的一般项或通项. 其中un 称为级数的一般项或通项.
第13章 13章
13.1 13.2
级数
数项级数及其敛散性 幂级数
13.1
13.1.1 13.1.2 13.1.3 13.1.4 13.1.5

函数列与函数项级数一致收敛性解析

函数列与函数项级数一致收敛性解析

第十三章函数列与函数项级数§1 一致收敛性(一) 教学目的:掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(二) 教学内容:函数序列与函数项级数一致收敛性的定义;函数序列与函数项级数一致收敛性判别的柯西准则;函数项级数一致收敛性的魏尔斯特拉斯判别法.基本要求:1)掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 较高要求:掌握狄利克雷判别法和阿贝尔判别法.2、教学基本要求:理解并掌握函数列与函数项级数的概念及一致收敛的概念和性质;掌握函数项级数的几个重要判别法,并能利用它们去进行判别;掌握一致收敛函数列与函数项级数的极限与和函数的连续性,可积性,可微性,并能应用它们去解决问题。

3、教学重点难点:重点是函数列一致收敛的概念、性质;难点是一致收敛性的概念、判别及应用。

(三) 教学建议:(1) 要求学生必须掌握函数序列与函数项级数一致收敛性的定义,函数序列与函数项级数一致收敛性判别的柯西准则,函数项级数一致收敛性的魏尔斯特拉斯判别法.(2) 对较好学生可要求他们掌握狄利克雷判别法和阿贝尔判别法.————————————————————一函数列及其一致收敛性对定义在区间I 上的函数列E x x f n ∈},)({,设 E x ∈0,若数列 })({0x f n 收敛,则称函数列})({x f n 在点0x 收敛,0x 称为函数列})({x f n 收敛点;若数列 })({0x f n 发散,则称函数列})({x f n 在点0x 发散。

使函数列})({x f n 收敛的全体收敛点集合称为函数列})({x f n 收敛域( 注意定义域与收敛域的区别 )。

若函数列})({x f n 在数集E D ⊂上每一点都收敛,则称函数列})({x f n 在数集D 上收敛,这时D 上每一点x ,都有函数列的一个极限值)()(lim x f x f n n =∞→与之对应,由这个对应关系所确定的函数,称为函数列})({x f n 的极限函数。

高数下册第13章傅里叶级数

高数下册第13章傅里叶级数

1 x sin nx cos nx 0 1 cos nπ 2 n2 π π n n π
目录 上页 下页 返回 结束
, n 2k 1 1 cos n π an 2 ( k 1 , 2 , ) n π 0, n 2k 1 π 1 0 (1) n1 bn f ( x) sin nx d x x sin nxdx π π π π n ( n 1, 2, ) 1 2 π cos x sin x sin 2 x 2 π 4 1 1 2 2 cos 3x sin 3x sin 4 x 3 3 π 4 1 2 2 cos 5 x sin 5 x 5 π 5 ( x , x (2k 1) π , k 0 , 1 , 2 , ) 0 ( π ) π 说明: 当 x (2k 1) π 时, 级数收敛于 2 2
O
x
目录
上页
下页
返回
结束
2. 定义在[0,]上的函数展成正弦级数与余弦级数
奇延拓
f ( x), x [0, π ]
偶延拓
y

O
y
x

O
x
周期延拓 F (x)
周期延拓 F (x) f (x) 在 [0, ]上展成 余弦级数
目录 上页 下页 返回 结束
f (x) 在 [0, ] 上展成 正弦级数
目录 上页 下页 返回 结束
a0 f ( x) an cos nx bn sin nx 2 n 1 1 π an f ( x) cos nx d x (n 0 , 1, ) π π 1 π bn f ( x) sin nx d x (n 1, 2 , ) π π

函数项级数知识点总结

函数项级数知识点总结

函数项级数知识点总结
函数项级数是高等数学中的重要概念,它在微积分、数学分析以及其他数学领域中起着关键作用。

本文将对函数项级数的基本概念、性质以及应用进行总结和介绍。

函数项级数是由一列函数项组成的数列,通常表示为∑₀^∞(an·f_n(x)),其中an是实数或复数,f_n(x)是定义在某个区间上的函数。

在级数中,每一项都是函数项,通过求和操作得到级数的值。

函数项级数的收敛性是其中最重要的性质之一。

对于给定的函数项级数,我们可以通过求部分和序列Sn(x)来讨论其是否收敛。

如果序列Sn(x)收敛于某个函数
S(x),我们称函数项级数收敛于S(x)。

否则,级数发散。

在函数项级数的收敛性上,我们有一些重要的判别法。

比如,比较判别法可以通过比较级数和已知的收敛级数或发散级数之间的大小关系来判断级数的收敛性。

如果级数的每一项都大于已知的发散级数,那么该级数也发散;如果级数的每一项都小于已知的收敛级数,那么该级数也收敛。

此外,还有比值判别法、积分判别法等常用的判别法。

函数项级数在实际问题中的应用非常广泛。

例如,在物理学中,我们常常利用函数项级数来表示波动现象;在工程学中,函数项级数可以用于电路分析、信号处理等领域。

总结起来,函数项级数是高等数学中的重要概念,包括了收敛性判断和应用等多个方面。

对于学习和应用函数项级数的人来说,熟悉其基本概念和性质是非常重要的。

通过掌握相关的判别法和应用技巧,我们可以更好地理解和解决实际问题。

10.1 函数项级数

10.1 函数项级数

(2)有限个可导函数的和仍是可导函数,
且和函数的导数等于导函数的和; (3)有限个可积函数的和仍是可积函数, 且和函数的积分等于积分函数的和;
问题
无限个函数的和(函数项级数)是否具有这些性 质呢?
再考察例1:
研究级数 u n ( x ) x ( x 2 x ) ( x 3 x 2 ) ( x n x n 1 )

x a
S ( t )dt
x a
x un t dt un ( t )dt a n 1 n 1
定理5(和函数的可导性)
设un C 1 ( I )( n N ), 若级数 un 在I上处处
n 1
收敛于函数S : I R , u 在I上一致收敛于 n
当 z 1 时, 加绝对值后的级数收敛 原级数收敛 当 z 1 时, 加绝对值后的级数发散

用的比值法
原级数发散
1 当 z 1 时, 取 模 后 的 级 数 2 收 敛 原 级 数 收 敛 n n 1
收敛域为z 1
1 ( 2) (cos x ) n n 1 3 4 n
函数项级数
一、函数项级数基本概念
定义1 设un ( z )是定义在区域 上的复变函数列, D
称表达式 : u1 u2 un 或
u
n 1

n
为区域D上的复函数项级数 简称 , 函数项级数,un ( z )称为它的通项. 前 n 项之和S n ( z ) uk ( z )
设un C ( I )( n N ), 若函数项级数 un 在
n 1

I上一致收敛于 : I R , 则和函数S C ( I ). S

函数项级数的应用

函数项级数的应用

函数项级数的应用函数项级数是数学中的一个重要概念,它在实际问题的求解中有着广泛的应用。

本文将介绍函数项级数的定义及其应用领域,并通过具体例子展示其解决问题的能力。

一、函数项级数的定义函数项级数是指由一系列函数项按特定规律排列而成的级数。

形式上,函数项级数可以表示为:S(x) = f1(x) + f2(x) + f3(x) + ...其中,f1(x),f2(x),f3(x)等为函数项,x为自变量,S(x)为级数的和。

函数项级数的求和可以通过数列的部分和逐渐逼近的方式进行。

二、函数项级数的应用函数项级数在数学的各个分支以及其他领域中都有着广泛的应用。

以下是函数项级数在实际问题中的几个应用领域。

1. 近似计算函数项级数可以用来近似计算某些复杂函数的值。

例如,我们可以利用泰勒级数来近似计算指数函数、三角函数等。

通过截取级数的前几项,可以得到函数在某个点附近的近似值,从而简化计算过程。

2. 物理问题的建模与求解函数项级数在物理问题的建模与求解中有着广泛的应用。

例如,某个物理问题可以通过级数展开的形式进行描述,进而通过求和得到问题的解析解。

函数项级数的求和性质可以帮助我们解决各种物理问题,如天体力学、电磁场分布等。

3. 信号处理函数项级数在信号处理领域也有着重要的应用。

例如,傅里叶级数是一种将周期信号拆解为基本频率的级数展开形式,通过傅里叶级数可以实现信号的频域分析、滤波和合成等操作。

4. 统计学函数项级数在统计学中也有一定的应用。

例如,通过泊松级数可以描述在给定时间间隔中某个事件发生的概率。

通过控制级数的求和次数,我们可以得到不同精度的概率估计,用于解决统计学问题。

5. 金融学在金融学中,函数项级数常常用于建立金融模型,对金融市场进行预测和分析。

例如,布莱克-斯科尔斯期权定价模型就是基于波动率的函数项级数展开,用于计算期权的价格。

三、函数项级数的实例下面通过几个具体的例子来展示函数项级数的应用。

1. 求解三角函数可以将三角函数利用泰勒级数展开,从而实现对三角函数的近似求解。

函数项级数的收敛域与和函数

函数项级数的收敛域与和函数
即 lim f n ( x ) f ( x ) " N"定义 n x D, 0, N ( , x) N,当n N有 f n ( x ) f ( x ) (4) 定义4 函数列{ f n ( x )}收敛点的全体集合 , 称为{ f n ( x )}的收敛域.
下页 返回
(3) 定义3 若{ f n ( x )}在D上收敛,则可确定一个新的 函数f ( x ),x D. 则称f ( x )为函数列{ f n ( x )}的极限函数. 记为: lim f n ( x ) f ( x ), x D或x D, f n ( x ) f ( x ), n n
0,| x | 1 从而 f n ( x ) f ( x) , x (1,1] 1, x 1 fn ( x) f ( x ),(n ), x D 0 0,N N, n0 N , x0 D,有 fn0 ( x0 ) f ( x0 ) 0
1. 函数列的定义: (1) 定义1 设函数f1 ( x ), f 2 ( x ),, f n ( x ),是定义在同 一个数集E上,则称其为E上的函数列. 记为: { f n ( x )}或f n ( x ), n 1,2, 特别地取定x x0 ,则函数列{ f n ( x )}为一个数列 { f n ( x0 )}.
k 1 k 1 1 n n 1
1 un ( x )dx 0[lim u ( x ) ] dx 0 n s k 0[lim n ( x )]dx n k 1 1 n
1
1
n
uk ( x )dx lim [0 uk ( x )dx] [0 un ( x )dx] lim 0 n n n1

