2018-2019学年广东省深圳市龙华区八年级(上)期末数学试卷
2018-2019学年 八年级(上)期末数学试卷(有答案和解析)(2)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.下列图形是轴对称图形的是()A.B.C.D.2.病毒H7N9的直径为0.000000028米,用科学记数法表示这个病毒直径的大小,正确的是()A.28×10﹣9B.2.8×10﹣8C.0.28×10﹣7D.2.8×10﹣63.若分式有意义,则x的取值范围是()A.x≠0B.x≠3C.x≠﹣3D.x≠﹣4.下列式子正确的是()A.(2a2)3=6a6B.2a2×a4=2a8C.(a+2)2=a2+4D.a﹣2=5.如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是()A.∠B=∠E B.BC∥EF C.∠BCA=∠F D.∠A=∠EDF6.如图,直尺经过一副三角尺中的一块三角板DCB的顶点B,若∠C=30°,∠ABC=20°,则∠DEF度数为()A.25°B.40°C.50°D.80°7.若等腰三角形有两条边的长度为5和8,则此等腰三角形的周长为()A.18或21B.21C.24或18D.188.在平面直角坐标系内,点A(x﹣6,2y+1)与点B(2x,y﹣1)关于y轴对称,则x+y的值为()A.0B.﹣1C.2D.﹣39.如图,在△ABC中,AB=AC,点E在BC边上,在线段AC的延长线上取点D,使得CD=CE,连接DE,CF是△CDE的中线,若∠FCE=52°,则∠A的度数为()A.38°B.34°C.32°D.28°10.体育测试中,甲和乙进行400米跑测试,甲的速度是乙的1.6倍,甲比乙少用了30秒,设乙的速度是x米/秒,则所列方程正确的是()A.40×1.6x﹣30x=400B.﹣=30C.﹣=30D.﹣=3011.如图,在Rt△ABC中,∠A=30°,DE垂直平分AB,垂足为点E,交AC于D点,连接BD,若DE=2,则AC的值为()A.4B.6C.8D.1012.在△ABC中,∠A=40°,点D在BC边上(不与C、D点重合),点P、点Q分别是AC、AB 边上的动点,当△DPQ的周长最小时,则∠PDQ的度数为()A.140°B.120°C.100°D.70°二、填空题(本题共6小题,每小题4分,共24分)13.因式分解:x2﹣9=.14.从3cm、4cm、5cm、7cm的四根小棒中任取三根,能围成个三角形.15.若式子a2﹣2a+1+|b﹣2|=0,则ab=.16.如图,在△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,BD:DC=4:3,点D到AB 的距离为6,则BC等于.17.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.18.如图,CA⊥BC,垂足为C,AC=2cm,BC=6cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三、解答题(本题共8小题,共90分)19.(8分)解分式方程:=+20.(10分)先化简,后求值:(1﹣)÷(),其中a=3.21.(10分)已知:如图,BC∥EF,点C,点F在AD上,AF=DC,BC=EF.求证:△ABC≌△DEF.22.(12分)定义:任意两个数a,b,按规则c=b2+ab﹣a+7扩充得到一个新数c,称所得的新数c为“如意数”.(1)若a=2,b=﹣1,直接写出a,b的“如意数”c;(2)如果a=3+m,b=m﹣2,试说明“如意数”c为非负数.23.(12分)如图,点E是△ABC的BC边上的一点,∠AEC=∠AED,ED=EC,∠D=∠B.(1)求证:AB=AC;(2)若∠D比∠BAC大15°,求∠BAC的度数.24.(12分)某商场购进甲、乙两种空调共40台.已知购进一台甲种空调比购进一台乙种空调进价多0.2万元;用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍.请解答下列问题:(1)求甲、乙两种空调每台进价各是多少万元?(2)若商场预计投入资金不多于11.5万元用于购买甲、乙两种空调,且购进甲种空调至少14台,商场有哪几种购进方案?25.(12分)等腰直角△ABC中,BC=AC,∠ACB=90°,将该三角形在直角坐标系中放置.(1)如图(1),过点A作AD⊥x轴,当B点为(0,1),C点为(3,0)时,求OD的长;(2)如图(2),将斜边顶点A、B分别落在y轴上、x轴上,若A点为(0,1),B点为(4,0),求C点坐标;26.(14分)数学兴趣活动课上,小明将等腰△ABC的底边BC与直线1重合,问:(1)已知AB=AC=6,∠BAC=120°,点P在BC边所在的直线l上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小明发现AP的最小值是;(2)为进一步运用该结论,小明发现当AP最短时,在Rt△ABP中,∠P=90°,作了AD平分∠BAP,交BP于点D,点E、F分别是AD、AP边上的动点,连接PE、EF,小明尝试探索PE+EF 的最小值,为转化EF,小明在AB上截取AN,使得AN=AF,连接NE,易证△AEF≌△AEN,从而将PE+EF转化为PE+EN,转化到(1)的情况,若BP=3,AB=6,AP=3,则PE+EF 的最小值为;(3)请应用以上转化思想解决问题(3),在直角△ABC中,∠C=90°,∠B=30°,AC=10,点D是CD边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,求线段CP的最小值.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:0.000000028用科学记数法表示2.8×10﹣8,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵分式有意义,∴x+3≠0.解得:x≠﹣3.故选:C.【点评】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.【分析】根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂解答即可.【解答】解:A、(2a2)3=8a6,错误;B、2a2×a4=2a6,错误;C、(a+2)2=a2+4a+4,错误;D、,正确;故选:D.【点评】此题考查单项式乘单项式、幂的乘方、完全平方公式和负整数幂,关键是根据单项式乘单项式、幂的乘方、完全平方公式和负整数幂法则解答.5.【分析】等三角形的判定方法SAS是指有两边对应相等,且这两边的夹角相等的两三角形全等,已知AB=DE,BC=EF,其两边的夹角是∠B和∠E,只要求出∠B=∠E即可.【解答】解:∵AB=DE,BC=EF,∴要使△ABC≌△DEF,只要满足∠B=∠E或AC=BC即可,故选:A.【点评】本题考查了对平行线的性质和全等三角形的判定的应用,注意:有两边对应相等,且这两边的夹角相等的两三角形才全等,题目比较典型,但是一道比较容易出错的题目.6.【分析】依据三角形外角性质,即可得到∠BAD,再根据平行线的性质,即可得到∠DEF的度数.【解答】解:∵∠C=30°,∠ABC=20°,∴∠BAD=∠C+∠ABC=50°,∵EF∥AB,∴∠DEF=∠BAD=50°,故选:C.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.7.【分析】根据等腰三角形的性质,分两种情况:①当腰长为5时,②当腰长为8时,解答出即可.【解答】解:根据题意,①当腰长为5时,周长=5+5+8=18;②当腰长为8时,周长=8+8+5=21.故选:A.【点评】本题考查了等腰三角形的性质,难点在于分情况讨论并利用三角形的三边关系判断是否能组成三角形.8.【分析】直接利用关于y轴对称点的性质进而得出x,y的值,即可得出答案.【解答】解:∵点A(x﹣6,2y+1)与点B(2x,y﹣1)关于y轴对称,∴2y+1=y﹣1,x﹣6=﹣2x解得:y=﹣2,x=2,故x+y=0.故选:A.【点评】此题主要考查了关于y轴对称点的性质,正确记忆横纵坐标的符号是解题关键.9.【分析】利用等腰三角形的三线合一求出∠ECD,再求出∠ACB即可解决问题.【解答】解:∵CE=CD,FE=FD,∴∠ECF=∠DCF=52°,∴∠ACB=180°﹣104°=76°,∵AB=AC,∴∠B=∠ACB=76°,∴∠A=180°﹣152°=28°,故选:D.【点评】本题考查等腰三角形的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.10.【分析】先分别表示出甲和乙跑400米的时间,再根据甲比乙少用了30秒列出方程即可.【解答】解:设乙的速度是x米/秒,则甲跑400米用的时间为秒,乙跑400米用的时间为秒,∵甲比乙少用了30秒,∴方程是﹣=30,故选:C.【点评】此题主要考查了由实际问题抽象出分式方程,关键是弄清题意,表示出甲、乙的速度,以及甲和乙跑400米所用的时间,根据时间差列方程即可.11.【分析】依据含30°角的直角三角形的性质,即可得到AD的长,再根据角平分线的性质,即可得到CD的长,进而得出AC的长.【解答】解:∵∠A=30°,DE垂直平分AB,DE=2,∴AD=BD=4,∴∠ABD=∠A=30°,∴∠DBC=∠ABD=30°,即BD平分∠ABC,又∵DE⊥AB,DC⊥BC,∴CD=DE=2,∴AC=4+2=6,故选:B.【点评】此题考查了线段垂直平分线的性质、等腰三角形的性质以及含30°角的直角三角形的性质.此题注意掌握数形结合思想的应用.12.【分析】作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB于Q,则此时△DPQ的周长最小,根据四边形的内角和得到∠EDF=140°,求得∠E+∠F=40°,根据等腰三角形的性质即可得到结论.【解答】解:作D关于AC的对称点E,作D关于AB的对称点F,连接EF交AC于P,交AB 于Q,则此时△DPQ的周长最小,∵∠AGD=∠ACD=90°,∠A=40°,∴∠EDF=140°,∴∠E+∠F=40°,∵PE=PD,DQ=FQ,∴∠EDP=∠E,∠QDF=∠F,∴∠CDP+∠QDG=∠E+∠F=40°,∴∠PDQ=140°﹣40°=100°,故选:C.【点评】本题考查了轴对称﹣最短路线问题,等腰三角形的性质,三角形的内角和,正确的作出图形是解题的关键.二、填空题(本题共6小题,每小题4分,共24分)13.【分析】原式利用平方差公式分解即可.【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).【点评】此题考查了因式分解﹣运用公式法,熟练掌握平方差公式是解本题的关键.14.【分析】三角形三条边的特性:任意两边的长度和大于第三边,任意两边的长度差小于第三边.根据此特性,进行判断.【解答】解:3cm、4cm、5cm和7cm的四根木棒中,其中共有以下方案可组成三角形:取3cm,4cm,5cm;由于5﹣3<4<5+3,能构成三角形;取3cm,5cm,7cm;由于7﹣3<5<7+3,能构成三角形;取4cm,5cm,7cm;由于7﹣4<5<7+4,能构成三角形.所以有3种方法符合要求.故答案为:3.【点评】本题主要考查三角形三条边的关系:任意两边的长度和大于第三边,任意两边的长度差小于第三边.15.【分析】直接利用绝对值的性质以及偶次方的性质分析得出答案.【解答】解:∵a2﹣2a+1+|b﹣2|=0,∴(a﹣1)2+|b﹣2|=0,∴a﹣1=0,b﹣2=0,解得:a=1,b=2,则ab=2.故答案为:2.【点评】此题主要考查了非负数的性质,正确得出a,b的值是解题关键.16.【分析】先根据角平分线的性质得出CD的长,再由BD:DC=4:3求出BD的长,进而可得出结论.【解答】解:∵在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,点D到AB的距离为6,∴CD=6.∵BD:DC=4:3,∴BD=CD=×6=8,∴BC=6+8=14.故答案为:14.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.17.【分析】根据共走了45米,每前进5米左转一次可求得左转的次数,则已知多边形的边数,再根据外角和计算左转的角度.【解答】解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.【点评】本题考查了多边形的计算,正确理解多边形的外角和是360°是关键.18.【分析】此题要分两种情况:①当P在线段BC上时,②当P在BQ上,再分别分两种情况AC =BP或AC=BN进行计算即可.