初中数学经典难题(含答案)资料讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
经典难题(一)
1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO . 求证:CD =GF .(初二)
2、已知:如图,P 是正方形ABCD 内点,∠PAD =∠PDA =150. 求证:△PBC 是正三角形.(初二)
3、如图,已知四边形ABCD 、A 1B 1C 1D 1都是正方形,A 2、B 2、C 2、D 2分别是AA 1、BB 1、
CC 1、DD 1的中点.
求证:四边形A 2B 2C 2D 2是正方形.(初二)
4、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC
的延长线交MN 于E 、F .
求证:∠DEN =∠F .
A P C D
B A F G C
E B
O D D 2 C 2
B 2 A 2
D 1 C 1 B 1
C B D
A A 1 A N F
E C
D
M
B
P C
G F
B Q
A D E
1、已知:△ABC 中,H 为垂心(各边高线的交点),O (1)求证:AH =2OM ; (2)若∠BAC =600,求证:AH =AO .(初二)
2、设MN 是圆O 外一直线,过O 作OA ⊥MN 于A ,自A 及D 、E ,直线EB 及CD 分别交MN 于P 、Q . 求证:AP =AQ .(初二)
3、如果上题把直线MN 由圆外平移至圆内,则由此可得以下命题:
设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)
4、如图,分别以△ABC 的AC 和BC 为一边,在△ABC 的外侧作正方形ACDE 和正方形
CBFG ,点P 是EF 的中点.
求证:点P 到边AB 的距离等于AB 的一半.(初二)
· A D H
E M C B O · G
A
O D B E
C Q P N
M · O Q P
B D
E
C N M · A
1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .
求证:CE =CF .(初二)
2、如图,四边形ABCD 为正方形,DE ∥AC ,且CE =CA ,直线EC 交DA 延长线于F .
求证:AE =AF .(初二)
3、设P 是正方形ABCD 一边BC 上的任一点,PF ⊥AP ,CF 平分∠DCE .
求证:PA =PF .(初二)
4、如图,PC 切圆O 于C ,AC 为圆的直径,PEF 为圆的割线,AE 、AF 与直线PO 相交于
B 、D .求证:AB =D
C ,BC =A
D .(初三)
D A
F D E C B E D
A C
B F A E P
C B A O
D B
F
A
E
C
P
1、已知:△ABC 是正三角形,P 是三角形内一点,PA =3,PB =4,PC =5.
求:∠APB 的度数.(初二)
2、设P 是平行四边形ABCD 内部的一点,且∠PBA =∠PDA . 求证:∠PAB =∠PCB .(初二)
3、Ptolemy (托勒密)定理:设ABCD 为圆内接凸四边形,求证:AB ·CD +AD ·BC =AC ·BD . (初三)
4、平行四边形ABCD 中,设E 、F 分别是BC 、AB 上的一点,AE 与CF 相交于P ,且 AE =CF .求证:∠DPA =∠DPC .(初二)
A
P C B P A D C
B C B D
A
F P
D E C B A
1、设P 是边长为1的正△ABC 内任一点,l =PA +PB +PC ,求证:3≤L <2.
2、已知:P 是边长为1的正方形ABCD 内的一点,求PA +PB +PC 的最小值.
3、P 为正方形ABCD 内的一点,并且PA =a ,PB =2a ,PC =3a ,求正方形的边长.
4、如图,△ABC 中,∠ABC =∠ACB =800,D 、E 分别是AB 、AC 上的点,∠DCA =300,∠EBA =200,求∠BED 的度数.
A
P
C
B
A
C
B
P
D
E
D
C
B A
A C
B
P
D
经典难题(一)1、
2、
3、
4、
经典难题(二)1、
2、
4、
经典难题(三)1、
3、4、
1、
2、
3、
4、证明:过D 作DQ ⊥AE ,DG ⊥CF,并连接DF 和DE ,如右图所示 则S △ADE =2
1S ABCD =S △DFC ∴21 AE ﹒DQ = 2
1 DG ﹒FC 又∵AE=FC,
∴DQ=DG,
∴PD 为∠APC 的角平分线,
∴∠DPA=∠DPC