《数学分析(3)》知识点整理

《数学分析(3)》知识点整理

《数学分析(3)》复习资料第十三章 函数列与函数项级数(5%)1.(1)函数列收敛域为(),1,2,nn f x x n == (1,1]-,极限函数为0,1,()1, 1.x f x x ⎧<⎪=⎨=⎪⎩.(2)函数列sin (),1,2,n nxf x n n == 收敛域为(,)-∞+∞,极限函数为()0f x =. 2.(1)函数列在(02(),1,2,nx n f x nxe n -== ,)+∞上不.一致收敛. (2)函数列()1,2,n f x n == 在(1,1)-上一致收敛. (3)函数列22(),1,2,1n xf x n n x ==+ 在(,上一致收敛.)-∞+∞(4)函数列(),1,2,n xf x n n== 在[0上不.一致收敛. ,)+∞(5)函数列()sin,1,2,n xf x n n== 在上不.一致收敛. (,-∞+∞)3.(1)函数项级数nn x∞=∑在(1上不.一致收敛. ,1)-(2)函数项级数2sin nx n ∑,2cos nxn ∑在上一致收敛.(,-∞+∞)(3)函数项级数(1)!nx n -∑在上一致收敛. [,]r r -(4)函数项级数122(1)(1)n nx x --+∑在(,上一致收敛. )-∞+∞(5)函数项级数n n x ∑在11r x r r ∙>⎧⎪>⎨=⎪⎩上一致收敛上不一致收敛.(6)函数项级数2nx n ∑在上一致收敛.[0,1](7)函数项级数12(1)n x n --+∑在上一致收敛.(,-∞+∞)(8)函数项级数221(1)n x x -+∑在(,上不.一致收敛. )-∞+∞第十四章 幂级数(10%)1.对于幂级数,若0n n n a x ∞=∑lim n ρ=(1limn n na a ρ+→∞=) 则(i )当0ρ=时,收敛半径R =+∞,收敛域为(,)-∞+∞;(ii )当ρ=+∞时,收敛半径,仅在0R =0x =处收敛; (iii )当0ρ<=+∞时,收敛半径1R ρ=,收敛域为(,)R R -,还要进一步讨论区间端点x R =±处的敛散性.2.幂级数展开式: (1)()2(0)(0)(0)()(0)1!2!!n nf f f f x f x x x n '''=+++++(2)011nn x x ∞==-∑,01(1)1n n n x x ∞==-+∑ (1x )<. (3)2(1)(1)(1))12!!m n m m m m m n x mx x x n ---++=+++++ (11)x -<<111],.1110101m m m ≤--⎧⎪-<<-⎨⎪>-⎩时,收敛域为(,)时,收敛域为(,]时,收敛域为[,(1(4)1110(1)(1)ln(1)(11)1n n n n n n x x x x n n -∞∞+==--+==-<≤+∑∑,1ln(1)nn x x n∞=--=∑ (11)x -≤<. (5)210(1)sin (21)!n n n x x n ∞+=-=+∑,20(1)cos (sin )(2)!n nn x x n ∞=-'==∑ ()x -∞<<+∞.(6)10(1)arctan (11)21n n n x x n ∞+=-=-≤+∑≤(7)0)!nxn x n ∞==-∞<<+∞∑e x3.幂级数的和函数(1)1)(0,1,2,k 1knn kx x x x ∞==<-)∑ = . (2)()(1)1)1knnn kx x x x ∞=--=<+)∑ . (0,1,2,k = (3)1ln(1)nn x x n∞==--∑ .(11)x -≤<(4)121111()1(1)n nn n n n x nxx x x x ∞∞∞-===''⎛⎫⎛⎫'==== ⎪ ⎪--⎝⎭⎝⎭∑∑∑ (1x )<. (5)223)21111(1)()1(1)(1n n n n n n x n n x x x x x x ∞∞∞-==='''''⎛⎫⎛⎫⎛⎫''-===== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭∑∑∑ (1x <). 第十五章 傅里叶级数(10%)()f x 是以2π为周期且在[,]ππ-上可积的函数: 1.01()(cos sin )2n n n a f x a nx b nx ∞==++∑,01()a f x πππ-=⎰dx ,1()cos n a f x nx πππ-=⎰dx ,1()sin nbf x nx πππ-=⎰dx 1,2,n ,= .2.01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,01()ll a f x l -=⎰dx , 1()cos l n l n x a f x dx πl l -=⎰,1()sin l n l n xb f x dx πl l-=⎰,1,2,n = .3.(1)偶函数的傅里叶级数:01()cos2n n a n x f x a l π∞==+∑,012()cos ()cos l l n l n x n xa f x dx f x dx πl l l l π-==⎰⎰,. 1,2,n = 01()cos 2n n a f x a nx ∞==+∑,012()cos ()cos n a f x nxdx f x nxd πππππ-==⎰⎰x ,1,2,n = .(2)奇函数的傅里叶级数:1()sinn n n x f x b lπ∞==∑,012()sin ()sin l l n l n x n xf x dx f x dx l l l l πb π-==⎰⎰1,2,,n = .1()sin n n f x b ∞==∑nx ,012()sin ()sin n b ,f x nxdx f x nxdx πππππ-==⎰⎰1,2,n = .第十六章 多元函数的极限与连续(5%)1.若累次极限00lim lim (,)x x y y f x y →→,00lim lim (,)y y x x f x y →→和重极限00(,)(,)lim (,)x y x y f x y →都存在,则三者相等.2.若累次极限00lim lim (,)x x y y f x y →→与00lim lim (,)y y x x f x y →→存在但不相等,则重极限00(,)(,)lim (,)x y x y f x y →必不存在.3.2222(,)(0,0)lim 0x y x y x y →=+,2222(,)(0,0)1lim x y x y x y →++=+∞+,22(,)lim 2x y →=,22(,)(0,0)1lim ()sin 0x y x y x y →+=+,2222(,)(0,0)sin()lim 1x y x y x y →+=+. 第十七章 多元函数微分学(20%)1.全微分:z zdz dx dy x y ∂∂=+∂∂. 2.zzz x y x yx x y yt t∂∂s t s sts∂∂∂∂∂∂∂∂∂∂z z x z y s y t∂∂∂∂∂=+s x s y z z x z t x t y ∂∂∂∂∂∂∂∂∂∂=+∂∂∂∂∂. 3.若函数f 在点可微,则0P f 在点沿任一方向的方向导数都存在,且0P 000(,,)l x y z 0000()()cos ()cos ()cos l x y z f P f P f P f P αβγ=++,其中cos α,cos β,cos γ为方向l x 的方向余弦,000(,,)y z即cos α=cos β=,cos γ=4.若(,,)f x y z 在点存在对所有自变量的偏导数,则称向量0000(,,)P x y z 000((),(),())x y z f P f P f P 为函数f 在点的梯度,记作0P 000(),()ad )z ((),x y gr f P f =P f P f .向量grad f 的长度(或模)为gra d f =.5.设,(,z f x y xy =+)f 有二阶连续偏导数,则有1211z 212()z f yf z x x y y y ∂⎛⎫∂ ⎪''∂+∂∂⎝⎭==∂∂∂∂2f f y f yf x∂'''=⋅+⋅=+∂',11122212221112221(1)()f f x f y f f x f f x y f xyf ''''''''''''''''=⋅+⋅++⋅+⋅=++++.6.设,令00()()0x y f P f P ==0()xx f P A =,0()xy f P B =,0()yy f P C =,则(i )当,时,20AC B ->0A >f 在点取得极小值; 0P (ii )当,20AC B ->0A <时,f 在点取得极大值; 0P (iii )当时,20AC B -<f 在点不能取得极值; 0P (iv )当时,不能肯定20AC B -=f 在点是否取得极值.0P 第十八章 隐函数定理及其应用(10%)1.隐函数,则有(,)0F x y =x yF dydx F =-. 2.隐函数,则有(,,)0F x y z =x z F zx F ∂=-∂,y zF z y F ∂=-∂(,,,)0(,,,)0F x y u v G x y u v . =⎧⎨3.隐函数方程组:=⎩,有x yu v xyuv F F F F F F F F x y u v G G G G GG G G x yuv ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫ ⎪⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭, 则uv uv uv F F J G G =,xv xv xv F F J G G =,uxux u x F F J G G =,y v yv y v F F J G G =,uyuy uyF F JG G =, xv uv J u x J ∂=-∂ ,ux uv J vx J ∂=-∂,yv uv J u y J ∂=-∂,uy uvJ v y J ∂=-∂. 4.平面曲线在点的切线..方程为(,)0F x y =000(,)P x y 000000(,)()(,)()0x y F x y x x F x y y y -+-=, 法线..方程为000000(,)()(,)()0y x F x y x x F x y y y -+-=. 5.空间曲线:在点处的L (,,)0(,,)0F x y z G x y z =⎧⎨=⎩0000(,,)P x y z切线..方程为00z x yz x y z x y z x y 0x x y y z z F F F F F F G G G G G G ---==⎛⎫⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭⎝⎫⎪⎭00000()()()0x y z F x x F y y F z z , 法线..方程为. 00()()()yz xy zx yz xy zx F F F F F F x x y y z z G G G G G G ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6.曲面在点处的切平面...方程为(,,)0F x y z =0000(,,)P x y z -+-+-=, 法线..方程为00x y 0zx x y y z z F F F ---==. 7.条件极值例题:求函数在约束条件22u x y z =++222z x y =+与4x y z ++=下的最大值和最小值.解:令,22222(,,,,)()(4)L x y z x y z z x y x y z λμλμ=+++--+++-则由,得稳定点22220222040x yz L x x L y y L z L z x y L x y z λμλμλμλμ=-+=⎧⎪=-+=⎪⎪=++=⎨⎪=--=⎪=++-=⎪⎩00112x y z =⎧⎪=⎨⎪=⎩及228x y z =-⎧⎪=-⎨⎪=⎩,故当1x y ==,时函数在约束条件下取得最小值, 2z =22u x y z =++28z =26当,时函数在约束条件下取得最大值.2x y ==-22u x y z =++72第十九章 含参量积分(5%)1.,;10()s xs x e +∞--Γ=⎰dx 0s >(1)(s s )s Γ+=Γ;1(2Γ=;1()2n Γ+=,1()2n Γ-=. 2.1110(,)(1)p q p q x x ---⎰)dx (0,0p q >>B =;(,)(,)p q q p B =B ;1(,)(,1)1q p q p q p q -B =B -+- ;(0,1p q >>)1(,)(1,)1p p q p q -p q B =B -+-) ;(1,0p q >>(1)(1)(,)(1,1)(1)(2)p q p q p q p q p q --B =B --+-+- .(1,1p q >>)3.()()(,)()p q p q p q ΓΓB =Γ+ .(0,0p q >>)第二十章 曲线积分(5%)1.设有光滑曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,函数(,)f x y 为定义在L 上的连续函数,则(,)((),(Lf x y ds f t t βαϕψ=⎰⎰;当曲线由方程L ()y x ψ=,[,]x a b ∈表示时,(,)(,(bLaf x y ds f x x ψ=⎰⎰.2.设平面曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,其中()t ϕ,在[,]αβ上具有一阶连续导函数,且((),())A ϕαψα,((),())B ϕβψβ. 又设与为上的连续函数,则沿L 从A 到(,)P x y (,)Q x y L B 的第二型曲线积分(,)(,)[((),())()((),())()]LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ''+=+⎰⎰.第二十一章 重积分(20%)1.若(,)f x y 在平面点集}{12(,)()(),D x y y x y y x a x b =≤≤≤≤(x 型区域)上连续,其中1()y x ,2()y x 在[,上连续,则]a b 21()()(,)(,)b y x ay x Df x y d dx f x y dy σ=⎰⎰⎰⎰,即二重积分可化为先对y ,后对x 的累次积分.若}{12(,)()(),D x y x y x x y c y d =≤≤≤≤,其中1()x y ,2()x y 在]上连续,则二重积分可化为先对[,c d x ,后对y 的累次积分21()()(,)(,dx y cx y D)f x y d dy f x y σ=⎰⎰⎰⎰dx .在二重积分中,每次积分的上、下限一定要遵循“上限大,下限小”的原则,且一般来说,第一次(先)积分的上、下限一般为第二次(后)积分的积分变量的函数或常数,而第二次(后)积分的上、下限均为常数. 2.格林公式:若函数,在闭区域上连续,且有一阶偏导数,则有(,)P x y (,)Q x y D ()L DQ Pd Pdx Qdy x yσ∂∂-=+∂∂⎰⎰⎰ (或L Dx y d Pdx Q +dy P Qσ∂∂∂∂=⎰⎰⎰ D ),这里为区域的边界曲线,并取正方向. L 3.设是单连通闭区域.若函数,在内连续,且具有一阶连续偏导数,则以下四个条件等价:D (,)P x y (,)Q x y D (i )沿内任一按段光滑封闭曲线,有D L 0LPdx Qdy +=⎰;(ii )对中任一按段光滑曲线,曲线积分与路线无关,只与的起点及终点有关;D L LPdx Qdy +⎰L (iii )是内某一函数的全微分,即在内有Pdx Qdy +D (,)u x y D du Pdx Qdy =+;(iv )在内处处成立D P Qy x∂∂=∂∂. (,)4.设f x y 在极坐标变换cos ,:sin ,x r T y r θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域与D r θ平面上区域∆对应,则成立(,D)(cos ,sin )f x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.通常积分区域为圆形、扇形、环形或为其一部分,或积分区域的边界线用极坐标方程表示较简单,且被积函数为22()f x y +,(y f x ,(xf y,()f x y +等形式时常选用在极坐标系下计算二重积分.5(1)柱面坐标变换cos ,0,:sin ,02,.x r r T y rz z z θ,θθπ=≤⎧⎪=≤⎨⎪=-∞<<⎩<+∞≤+∞(,,)V 三重积分的柱面坐标换元公式为f x y z dxdydz ⎰⎰⎰(cos ,sin ,)V f r r z rdrd dz θθθ'=⎰⎰⎰,这里V '为V 在柱面坐标变换下的原象.(2)球坐标变换T y sin cos ,0,:sin sin ,0,cos ,02.x r r r z r ϕθϕθϕπϕθπ=≤<+∞⎧⎪=≤≤⎨⎪=≤≤⎩三重积分的球坐标换元公式(,,)Vf x y z dxdydz ⎰⎰⎰2(sin cos ,sin sin ,cos )sin V f r r r r drd d ϕθϕθϕϕϕ'=⎰⎰⎰θ,这里V '为V 在球坐标变换下的原象.DS ∆=.6.曲面面积计算公式:第二十二章 曲面积分(10%)1.设有光滑曲面),(,:(,S z z x y =)x y D ∈,(,,)f x y z 为上的连续函数,则S (,,)(,,(,SDf x y z dS f x y z x y =⎰⎰⎰⎰. 2.设R 是定义在光滑曲面:(,S z z x y )=,(,)xy x y D ∈上的连续函数,以的上侧为正侧(这时的法线方向与轴正向成锐角),则有S S z (,,),))(,,(xySD R x y z dxdy x y dxdy =⎰⎰R x y z ⎰⎰.3.高斯公式:设空间区域V 由分片光滑的双侧封闭曲面围成.若函数,,S P Q R 在V 上连续,且有一阶连续偏导数,则(VSP Q Rdxdydz Pdydz Qdzdx Rdxdy x y z ∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰ ,其中取外侧. S 4.斯托克斯公式:设光滑曲面的边界是按段光滑的连续曲线.若函数,Q ,S L P R 在(连同)上连续,且有一阶连续偏导数,则S L ()(()L P =⎰ S P R Q P dydz dzdx dxdy d Q z x x y ∂∂∂∂-+-∂∂∂∂⎰⎰R Q y z ∂∂∂∂x dy +Rd +z (或-+Sdz dzdx dxdydy x y z P Q R∂∂∂∂∂∂⎰⎰ LPdx Qdy Rdz =++⎰ ),其中的侧与的方向按右手法则确定. S L。