【解答】解:①当P在线段BC上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=6﹣2=4,∴点P的运动时间为4÷1=4(秒);②当P在线段BC上,AC=BN时,△ACB≌△NBP,这时BC=PN=6,CP=0,因此时间为0秒;③当P在BQ上,AC=BP时,△ACB≌△PBN,∵AC=2,∴BP=2,∴CP=2+6=8,∴点P的运动时间为8÷1=8(秒);④当P在BQ上,AC=NB时,△ACB≌△NBP,∵BC=6,∴BP=6,∴CP=6+6=12,点P的运动时间为12÷1=12(秒),故答案为:0或4或8或12.【点评】本题考查三角形全等的判定方法,判定两个三角形全等时必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.三、解答题(本题共8小题,共90分)19.【分析】找出分式方程的最简公分母,去分母后转化为整式方程,求出整式方程的解得到x的值,经检验即可得到原分式方程的解.【解答】解:去分母:4=3x﹣6+x+2解得:x=2,经检验当x=2时,x﹣2=0,所以x=2是原方程的增根,此题无解【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=(﹣)÷=•=,当a=3时,原式==2.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.21.【分析】首先利用等式的性质可得AC=DF,根据平行线的性质可得∠ACB=∠DFE,然后再利用SAS判定△ABC≌△DEF即可.【解答】证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,∵BC∥EF,∴∠ACB=∠DFE,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.22.【分析】(1)本题是一道自定义运算题型,根据题中给的如意数的概念,代入即可得出结果(2)根据如意数的定义,求出代数式,分析取值范围即可【解答】解:(1)∵a=2,b=﹣1∴c=b2+ab﹣a+7=1+(﹣2)﹣2+7=4(2)∵a=3+m,b=m﹣2∴c=b2+ab﹣a+7=(m﹣2)2+(3+m)(m﹣2)﹣(3+m)+7=2m2﹣4m+2=2(m﹣1)2∵(m﹣1)2≥0∴“如意数”c为非负数【点评】本题考查了因式分解,完全平方式(m﹣1)2的非负性,难度不大.23.【分析】(1)根据SAS证明△AED与△AEC全等,进而利用全等三角形的性质和等腰三角形的判定解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.【解答】证明:(1)在△AED与△AEC中,∴△AED≌△AEC(SAS),∴∠D=∠C,∵∠D=∠B,∴∠B=∠C,∴AB=AC;(2)∵∠B=∠C,∵∠D比∠BAC大15°,∴∠BAC+∠BAC+15°+∠BAC+15°=180°,解得,∠BAC=50°.【点评】此题考查全等三角形的判定和性质,关键是根据SAS证明△AED与△AEC全等.24.【分析】(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据“用36万元购进乙种空调数量是用18万元购进甲种空调数量的4倍”列出方程,解之可得;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,由“投入资金不多于11.5万元”列出关于m的不等式,解之求得m的取值范围,继而得到整数m的可能取值,从而可得所有方案.【解答】解:(1)设甲空调每台的进价为x万元,则乙空调每台的进价为(x﹣0.2)万元,根据题意,得:=4×,解得:x=0.4,经检验:x=0.4是原分式方程的解,所以甲空调每台的进价为0.4万元,则乙空调每台的进价为0.2万元;(2)设购进甲种空调m台,则购进乙种空调(40﹣m)台,根据题意,得:0.4m+0.2(40﹣m)≤11.5,解得:m≤17.5,又m≥14,∴14≤m≤17.5,则整数m的值可以是14,15,16,17,所以商场共有四种购进方案:①购进甲种空调14台,乙种空调26台;②购进甲种空调15台,乙种空调25台;③购进甲种空调16台,乙种空调24台;④购进甲种空调17台,乙种空调23台.【点评】此题考查了分式方程的应用,以及一元一次不等式的应用,弄清题中的等量关系是解本题的关键.25.【分析】(1)通过证明△BOC≌△CDA,可得CD=OB=1,即可求OD的长;(2)过点C作CF⊥y轴,CE⊥x轴,通过证明△ACF≌△BCE,可得BE=AF,CF=CE,可证四边形CEOF是正方形,可得CF=OE=OF=CE,即可求点C坐标.【解答】解:(1)∵B点为(0,1),C点为(3,0)∴OB=1,OC=3∵∠ACB=90°,∴∠BCO+∠ACD=90°,且∠BCO+∠OBC=90°∴∠ACD=∠OBC,且AC=BC,∠BOC=∠ADC=90°,∴△BOC≌△CDA(AAS)∴CD=OB=1∴OD=OC+CD=4(2)如图,过点C作CF⊥y轴,CE⊥x轴,∵A点为(0,1),B点为(4,0),∴AO=1,BO=4∵CF⊥y轴,CE⊥x轴,∠AOB=90°,∴四边形CEOF是矩形,∴∠ECF=90°,∴∠FCA+∠ACE=90°,且∠ACE+∠BCE=90°,∴∠FCA=∠BCE,且AC=BC,∠CFA=∠CEB=90°,∴△ACF≌△BCE(AAS)∴BE=AF,CF=CE,∴矩形CEOF是正方形∴CF=OE=OF=CE,∴OA+AF=OB﹣BE∴2AF=OB﹣OA∴AF=∴OF=∴点C(,)【点评】本题考查了全等三角形的判定和性质,坐标与图形性质,等腰直角三角形的性质等知识,灵活运用这些性质进行推理是本题的关键.26.【分析】(1)如图1中,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.由△EAN≌△EAF (SAS),推出EN=EF,推出PE+EF=PE+NE,推出当P,E,N共线且与PH重合时,PE+PF 的值最小,最小值为线段PH的长.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.【解答】解:(1)如图1中,作AH⊥BC于H.∵AB=AC=6,AH⊥BC,∴∠BAH=∠CAH=∠BAC=60°,∴AH=AB•cos60°=3,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为3.故答案为3.(2)如图2中,在AB上截取AN,使得AN=AF,连接NE.作PH⊥AB于H.∵∠EAN=∠EAF,AN=AF,AE=AE,∴△EAN≌△EAF(SAS),∴EN=EF,∴PE+EF=PE+NE,∴当P,E,N共线且与PH重合时,PE+PF的值最小,最小值为线段PH的长,∵•AB•PH=•PA•PB,∴PH==,∴PE+EF的最小值为.故答案为.(3)如图3中,在AB上取一点K,使得AK=AC,连接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC时,KD的值最小,最小值为5,∴PC的最小值为5.【点评】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考压轴题.。
深圳市八年级上册期末考试数学试卷含答案(共3套)
广东省深圳市2018--2019学年八年级上学期期末考试数学试卷一、选择题(本大题共12小题,共36.0分)1.-2018的相反数是()A. 2018B.C.D.2.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2014年的“双11”网上促销活动中,天猫的支付交易额突破570亿元,将570亿元用科学记数法表示为()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.下面哪个图形不能折成一个正方体()A. B.C. D.5.如图轴对称图形的是()A. B. C. D.6.若-2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A. 0B.C. 1D. 27.一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是()A. 3,2B. 2,2C. 2,3D. 2,48.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. B. C. 4 D. 59.若x2-2(k-1)x+9是完全平方式,则k的值为()A. B. C. 或3 D. 4或10.关于x的一次函数y=kx+k2+1的图象可能正确的是()A. B. C. D.11.若不等式组有2个整数解,则a的取值范围为()A. B. C. D.12.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共12.0分)13.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是______.14.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AED=______.15.如图,已知点A1的坐标为(0,1),直线1为y=x.过点A1作A1B1⊥y轴交直线1于点B1,过点B1作A2B1⊥1交y轴于点A2;过点A2作A2B2⊥y轴交直线1于点B2,过点B2作A3B2⊥1交y轴于点A3,……,则A n B n的长是______.16.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.三、计算题(本大题共1小题,共9.0分)17.(1)一季度,厨具店购进这两种电器共30台,用去了5600元,并且全部售完,问厨具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度厨具店决定采购电饭煲和电压锅共50台,且电饭煲的数量不大于电压锅的,请你通过计算判断,如何进货厨具店赚钱最多?最大利润是多少?四、解答题(本大题共6小题,共43.0分)18.计算:-(π-3.14)0+|-6|+()-2.19.解不等式组:,并把解集在数轴上表示出来.20.我校八年级的体育老师为了了解本年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如图两幅不完整的统计图(说明:每位学生只选一种自己最喜欢的一种球类),请根据这两幅图形解答下列问题:(1)在本次调查中,体育老师一共调查了多少名学生?(2)将两个不完整的统计图补充完整;(3)求出乒乓球在扇形中所占的圆心角的度数?(4)已知该校有760名学生,请你根据调查结果估计爱好足球和排球的学生共计多少人?21.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AE=3,ED=,求BC的长度.22.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.23.如图,直线y=2x-2与x轴交于点A,与y轴交于点B.点C是该直线上不同于B的点,且CA=AB.(1)写出A、B两点坐标;(2)过动点P(m,0)且垂直于x轴的直线与直线AB交于点D,若点D不在线段BC上,求m的取值范围;(3)若直线BE与直线AB所夹锐角为45°,请直接写出直线BE的函数解析式.答案和解析1.【答案】A【解析】解:-2018的相反数是2018.故选:A.只有符号不同的两个数叫做互为相反数.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【答案】B【解析】解:将570用科学记数法表示为5.70×1010.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:A、a3和a4不是同类项不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选:B.根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.4.【答案】A【解析】解:根据正方体展开图的特征,A图不能折成正方体;B、C、D图能折成正方体.故选:A.根据正方体展开图的11种特征,A图不属于正方体展开图,不能折成正方体;B、D图属于正方体展开图的“1-4-1”型,能折成正方体;C图属于正方体展开图的“3-3”型,能折成正方体.据此解答.此题考查了展开图折叠成几何体,正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.5.【答案】D【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.【答案】C【解析】解:由-2a m b4与5a n+2b2m+n可以合并成一项,得,解得,m n=20=1.故选:C.根据-2a m b4与5a n+2b2m+n可以合并成一项,可得同类项,根据同类项的定义,可得m、n的值,根据乘方,可得答案.本题考查了合并同类项,利用同类项得出m、n的值是解题关键.7.【答案】C【解析】解:∵一组数据4,2,x,3,9的平均数为4,∴(4+2+x+3+9)÷5=4,解得,x=2,∴这组数据按照从小到大排列是:2,2,3,4,9,∴这组数据的众数是2,中位数是3,故选:C.根据一组数据4,2,x,3,9的平均数为4,可以求得x的值,从而可以将这组数据按照从小到大排列起来,从而可以求得这组数据的众数和中位数.本题考查众数、中位数、算术平均数,解答本题的关键是明确题意,会求一组数据的众数和中位数.8.【答案】C【解析】解:设BN=x,由折叠的性质可得DN=AN=9-x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9-x)2,解得x=4.故线段BN的长为4.故选:C.设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.【答案】D【解析】解:∵x2-2(k-1)x+9是完全平方式,∴k-1=±3,解得:k=4或-2,故选:D.利用完全平方公式的结构特征判断即可确定出k的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.10.【答案】C【解析】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选:C.根据图象与y轴的交点直接解答即可.本题考查一次函数的图象,考查学生的分析能力和读图能力.11.【答案】B【解析】解:解x<1得x<2.则不等式组的解集是a<x<2.则整数解是1,0.则-1≤a<0.故选:B.首先解第一个不等式求得不等式组的解集,然后根据整数解的个数确定整数解,则a的范围即可求得.此题考查的是一元一次不等式组的解法.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.【答案】C【解析】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选:C.根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.13.【答案】【解析】解:∵20个球中共有2个红球,∴任意摸出一个球是红球的概率是.故答案是:.本题属于比较简单的概率计算问题,用红球总数除以袋中球的总数即可.考查了概率的公式,此题是比较简单的概率计算问题,用符合要求的球的总数除以袋子中球的个数即可.14.【答案】110°【解析】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=40°,∴∠CAB=180°-40°=140°,∵AE平分∠CAB,∴∠EAB=70°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°-70°=110°,故答案为:110°.根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.15.【答案】2n-1【解析】解:∵点A1的坐标为(0,1),∴点B1的坐标为(1,1),A1B1=1.∵A2B1⊥1交y轴于点A2,直线1为y=x,∴△A1A2B1为等腰直角三角形,∴点A2的坐标为(0,2),点B2的坐标为(2,2),∴A2B2=2.同理,可得:A3B3=4,A4B4=8,…,∴A n B n=2n-1.故答案为:2n-1.由点A1的坐标可得出点B1的坐标,进而可得出A1B1的长,由A2B1⊥1交y轴于点A2结合直线1为y=x可得出△A1A2B1为等腰直角三角形,根据等腰直角三角形的性质可得出点A2的坐标,利用一次函数图象上点的坐标可得出点B2的坐标,进而可得出A2B2的长,同理,可得出A3B3,A4B4,…的长,再根据各线段长度的变化可找出变化规律“A n B n=2n-1”,此题得解.本题考查了一次函数图象上点的坐标特征、等腰直角三角形以及规律型:点的坐标,根据线段长度的变化找出变化规律“A n B n=2n-1”是解题的关键.16.【答案】4【解析】解:如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=4,即BE取最小值为4,∴BM+MN的最小值是4.故答案为:4.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.17.【答案】解:(1)每件电饭锅的利润:250-200=50(元);每件电压锅的利润:200-160=40(元)设购进的电饭煲x台,则购进的电压锅(30-x)台.由题意得:200x+160(30-x)=5600解得:x=20则电压锅:30-20=10(台)总利润=50×20+40×10=1400 (元)答:橱具店在该买卖中赚了1400元.(2)设采购的电饭煲有n台,则采购的电压锅有(50-n)台由题意得:总利润z=50n+40 (50-n)=200+10n∵n≤(50-n),∴n≤当n=18时,总利润z最大,则最大的利润为200+10×18=380(元)答:采购18台电饭煲,32台电压锅时,进货厨具店赚钱最多,最大利润是380元.【解析】通过审题,表格显示了两种商品的进价和售价;(1)题目给出两种电器的总数量和进货的总花费;设其中一个电器购进x台,则另一种电器购进(30-x)台,由购进总费用可以求各种电器的数量,然后再分别乘以每种电器的利润,最后把各种电器的利润相加起来.(2)题目给出了两种的电器的和和两种电器的数量之间的关系,同时记得结合表格中的数据;可以设其中的一种电器数量为 n 台,总利润为z元,从而列出方程,根据两种电器之间的数量关系,确定取值范围,从而求出利润的最大值;主要考查:一次函数应用问题,经济利润问题;也可以用二元一次方程的思路进行解答,一定要认真分析表格中的数据信息和题目的要求;18.【答案】解:原式=2-1+6+4=11.【解析】直接利用零指数幂的性质以及负指数幂的性质以及算术平方根的定义分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】解:解不等式①得:x>-1,解不等式②得:x≤3,则不等式组的解集是:-1<x≤3,不等式组的解集在数轴上表示为:【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.【答案】解:(1)∵喜欢足球的有40人,占20%,∴一共调查了:40÷20%=200(人),(2)∵喜欢乒乓球人数为60人,∴所占百分比为:×100%=30%,∴喜欢排球的人数所占的百分比是1-20%-30%-40%=10%,∴喜欢排球的人数为:200×10%=20(人),∴喜欢篮球的人数为200×40%=80(人),由以上信息补全条形统计图得:(3)乒乓球在扇形中所占的圆心角的度数为:30%×360°=108°;(4)爱好足球和排球的学生共计:760×(20%+10%)=228(人).【解析】(1)读图可知喜欢足球的有40人,占20%,求出总人数;(2)根据总人数求出喜欢乒乓球的人数所占的百分比,得出喜欢排球的人数,再根据喜欢篮球的人数所占的百分比求出喜欢篮球的人数,从而补全统计图;(3)根据喜欢乒乓球的人数所占的百分比,即可得到乒乓球在扇形中所占的圆心角的度数;(4)根据爱好足球和排球的学生所占的百分比,即可估计爱好足球和排球的学生总数.本题考查条形统计图和扇形统计图,解题的关键是必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【答案】证明:(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD(SAS).(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°,∵△ACE≌△BCD,∴∠B=∠CAE=45°,AE=DB=3,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.∴AD=,∴AB=2+3=5.∴BC=.【解析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,利用勾股定理得出答案即可.本题考查三角形全等的判定与性质,等腰直角三角形的性质,及勾股定理的运用,掌握三角形全等的判定方法是解决问题的关键.22.【答案】解:(1)∵直线y=kx+b经过点A(-5,0),B(-1,4),,解得,∴y=x+5(2)∵若直线y=-2x-4与直线AB相交于点C,∴,解得,故点C(-3,2).∵y=-2x-4与y=x+5分别交y轴于点E和点D,∴D(0,5),E(0,-4),直线CE:y=-2x-4与直线AB及y轴围成图形的面积为:DE•|C x|=×9×3=.(3)根据图象可得x>-3.【解析】(1)利用待定系数法求一次函数解析式解答即可;(2)联立两直线解析式,解方程组即可得到点C的坐标;(3)根据图形,找出点C右边的部分的x的取值范围即可.此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.23.【答案】解:(1)对于直线y=2x-2令x=0,得到y=-2,令y=0,得到x=1,∴A(1,0),B(0,-2).(2)如图1中,作CF⊥x轴与F.∵CA=AB,∠CAF=∠OAB,∠CFA=∠AOB=90°,∴△CAF≌△BAO,∴AF=OA=1,CF=OB=2,∴F(2,0),观察图象可知m的取值范围为:m<0或m>2.(3)如图2中,作AE⊥AB,使得AE=AB,作EH⊥x轴于H,则△ABE是等腰直角三角形,∠ABE=45°.∵∠AOB=∠BAE=∠AHE=90°,∴∠OAB+∠ABO=90°,∠OAB+∠HAE=90°,∴∠ABO=∠HAE,∵AB=AE,∴△ABO≌△EAH,∴AH=OB=2,EH=OA=1,∴E(3,-1),设直线BE的解析式为y=kx+b,则有,解得,∴直线BE的解析式为y=x-2,当直线BE′⊥直线BE时,直线BE′也满足条件,直线BE′的解析式为y=-3x-2,∴满足条件的直线BE的解析式为y=x-2或y=-3x-2.【解析】(1)利用待定系数法即可解决问题;(2)如图1中,作CF⊥x轴与F.利用全等三角形的性质求出点F坐标即可判断;(3)如图2中,作AE⊥AB,使得AE=AB,作EH⊥x轴于H,则△ABE是等腰直角三角形,∠ABE=45°.利用全等三角形的性质求出点E坐标,当直线BE′⊥直线BE时,直线BE′也满足条件,求出直线BE′的解析式即可;本题考查一次函数的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.广东省深圳市2018-2019学年八年级上学期末考试数学试题一、选择题(本大题共12小题,共36.0分)24.下列各组数中,可以构成直角三角形的是()A. 2,3,5B. 3,4,5C. 5,6,7D. 6,7,825.下列计算或命题:①有理数和无理数统称为实数;②=a;③的算术平方根是2;④实数和数轴上的点是一一对应的,其中正确的个数有()A. 1个B. 2个C. 3个D. 4个26.下列各式中正确的是()A.B. C. D.27.如图,将一副直角三角板摆放,点C在EF上,AC经过点D,已知∠A=∠EDF=90°,AB=AC,∠E=30°,∠BCE=40°,则∠CDF=()A.B.C.D.28.直角坐标系中,A、B两点的横坐标相同但均不为零,则直线AB()A. 平行于x轴B. 平行于y轴C. 经过原点D. 以上都不对29.点P(a-1,-b+2)关于x轴对称与关于y轴对称的点的坐标相同,则a,b的值分别是()A. ,2B. ,C. ,1D. 1,230.如图,D3081次六安至汉口动车在金寨境内匀速通过一条隧道(隧道长大于火车长),火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A. B. C. D.31.正比例函数的图象如图所示,将这条直线向右平移一个单位长度,它所表示函数的解析是()A.B.C.D.32.一次函数y=-x+3的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限33.已知点A(-5,y1)、B(-2,y2)都在直线y=-x上,则y1与y2的关系是()A. B. C. D.34.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A. B. C. D.35.如图所示,沿DE折叠长方形ABCD的一边,使点C落在AB边上的点F处,若AD=8,且△AFD的面积为60,则△DEC的面积为()A.B.C. 18D. 20二、填空题(本大题共4小题,共12.0分)36.数据-1,0,1,2,3的标准差为______.37.已知一次函数y=2x与y=-x+b的交点为(1,a),则方程组的解为______.38.如图,正四棱柱的底面边长为8cm,侧棱长为12cm,一只蚂蚁欲从点A出发,沿棱柱表面到点B处吃食物,那么它所爬行的最短路径是______cm.39.如图,在平面直角坐标系中,函数y=2x和y=-x的图象分别为直线l1,l2,过点(1,0)作x轴的垂线交l1于点A1,过A1点作y轴的垂线交l2于点A2,过点A2作x轴的垂线交l1于点A3,过点A3作y轴的垂线交l2于点A4,…依次进行下去,则点A2019的坐标为______.