数学分析13.2一致收敛函数列与函数项级数的性质

数学分析13.2一致收敛函数列与函数项级数的性质

第十三章 函数列与函数项级数 2 一致收敛函数列与函数项级数的性质定理13.8:设函数列{f n }在(x,x 0)∪(x 0,b)上一致收敛于f(x),且对每个n ,x n lim →f n (x)=a n ,则∞→n lim a n 和0x n lim →f(x)均存在且相等.证:∀ε>0,∵{f n }一致收敛于f(x),∴∃N>0,当n>N 和任意自然数p , 对一切x ∈(x,x 0)∪(x 0,b)有,|f n (x)-f n+p (x)|< ε,∴|a n -a n+p |=0x n lim →|f n (x)-f n+p (x)|≤ε,∴{a n }是收敛数列. 设∞→n lim a n =A ,则∀ε>0,∃N>0,当n>N 时,对一切x ∈(x,x 0)∪(x 0,b)同时有, |f n (x)-f(x)|<3ε和|a n -A|<3ε. 特别取n=N+1,有|f N+1(x)-f(x)|<3ε和|a N+1-A|<3ε. 又0xn lim →f N+1(x)=a N+1,∴∃δ>0, 当0<|x-x 0|<δ时,|f N+1(x)-a N+1|<3ε,从而当x 满足0<|x-x 0|<δ时,有 |f(x)-A|≤|f N+1(x)-f(x)|+|f N+1(x)-a N+1|+|a N+1-A|<3ε+3ε+3ε=ε, 即0xn lim →f(x)=A ,得证!注:定理13.8指出:∞→→n x n lim lim 0f n (x)=0xn n lim lim →∞→f n (x).定理13.9:(连续性)若函数列{f n }在区间I 上一致收敛,且每一项都连续,则其极限函数f 在I 上也连续.证:设x 0为I 上任一点,∵0xn lim →f n (x)=f n (x 0),由定理13.8知, 0x n lim →f(x)存在,且0x n lim →f(x)=∞→n lim f n (x 0)=f(x 0),∴f(x)在I 上连续.注:定理13.9指出:各项为连续函数的函数列在区间I 上其极限函数不连续,则此函数列在区间I 上不一致收敛. 如: 函数列{x n }各项在(-1,1]上都连续,但其极限函数f(x)=⎩⎨⎧=< 1x 11|x |0,,在x=1时不连续,所以{x n }在(-1,1]上不一致收敛.推论:若连续函数列{f n }在区间I 上内闭一致收敛于f ,则f 在I 上连续.定理13.10:(可积性)若函数列{f n }在[a,b]上一致收敛,且每一项都连续,则⎰∞→b an lim f n (x)dx=⎰∞→ban n (x )f lim dx.证:设f 是{f n }在[a,b]上的极限函数. 由定理13.9,f 在[a,b]上连续, ∴f n (n=1,2,…)与f 在[a,b]上都可积. ∵在[a,b]上f n (x)⇉f(x) (n →∞), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b]都有|f n (x)-f(x)|<ε. 根据定积分的性质,当n>N 时,有⎰⎰-baban f(x)dx (x)dx f =f(x))dx (x)(f ban -⎰≤dx f(x )(x )f ban ⎰-≤ε(b-a).∴⎰∞→ban n(x )f lim dx=⎰ba f(x )dx =⎰∞→ba n lim f n (x)dx. 得证!例1:举例说明当{f n (x)}收敛于f(x)时,一致收敛性是极限运算与积分运算交换的充分条件,但不是必要条件.解:如f n (x)=⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<≤<≤ 1x n 10,n 1x n 21x ,2na -a 2n21x 0 ,x 2na n n n , n=1,2,…. 其图像如图:{f n (x)}是[0,1]上的连续函数列,且∀x ∈[0,1],∞→n lim f n (x)=0=f(x). 又Dx sup ∈|f n (x)-f(x)|=a n ,∴{f n (x)}在[0,1]上一致收敛于0的充要条件是:∞→n lim a n =0.∵⎰10n (x )f dx=2na n,∴⎰10n (x )f dx →⎰10f(x )dx=0的充要条件是:2n a lim n n∞→=0. 当a n ≡1时,{f n (x)}在[0,1]上不一致收敛于f(x),但定理13.10仍成立. 而当a n =n 时,{f n (x)}不一致收敛于f(x), 且⎰10n (x )f dx ≡21不一致收敛于⎰10f(x )dx=0.定理13.11:(可微性)设{f n }为定义在[a,b]上的函数列,若x 0∈[a,b]为{f n }的收敛点,{f n }的每一项在[a,b]上有连续的导数,且{f ’n }在[a,b]上一致收敛,则())x (f lim dx d n n ∞→=⎪⎭⎫⎝⎛∞→)x (f dx d limn n . 证:设)x (f lim 0n n ∞→=A ,f ’n ⇉g (n →∞), x ∈[a,b],则对任一x ∈[a,b],总有f n (x)=f n (x 0)+⎰'x x n 0(t)f dt. 两边对n →∞取极限得:)x (f lim n n ∞→=A+⎰xx 0g(t)dt ,又)x (f lim n n ∞→=f(x),∴f(x)=A+⎰xx 0g(t)dt. 两边微分得证!推论:设函数列{f n }定义在区间I 上的,若x 0∈I 为{f n }的收敛点,且{f ’n }在I 上内闭一致收敛,则f 在I 上可导,且f ’(x)=())x (f lim n n '∞→.例2:举例一致收敛性是极限运算与求导运算交换的充分条件,但不是必要条件. 解:如函数列f n (x)=2n 1 ln(1+n 2x 2)及f ’n (x)=22x n 1nx+, n=1,2,… 在[0,1]上都收敛于0,即∞→n lim f n (x)=∞→n lim f ’n (x)=0,∴在[0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.又由][0,1x ∞n max lim ∈+→|f ’n (x)-f ’(x)|=nx 2nx lim∞n +→=21, 知 导函数列{f ’n (x)}在[0,1]上不一致收敛. 但对任意δ>0,有,1][δx sup ∈|f ’n (x)-f ’(x)|=22,1] [δx x n 1nx sup+∈≤22δn 1n+→0 (n →∞), ∴{f ’n }在(0,1]上内闭一致收敛. ∴在(0,1]上,∞→n lim f ’n (x)=(∞→n lim f n (x))’成立.定理13.12:(连续性)若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则其和函数在[a,b]上也连续. 即有:∑⎪⎭⎫ ⎝⎛→(x)u lim nx n 0=()∑→(x)u lim n x n 0. 证:设x 0为[a,b]上任意一点,∑(x)u n 在区间[a,b]上一致收敛于S(x). 则∀ε>0,∃N>0,当n>N 时,对一切x ∈[a,b],有|S(x)-S n (x)|<3ε, |S n (x 0)-S(x 0)|<3ε, 又u n (x)在[a,b] 上连续(n=1,2,……), ∴对取定的n>N ,S n (x)在[a,b]上连续,∴对上述的ε,∃δ>0, 当x ∈[a,b],且|x-x 0|<δ时,|S n (x)-S n (x 0)|<3ε ,∴当x ∈[a,b]时,|S(x)-S(x 0)|=|S(x)-S n (x)+S n (x)-S n (x 0)+S n (x 0)-S(x 0)| ≤|S(x)-S n (x)|+|S n (x)-S n (x 0)|+|S n (x 0)-S(x 0)|<ε. 即S(x)在x 0连续, 从而在[a,b]上连续. 得证!定理13.13:(逐项求积) 若函数项级数∑(x)u n 在区间[a,b]上一致收敛,且每一项都连续,则∑⎰ba n (x )u dx =⎰∑ba n (x )u dx.定理13.14:(逐项求导) 若函数项级数∑(x)u n 在每一项都有连续的导函数,x 0∈[a,b]为∑(x)u n 的收敛点,且∑'(x)u n 在[a,b]上一致收敛,则∑⎪⎭⎫ ⎝⎛(x )u dx d n =()∑(x)u dxdn . 证:设∑'(x)u n 在[a,b]上一致收敛于S *(x),∵u ’n (x)在[a,b]上连续, 由定理13.12知,S *(x)在[a,b]上连续. 又由定理13.13知,∀x ∈[a,b], 有⎰xa *(t)S dt=⎰∑'ba n (t)u dt=∑⎰'xa n (t)u dt =∑(x)u n -∑(a)u n =S(x)-S(a). 等式两端对x 求导得:S ’(x)=S *(x)=∑'(x)u n ,得证!例3:设u n (x)=3n1ln(1+n 2x 2), n=1,2,…. 证明:函数项级数∑(x)u n 在[0,1]上一致收敛,并讨论其和函数在[0,1]上的连续性、可积性与可微性. 证:对每个n ,易见u n (x)在[0,1]上递增,且当t ≥1时,有ln(1+t 2)<t , ∴u n (x)≤u n (1)=3n 1ln(1+n 2)<3n 1·n=2n1, n=1,2,… 又∑2n1收敛,∴∑(x)u n 在[0,1]上一致收敛. 由每一个u n (x)在[0,1]上连续,知其和函数在[0,1]上的连续且可积.又u ’n (x)=)x n 1(n x2n 2232+=)x n 1(n 2x 22+≤)x n 1(n 2nx 222+≤2n 1, n=1,2,…知 ∑'(x)u n在[0,1]上一致收敛. ∴其和函数在[0,1]上可微.例4:证明:函数ζ(x)=∑∞=1n x n 1在(1,+∞)上有连续的各阶导函数. 证:记u n (x)=x n 1, u n (k)(x)=(ln n 1)k x n 1=(-1)k x knn ln , k=1,2,…. 对任意x ∈[a,b]⊂(1,+∞),有|u n (k)(x)|=xkn nln≤a k nnln , k=1,2,….由∞→n lim 1)/2-(a k n n ln =0知,当n 充分大时,有1)/2-(a k n nln <1,从而 xk n n ln =1)/2-(a k 1)/2(a n n ln n 1⋅+<1)/2(a n 1+, 又∑+1)/2(a n 1收敛, ∴∑∞=1n (k )n (x )u 在[a,b]上一致收敛,从而∑∞=1n (k )n (x)u 在(1,+∞)上内闭一致收敛. ∴ζ(x)在(1,+∞)上有连续的各阶导函数,且ζ (k)(x)=(-1)k xkn nln, k=1,2,….习题1、讨论下列函数列在所定义的区间上:a. {f n }与{f ’n }的一致收敛性;b. {f n }是否有定理13.9~11的条件与结论.(1)f n (x)=nx n2x ++, x ∈[0,b];(2)f n (x)=x-n x n , x ∈[0,1];(3)f n (x)=nx 2-nx e, x ∈[0,1].解:(1)记∞n lim +→f n (x)=nx n2x lim∞n +++→=1=f(x); b][0,x sup ∈|f n (x)-f(x)|=nx xsupb][0,x +∈→0 (n →∞),∴{f n }在[0,b]上一致收敛性;记∞n lim +→f ’n (x)=2∞n n)(x nlim++→=g(x); b][0,x sup ∈|f ’n (x)-g(x)|=2b][0,x n)(x nsup+∈→0 (n →∞),∴{f ’n }在[0,b]上一致收敛性. 又∵f n (x)=nx n2x ++和f ’n (x)=2n)(x n +, n=1,2,… 在[0,b]上都连续, ∴{f n }有定理13.9~11的条件与结论.(2)记∞n lim +→f n (x)=⎪⎪⎭⎫ ⎝⎛+→n x -x lim n ∞n =x=f(x); [0,1]x sup ∈|f n (x)-f(x)|=n x sup n[0,1]x ∈→0 (n →∞),∴{f n }在[0,1]上一致收敛性;记g(x)=∞n lim +→f ’n (x)=∞n lim +→(1-x n-1)=⎩⎨⎧<≤=1x 01,1 x 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续, ∴{f ’n }在[0,1]上不一致收敛性.又f n (x)=x-nx n, n=1,2,… 在[0,1]上都连续,∴{f n }有定理13.9~10的条件与结论,但不具有13.11的条件. 又f ’(x)=x ’=1≠∞n lim +→f ’n (x),∴{f n }也不具有13.11的条件.(3)记∞n lim +→f n (x)=2-nx ∞n nx e lim +→=0=f(x); [0,1]x sup ∈|f n (x)-f(x)|=2-nx [0,1]x nxe sup ∈=n ·2)1/2n n(e n21-=1/2e 2n →∞ (n →∞),∴{f n }在[0,1]上不一致收敛性;记g(x)=∞n lim +→f ’n (x)=2-nx ∞n ne lim +→(1-2nx 2)=⎩⎨⎧=∞+≤<0x ,1x 0 0,;∵{f ’n (x)}各项在[0,1]上连续,而g(x)在[0,1]不连续,∴{f ’n }在[0,1]上不一致收敛性. 从而{f n }不具有定理13.9~11的条件. ∵f(x)=0在[0,1]上连续,∴{f n }有定理13.9的结论.∵⎰+→10nx -∞n 2nx e lim dx=⎰+→10nx -∞n 2e 21lim d(nx 2)=⎪⎭⎫ ⎝⎛-+→n ∞n e 2121lim =21≠⎰+→10n ∞n )x (f lim dx=0. 又{f ’n (x)}在x=0不收敛;∴{f n }不具有定理13.10~11的结论.2、证明:若函数列{f n }在[a,b]上满足定理13.11的条件,则{f n }在[a,b]上一致收敛.证:设f ’n (x)⇉g(x) (n →∞), x ∈[a,b],则∀ε>0,∃N 1>0,当n>N 1时, 对一切t ∈[a,b],有|f ’n (t)-g(t)|<)a b (2ε-; 又f n (x)点x 0收敛,∴对上述的ε>0,∃N 2>0,当n>N 2时,有|f n (x 0)-f(x 0)|<2ε. ∵对任意x,x 0∈[a,b]有f n (x)=f n (x 0)+⎰'xx n 0(t)f dt ,∴f(x)=∞→n lim f n (x)=f(x 0)+⎰xx 0g(t)dt. 取N=max{N 1,N 2},则当n>N 时,有∴|f n (x)-f(x)|=|f n (x 0)-f(x 0)+[]⎰'xx ng(t)-(t)f dt | ≤|f n (x 0)-f(x 0)|+|⎰'xx ng(t)-(t)f dt |<ε. 得证.3、设S(x)=∑∞=1n 21-n nx , x ∈[-1,1],计算积分⎰x 0S(t)dt .解:∵21-n n x ≤2n 1, x ∈[-1,1],由M 判别法知∑∞=1n 21-n n x 在[-1,1]上一致收敛.又21-n n x (n=1,2,…)在[-1,1]上连续,∴⎰x 0S(t)dt =∑⎰∞=1n x 021-n dt n t =∑∞=1n 3nnx .4、S(x)=∑∞=1n nn cosnx , x ∈R ,计算积分⎰x0S(t)dt .解:∵nn cosnx ≤nn 1, x ∈R ,由M 判别法知∑∞=1n nn cosnx 在R 上一致收敛.又nn cosnx (n=1,2,…)在R 上连续,∴⎰x0S(t)dt =∑⎰∞=1n xdt nn cosnt =∑∞=1n 2nnsinnx .5、S(x)=∑∞=1n nx -ne , x>0,计算积分⎰ln3ln2S(t)dt .解:由(ne -nx )’=-n 2e -nx <0,知ne -nx 单调减,∴对任何x ∈[ln2,ln3],有 ne -nx ≤ne-nln2=n 2n . 又由n n 2n =2n n→21<1 (n →∞),知∑n 2n收敛.∴∑∞=1n nx -ne 在[ln2,ln3]上一致收敛. 又ne -nx (n=1,2,…)在[ln2,ln3]上连续,∴⎰ln3ln2S(t)dt =∑⎰∞=1n ln3ln2nt-dt ne =∑∞=⎪⎭⎫⎝⎛-1n n n3121=21.6、证明:函数f(x)=∑3n nxsin 在R 上连续,且有连续的导函数. 证:∵3n nx sin ≤3n 1, x ∈R ,由M 判别法知∑3nnxsin 在R 上一致收敛. 又3nnxsin (n=1,2,…)在R 上连续,∴f(x)在R 上连续. ∵|(3n nx sin )’|=|2n cosnx |≤2n 1,由M 判别法知∑2n cosnx在R 上一致收敛.又2ncosnx(n=1,2,…)在R 上连续,∴f(x)在R 上有连续的导函数.7、证明:定义在[0,2π]上的函数项级数∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫⎝⎛∞=2π0n n dt cosnx r =2π. 证: ∵|r n cosnx|≤r n (0<r<1), x ∈[0,2π],又∑ r n (0<r<1)收敛, 由M 判别法知∑∞=0n n cosnx r 在[0,2π]上一致收敛.又r ncosnx 在[0,2π]上连续,∴∑∞=0n n cosnx r (0<r<1)满足定理13.13条件,且⎰∑⎪⎭⎫ ⎝⎛∞=2π0n n dx cosnx r =∑⎰∞=0n 2π0ncosnx dx r . 又⎰2π0dx =2π,⎰2π0cosnx dx =0(n=1,2…)∴⎰∑⎪⎭⎫⎝⎛∞=2π00n n dt cosnx r =2π.8、讨论下列函数列在所定义区间上的一致收敛性及极限函数的连续性、可微性和可积性:(1)f n (x)=x 2-nx e ,n=1,2,…, x ∈[-L,L]; (2)f n (x)=1nx nx+, n=1,2,…, I. x ∈[0,+∞);II. x ∈[a,+∞) (a>0). 解:(1)∵∞n lim +→f n (x)=0=f(x), x ∈[-L,L],且L][-L,x sup ∈|f n (x)-f(x)|=L][-L,x sup ∈| x 2-nx e |≤2ne1→0 (n →∞),∴{f n (x)}在[-L,L]上一致收敛于0,且其极限函数f(x)=0在[-L,L]上连续可积可微. 又f n (x)=x 2-nx e ,n=1,2,…在[-L,L]上连续,∴()⎰+→LL -n ∞n dx (x )f lim =⎪⎭⎫ ⎝⎛⎰+→LL -n ∞n (x)dx f lim . ∵f ’n (x)=2-nx e(1-2nx 2), 且(x)f lim n ∞n '+→=⎩⎨⎧=≠≤≤ 0x 10x L x L -0,,且, ∴[(x)f lim n ∞n +→]’≠(x)f lim n ∞n '+→.(2)∵f(x)=∞n lim +→f n (x)=1=⎩⎨⎧+∞<≤<=x a 010x 0,,,且)[a,x sup +∞∈|f n (x)-f(x)|=1nx 1-sup)[a,x ++∞∈=1na 1+→0 (n →∞), ∴{f n (x)}在[a,+∞) (a>0)上一致收敛于1,在[0,+∞)上内闭一致收敛. ∴其极限函数不在[0,+∞)上连续可积可微;但在[a,+∞) (a>0)上其极限函数f(x)=1连续可微,但不可积.9、证明:函数S(x)=∑xn 1在(1,+∞)上连续,且有连续的各阶导数. 证:∀x ∈(1,+∞),取1<p<x ,则0<x n 1≤p n1,由M 判别法,知 ∑x n 1在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. 又x n 1在(1,+∞)上连续,∴S(x)在(1,+∞)上连续. 又)k (x n 1⎪⎭⎫ ⎝⎛=x k kn n ln )1(-, k=1,2,…在(1,+∞)上连续. ∀x ∈(1,+∞),取1<p<x ,使x k kn n ln )1(-≤p k n n ln . 固定k ,取q>p>1, 由p k n n ln /q n 1=q -p k n n ln →0 (n →∞),及∑q n1收敛,知∑p k n n ln 收敛, ∴∑-x k kn n ln )1(在[p,+∞)上一致收敛,在(1,+∞)上内闭一致收敛. ∴S (k)(x)=∑⎪⎭⎫ ⎝⎛)k (x n 1=∑-x k kn n ln )1( 在(1,+∞)上连续. 得证!10、设f 在(-∞,+∞)上有任何阶导数,记F n =f (n), 且在任何有限区间内F n ⇉φ (n →∞),试证:φ(x)=ce x (c 为常数). 证:由条件可知φ’(x)=[∞n lim +→f (n)(x)]’=∞n lim +→[f (n)(x)]’ =∞n lim +→f (n+1)(x)=φ(x). 即有φ(x )(x )φ'=1,两边取积分得:⎰'φ(x )(x )φdx =⎰dx +C ,即⎰φ(x )1d φ(x) =x+c 1, ∴ln φ(x)=x+c 1,即φ(x)=1c x e +=1c e e x =ce x (其中c=1c e 为常数).。