三、计算题(本大题共1小题,共8.0分)40.计算:(1)(2)四、解答题(本大题共6小题,共44.0分)41.解方程组:(1)(2)42.某环保小组为了解世博园的游客在园区内购买瓶装饮料数量的情况,一天,他们分别在A、B、C三个出口处,对离开园区的游客进行调查,其中在A出口调查所得的数据整理后绘成如下图所示统计图:()在出口的被调查游客中,购买瓶装饮料的数量的中位数是瓶、众数是瓶、平均数是______瓶;(2)已知A、B、C三个出口的游客量比为2:2:1,用上面图表的人均购买饮料数量计算:这一天景区内若有50万游客,那么这一天购买的饮料的总数是多少?(3)若每瓶饮料要消耗0.5元处理包装的环保费用,该日需要花费多少钱处理这些饮料瓶?由此请你对游客做一点环保宣传建议.43.甲、乙两种商品原来的单价和为100元.因市场变化,甲商品提价40%,乙商品降价10%,两种商品的单价和比原来提高了20%.问甲、乙两种商品原来的单价各是多少元?44.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.45.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,他手中持有的钱数(含备用零钱)y与售出的土豆千克数x的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是______元,降价前他每千克土豆出售的价格是______元;(2)降价后他按每千克0.8元将剩余土豆售完,这时他手中的钱(含备用零钱)是62元,求降价后的线段所表示的函数表达式并写出它的取值范围.46.如图,在直角坐标系中,点A、B分别在x轴和y轴上,△OBA是等腰直角三角形且AB=,线段PQ=1,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动.(1)求A、B两点的坐标;(2)若P运动的路程为m,△OPA的面积为S,求S与m之间的函数关系式;(3)当点P运动一周时,点Q运动的总路程为______.答案和解析1.【答案】B【解析】解:∵32+42=25,52=25.∴32+42=52.可构成直角三角形的是3、4、5.故选:B.两边的平方和等于第三边平方的三角形是直角三角形,根据此可找到答案.本题考查勾股定理的逆定理,根据勾股定理的逆定理判断出直角三角形.2.【答案】D【解析】解:①有理数和无理数统称为实数,正确;②=a,正确;③=4的算术平方根是2,正确;④实数和数轴上的点是一一对应的,正确.故选:D.直接利用实数的定义以及算术平方根的定义、立方根的性质分别分析得出答案.此题主要考查了命题与定理,正确掌握相关定义是解题关键.3.【答案】D【解析】解:A、=7,故A错误;B、=3,故B错误;C、(-)2=2,故C错误;D、-=3,故D正确;故选:D.根据二次根式的性质:=-a(a≤0)及二次根式的化简进行选择即可.本题考查了二次根式的性质与化简,注意:①定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a<0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根).②性质:=|a|.4.【答案】B【解析】解:∵AB=AC,∠A=90°,∴∠ACB=45°,∵∠BCE=40°,∴∠ACE=85°,∵∠ACE=∠F+∠CDF,∠F=60°,∴∠CDF=25°,故选:B.根据∠ACE=∠F+∠CDF,求出∠ACE,∠F即可解决问题.本题考查三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.【答案】B【解析】解:直角坐标系下两个点的横坐标相同且不为零,则说明这两点到y轴的距离相等,且在y轴的同一侧,所以过这两点的直线平行于y轴.故选:B.平行于y轴的直线上的点的横坐标相同.本题考查坐标与图形的性质,关键是根据:两点的横坐标相同,到y轴的距离相等,过这两点的直线平行于y轴解答.6.【答案】D【解析】解:根据题意,分别写出点P关于x轴、y轴的对称点;关于x轴的对称点的坐标为(a-1,b-2),关于y轴对称的点的坐标(1-a,-b+2),所以有a-1=1-a,b-2=2-b,得a=1,b=2.故选:D.点P(a-1,-b+2)关于x轴对称的点的坐标为(a-1,b-2),关于y轴对称的点的坐标(1-a,-b+2),根据题意,a-1=1-a,b-2=2-b,得a=1,b=2.本题主要考查了点关于坐标轴的对称问题;关于x轴对称,横坐标不变,纵坐标变号;关于y轴对称,纵坐标不变,横坐标变号;关于原点对称,横纵坐标都变号.7.【答案】A【解析】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,火车完全进入后一段时间内y不变,当火车开始出来时y逐渐变小,故反映到图象上应选A.故选:A.先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为三段.本题考查了动点问题的函数图象,主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.8.【答案】B【解析】解:设直线OP的解析式为y=kx,把P(1,-1)代入得k=-1,则直线OP的解析式为y=-x,所以该图象向右平移一个单位长度,直线与x轴的交点坐标为(1,0),则平移后得到的函数图象的解析式为y=-x+1.故选:B.先利用待定系数法确定直线OP的解析式为y=-x,则该图象向右平移一个单位长度后与x轴的交点坐标为(1,0),易得此时图象的解析式为y=-x+1.本题考查了一次函数图象与几何变换:一次函数y=kx+b(k、b为常数,k≠0)的图象为直线,当直线平移时k不变,当向右平移m个单位,则平移后直线的解析式为y=k(x-m)+b.9.【答案】C【解析】解:∵k=-1<0,∴一次函数经过二四象限;∵b=3>0,∴一次函数又经过第一象限,∴一次函数y=-x+3的图象不经过第三象限,故选:C.根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.用到的知识点为:k<0,函数图象经过二四象限,b>0,函数图象经过第一象限.10.【答案】D【解析】解:∵点A(-5,y1)、B(-2,y2)都在直线y=-x上,∴y1=,y2=1.∵>1,∴y1>y2.故选:D.利用一次函数图象上点的坐标特征可求出y1,y2的值,比较后即可得出结论(利用一次函数的单调性找出结论亦可).本题考查了一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出y1,y2的值是解题的关键.11.【答案】C【解析】解:根据组数×每组7人=总人数-3人,得方程7y=x-3;根据组数×每组8人=总人数+5人,得方程。
八年级上册期末考试数学试卷含答案(共5套,深圳市)
广东省深圳市宝安区八年级上学期期末数学试卷一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.14152.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.75.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.76.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时二、填空题(3*4=12分)13.9的算术平方根是.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x 轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于.三、解答题17.计算(1)(2).18.(1)(2).19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有名同学;(2)该班同学捐款金额的众数是元,中位数是元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为度.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是,每台电脑的销售价是万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.广东省深圳市宝安区八年级上学期期末数学试卷参考答案一、选择题(12*3=36分)1.下列各数中,无理数的是()A.B.C.D.3.1415【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是无理数,选项正确;B、=5是整数,是有理数,选项错误;C、是分数,是有理数,选项错误;D、3.1415是有限小数,是有理数,选项错误.故选A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.在军事演习中,利用雷达跟踪某一“敌方”目标,需要确定该目标的()A.方向 B.距离 C.大小 D.方向与距离【考点】坐标确定位置.【分析】直接利用点的坐标确定位置需要知道其方向与距离进而得出答案.【解答】解:利用雷达跟踪某一“敌方”目标,需要确定该目标的方向与距离.故选:D.【点评】此题主要考查了点的坐标确定位置,正确利用点的位置确定方法是解题关键.3.一次函数的图象不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】一次函数图象与系数的关系.【分析】由k=>0,可知图象经过第一、三象限,又b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,由此得解即可.【解答】解:∵y=x﹣1,∴k=>0,图象经过第一、三象限,b=﹣1<0,直线与y轴负半轴相交,图象经过第四象限,即一次函数y=x﹣1的图象经过第一、三、四象限,不经过第二象限.故选B.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b 所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限.k<0时,直线必经过二、四象限.b>0时,直线与y轴正半轴相交.b=0时,直线过原点;b<0时,直线与y轴负半轴相交.4.在直角坐标系中,点A(a,3)与点B(﹣4,b)关于y轴对称,则a+b的值是()A.﹣7 B.﹣1 C.1 D.7【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答即可.【解答】解:由题意得,a=4,b=3,则a+b=7,故选:D.【点评】本题考查的是关于x、y轴对称点的坐标特点,关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.5.已知x=1,y=2是方程ax+y=5的一组解,则a的值是()A.﹣3 B.﹣2 C.3 D.7【考点】二元一次方程的解.【分析】根据解方程解的定义,将x=1,y=2代入方程ax+y=5,即可求得a的值.【解答】解:根据题意,将x=1,y=2代入方程ax+y=5,得:a+2=5,解得:a=3,故选:C.【点评】本题考查了二元一次方程的解,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.6.如图所示:某商场有一段楼梯,高BC=6m,斜边AC是10米,如果在楼梯上铺上地毯,那么需要地毯的长度是()A.8m B.10m C.14m D.24m【考点】勾股定理的应用.【分析】先根据直角三角形的性质求出AB的长,再根据楼梯高为BC的高=6m,楼梯的宽的和即为AB的长,再把AB、BC的长相加即可.【解答】解:∵△ABC是直角三角形,BC=6m,AC=10m∴AB===8(m),∴如果在楼梯上铺地毯,那么至少需要地毯为AB+BC=8+6=14(米).故选:C.【点评】本题考查的是勾股定理的应用,解答此题的关键是找出楼梯的高和宽与直角三角形两直角边的等量关系7.某特警队为了选拔“神枪手”,甲、乙、丙、丁四人进人射击比赛,每人10次射击成绩的平均数都是9.8环,方差分别为S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定【解答】解:∵S甲2=0.63,S乙2=0.51,S丙2=0.42,S丁2=0.45,∴S甲2>S乙2>S2丁>S2丙,∴成绩最稳定的是丙.故选:C.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.8.如图,AB∥CD,EF与AB、CD分别相交于点E、F,EP⊥EF,与∠EFD的平分线FP相交于点P,且∠BEP=40°,则∠EPF的度数是()A.25°B.65°C.75°D.85°【考点】平行线的性质.【分析】由题可直接求得∠BEF,然后根据两直线平行,同旁内角互补可知∠DFE,根据角平分线的性质可求得∠EFP,最后根据三角形内角和求出∠EPF.