函数项级数的基本概念

函数项级数的基本概念

6
精品PPT
(3) 当 x 1 即x 1, x 1时,
(1)n1 x 3n
n1
n
x 1时,级数为 (1)n1 1 , 条件收敛
n1
n
x 1时,级数为 1, 发散
n1 n (fāsà
总之,所讨论的级数的收敛n)(shōuliǎn)域(1,1].
为区间 把函数项级数中的变量x视为参数, 通过常数
数项级数 的收敛问题.
5
精品PPT
例 求函数项级数的 (1)n1 x 3n 收敛域.
n1
n
解 由比值(bǐzhí)(达朗贝尔)判
别法
x 3n3
lim un1 u n
n
lim n
n1 x 3n
lim n x 3 x 3
n n 1
n (1) 当 x 1时, 原1时, 原级数 发散.
项级数的敛散性判别法, 来判定函数项级数对哪
些 x 值收敛, 哪些 x 值发散, 这是确定函数项级数
收敛域的基本方法.
7
精品PPT
幂级数
作业
8
精品PPT
(函 部 余数 分项,1(和)一hrán般n((1sx考h,)ù虑)项函)s,(级数但x数)只的1有s1ns(在nxx(时)xD),,它ln(i的m1定,s1n)义上( x域,)它是才s(是x)
显然x n
n0
1 lim
n
xrn( xx)20的((sx和在h函ō收u数l敛iǎ. n)域上)
注 函数项级数在某点x的收敛问题,实质上是
级数.
如 级数 xn 1 x x2
n0
2
精品PPT
2.收敛(shōuliǎn)点与
收敛(shōuliǎn)域