【解答】解:∵EP⊥EF,∴∠PEF=90°,∵∠BEP=40°,∴∠BEF=∠PEF+∠BEP=130°,∵AB∥CD,∴∠EFD=180°﹣∠BEF=50°,∵FP平分∠EFD,∴∠EFP=0.5×∠EFD=25°,∴∠P=180°﹣∠PEF﹣∠EFP=65°;故选:B.【点评】本题考查了平行线的性质、三角形内角和定理、角平分线的定义;熟记:两直线平行,同旁内角互补;求出∠EFD的度数是解决问题的突破口.9.下列命题中,假命题的是()A.同旁内角相等,两直线平行B.等腰三角形的两个底角相等C.同角(等角)的补角相等D.三角形的一个外角大于任何一个与它不相邻的内角【考点】命题与定理.【分析】利用平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质分别判断后即可确定正确的选项.【解答】解:A、同旁内角互补,两直线平行,故错误,是假命题;B、等腰三角形的两个底角相等,正确,是真命题;C、同角(等角)的补角相等,正确,为真命题;D、三角形的一个外角大于任何一个与它不相邻的内角,正确,为真命题.故选A.【点评】本题考查了命题与定理的知识,解题的关键是能够了解平行线的判定、等腰三角形的性质、补角的定义及三角形的外角的性质,难度不大.10.2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A.B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设小李预定了小组赛和淘汰赛的球票各x张,y张,根据10张球票共5600元,列方程组求解.【解答】解:设小李预定了小组赛和淘汰赛的球票各x张,y张,由题意得,,故选C【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.11.如图,长方形ABCD的边AB=1,BC=2,AP=AC,则点P所表示的数是()A.5 B.﹣2.5 C.D.【考点】实数与数轴.【分析】根据勾股定理求出长方形ABCD的对角线AC的长,即为AP的长,进而求出点P所表示的数.【解答】解:∵长方形ABCD的边AB=1,BC=2,∴AC==,∴AP=AC=,∴点P所表示的数为﹣.故选D.【点评】本题考查了实数与数轴,利用勾股定理求出长方形ABCD的对角线AC的长是解题的关键.12.一辆汽车在行驶过程中,路程y(千米)与时间x(小时)之间的函数关系如图4所示,已知开始1小时的行驶速度是60千米/时,那么1小时以后的速度是()A.70千米/时B.75千米/时C.105千米/时D.210千米/时【考点】一次函数的应用.【分析】直接利用函数图象得出汽车行驶3小时一共行驶210km,再利用开始1小时的行驶速度是60千米/时,进而得出1小时后的平均速度.【解答】解:由题意可得:汽车行驶3小时一共行驶210km,则一小时后的平均速度为:(210﹣60)÷2=75(km/h),故选:B.【点评】此题主要考查了一次函数的应用,根据图象得出正确信息是解题关键.二、填空题(3*4=12分)13.9的算术平方根是3.【考点】算术平方根.【分析】9的平方根为±3,算术平方根为非负,从而得出结论.【解答】解:∵(±3)2=9,∴9的算术平方根是|±3|=3.故答案为:3.【点评】本题考查了数的算式平方根,解题的关键是牢记算术平方根为非负.14.如图,已知函数y=ax+b和y=kx的图象交于点P,根据图象可得,二元一次方程组的根是.【考点】一次函数与二元一次方程(组).【分析】由图可知:两个一次函数的交点坐标为(﹣2,﹣1);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣2,﹣1),即x=﹣2,y=﹣1同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.【点评】此题考查一次函数与方程组问题,方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.15.去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A、B两居民区投送快递,派送点应该设在什么地方,才能使它到A、B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是(,0).【考点】轴对称-最短路线问题;坐标确定位置.【分析】可先找点A关于x轴的对称点C,求得直线BC的解析式,直线BC与x轴的交点就是所求的点.【解答】解:作A关于x轴的对称点C,则C的坐标是(﹣2,﹣2).设BC的解析式是y=kx+b,则,解得:,则BC的解析式是y=x﹣.令y=0,解得:x=.则派送点的坐标是(,0).故答案是(,0).【点评】本题考查了对称的性质以及待定系数法求函数的解析式,正确确定派送点的位置是关键.16.如图,△ABC中,AB=6,BC=8,AC=10,把△ABC沿AP折叠,使边AB与AC重合,点B落在AC 边上的B′处,则折痕AP的长等于3.【考点】翻折变换(折叠问题).【分析】首先证明∠B=90°,设PB=PB′=x,在RT△PB′C中利用勾股定理求出x,再在RT△APB中利用勾股定理求出AP即可.【解答】解:∵AB=6,BC=8,AC=10,∴AB2+BC2=AC2,∴∠B=90°∵△APB′是由APB翻折,∴AB=AB′=6,PB=PB′,∠B=∠AB′P=∠PB′C=90°设PB=PB′=x,在RT△PB′C中,∵B′C=AC﹣AB=4,PC=8﹣x,∴x2+42=(8﹣x)2,∴x=3,∴AP===3,故答案为3.【点评】本题考查勾股定理的逆定理、勾股定理、翻折不变性等知识,证明∠B=90°是解题的关键,属于2016届中考常考题型.三、解答题17.计算(1)(2).【考点】实数的运算;零指数幂.【分析】(1)直接利用二次根式乘法运算法则结合零指数幂的性质化简求出答案;(2)首先化简二次根式,进而合并求出答案.【解答】解:(1)=+2+1=+3;(2)=3﹣2﹣1=﹣1.【点评】此题主要考查了实数运算以及二次根式的化简,正确化简二次根式是解题关键.18.(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用代入消元法求出解即可;(2)方程组利用加减消元法求出解即可.【解答】解:(1),把①代入②得:x+4x﹣6=14,解得:x=5,把x=5代入①得:y=7,则方程组的解为;(2),①×3+②得:11x=﹣11,即x=﹣1,把x=﹣1代入①得:y=2,则方程组的解为.【点评】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.19.迎接学校“元旦”文艺汇演,2015~2016学年度八年级某班的全体同学捐款购买了表演道具,经过充分的排练准备,最终获得了一等奖.班长对全体同学的捐款情况绘制成下表:捐款金额5元10元15元20元捐款人数10人15人5人由于填表时不小心把墨水滴在了统计表上,致使表中数据不完整,但知道捐款金额为10元的人数为全班人数的30%,结合上表回答下列问题:(1)该班共有50名同学;(2)该班同学捐款金额的众数是10元,中位数是12.5元.(3)如果把该班同学的捐款情况绘制成扇形统计图,则捐款金额为20元的人数所对的扇形圆心角为86.4度.【考点】众数;扇形统计图;中位数.【分析】(1)由于知道捐款金额为10元的人数为全班人数的36%,由此即可求出该班共有多少人;(2)首先利用(1)的结果计算出捐15元的同学人数,然后利用中位数、众数的定义即可求出捐款金额的众数和中位数;(3)由于捐款金额为20元的人数为12人,由此求出捐款金额为20元的人数是总人数的百分比,然后乘以360°就知道扇形的圆心角.【解答】解:(1)∵18÷36%=50,∴该班共有50人;(2)∵捐15元的同学人数为50﹣(7+18+12+3)=10,∴学生捐款的众数为10元,又∵第25个数为10,第26个数为15,∴中位数为(10+15)÷2=12.5元;(3)依题意捐款金额为20元的人数所对应的扇形圆心角的度数为360°×=86.4°.故答案为:50,10,12.5,86.4.【点评】此题考查了一组数据的众数、中位数和扇形统计图等知识,解题的关键是从统计表中整理出有关解题信息,难度不大.20.如图,四边形ABCD中,点F是BC中点,连接AF并延长,交于DC的延长线于点E,且∠1=∠2.(1)求证:△ABF≌△ECF;(2)若AD∥BC,∠B=125°,求∠D的度数.【考点】全等三角形的判定与性质.【分析】(1)根据AAS即可判定△ABF≌△ECF.(2)利用平行四边形对角相等即可证明.【解答】(1)证明:在△ABF和△ECF中,,∴△ABF≌△ECF(AAS).(2)解:∵∠1=∠2(已知),∴AB∥ED(内错角相等,两直线平行),∵AD∥BC(已知),∴四边形ABCD是平行四边形(两组对边平行的四边形是平行四边形),∴∠D=∠B=125°(平行四边形的对角相等).【点评】本题考查全等三角形的判定和性质、平行四边形的判定和性质,利用平行四边形的性质证明角相等是解题的关键.属于2016届中考常考题型.21.列方程解应用题:小张第一次在商场购买A、B两种商品各一件,花费60元;第二次购买时,发现两种商品的价格有了调整:A商品涨价20%,B商品降价10%,购买A、B两种商品各一件,同样花费60元.求A、B两种商品原来的价格.【考点】二元一次方程组的应用.【分析】设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意列出两个二元一次方程,解方程组求出x和y的值即可.【解答】解:设A种商品原来的价格为x元,B种商品原来的价格为y元,根据题意可得:,整理得:,由①×1.2﹣②得.答:A商品原来的价格为20元,B商品价格为40元.【点评】本题考查了二元一次方程组的应用,解题的关键是读懂题意,找出之间的数量关系列出二元一次方程组,此题难度不大.22.某专营商场销售一种品牌电脑,每台电脑的进货价是0.4万元.图中的直线l1表示该品牌电脑一天的销售收入y1(万元)与销售量x(台)的关系,已知商场每天的房租、水电、工资等固定支出为3万元.(1)直线l1对应的函数表达式是y=0.8x,每台电脑的销售价是0.8万元;(2)写出商场一天的总成本y2(万元)与销售量x(台)之间的函数表达式:y2=0.4x+3;(3)在图的直角坐标系中画出第(2)小题的图象(标上l2);(4)通过计算说明:每天销售量达到多少台时,商场可以盈利.【考点】一次函数的应用.【分析】(1)由函数图象知,y与x成正比例函数关系且过(5,4),待定系数法可求得直线l1对应的函数表达式,再根据每台电脑售价=每天销售收入÷销售量可得;(2)根据:每天总成本=电脑的总成本+每天的固定支出,可列函数关系式;(3)根据(2)中函数关系式,确定两点(0,3),(5,5),作射线即可;(4)根据:商场每天利润=电脑的销售收入﹣每天的总成本,列出函数关系式,根据题意得到不等式、解不等式即可.【解答】解:(1)设y=kx,将(5,4)代入,得k=0.8,故y=0.8x,每台电脑的售价为:=0.8(万元);(2)根据题意,商场每天的总成本y2=0.4x+3;(3)如图所示,(3)商场每天的利润W=y﹣y2=0.8x﹣(0.4x+3)=0.4x﹣3,当W>0,即0.4x﹣3>0时商场开始盈利,解得:x>7.5.答:每天销售量达到8台时,商场可以盈利.【点评】本题主要考查一次函数的实际应用,熟悉一次函数解析式的求法、图象的画法及根据实际问题列函数关系式是一次函数的基础.23.如图,长方形AOBC在直角坐标系中,点A在y轴上,点B在x轴上,已知点C的坐标是(8,4).(1)求对角线AB所在直线的函数关系式;(2)对角线AB的垂直平分线MN交x轴于点M,连接AM,求线段AM的长;(3)若点P是直线AB上的一个动点,当△PAM的面积与长方形OABC的面积相等时,求点P的坐标.【考点】一次函数综合题.【分析】(1)由坐标系中点的意义结合图形可得出A、B点的坐标,设出对角线AB所在直线的函数关系式,由待定系数法即可求得结论;(2)由相似三角形的性质找到BM的长度,再结合OM=OB﹣BM得出OM的长,根据勾股定理即可得出线段AM的长;(3)先求出直线AM的解析式,设出P点坐标,由点到直线的距离求出AM边上的高h,再结合三角形面积公式与长方形面积公式即可求出P点坐标.【解答】解:(1)∵四边形AOBC为长方形,且点C的坐标是(8,4),∴AO=CB=4,OB=AC=8,∴A点坐标为(0,4),B点坐标为(8,0).设对角线AB所在直线的函数关系式为y=kx+b,则有,解得:,∴对角线AB所在直线的函数关系式为y=﹣x+4.(2)∵四边形AOBC为长方形,且MN⊥AB,∴∠AOB=∠MNB=90°,又∵∠ABO=∠MBN,∴△AOB∽△MNB,∴.∵AO=CB=4,OB=AC=8,∴由勾股定理得:AB==4,∵MN垂直平分AB,∴BN=AN=AB=2.===,即MB=5.OM=OB﹣MB=8﹣5=3,由勾股定理可得:AM==5.(3)∵OM=3,∴点M坐标为(3,0).又∵点A坐标为(0,4),∴直线AM的解析式为y=﹣x+4.