数学分析13.1一致收敛性

数学分析13.1一致收敛性

第十三章 函数列与函数项级数1 一致收敛性一、函数列及其一致收敛性概念:设f 1,f 2,…,f n ,…是一列定义在同一数集E 上的函数,称为定义在E 上的函数列,也可以简单地写作{f n }或f n , n=1,2,…. 设x 0∈E ,以x 0代入函数列可得数列:f 1(x 0),f 2(x 0),…,f n (x 0),…. 若该数列收敛,则称对应的函数列在点x 0收敛,x 0称为该函数列的收敛点. 若数列发散,则称函数列在点x 0发散. 若函数列在数集D ⊂E 上每一点都收敛,则称该函数列在数集D 上收敛. 这时D 上每一点x 都有数列{f n (x)}的一个极限值与之相对应,由这个对应法则所确定的D 上的函数,称为原函数的极限函数. 若把此极限函数记作f ,则有∞n lim +→f n (x)=f(x), x ∈D ,或f n (x)→f(x) (n →∞), x ∈D.使函数列{f n }收敛的全体收敛点集合,称为函数列{f n }的收敛域.函数列极限的ε-N 定义:对每一个固定的x ∈D ,任给正数ε, 恒存在正数N(ε,x),使得当n>N 时,总有|f n (x)-f(x)|< ε.例1:设f n (x)=x n , n=1,2,…为定义在R 上的函数列,证明它的收敛域是(-1,1]且有极限函数f(x)=⎩⎨⎧=<1x 11|x |0,,.证:任给正数ε<1, 当|x|<1时,∵|f n (x)-f(x)|=|x|n , ∴只要取N(ε,x)=|x |ln ln ε,当n>N 时,就有|f n (x)-f(x)|< ε.当x=0或x=1时,对任何正整数n ,都有|f n (x)-f(x)|=0< ε. ∴f n (x)在(-1,1]上收敛,且有极限函数f(x) =⎩⎨⎧=<1x 11|x |0,,.又当|x|>1时,有|x|n →∞ (n →∞),当x=-1时,对应的数列为: -1,1,-1,1…发散. ∴函数列{x n }在(-1,1]外都是发散的. 得证!例2:证明:函数列f n (x)=nsinnx, n=1,2,…的收敛域是R ,极限函数f(x)=0. 证:∵对任意实数x ,都有n sinnx ≤n 1,∴任给ε>0,只要n>N=ε1, 就有0nsinnx-< ε,得证!定义1:设函数列{f n }与函数f 定义在同一数集D 上,若对任给的正数ε,总存在某一正整数N ,使得当n>N 时,对一切x ∈D ,都有 |f n (x)-f(x)|< ε,则称函数列{f n }在D 上一致收敛于f ,记作 f n (x)⇉f(x) (n →∞), x ∈D.注:反之,若存在某正数ε0,对任何正数N ,都有D 上某一点x ’与正整数n ’>N ,使|f n (x ’)-f(x ’)|≥ε0,则函数列{f n }在D 上不一致收敛于f. 如:例1中的函数列{x n }在(0,1)上收敛于f(x)=0,但不一致收敛.∵令ε0=21,对任何正数N ,取正整数n>N+1及x ’=21n 11⎪⎭⎫ ⎝⎛-∈(0,1),则有|x ’2 -0|=1-n 1≥21. ∴函数列{x n }在(0,1)上不一致收敛于f(x)=0.函数列一致收敛于f 的几何意义:对任何正数ε,存在正整数N ,对于一切序号大于N 的曲线y=f n (x),都落在以曲线y=f(x)+ ε与y=f(x)- ε为边(即以y=f(x)为“中心线”,宽度为2ε)的带形区域内(如图1).(图1)(图2)函数列{x n }在(0,1)内不一致收敛,即对于某个事先给定的正数ε<1, 无论N 多么大,总有曲线y=x n (n>N)不能全部落在以y=ε与y=-ε为边的带形区域内(如图2). 若函数列{x n }只限于在区间(0,b) (b<1)内讨论,则只要n>lnbln ε(其中0<ε<1),曲线y=x n 就全部落在y=ε与y=-ε为边的带形区域内,所以{x n }在区间(0,b)内一致收敛.定理13.1:(函数列一致收敛的柯西准则)函数列{f n }在数集D 上一致收敛的充要条件是:对任给ε>0,总存在正数N ,使得当n,m>N 时, 对一切x ∈D ,都有|f n (x)-f m (x)|< ε.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正数N , 使得当n,m>N 时,对一切x ∈D ,都有|f n (x)-f(x)|<2ε及|f m (x)-f(x)|<2ε. ∴|f n (x)- f m (x)|≤|f n (x)-f(x)|+ |f m (x)-f(x)|<2ε+2ε= ε. [充分性]若|f n (x)-f m (x)|< ε, 则由数列收敛的柯西准则知, {f n }在D 上任一点都收敛,记其极限函数f(x),则有∞m lim +→|f n (x)-f m (x)|=|f n (x)-f(x)|<ε,由定义1知f n (x)⇉f(x) (n →∞), x ∈D.定理13.2:函数列{f n }在区间D 上一致收敛于f 的充要条件是:Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0.证:[必要性]若f n (x)⇉f(x) (n →∞), x ∈D ,则∀ε>0,∃正整数N ,当n>N 时,有|f n (x)-f(x)|<ε, x ∈D.由上确界定义,有Dx sup ∈|f n (x)-f(x)|≤ε. ∴Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0. [充分性]若Dx ∞n sup lim ∈+→|f n (x)-f(x)|=0,则∀ε>0,∃正整数N , 使得当n>N 时,有Dx sup ∈|f n (x)-f(x)|<ε. 又对一切x ∈D ,总有|f n (x)-f(x)|≤Dx sup ∈|f n (x)-f(x)|<ε,∴{f n }在D 上一致收敛于f.推论:函数列{f n }在D 上不一致收敛于f 的充要条件是: 存在{x n }⊂D ,使得{f n (x n )-f(x n )}不收敛于0.例3:设f n (x)=nx 2-nx e , x ∈D=R +,n=1,2,….判别{f n (x)}在D 上的一致收敛性.解法一:对任意x ∈R +, ∞n lim +→nx 2-nx e=0=f(x). 又当f ’n (x)=222ex 2n -n =0时, x=2n1,且f ”(2n1)=-2e 2n2n <0, ∴在R +上,每个nx 2-nx e 只有一个极大值点x n =2n1,而Dx ∞n sup lim ∈+→|f n (x)-f(x)|=∞n lim +→f n (x n )=2enlim∞n +→=+ ∞≠0, ∴{f n (x)}在D 上不一致收敛于f.解法二:取x n =n1∈R +,则∞n lim +→f n (x n )=n 1-∞n e lim +→=1≠0, ∴{f n }在D 上不一致收敛于f.定义1:设函数列{f n }与f 定义在区间I 上,若对任意闭区间[a,b]⊂I, {f n }在[a,b]上一致收敛于f ,则称{f n }在I 上内闭一致收敛于f.注:若I 为有界闭区间,则{f n }在I 上内闭一致收敛于f 与{f n }在I 上一致收敛于f 是一致的.例1中函数列{x n }在[0,1)上不一致收敛于0,但对任意δ>0,]δ,0[x sup ∈|x n |≤δn→0 (n →∞),∴{f n }在[0,1)上内闭一致收敛于0.例3中函数列{f n }在R +上不一致收敛于0,但对任意[a,b]⊂R +,]b ,a [x sup ∈|nx 2-nx e |≤nb 2-na e →0 (n →∞),∴{f n }在R +上内闭一致收敛于0.二、函数项级数及其一致收敛性概念:设{u n (x)}是定义在数集E 上的一个函数列,表达式: u 1(x)+ u 2(x)+…+u n (x)+…, x ∈E称为定义在E 上的函数项级数,简记为∑∞=1n n (x )u 或∑(x)u n .称S n (x)=∑=n1k k (x )u , x ∈E, n=1,2,…为函数项级数∑(x)u n 的部分和函数.若x 0∈E, 数项级数u 1(x 0)+ u 2(x 0)+…+u n (x 0)+…收敛,即部分和 S n (x 0)=∑=n1k 0k )(x u 当n →∞时极限存在,则称级数∑(x)u n 在点x 0收敛,x 0称为级数∑(x)u n 的收敛点.若级数∑)(x u 0n 发散,则称级数∑(x)u n 在点x 0发散.若∑(x)u n 在E 的某个子集D 上每点都收敛,则称∑(x)u n 在D 上收敛. 若D 为级数∑(x)u n 全部收敛点的集合,则称D 为∑(x)u n 的收敛域. 级数∑(x)u n 在D 上每一点x 0与其所对应的数项级数∑)(x u 0n 的和S(x 0)构成一个定义在D 上的函数,称为级数∑(x)u n 的和函数,并写作: S(x)=u 1(x)+ u 2(x)+…+u n (x)+…, x ∈D 即∞n lim +→S n (x)=S(x), x ∈D ,于是函数项级数的收敛性等价于它的部分和函数列{S n (x)}的收敛性.例4:判别函数项级数(几何级数)1+x+x 2+…+x n +…在R 上的收敛性.解:几何级数的部分和函数为S n (x)=x-1x -1n .当|x|<1时,S(x)=∞n lim +→S n (x)=x-11; 当|x|≥1时,S(x)=∞n lim +→S n (x)=+∞.∴几何级数在(-1,1)内收敛于和函数S(x)=x-11;当|x|≥1时,发散.定义3:设{S n (x)}函数项级数∑(x)u n 的部分和函数列. 若{S n (x)}在数集D 上一致收敛于S(x),则称∑(x)u n 在D 上一致收敛于S(x). 若∑(x)u n 在任意闭区间[a,b]⊂I 上一致收敛,则称∑(x)u n 在I 上内闭一致收敛.定理13.3:(一致收敛的柯西准则)函数项级数∑(x)u n 在数集D 上一致收敛的充要条件是:对任给ε>0,总存在某正整数N ,使得当n>N 时, 对一切x ∈D 和一切正整数p ,都有|S n+p (x)-S n (x)|< ε或∑++=pn 1n k k(x)u< ε.推论:函数项级数∑(x)u n 在数集D 上一致收敛的必要条件是函数列{u n (x)}在D 上一致收敛于0.注:设函数项级数∑(x)u n 在数集D 上的和函数为S(x), 称 R n (x)=S(x)-S n (x)为函数项级数∑(x)u n 的余项.定理13.4:函数项级数∑(x)u n 在数集D 上一致收敛于S(x)的充要条件是:Dx ∞n sup lim∈+→|R n (x)|=Dx ∞n sup lim ∈+→|S(x)-S n (x)|=0.注:几何级数∑n x 在(-1,1)上不一致收敛,因为)(-1,1x sup ∈|S(x)-S n (x)|=1-x x sup n )(-1,1x ∈≥1n n -11n n n+⎪⎭⎫⎝⎛+=n 1-n 1n n ⎪⎭⎫ ⎝⎛+ →∞ (n →∞). 又对任意a(0<a<1),]a -a,[x sup ∈|S(x)-S n (x)|=1-x x sup n]a -a,[x ∈=a -1a n →0 (n →∞).∴几何级数∑n x 在(-1,1)上内闭一致收敛.三、函数项级数的一致收敛性判别法定理13.5:(魏尔斯特拉斯判别法或M 判别法或优级数判别法) 设函数项级数∑(x)u n 定义在数集D 上,∑n M 为收敛的正项级数, 若对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…, 则函数项级数∑(x)u n 在D 上一致收敛.证:∵∑n M 为收敛的正项级数,根据数项级数的柯西准则, ∀ε>0,∃正整数N ,使得当n>N 及任何正整数p ,有∑++=pn 1n k kM=∑++=pn 1n k kM< ε,又对一切x ∈D ,有|u n (x)|≤M n , n=1,2,…,∴∑++=pn 1n k k(x)u≤∑++=pn 1n k k(x )u≤∑++=pn 1n k kM< ε,由函数项级数一致收敛的柯西准则知,级数∑(x)u n 在D 上一致收敛.例5:证明函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛. 证:∵对一切x ∈R ,有2n nx sin ≤2n 1,∑2n cosnx ≤2n1. 又级数∑2n 1收敛,∴函数项级数∑2n nx sin 和∑2n cosnx在R 上一致收敛.注:当级数∑(x)u n 与级数∑n M 在 [a,b]上,都有|u n (x)|≤M n , n=1,2,…时,称级数∑n M 在[a,b]优于∑(x)u n ,或称∑n M 为∑(x)u n 的优级数.定理13.6:(阿贝尔判别法)设 (1)∑(x)u n 在区间I 上一致收敛; (2)对每一个x ∈I ,{v n (x)}是单调的;(3){v n (x)}在I 上一致有界,即对一切x ∈I 和正整数n ,存在正数M ,使得|v n (x)|≤M ,则级数∑(x)(x)v u n n 在I 上一致收敛. 证:由条件(1),∀ε>0,∃某正整数N ,使得 当n>N 及任何正整数p ,对一切x ∈I ,有∑++=pn 1n k k(x)u< ε.又由条件(2),(3),根据阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤[|v n+1(x)|+2|v n+p (x)|]ε≤3M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.定理13.7:(狄利克雷判别法)设(1)∑(x)u n 的部分和函数列S n (x)=∑=n1k k (x )u , (n=1,2,…)在I 上一致有界;(2)对于每一个x ∈I ,{v n (x)}是单调的; (3)在I 上v n (x)⇉0 (n →∞), 则级数∑(x)(x)v u n n 在I 上一致收敛.证:由条件(1),存在正数M ,对一切x ∈I ,有|S n (x)|≤M , ∴当n,p 为任何正整数时,∑++=pn 1n k k(x)u=|S n+p (x)-S n (x)|<2M.对任何一个x ∈I ,由条件(2)及阿贝尔引理得:∑++=pn 1n k k k(x)(x)v u≤2M[|v n+1(x)|+2|v n+p (x)|]又由条件(3),∀ε>0,∃正数N ,使得当n>N 时,对一切x ∈I , 有|v n (x)|<ε. ∴∑++=pn 1n k k k(x)(x)v u<6M ε.由函数项级数一致收敛的柯西准则知,∑(x)(x)v u n n 在I 上一致收敛.例6:证明:函数项级数∑++-1n nn n )n x ()1(在[0,1]上一致收敛. 证:记u n (x)=n )1(n -, v n (x)=nn x 1⎪⎭⎫⎝⎛+,则∑(x)u n 在[0,1]上一致收敛;又{v n (x)}单调增,且1≤v n (x)≤e, x ∈[0,1],即{ v n (x)}在[0,1]上一致有界.根据阿贝尔判别法知数∑++-1n n n )n x ()1(在[0,1]上一致收敛.例7:证明:若数列{a n }单调且收敛于0,则级数∑cosnx a n 在[α,2π-α] (0<α<π)上一致收敛.证:∵∑=n1k coskx = 21-2x 2sin x 21n sin ⎪⎭⎫ ⎝⎛+≤2x sin21+21≤2α2sin 1+21, x ∈[α,2π-α],∴级数∑cosnx 的部分和函数列在[α,2π-α]上一致有界. 令u n (x)=cosnx, v n (x)=a n ,∵数列{a n }单调且收敛于0, 根据狄利克雷判别法知,级数∑cosnx a n 在[α,2π-α]上一致收敛.