∵点P在直线AB:y=﹣x+4上,∴设P点坐标为(m,﹣m+4),点P到直线AM:x+y﹣4=0的距离h==.△PAM的面积S△PAM=AM•h=|m|=S OABC=AO•OB=32,解得m=±,故点P的坐标为(,﹣)或(﹣,).【点评】本题考查了坐标系中点的意义、相似三角形的判定及性质、勾股定义、点到直线的距离、三角形和长方形的面积公式,解题的关键:(1)根据坐标系中点的意义,找到A、B点的坐标;(2)由相似三角形的相似比找出BM的长度;(3)结合点到直线的距离、三角形和长方形的面积公式找到关于m的一元一次方程.本题属于中等题,难度不大,(1)小问容易得出结论;(2)没有直接找OM长度,而是利用相似三角形找出BM的长度,此处部分学生可能会失分;(3)难度不大,运算量不小,这里尤其要注意点P有两个.广东省深圳市龙岗区八年级(上册)期末数学试卷一、选择题(每小题3分,共36分)1.数学,,π,,0.中无理数的个数是( )A.1 B.2 C.3 D.42.下列长度的线段不能构成直角三角形的是( )A.8,15,17 B.1.5,2,3 C.6,8,10 D.5,12,133.如图,笑脸盖住的点的坐标可能为( )A.(5,2)B.(3,﹣4)C.(﹣4,﹣6)D.(﹣1,3)4.点M(2,1)关于x轴对称的点的坐标是( )A.(1,﹣2)B.(﹣2,1)C.(2,﹣1)D.(﹣1,2)5.下列各式中,正确的是( )A.=±4 B.±=4 C.=﹣3 D.=﹣46.若函数y=(k﹣1)x|k|+b+1是正比例函数,则k和b的值为( )A.k=±1,b=﹣1 B.k=±1,b=0 C.k=1,b=﹣1 D.k=﹣1,b=﹣17.在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是( )A.B.C.D.8.下列命题中,不成立的是( )A.两直线平行,同旁内角互补B.同位角相等,两直线平行C.一个三角形中至少有一个角不大于60度D.三角形的一个外角大于任何一个内角9.为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查.那么最终买什么水果,下面的调查数据中最值得关注的是( )A.中位数B.平均数C.众数 D.加权平均数10.2016年“龙岗年货博览会”在大运中心体育馆展销,小丽从家出发前去购物,途中发现忘了带钱,于是打电话让妈妈马上从家里送来,同时小丽也往回走,遇到妈妈后聊了一会儿,接着继续前往大运中心体育馆.设小丽从家出发后所用时间为t,小丽与体育馆的距离为S,下面能反映S与t的函数关系的大致图象是( )A. B.C.D.11.如图,∠x的两条边被一直线所截,用含α和β的式子表示∠x为( )A.α﹣β B.β﹣α C.180°﹣α+βD.180°﹣α﹣β12.如图,把一个等腰直角三角形放在间距是1的横格纸上,三个顶点都在横格上,则此三角形的斜边长是( )A.3 B. C.2D.2二、填空题(每小题3分,共12分)13.16的平方根是__________.14.数据3,4,6,8,x,7的众数是7,则数据4,3,6,8,2,x的中位数是__________.15.观察下列各式:=﹣1,=,=2﹣…请利用你发现的规律计算:(+++…+)×(+)=__________.16.如图,在矩形ABCD中,AB=3,BC=4,现将点A、C重合,使纸片折叠压平,折痕为EF,那么重叠部分△AEF的面积=__________.三、解答题(第17题5分,第18题6分,第19题7分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)17.计算:﹣||﹣4+.18.解方程组:.19.每年9月举行“全国中学生数学联赛”,成绩优异的选手可参加“全国中学生数学冬令营”,冬令营再选拔出50名优秀选手进入“国家集训队”.第31界冬令营已于2015年12月在江西省鹰谭一中成功举行.现将脱颖而出的50名选手分成两组进行竞赛,每组25人,成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)请你将表格补充完整:平均数中位数众数方差一组74 __________ __________ 104二组__________ __________ __________ 72(2)从本次统计数据来看,__________组比较稳定.。
广东省深圳市龙华新区八年级上学期期末考试(6套)(图片
八年级数学参考答案及评分标准一、选择题ABBDC ABCDD CB二、填空题13.1; 14.A 组; 15.; 16.36º三、解答题17.(1)解:原式=326262⨯+⨯+- …………………………2分 = ………………………………………3分=…………………………………………………4分(2)解:原式=()62623327312++--+……………………3分 =662594++-+……………………………4分==……………………………………………………5分(说明:其他解法的请参照此标准酌情给分。
)18.(1)解:①+②得:4x = 4 ………………………………………………1分∴x = 1 ………………………………………………2分把x=1代入①得:1+y=6 ……………………………………3分∴y = 5 ………………………………………………4分∴原方程组的解为……………………………………5分(2)⎩⎨⎧-=--=-②y x ①y x 37951734 解:①×3–②得:7x =–14 …………………………………………………1分 ∴x =–2 ……………………………………………………2分 把x=–2代入①得:–8–3y =–17 ……………………………………3分 ∴y = 3 …………………………………………………………4分∴原方程组的解为……………………………………5分(说明:其他解法的请参照此标准酌情给分。
)19.(1)50…………………………………………………………2分(2)70分~80分组………………………………………………4分(3)73.8分………………………………………………………6分(说明:第(2)小题只要正确指出该组则可,如写“第三组”也可给分)20.(1)证明:∵AC=BC∴∠B=∠BAC …………………………………………1分∵∠ACE=∠B+∠BAC∴∠BAC= …………………………………2分∵CF 平分∠ACE∴∠ACF=∠ECF=∴∠BAC=∠ACF∴CF//AB ………………………………………………3分(2)解:∵∠BAC=∠ACF ,∠B=∠BAC ,∠ADF=∠B∴∠ACF=∠ADF ……………………………………………………………4分 ∵∠ADF+∠CAD+∠AGD=180º,∠ACF+∠F+∠CGF=180º …………5分 又∵∠AGD=∠CGF∴∠F=∠CAD=20º…………………………………………………………6分21.解:设(1)班有x 名学生,(2)班有y 名学生,由题意得:……………………1分 …………………………………………………………3分解得: ………………………………………………………………………5分答:(1)班有48名学生,(2)班有55名学生.…………………………………6分22.(1)解:设y 1 = kx + b ,由已知得……………………………………………………………………1分解得………………………………………………………………………2分∴所求的函数关系式为y 1 = 3x + 3000 ………………………………………………3分(2)y 2=5x …………………………………………………………………………………5分(3)解:由y 1=y 2得 5x =3x +3000 ………………………………………………………6分 解得x =1500答:每月至少要生产该种食品1500kg ,才不会亏损.…………………………7分23.(1)A (–3,0)、B (0,3)、P (–2,1)………………………………………3分 (说明:每个点1分,共3分)(2)解:点P ʹ在直线l 3上∵P (–2,1),且将△POB 沿y 轴折叠后,点P ʹ与点P 关于y 轴对称∴P ʹ(2,1)…………………………………………………………………………4分 当x =2时,代入得∴点P ʹ在直线l 3上.…………………………………………………………………5分(3)解:分别过点P 作PE ⊥x 轴于F ,过点Q 作QF ⊥x 轴于F ,过点R 作RG ⊥x 轴于G 由⎪⎩⎪⎨⎧+-=+=4233x y x y 得⎪⎪⎩⎪⎪⎨⎧==51752y x ∴Q (,) 由⎪⎪⎩⎪⎪⎨⎧+-=-=42321x y x y 得∴R (4,–2)对于,则y =0得,∴C (,0) ………………………………………………………………………6分 ∴302895173382121=⨯⎪⎭⎫ ⎝⎛+⨯=⨯=∆QF AC S AQC23132121=⨯⨯=⨯=∆PE OA S OAP 382382121=⨯⨯=⨯=∆GR OC S OCR …………………………………………7分 ∴554382330289=+-=+-=∆∆∆∆OCR PAO AQC PQR S S S S …………………………8分。
2018-2019初二数学深中期末试卷
6 / 7
整体分析
(1) 难度系数:★★,区分度体现在:第12、18、25题 (2) 重点考察:二元一次方程组,分别是:10、20、23题;勾股定理:分别是12、16、18、25题;
一次函数及其综合,分别是7、14、24、25题。
(3) 易错题:2、24题
考点分析
试卷分值结构、知识范围、难度情况分析表
★
★ ★ ★ ★ ★ ★ ★ ★ ★ ★★ ★ ★ ★ ★ ★ ★★★ ★ ★ ★ ★ ★ ★★ ★★★
深中期末答案
一、选择题 1-5 CBDDB 二、填空 13.4 14.三 15.89 16.6 17.72 18. 3 + 1
6-10
AACDB
11-12
DD
三、解答 19.2
x = 2 20. y =1
《试卷3份集锦》广东省名校2018-2019年八年级上学期期末综合测试数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,△ABC 是等边三角形,AQ=PQ ,PR⊥AB 于点R ,PS⊥AC 于点S ,PR=PS.下列结论:①点P 在∠A 的角平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP.其中,正确的有( )A .1个B .2个C .3个D .4个【答案】D【解析】∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR =PS ,∴P 在∠A 的平分线上,故①正确; 由①可知,PB =PC ,∠B =∠C ,PS =PR ,∴△BPR ≌△CPS ,∴AS =AR ,故②正确;∵AQ =PQ ,∴∠PQC =2∠PAC =60°=∠BAC ,∴PQ ∥AR ,故③正确;由③得,△PQC 是等边三角形,∴△PQS ≌△PCS ,又由②可知,④△BRP ≌△QSP ,故④也正确,∵①②③④都正确,故选D .点睛:本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.2.一次函数2y x =+的图象与x 轴交点的坐标是( )A .(0,2)B .(0,-2)C .(2,0)D .(-2,0)【答案】D【分析】计算函数值为0所对应的自变量的取值即可.【详解】解:当y=0时,x+2=0,解得x=-2,所以一次函数的图象与x 轴的交点坐标为(-2,0).故选:D .【点睛】本题考查了一次函数图象与x 轴的交点:求出函数值为0时的自变量的值即可得到一次函数与x 轴的交点坐标.3.正方形的面积为6,则正方形的边长为( )A 2B 6C .2D .4 【答案】B【分析】根据正方形面积的求法即可求解.【详解】解:∵正方形的面积为6,∴正方形的边长为6.故选:B .【点睛】本题考查了算术平方根,正方形的面积,解此题的关键是求出6的算术平方根.4.若多项式1x -与多项式2x a -+的积中不含x 的一次项,则( )A .1a =B .1a =-C .2a =D .2a =-【答案】D【分析】根据题意可列式()()21x a x -+-,然后展开之后只要使含x 的一次项系数为0即可求解.【详解】解:由题意得: ()()()2221=2222x a x x x ax a x a x a -+--++-=-++-;因为多项式1x -与多项式2x a -+的积中不含x 的一次项,所以2=0a +,解得=2-a ;故选D .【点睛】本题主要考查多项式,熟练掌握多项式的概念是解题的关键.5.在下面四个图案中,如果不考虑图中的文字和字母,那么不是轴对称图形的是( )A .B .C .D .【答案】B【解析】对称轴是两边图象折叠后可重合,中心对称是要寻找对称中心,旋转180度后重合. 根据轴对称图形的概念,A 、C 、D 都是轴对称图形,B 不是轴对称图形,故选B6.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( ) A .5<m <6B .5<m≤6C .5≤m≤6D .6<m≤7 【答案】B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m 的范围.