注:只要{a n }单调且收敛于0,那么级数∑cosnx a n 在不包含2k π (k 为整数)的任何闭区间上都一致收敛.习题1、讨论下列函数列在所示区间D 上是否一致收敛或内闭一致收敛,并说明理由: (1)f n (x)=22n1x +, n=1,2,…,D=(-1,1); (2)f n (x)=22xn 1x+, n=1,2,…,D=R ;(3)f n (x)=⎪⎩⎪⎨⎧≤<++≤≤++-1x 1n 101n 1x 01x )1n (,,, n=1,2,…; (4)f n (x)=n x, n=1,2,…,D=[0,+∞);(5)f n (x)=nxsin , n=1,2,…,D=R.解:(1)∞n lim +→f n (x)=22∞n n 1x lim ++→ =|x|=f(x), x ∈D=(-1,1);又 D x sup ∈|f n (x)-f(x)|=|x |n 1x sup 22D x -+∈=|x |n1x n 1sup 222D x ++∈≤n 1→0(n →∞).∴22n 1x +⇉|x| (n →∞),x ∈(-1,1). (2)∞n lim +→f n (x)=22∞n x n 1xlim++→ =0=f(x), x ∈D=R ;又Dx sup ∈|f n (x)-f(x)|=22D x xn 1x sup+∈≤nx 2x =n 21→0(n →∞). ∴22x n 1x+⇉0 (n →∞),x ∈R.(3)当x=0时,∞n lim +→f n (x)=1;当0<x ≤1时,只要n>x1-1,就有f n (x)=0, ∴f n (x)在[0,1]上的极限函数为f(x)= ⎩⎨⎧≤<=1x 000x 1,,.又]1,0[x ∞n sup lim ∈+→|f n (x)-f(x)|=1≠0. ∴f n (x)在[0,1]上不一致收敛. (4)∞n lim +→f n (x)=nxlim ∞n +→=0=f(x), x ∈D=[0,+∞);又 )∞[0,+x ∞n sup lim ∈+→|f n (x)-f(x)|=nxsuplim )∞[0,+x ∞n ∈+→=+∞, ∴f n (x)在[0,+∞)上不一致收敛. 在任意[0,a]上,a][0,x ∞n sup lim∈+→|f n (x)-f(x)|=nalim ∞n +→=0, ∴f n (x)在[0,+∞)上内闭一致收敛.(5)∞n lim +→f n (x)=nx sin lim ∞n +→=0=f(x), x ∈D=R ;又 Rx ∞n sup lim ∈+→|f n (x)-f(x)|=nxsinsup lim Rx ∞n ∈+→=1, ∴f n (x)在R 上不一致收敛. 在任意[-a,a]上,a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|=nx sin sup lim a][-a,x ∞n ∈+→≤n a lim ∞n +→=0, ∴f n (x)在R 上内闭一致收敛.2、证明:设f n (x)→f(x), x ∈D , a n →0(n →∞) (a n >0). 若对每一个正整数n 有|f n (x)-f(x)|≤a n , x ∈D ,则{f n }在D 上一致收敛于f. 证:∵|f n (x)-f(x)|≤a n , x ∈D ,且a n →0(n →∞),∴a][-a,x ∞n sup lim∈+→|f n (x)-f(x)|= 0,∴f n (x)⇉f(x) (n →∞),x ∈D.3、判别下列函数项级数在所示区间上的一致收敛性:(1)∑1)!-(n x n , x ∈[-r,r];(2)∑+n221-n )x (1x (-1), x ∈R ;(3)∑n x n , |x|>r>1; (4)∑2n n x , x ∈[0,1];(5)∑+n x (-1)21-n , x ∈R ;(6)∑+1-n 22)x (1x , x ∈R. 解:(1)∀x ∈[-r,r], 有1)!-(n x n≤1)!-(n r n ,记u n =1)!-(n r n ,则n 1n u u +=n r →0(n →∞),∴∑1)!-(n r n 收敛,∴∑1)!-(n x n在[-r,r]上一致收敛.(2)记u n (x)=(-1)n-1, v n (x)=n22)x (1x +,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0≤n22)x (1x +≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n221-n )x (1x (-1)在R 上一致收敛. (3)∀|x|>r>1, 有n x n <n r n ,记u n =nrn,则n 1n u u +=rn 1n +→r 1<1 (n →∞), ∴∑n r n 收敛,∴∑n xn在|x|>r>1上一致收敛. (4)∀x ∈[0,1], 有2nnx ≤2n 1, 又∑2n 1收敛,∴∑2n n x 在[0,1]上一致收敛.(5)方法一:记u n (x)=(-1)n-1, v n (x)=nx 12+,则对任意的x ∈R ,有 |∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在R 上有界;又{v n (x)}单调减,且由0<nx 12+≤n 1→0(n →∞)知,v n (x)⇉0 (n →∞), 由狄利克雷判别法知∑+n x (-1)21-n 在R 上一致收敛.方法二:|∑++=+pn 1n k 21-k kx (-1)|≤1n x 12+++p n x 12++≤n 2.∀ε>0,只要取N=⎥⎦⎤⎢⎣⎡ε2,则当n>N 及任意自然数p ,就有|∑++=+pn 1n k 21-k kx (-1)|<ε,由柯西准则知,∑+n x (-1)21-n 在R 上一致收敛.方法三:由莱布尼兹判别法知,对R 上的任意一点x ,∑+nx (-1)21-n 收敛.又)x (R sup lim n R x ∞n ∈+→=1n 1lim ∞n ++→=0,∴∑+nx (-1)21-n 在R 上一致收敛.(6)当x ≠0时,该函数项级数的部分和函数S n (x)=x 2+22x 1x ++…+1-n 22)x (1x +=1+x 2-1-n 2)x (11+→1+x 2=S(x) (n →∞), ∴Rx sup ∈|R n (x)|=1-n 2Rx )x (11sup+∈=1→/0 (n →∞), ∴∑+1-n 22)x (1x 在R 上不一致收敛.4、设函数项级数∑)x (u n 在D 上一致收敛于S(x),函数g(x)在D 上有界. 证明:级数∑)x (g(x)u n 在D 上一致收敛于g(x)S(x).证:可设|g(x)|≤M ,x ∈D. ∵∑)x (u n 在D 上一致收敛于S(x), ∴∀ε>0,∃N>0,当n>N 时,对一切x ∈D ,都有|∑=n1k k (x )u -S(x)|<Mε. ∴|∑=n 1k k (x )g(x )u - g(x)S(x)|=|g(x)|·|∑=n1k k (x )u -S(x)|< ε. 得证!5、若区间I 上,对任何正整数n ,|u n (x)|≤v n (x),证明: 当∑)x (v n 在I 上一致收敛时,级数∑)x (u n 在I 上也一致收敛. 证:∵|u n (x)|≤v n (x),∴∑=+p1k k n |(x )u |≤∑=+p1k k n (x )v .又∑)x (v n 在I 上一致收敛,∴∀ε>0,∃N>0,当n>N 时, 对一切x ∈I 和一切自然数p ,都有|∑=+p1k k n (x )v |<ε.∴|∑=+p 1k k n (x )u |≤∑=+p 1k k n |(x )u |≤∑=+p 1k k n (x )v ≤|∑=+p1k k n (x )v |<ε,得证!6、设u n (x)(n=1,2,…)是[a,b]上的单调函数,证明:若∑)a (u n 与∑)b (u n 都绝对收敛,则∑)x (u n 在[a,b]绝对且一致收敛. 证:∵u n (x)(n=1,2,…)在[a,b]上单调,∴|u n (x)|≤|u n (a)|+|u n (b)|, 又∑|)a (u |n 与∑|)b (u |n 都收敛,∴正项级数|))b (u ||)a (u (|n n +∑收敛; 根据优级数判别法知,∑)x (u n 在[a,b]绝对且一致收敛.7、证明:{f n } 区间I 上内闭一致收敛于f 的充要条件是:对任意x 0∈I ,存在x 0的邻域U(x 0),使{f n }在U(x 0)∩I 上一致收敛于f. 证: [必要性]设{f n } 区间I 上内闭一致收敛于f ,对任意x 0∈I ,任意邻域U(x 0)∩I ⊂I ,根据内闭一致收敛的定义, {f n }在U(x 0)∩I 上一致收敛于f.[充分性]设任意x 0∈I ,存在x 0的一个邻域U(x 0), 使得{f n }在U(x 0)∩I 上一致收敛于f ,即 对一切x ∈I ,{f n }一致收敛于f ,∴{f n }在I 上一致收敛,从而内闭一致收敛.8、在[0,1]上定义函数列u n (x)=⎪⎩⎪⎨⎧≠=n 1x 0n 1x n1,,,证明: 级数∑)x (u n 在[0,1]上一致收敛,但它不存在优级数.证:∵|∑=+p1k k n (x )u |=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=⋯+=+==+⋯++++=++⋯+⋯+=+⋯++++=+⋯+++其它点p n 1x 2n 1x 1n 1x 00000p n 1p n 102n 102n 101n 1001n 1,,,,,∴当0≤x<1时,恒有|∑=+p1k k n (x )u |<n1,于是∀ε>0,取N=[ε1],则当n>N 时,对一切x ∈[0,1]和一切自然数p ,都有|∑=+p1k k n (x )u |<ε,∴级数∑)x (u n 在[0,1]上一致收敛.若∑)x (u n 在[0,1]上存在优级数∑n M ,取x=n1,则M n ≥|u n (x)|=|u n (n 1)|=n 1>0. 由∑n M 收敛知∑n1收敛,不合理! ∴∑)x (u n 不存在优级数.9、讨论下列函数列或函数项级数在所示区间D 上的一致连续性: (1)∑∞=++2n 2222]1)-(n )[x n (x 2n -1, D=[-1,1];(2)∑nn3x sin 2, D=R +; (3)∑++)nx 1](1)x -(n [1x 222, D=R +;(4)∑nx n , D=[-1,0]; (5)∑++1n 2x (-1)12n n, D=(-1,1);(6)∑∞=1n n sinnx, D=(0,2π).解:(1)∵∑++=++pn 1n k 2222]1)-(k )[x k (x 2k -1=2222n x 1p)(n x 1+-++<22n x 1+≤2n 1; ∴∀ε>0,取N=[ε1]+1,当n>N 时,对一切x ∈[-1,1]和一切自然数p ,都有∑++=++pn 1n k 2222]1)-(k )[x k (x 2k-1<ε,∴原级数在[-1,1]上一致收敛. (2)对任意自然数n ,取x n =n 32π⋅∈R +,有|n n 3x sin 2|=2n →/ 0 (n →∞), ∵原级数在R +上不一致收敛. (3)S n (x)=∑=⎥⎦⎤⎢⎣⎡+-+n1k 22kx 111)x-(k 11=1-2nx 11+→1(n →∞),+∈R x sup |S n (x)-1|=≥2n 1n 11⎪⎭⎫ ⎝⎛+=21(n=1,2,…);∵原级数在R +上不一致收敛.(4)记u n (x)=(-1)n, v n (x)=n(-x)n,则对任意的x ∈[-1,0],有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在[-1,0]上有界;又{v n (x)}单调减,且由0<n(-x)n≤n1→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在[-1,0]上一致收敛.(5)记u n (x)=(-1)n, v n (x)=1n 2x 12n ++,则对任意的x ∈(-1,1),有|∑=n1k k (x )u |≤1, (n=1,2,…),即{u n (x)}的部分和函数列在(-1,1)上有界;又{v n (x)}单调减,且由0<1n 2x 12n ++≤1n 21+→0(n →∞)知,v n (x)⇉0 (n →∞),由狄利克雷判别法知原级数在(-1,1)上一致收敛. (6)取ε0=21sin 31,对任意自然数N ,存在n=N ,p=N+1,x 0=1)2(N 1+∈(0,2π),使∑++=pn 1n k 0k )(x u =∑++=+1N 21N k 1)2(N k sin k1>∑++=1N 21N k 2k 1sin >21sin 21>ε0.∴原级数在(0,2π)上不一致收敛.10、证明:级数∑∞=-0n n n )x 1(x (-1)在[0,1]上绝对收敛并一致收敛,但由其各项绝对值组成的级数在[0,1]上却不一致收敛. 证:易见|R n |≤(1-x)x n+1. 又由((1-x)x n+1)’=(n+1)(1-x)x n -x n+1=(n+1)x n -(n+2)x n+1=(n+2)x n (2n 1n ++-x),知 当x=2n 1n ++时,|R n |≤(1-2n 1n ++)1n 2n 1n +⎪⎭⎫ ⎝⎛++=1n 2n 1n 2n 1+⎪⎭⎫ ⎝⎛+++<2n 1+, ∴[0,1]x ∞n sup lim ∈+→|R n |≤2n 1lim ∞n ++→=0. ∴原级数在[0,1]上一致收敛. 对级数∑∞=-0n nn)x 1(x (-1)各项绝对值组成的级数∑∞=-0n n )x 1(x ,∵)x 1(x lim n ∞n -+→=0, x ∈[0,1],∴原级数在[0,1]上绝对收敛.又∞n lim +→S n (x)=∞n lim +→(1-x)∑=nk k x =∞n lim +→(1-x n )=⎩⎨⎧=<≤1x 01x 01,,,可见[0,1]x ∞n sup lim ∈+→|R n |=1→/ 0 (n →∞),得证.11、设f 为定义在区间(a,b)内的任一函数,记f n (x)=n[nf(x)], n=1,2,…, 证明:函数列{f n }在(a,b)内一致收敛于f. 证:由|R n |=|n [nf(x)]-f(x)|=n nf(x )-[nf(x )]≤n11→0 (n →∞),得证!12、设{u n (x)}为[a,b]上正的递减且收敛于零的函数列,每一个u n (x)都是[a,b]上的单调函数. 证明:级数u 1(x)-u 2(x)+u 3(x)-u 4(x)+…在[a,b]上不仅收敛,而且一致收敛. 证:根据莱布尼茨判别法,该级数在[a,b]上收敛. 记v n (x)=(-1)n-1,则对任意的x ∈[a,b],有|∑=n1k k (x )v |≤1, (n=1,2,…),即{v n (x)}的部分和函数列在[a,b]上有界;又u n (x)在[a,b]上单调,且u n (a),u n (b)都收敛于零,∴0<u n (x)<u n (a)+u n (b)→0(n →∞),∴u n (x)⇉0 (n →∞), 由狄利克雷判别法知该级数在[a,b]上一致收敛.13、证明:若{f n (x)}在区间I 上一致收敛于0,则存在子列{in f },使得∑=n1k n if在I 上一致收敛.证:∵{f n (x)}在区间I 上一致收敛于0,∴对任意自然数i ,总存在自然数n i ,使得∀x ∈I ,有|i n f |<2i 1,又级数∑=n1k 2i1收敛,由魏尔斯特拉斯判别法知,∑=n1k n if 在I 上一致收敛.。

函数列与函数项级数

函数列与函数项级数

第十三章 函数列与函数项级数(12学时)§1 一致收敛性教学目的: 让学生掌握函数列与函数项级数一致收敛的定义及其判别方法.教学重点难点:一致收敛定义、一致收敛的柯西准则、一致收敛的充要条件、一致收敛的优级数判别法、阿贝耳判别法和狄利克雷判别法.一致收敛与非一致收敛的定义的几何解释、例3、阿贝耳判别法和狄利克雷判别法的应用和证明.学时安排: 6学时 教学方法: 讲授法. 教学过程:我们知道,可以用收敛数列(或级数)来表示或定义一个数,在此,将讨论如何用函数列(或函数项级数)来表示或定义一个函数。

一 函数列及其一致收敛性。

设ΛΛ,,,,21n f f f (1)是一列定义在同一数集E 上的函数,称为定义在E 上的函数列。

也可简记为: }{n f 或 n f , Λ,2,1=n 。

设E x ∈0,将0x 代入ΛΛ,,,,21n f f f 得到数列:ΛΛ),(,),(),(00201x f x f x f n (2)若数列(2)收敛,则称函数列(1)在点0x 收敛,0x 称为函数列(1)的收敛点。

若数列(2)发散,则称函数列(1)在点0x 发散。

则称函数列(1)在数集E D ⊂上每一点都收敛,则称(1)在数集D 上收敛。

这时D x ∈∀,都有数列)}({x f n 的一个极限值与之对应,由这个对应法则就确定了D 上的一个函数,称它为函数列}{n f 的极限函数。

记作f 。

于是,有)()(lim x f x f n n =∞→, D x ∈,或 )()(x f x f n →)(∞→n ,D x ∈。

函数列极限的N -ε定义 对每一个固定的D x ∈,对0>∀ε,0>∃N (注意:一般说来N 值的确定与ε和x 的值都有关),使得当N n >时,总有 ε<-)()(x f x f n 。

使函数列}{n f 收敛的全体收敛点的集合,称为函数列}{n f 的收敛域。

例1 设nn x x f =)(,Λ,2,1=n 为定义在),(∞-∞上的函数列,证明它的收敛域是]1,1(-,且有极限函数 ⎩⎨⎧=<=1,11,0)(x x x f (3)证 任给0>ε(不妨设1<ε),当10<<x 时,由于nn x x f x f =-)()(,故只要取xx N ln ln ),(εε=,则当),(x N n ε>时,就有ε<-)()(x f x f n 。

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-函数列与函数项级数(圣才出品)

华东师范大学数学系《数学分析》(第4版)(下册)课后习题-函数列与函数项级数(圣才出品)

是单调递减的.
又对任意

由狄利克雷判别法知
致收敛.
(3)因为|x|>r≥1,所以

上一
当 r>1 时,因级数
收敛,所以 在| x |>r>1 上一致收敛.
3 / 23
圣才电子书

当 r=1 时,
十万种考研考证电子书、题库视频学习平台
所以级数
上不一致收敛.
(4)因
时.
,而
上不一致收敛. 考虑区间[0,M]时,
所以 在[0,M]上一致收敛且
上内闭一致收敛.
(5)任意给定的
(i)
,考虑区间[-1,1]时,
由(ii)知 在[0,+∞)
(ii)D=(-∞,+∞)时.
故 但由(i)知 在
所以
在(-∞,+∞)上不一致收敛.
上内闭一致收敛.
2.证明:设
2 / 23
若对每一个正整数 n 有
证明:必要性
总存在 的一个邻域 和 I 的一个内闭区间[a,b],使得
所以
而 在[a,b]上一致收敛于 f,因此 在
上一致收敛于 f.
充分性
由已知
使得 在
上一致收敛于
f.从而



显然,当
取遍[a,b]上所有点时,
覆盖[a,b].由有限覆盖定理,存在有限个区间覆盖[a,b].不妨设

,则当 n>N 时,
证明:不妨设存在 M≥0,对任意
有|g(x)|<M.因
在 D 上一致收敛于
S(x),故对任意
存在 N>0,当 n>N 时,对任意
,均有
从而,对任意
4 / 23
圣才电子书 十万种考研考证电子书、题库视频学习平台