【详解】解不等式x ﹣m <0,得:x <m ,解不等式7﹣2x≤2,得:x≥52, 因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤1.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.7.如图是我市某景点6月份内110日每天的最高温度折线统计图,由图信息可知该景点这10天中,气温26C︒出现的频率是()A.3 B.0.5 C.0.4 D.0.3【答案】D【分析】通过折线统计图和频率的知识求解.【详解】解:由图知10天的气温按从小到大排列为:22.3,24,24,26,26,26,26.5,28,30,30,26有3个,因而26出现的频率是:3100%10⨯=0.3.故选D.【点睛】本题考查了频率的计算公式,理解公式是关键.8.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠EFC′=125°,那么∠ABE的度数为( )A.15°B.20°C.25°D.30°【答案】B【解析】试题解析:由折叠的性质知,∠BEF=∠DEF,∠EBC′、∠BC′F都是直角,∴BE∥C′F,∴∠EFC′+∠BEF=180°,又∵∠EFC′=125°,∴∠BEF=∠DEF=55°,在Rt △ABE 中,可求得∠ABE=90°-∠AEB=20°.故选B .9.下列各式中是分式的是( )A .23xB .3aπ C .521x - D .22a b -【答案】C【分析】根据分式的定义:分母中含有字母的式子逐项判断即可.【详解】解:式子23x 、3a π、22a b -都是整式,不是分式,521x -中分母中含有字母,是分式. 故选:C .【点睛】本题考查的是分式的定义,属于应知应会题型,熟知分式的概念是解题关键.10.不等式组1{1x x >-≤的解集在数轴上可表示为( )A .B .C .D .【答案】D 【分析】先解不等式组11x x >-⎧⎨≤⎩可求得不等式组的解集是11x -<≤,再根据在数轴上表示不等式解集的方法进行表示. 【详解】解不等式组11x x >-⎧⎨≤⎩可求得: 不等式组的解集是11x -<≤,故选D.【点睛】本题主要考查不等组的解集数轴表示,解决本题的关键是要熟练掌握正确表示不等式组解集的方法.二、填空题11.已知一次函数y =kx ﹣4(k <0)的图象与两坐标轴所围成的三角形的面积等于8,则该一次函数表达式为_____.【答案】y =﹣x ﹣1【分析】先求出直线与坐标轴的交点坐标,再根据三角形的面积公式列出方程,求得k 值,即可.【详解】令x =0,则y =0﹣1=﹣1,令y=0,则kx﹣1=0,x=4k,∴直线y=kx﹣1(k<0)与坐标轴的交点坐标为A(0,﹣1)和B(4k,0),∴OA=1,OB=-4k,∵一次函数y=kx﹣1(k<0)的图象与两坐标轴所围成的三角形的面积等于8,∴144()8 2k⨯⨯-=,∴k=﹣1,∴一次函数表达式为:y=﹣x﹣1.故答案为:y=﹣x﹣1.【点睛】本题主要考查求一次函数的解析式,掌握一次函数图象与坐标轴的交点坐标求法,是解题的关键.12.一根木棒能与长为4和9的两根木棒钉成一个三角形,则这根木棒的长度x的取值范围是____________.【答案】5<x<13【分析】设这根木棒的长度为x,根据在三角形中,任意两边之和大于第三边,得x<4+9=13,任意两边之差小于第三边,得x>9-4=5,所以这根木棒的长度为5<x<13.【详解】解:这根木棒的长度x的取值范围是9-4<x<9+4,即5<x<13.故答案为5<x<13.【点睛】本题考查了三角形得三边关系.在三角形中,任意两边之和大于第三边,任意两边之差小于第三边.13.如图,在平面鱼角坐标系xOy中,A(﹣3,0),点B为y轴正半轴上一点,将线段AB绕点B旋转90°至BC处,过点C作CD垂直x轴于点D,若四边形ABCD的面积为36,则线AC的解析式为_____.【答案】y=13x+1或y=﹣3x﹣1.【分析】过C作CE⊥OB于E,则四边形CEOD是矩形,得到CE=OD,OE=CD,根据旋转的性质得到AB =BC,∠ABC=10°,根据全等三角形的性质得到BO=CE,BE=OA,求得OA=BE=3,设OD=a,得到CD=OE=|a﹣3|,根据面积公式列方程得到C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入即可得到结论.【详解】解:过C作CE⊥OB于E,则四边形CEOD是矩形,∴CE=OD,OE=CD,∵将线段AB绕点B旋转10°至BC处,∴AB=BC,∠ABC=10°,∴∠ABO+∠CBO=∠CBO+∠BCE=10°,∴∠ABO=∠BCE,∵∠AOB=∠BEC=10°,∴△ABO≌△BCO(AAS),∴BO=CE,BE=OA,∵A(﹣3,0),∴OA=BE=3,设OD=a,∴CD=OE=|a﹣3|,∵四边形ABCD的面积为36,∴12AO•OB+12(CD+OB)•OD=12×3×a+12(a﹣3+a)×a=36,∴a=±6,∴C(﹣6,1)或(6,3),设直线AB的解析式为y=kx+b,把A点和C点的坐标代入得,3063k bk b-+=⎧⎨+=⎩或3069,k bk b-+=⎧⎨-+=⎩解得:131kb⎧=⎪⎨⎪=⎩或39.kb=-⎧⎨=-⎩,∴直线AB的解析式为113y x=+或y=﹣3x﹣1.故答案为113y x=+或y=﹣3x﹣1.【点睛】本题考查了坐标与图形变化﹣旋转,待定系数法求函数的解析式,全等三角形的判定和性质,正确的作出图形是解题的关键.14.已知直角三角形的两边长分别为3、1.则第三边长为________.【答案】4或7【解析】试题分析:已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①长为3的边是直角边,长为3的边是斜边时:第三边的长为:22437-=;②长为3、3的边都是直角边时:第三边的长为:22435;∴第三边的长为:7或4.考点:3.勾股定理;4.分类思想的应用.15.如图,直线a//b,∠1=42°,∠2=30°,则∠3=______度.【答案】1【分析】如图,利用三角形的外角,可知∠3=∠2+∠4,由平行知∠1=∠4,则∠3=∠2+∠1即可.【详解】如图,,∵a∥b,∴∠1=∠4,又∵∠3=∠2+∠4,∴∠3=∠2+∠1=30゜+42゜=1゜.故答案为:1.【点睛】本题考查角的度数问题,关键是把∠3转化为∠1与∠2有关的式子表示.16.已知()()22201920205a a -+-=,则()()20192020a a --= _________. 【答案】1【分析】令2019a x -=,2020a y -=,根据完全平方公式的变形公式,即可求解.【详解】令2019a x -=,2020a y -=,则x-y=1,∵()()22201920205a a -+-=,∴22()5x y +-=,即:225x y +=,∵222()2x y x y xy -=+-,∴2152xy =-,即:xy=1,故答案是:1.【点睛】本题主要考查通过完全平方公式进行计算,掌握完全平方公式及其变形,是解题的关键.17.正方形ABCD 的边长为4,E 为BC 边上一点,BE=3,M 为线段AE 上一点,射线BM 交正方形的一边于点F ,且BF=AE,则BM 的长为____. 【答案】52或125 【分析】分两种情况进行分析,①当BF 如图位置时,②当BF 为BG 位置时;根据相似三角形的性质即可求得BM 的长.【详解】如图,当BF 如图位置时,∵AB=AB ,∠BAF=∠ABE=90°,AE=BF ,∴△ABE ≌△BAF (HL ),∴∠ABM=∠BAM ,∴AM=BM ,AF=BE=3,∵AB=4,BE=3,∴AE= 5=,过点M 作MS ⊥AB ,由等腰三角形的性质知,点S 是AB 的中点,BS=2,SM 是△ABE 的中位线, ∴BM=12AE=12×5=52, 当BF 为BG 位置时,易得Rt △BCG ≌Rt △ABE ,∴BG=AE=5,∠AEB=∠BGC ,∴△BHE ∽△BCG ,∴BH :BC=BE :BG ,∴BH=125.故答案是:52或125. 【点睛】 利用了全等三角形的判定和性质,等角对等边,相似三角形的判定和性质,勾股定理求解.三、解答题18.如图,DE ⊥AB 于E ,DF ⊥AC 于F ,若BD =CD ,BE =CF .(1)求证:AD 平分∠BAC .(2)写出AB+AC 与AE 之间的等量关系,并说明理由.【答案】(1)详见解析;(2)AB+AC =2AE ,理由详见解析.【分析】(1)根据相“HL ”定理得出△BDE ≌△CDF ,故可得出DE =DF ,所以AD 平分∠BAC ;(2)由(1)中△BDE ≌△CDE 可知BE =CF ,AD 平分∠BAC ,故可得出△AED ≌△AFD ,所以AE =AF ,故AB+AC =AE ﹣BE+AF+CF =AE+AE =2AE .【详解】证明:(1)∵DE ⊥AB 于E ,DF ⊥AC 于F ,∴∠E =∠DFC =90°,∴△BDE 与△CDE 均为直角三角形,∵在Rt △BDE 与Rt △CDF 中,,,BD CD BE CF =⎧⎨=⎩∴Rt △BDE ≌Rt △CDF ,∴DE =DF ,∴AD 平分∠BAC ;(2)AB+AC =2AE .理由:∵BE =CF ,AD 平分∠BAC ,∴∠EAD =∠CAD ,∵∠E =∠AFD =90°,∴∠ADE =∠ADF ,在△AED 与△AFD 中,,,,EAD CAD AD AD ADE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AED ≌△AFD ,∴AE =AF ,∴AB+AC =AE ﹣BE+AF+CF =AE+AE =2AE .【点睛】本题考查的是角平分线的性质及全等三角形的判定与性质,熟知角平分线的性质及其逆定理是解答此题的关键.19.目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3800元购进节能灯120只,这两种节能灯的进价、售价如表:(1)求甲、乙两种节能灯各进多少只?(2)全部售完120只节能灯后,该商场获利多少元?【答案】(1)甲、乙两种节能灯各进80只,40只;(2)该商场获利1400元【分析】(1)根据题意可以列出相应的方程组,从而可以求得甲、乙两种节能灯各进了多少只; (2)根据(1)中的答案和表格中的数据可以求得该商场获得的利润.【详解】(1)设甲种节能灯进了x 只,乙种节能灯进了y 只,依题意得:12030353800x y x y +=⎧⎨+=⎩, 解得:8040x y =⎧⎨=⎩, 答:甲、乙两种节能灯各进80只,40只;(2)由题意可得,该商场获利为:(40-30)×80+(50-35)×40=800+600=1400(元),答:该商场获利1400元.【点睛】本题考查了二元一次方程组的应用,解答本题的关键是明确题意,列出相应的方程组,利用方程的思想解答.20.在ABC 中,80B ∠=︒,40C ∠=︒,AD 、AE 分别是ABC 的高和角平分线.求DAE ∠的度数.【答案】∠DAE=20°【分析】先根据三角形的内角和定理得到∠BAC 的度数,再利用角平分线的定义求出∠BAE=12∠BAC ,而∠BAD=90°-∠B ,然后利用∠DAE=∠BAE-∠BAD 进行计算即可.【详解】解:在△ABC 中,∠B=80°,∠C=40°∴∠BAC=180°-∠B-∠C=180°-80°-40°=60°∵AE 是的角平分线∴∠BAE=12∠BAC=30°, ∵AD 是△ABC 的高,∴∠ADB=90°∴在△ADB 中,∠BAD=90°-∠B=90°-80°=10°∴∠DAE=∠BAE-∠BAD=30°-10°=20°.【点睛】本题考查三角形内角和定理,角平分线的定义,三角形的高线.熟练掌握相关定义,计算出角的度数是解题关键.21.在甲村至乙村的公路旁有一块山地正在开发,现有一C 处需要爆破.已知点C 与公路上的停靠站A 的距离为600米,与公路上另一停靠站B 的距离为800米,且CA CB ⊥,如图,为了安全起见,爆破点C 周围半径400米范围内不得进入,问在进行爆破时,公路AB 段是否有危险,是否需要暂时封锁?请通过计算进行说明.【答案】没有危险,因此AB 段公路不需要暂时封锁.【分析】本题需要判断点C 到AB 的距离是否小于250米,如果小于则有危险,大于则没有危险.因此过C 作CD ⊥AB 于D ,然后根据勾股定理在直角三角形ABC 中即可求出AB 的长度,然后利用三角形的公式即可求出CD ,然后和250米比较大小即可判断需要暂时封锁.【详解】解:如图,过C 作CD ⊥AB 于D ,∵BC =800米,AC =600米,∠ACB =90°, ∴22228006001000AB BC AC =+=+=米, ∵12AB•CD =12BC•AC , ∴CD =480米.∵400米<480米,∴没有危险,因此AB 段公路不需要暂时封锁.【点睛】本题考查了正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.22.