函数项级数的概念

函数项级数的概念

1 =1+ x + x 2 + x3 + ⋅ ⋅ ⋅ + x n + ⋅ ⋅ ⋅ . 1− x
Jlin Institute of Chemical Technology
上页 下页 返回 退出
定理1(阿贝尔定理) 如 果 幂 级 数 ∑ anxn 当 x=x0(x0≠0) 时 收 敛 , 则 适 合 不 等 式 |x|<|x0|的一切x使幂级数∑anxn绝对收敛. 反之, 如果幂级数∑anxn 当x=x0 时发散, 则适合不等式 |x|>|x0|的一切x使幂级数∑anxn发散. >>>定理证明
上页 下页 返回 退出
二、幂级数及其收敛性
幂级数 在函数项级数中, 形如 a0+a1x+a2x2+ ⋅ ⋅ ⋅ +anxn+ ⋅ ⋅ ⋅ 的级数称为幂级数, 其中常数ai(i=1,2,⋅ ⋅ ⋅)叫做幂级数的系数. 幂级数举例: 幂级数 1+x+x2+x3+ ⋅ ⋅ ⋅ +xn + ⋅ ⋅ ⋅ 是公比为x的几何级数. 它在|x|<1时收敛, 在|x|≥1时发散. 因此它的收敛域为(−1, 1), 在收敛域内有
an+1 lim | |= lim n +1 =1 n→∞ an n →∞ n
故收敛半径为R=1. 所以收敛域为(−1, 1) .
Jlin Institute of Chemical Technology
上页
下页
返回
退出
定理2(收敛半径的求法) ∞ an +1 如果 lim | |= ρ , 则幂级数 ∑ an x n 的收敛半径 R 为: n →∞ an n =0 0 时 R = 1 , 当ρ=0 时 R=+∞, 当ρ=+∞时 R=0. 当ρ ≠ ρ

第十三章 函数列与函数项级数

第十三章 函数列与函数项级数
函数列(1)不一致收敛于的f充要条件:
存在某个正整数 0对任何正数N ,都有
D上某一点x'与自然数n' N , 使得
fn' (x') f (x') 0
定理13.1: 函数列{ fn}在数集D上一致收敛的充要条件
是:对任给正数,总存在正数N , 使得当n, m N时,对一切x D,都有 fn (x) fm (x)
第十三章 函数列与函数项级数
∮1 一致收敛性
㈠ 函数列及其一致收敛性
函数列: f1, f2.., fn ,..(1) 是一列定义在同一数集E上的函数,则称之为 定义在E上的函数列。
设x0 E,以x0代入(1)可得函数列: f1( x0 ), f2 ( x0 ),..fn ( x0 ),..(2)
fn (0) f (0) 0 , fn (1) f (1) 0 ,
即证得{ fn}在(1,1]上收敛,且有如题所示 的极限函数。
例2: 定义在(,)上的函数列fn (x) sin nx / n, n 1,2,...由. 于对任何实数x,都有sin nx / n
1/ n,故对任给的 0,只要n N 1/ , 就有sin nx / n 0 .
证明:必要性
设fn (x) f (x)(n ), x D,即对给任何 0
存在正数N,使得当n N时,对一切x D都
有 fn (x) f (x) / 2,于是当n, m N时,就可
得 fn (x) fm (x) fn (x) f (x) f (x) fm (x)
fn(x) f (x) f (x) fm(x) / 2 / 2
..
xn
..的部分和函数为Sn
(x)
1 xn 1 x

第十三章第二节幂级数

第十三章第二节幂级数

四、将函数展开成幂级数
五、初等函数的幂级数展开方法
六、幂级数简单应用
贵州航天职业技术学院 周学来
2019/10/27
第5页
第十三章 级数
§13.2 幂级数
一、函数项级数:

1、函数项级数: un(x) xI(a,b) n1
2、函数项级数的收敛域E

使 级 数un(x)收 敛 的 点 x称 为 级 数 的 n1
的收 . 敛域 [ 解 ] 问: 这个幂级数有什麽特点 ?
缺项!
利用达朗贝尔判别法
n l im u u n n 1 ((x x ))n l im 2 2 n n 1 x x 22 n n 1 1n l im 2 x22x2
当2x21时,即x 1时,级数收敛 2
第十三章 级数
第9页
2019/10/27
§13.2 幂级数
怎样求幂级数的收敛半径?

设 有 幂 anxn, 级 记 u n 数 anxn
n 0
考 察 lim u n1(x)lim an1xn1lim an1x
n u n(x) n anxn
a n n

[法2] 注意到 nxn1的通项系数是等差数, 列
n1
也可用代数方法求解:
S( x) 1 2x 3x2 nxn1
xS(x) x 2x2 3x3 nxn
(1 x)S(x) 1 x xn 1
1 x

n1
nxn1

级数
n(1)n1可以看成是幂 n级xn数 1
n1 3
n1
在x1处的值 3
第十三章 级数

数学分析之十三章函数列与函数项级数

数学分析之十三章函数列与函数项级数

连续 .即证: 对 0 , 0 , 当 | x x0 | 时, | f (x) f (x0 ) | . )
| f (x) f (x0) || f (x) fn(x) | | fn(x) fn(x0) | | fn(x0) f (x0) |
估计上式右端三项. 由一致收敛 , 第一、三两项
说明: 虽然函数序列 sn ( x) xn 在( 0, 1 )内处处 收敛于 s( x) 0 , 但 sn ( x)在( 0, 1 )内各点处收
敛于零的“快慢”程度是不一致的.
从下图可以看出:
y y sn ( x) x n (1,1)
n1
n2
n n410
n 30
o
1x
注意:对于任意正数r 1,这级数在[0,r] 上 一致收敛.
lim
n
sn
(
x)
s(
x)
lim
n
rn
(
x)
0
(x在收敛域上)
注意 函数项级数在某点x的收敛问题,实质上 是数项级数的收敛问题.
例 1 求级数 (1)n ( 1 )n的收敛域. n1 n 1 x 解 由达朗贝尔判别法
un1( x) n 1 1 (n )
un ( x) n 1 1 x 1 x
註 定理表明: 对于各项都连续且一致收敛
的函数列{ f n (x) }, 有
lim lim
xx0 n
fn (x)
lim lim
n xx0
fn (x)
即极限次序可换 .
3. 可积性定理
若在区间 [ a ,b ] 上函数列{ fn (x) }一致收
敛 , 且每个 f n (x) 在[ a , b ] 上连续. 则有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三章 函数项级数
选择题
1.设a
x n n =∞∑1()在(a,b)内任何区间(a 1,b 1)(a<a 1<b 1<b)内一致收敛,则在(a,b)内下面哪个
结论是错误的( )
(A)可逐项求导 (B)可逐项求积 (C)极限与求和可交换顺序 (D)级数收敛
2.下列函数列在所示区间D 上不一致收敛的是( ) (A)f x x n
n ()=
+221 D=(-1,1) (B) f x x n x n ()=+122 D=(-∞,+∞) (C)f x n x n ()= D=[0,+∞) (D) f x n x
n ()= D=[0,10] 填空题 1.f x x n n ()= n=1,2,… {f x n ()}在[0,1]上的极限函数是__________
2.⎪⎪⎪⎩
⎪⎪⎪⎨⎧≤<≤<-≤≤=110121222102)(22x n n x n x
n n n x x n x f n 的极限函数是________________________ 计算题
1.设S(x)=ne nx -∑ x>0,计算积分⎰3
ln 2ln )(dt t S 2..判断级数()-+∑11n n
n n x x
(x>0)的敛散性. 证明题
1.证明:函数f(x)=sin nx n
3∑在(-∞,∞)有连续的导函数. (10分) 2.设f 0(x)在[a , b]上连续,定义函数序列f n+1(x)=
f t dt n n a x (),,,,,=⎰012 证明f n (x)在[a , b]上一致收敛. (10分)
3.设f(x)在[121,]上的连续函数,那么当f(x)在[12
1,]有界且 f(1)=0时,{x f x n ()}在[12
,1]上一致收敛. (10 分)
4.设f x nx n x n ()=+122
求证 1)对任给的0<α<1,f x n () 在[α,1] 上一致收敛.
2) f x n ()在(0,1]上不一致收敛 (12分)
5.若在区间I 上,对任何自然数n,|),(|)(x v x u n n ≤证明:当
∑∞=1)(n n x v 在I 上一收敛时级数∑∞=1)(n n
x u 在I 上也一致收敛,且绝对收敛. (11分)
选择题答案
1.C 2.C
填空题答案
1.f x x x ()=≤<=⎧⎨
⎩0011
1 2.f ≡0 计算题答案
1. ne nx -在上连续且一致收敛[ln ,ln ]23
∴它在可逐积分[ln ,ln ]23 (得4分) ∴=⎰⎰∑-=∞s t dt ne dx nx n ()ln ln ln ln 23
23
1 (得6分) =[()()]121311211312
1n n n =∞∑-=-+-= (得8分)
2. 对交错级数()-∑1n
n
由莱布尼兹判别法知它收敛 (得3分) 而x x n
n
1+ 当x>1时,单增有界 ; x=1时,值为12 ; 当x<1时,单降为界 (得6分)
故由阿贝尔判别法知()-∑1n n x x n
n
1+收敛 (得8分) 证明题答案
1.证: (
sin )cos nx n nx n 32'= 而cos nx n n 221≤ (得2分)

12n ∑收敛知 ∑'(sin )nx n 3在(-∞+∞,)上一致收敛 (得2分)
而由
sin nx n n 331≤及13n ∑收敛知∑sin nx n 3收敛 (得6分)
∴(
s i n )∑'nx n 3= ∑cos nx n
2 (得8分) 又
cos nx n 2
在(-∞+∞,)上连续 且∑cos nx n 2在(-∞+∞,)上一致收敛 ∴∑cos nx n 2在(-∞+∞,)上连续. (得10分) 2.证: f x 0()在[a , b]上连续. f x m 0()≤ (得3分) 从而 f x m x a m b a 1()()()≤-≤- (得5分) f x m t a dt m b a a x
222()()!
()≤-≤-⎰ (得6分) ∴≤-f x m b a n n n
()()!
(得8分) 又 ()!b a n n
n -=∞
∑1 收敛 . ∴-→→∞lim ()!n n m b a n 0 (得9分) 从而
{}f x n ()一致收敛. (得10分)
3.证明: f x M x f x x f x n n ()lim (),(),≤=≠=⎧⎨⎩→∞
且0111 (得3分) 而f(1)=0,故lim ()n n x f x →∞
=0 (得5分) 又由于f(x)在x=1处连续,故∀>∃>εδ00,.
当1-δε<≤-=<x f x f f x 11时,()()() (得7分)
从而 当x ∈-[,),121δ时x f x M n n ()()-≤-→010δ (得8分)
当 x ∈-[,],11δ时x f x f x n ()()-≤<0ε (得9分)
因此,{}
x f x n ()一致收敛 . (得10分) 4.证明:先求极限函数f(x) ∀∈x (,]01易知lim
n nx n x →∞+=1022 即f(x)=0 (得2分) (1)因为|)()(x f x f n -|=nx n x n n n n n 1112222222+≤+<=ααα (得4分) 对∀>x 0 取 N=[1
2εα] 则当n>N 时
对∀∈x [,]α1 必有| f n (x)-f(x)|≤<1
2n αε
按定义有f n (x) 在[α,1]上一致收敛 (得6分)
(2)因为df x dx n n x n x n ()()()
=-+1122222对每个自然数n,x n =1n 是f n (x) 的唯一极大值点. 因而必是连续函数
)(x f n 在[0,1]的最大值点 (得9分)
显然也是它在(0,1] 的最大值点,所以sup ()()01<≤-x n f x f x =2
1)1()()1(m ax 2210===+≤<n f x f x n nx n n n x 故f n (x)在(0,1]不一致收敛 (得12分)
5.证 先证一致收敛性,对∀ε>0,由
v x n ()∑在I 上一致收敛,存在N(ε),当n>N 时, 对∀自然数p 和x ∈I
v x v x v x n n n p ++++++<12()()() ε (得5分) 于是 u x u x u x u x n n p n n p ++++++≤++11()()()()
≤++<++v x v x n n P 1()() ε (得8分) 对∀自然数p 和x ∈I 成立
即u x I n
()在上一致收敛∑ (得10分) 又u x v x n n ()()∑∑≤<+∞ ∀x ∈I

u x I n ∑()在上绝对收敛 (得11分)。

相关文档
最新文档