综合实践如图①,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为点D E 、,2.5, 1.7AD cm DE cm ==.(1)求BE 的长;(2)将CE 所在直线旋转到ABC ∆的外部,如图②,猜想AD DE BE 、、之间的数量关系,直接写出结论,不需证明;(3)如图③,将图①中的条件改为:在ABC ∆中,,AC BC D C E =、、三点在同一直线上,并且BEC ADC BCA α∠=∠=∠=,其中α为任意钝角.猜想AD DE BE 、、之间的数量关系,并证明你的结论.【答案】 (1)0.8cm;(2)DE=AD+BE;(3)DE=AD+BE ,证明见解析.【分析】(1)本小题只要先证明ACD CBE ≅,得到AD CE =,CD BE =,再根据2.5, 1.7AD cm DE cm ==,CD CE DE =-,易求出BE 的值;(2)先证明ACD CBE ≅,得到AD CE =,CD BE =,由图②ED=EC+CD ,等量代换易得到AD DE BE 、、之间的关系;(3)本题先证明EBC DCA ∠=∠,然后运用“AAS”定理判定BEC CDA ≅,从而得到,BE CD EC AD ==,再结合图③中线段ED 的特点易找到AD DE BE 、、之间的数量关系.【详解】解:(1)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∵90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCEAC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ 2.5, 1.7AD cm DE cm ==, 2.5 1.70.8()CD CE DE AD DE cm =-=-=-=∴0.8BE cm =(2)∵,AD CD BE CE ⊥⊥∴90ADC E ︒∠=∠=∴90ACD DAC ︒∠+∠=∴90ACB ︒∠=∴90ACD BCE ︒∠+∠=∴ACD BCE ∠=∠在ACD 与CBE △中,90ADC E ACD BCE AC BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+(3)∵BEC ADC BCA α∠=∠=∠=∴180BCE ACD a ︒∠+∠=-180BCE BCE a ︒∠+∠=-∴ACD BCE ∠=∠在ACD 与CBE △中, ADC E a ACD BCE AC BC ∠=∠=⎧⎪∠=∠⎨⎪=⎩∴ACD CBE ≅∴,AD CE CD BE ==又∵ED EC CD =+∴ED AD BE =+【点睛】本题考查的知识点是全等三角形的判定,确定一种判定定理,根据已知条件找到判定全等所需要的边相等或角相等的条件是解决这类题的关键.23.老师所留的作业中有这样一个分式的计算题:22511x x x +++-,甲、乙两位同学完成的过程分别如下: 甲同学: 22511x x x +++- ()()()()251111x x x x x +=++-+- 第一步()()2511x x x ++=+- 第二步()()711x x x +=+- 第三步 乙同学:22511x x x +++- ()()()()()2151111x x x x x x -+=++-+- 第一步 225x x =-++ 第二步33x =+ 第三步老师发现这两位同学的解答都有错误:(1)甲同学的解答从第______步开始出现错误;乙同学的解答从第_____步开始出现错误;(2)请重新写出完成此题的正确解答过程. 22511x x x +++- 【答案】 (1)一、二;(2)31x -. 【分析】(1)观察解答过程,找出出错步骤,并写出原因即可;(2)写出正确的解答过程即可.【详解】(1)甲同学的解答从第一步开始出现错误,错误的原因是第一个分式的变形不符合分式的基本性质,分子漏乘()1x -;乙同学的解答从第二步开始出现错误,错误的原因是与等式性质混淆,丢掉了分母.故答案为:一、二,(2)原式=2(1)5(1)(1)(1)(1)x x x x x x -+++-+- =225(1)(1)x x x x -+++- =33(1)(1)x x x ++- =31x -. 【点睛】本题主要考查分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则及分式的基本性质. 24.如图,在ABC ∆中,90,5,3C AB cm BC cm ︒∠===,若点P 从点A 出发,以每秒1cm 的速度沿折线A C B A →→→运动,设运动时间为t 秒(0t >).(1)用尺规作线段AB 的垂直平分线(不写作法,保留作图痕迹);(2)若点P 恰好运动到AB 的垂直平分线上时,求t 的值.【答案】(1)见解析;(2)t 的值为258s 或192s 【分析】(1)分别以AB 为圆心,大于12AB 为半径作弧,连接两户的交点即为线段AB 的垂直平分线,(2)勾股定理求出AC 的长, 当P 在AC 上时,利用勾股定理解题,当P 在AB 上时,利用22P A P B =解题.【详解】解:(1)分别以AB 为圆心,大于12AB 为半径作弧,连接两户的交点即为线段AB 的垂直平分线,有作图痕迹;(2)如图,在Rt ACB ∆中,由勾股定理得2222534AC AB BC =-=-=,①当P 在AC 上时,1AP t =,∴14PC t =-,11P A PB =,1PB t =, 在1Rt PCB ∆中,由勾股定理得: 22211+=PC BC PB 即:()()22243t t -+=解得:258t s =; ②当P 在AB 上时,227P A P B t ==-,即:572t -=, ∴192t s = ∴t 的值为258s 或192s . 【点睛】本题考查了尺规作图--垂直平分线,勾股定理的实际应用,会根据P 的运动进行分类讨论,建立等量关系是解题关键.25.如图,在平面直角坐标系中,1,0A ,()3,3B ,()5,1C(1)画出ABC ∆关于x 轴的对称图形11AB C ∆,并写出点1B 、1C 的坐标(2)直接写出ABC ∆的面积(3)在y 轴负半轴上求一点P ,使得APB ∆的面积等于ABC ∆的面积【答案】(1)画图见解析,1(3,3)B -、1(5,1)C -;(2)5;(3)130,2P ⎛⎫- ⎪⎝⎭【分析】(1)根据关于x 轴对称的点的坐标特点,横坐标不变,纵坐标互为相反数,画图求解; (2)利用割补法求三角形面积;(3)设()0,P m -,采用割补法求△ABP 面积,从而求解.【详解】解:(1)如图:1(3,3)B -、1(5,1)C -(2)111342341225222ABC S ∆∴ABC ∆的面积为5(3)设()0,P m -,建立如图△PMB ,连接AM有图可得:ABP PMB PAM ABM S SS S ∆=-- ∴()111331(3)33222ABP S m m ∆=⨯+⨯-⨯⨯+-⨯⨯352m =-=解得:132 m=∴130,2 P⎛⎫-⎪⎝⎭【点睛】本题考查画轴对称图形,三角形的面积计算,利用数形结合思想采用割补法解题是关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如果一次函数y=-kx+8中的y 随x 的增大而增大,那么这个函数的图象不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限 【答案】D【分析】先根据一次函数的增减性判断出k 的符号,再由一次函数的图象与系数的关系即可得出结论.【详解】解:∵一次函数y=-kx+8中,y 随x 的增大而增大,且b=8>0,∴此函数的图象经过第一、二、三象限,不经过第四象限.故选:D .【点睛】本题主要考查了一次函数图象与系数的关系,关键在于根据一次函数的增减性判断出k 的正负. 2.在223.14,0,,2,,2.010********π--(每两个1之间的0依次增加1个)中,无理数有( ) A .2个B .3个C .4个D .5个 【答案】B【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】3.14、0、227-属于有理数; 无理数有:5π-,2,2.010010001…(每两个1之间的0依次增加1个)共3个.故选:B .【点睛】本题考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.如图,直线AB :39y x =-+交y 轴于A ,交x 轴于B ,x 轴上一点(1,0)C -,D 为y 轴上一动点,把线段BD 绕B 点逆时针旋转90︒得到线段BE ,连接CE ,CD ,则当CE 长度最小时,线段CD 的长为( )A 10B 17C .5D .27【答案】B【分析】作EH ⊥x 轴于H ,通过证明△DBO ≌△BEH ,可得HE=OB ,从而确定点点E 的运动轨迹是直线3y =-,根据垂线段最短确定出点E 的位置,然后根据勾股定理求解即可.【详解】解:作EH ⊥x 轴于H ,∵∠DBE=90°,∴∠DBC+∠CBE=90°.∵∠BHE=90°,∴∠BEH+∠CBE=90°,∴∠DBC=∠BEH.在△DBO 和△BEH 中,∵∠DBC=∠BEH ,∠BOD=∠BHE ,BD=BE ,∴△DBO ≌△BEH 中,∴HE=OB ,当y=0时,039x =-+,∴x=3,∴HE=OB=3,∴点E 的运动轨迹是直线3y =-,B(3,0),∴当CE ⊥m 时,CE 最短,此时点'E 的坐标为(-1,3),∵B(-1,0),B(3,0),∴BC=4,∴BE ′,∴BD= BE ′=4,∴,∴故选B.【点睛】本题考查一次函数与坐标轴的交点,坐标与图形的变化,旋转变换、全等三角形的判定与性质,垂线段最短以及勾股定理等知识,解题的关键是确定点E 的位置.4.我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是( ).A .x 1=1,x 2=3B .x 1=1,x 2=-3C .x 1=-1,x 2=3D .x 1=-1,x 2=-3 【答案】D【分析】将23x +作为一个整体,根据题意,即可得到23x +的值,再通过求解一元一次方程,即可得到答案.【详解】根据题意,得:231x +=或2+33x =-∴1x =-或3x =-故选:D .【点睛】本题考查了一元一次方程、一元二次方程的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.5.能说明命题“对于任何实数a, 都有a >-a ”是假命题的反例是()A .a=-2B .a 12=C .a=1D .a=2【答案】A【分析】先根据假命题的定义将问题转化为求四个选项中,哪个a 的值使得a a >-不成立,再根据绝对值运算即可得.【详解】由假命题的定义得:所求的反例是找这样的a 值,使得a a >-不成立A 、22(2)-==--,此项符合题意B 、111222=>-,此项不符题意 C 、111=>-,此项不符题意D 、222=>-,此项不符题意故选:A .【点睛】本题考查了命题的定义、绝对值运算,理解命题的定义,正确转为所求问题是解题关键.6.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角.③三角形的一个内角大于任何一个外角.④如果0x > ,那么20x > .A .1 个B .2 个C .3 个D .4 个【答案】A【分析】正确的命题是真命题,根据定义解答即可.【详解】①两条直线被第三条直线所截,内错角相等,是假命题;②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角,是假命题;③三角形的一个内角大于任何一个外角,是假命题;④如果0x > ,那么20x > ,是真命题,故选:A.【点睛】此题考查真命题,熟记真命题的定义,并熟练掌握平行线的性质,对顶角的性质,三角形外角性质,不等式的性质是解题的关键. 7.已知直线y =2x 与y =﹣x+b 的交点(﹣1,a ),则方程组20x y x y b -=⎧⎨+=⎩的解为( ) A .12x y =⎧⎨=⎩ B .12x y =-⎧⎨=⎩ C .12x y =⎧⎨=-⎩ D .12x y =-⎧⎨=-⎩【答案】D【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【详解】解:把(﹣1,a )代入y =2x 得a =﹣2,则直线y =2x 与y =﹣x+b 的交点为(﹣1,﹣2),则方程组20x y x y b -=⎧⎨+=⎩的解为12x y =-⎧⎨=-⎩. 故选D .【点睛】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解. 8.某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图像如图所示,由图中给出的信息可知,营销人员没有销售时的收入是( )A .310元B .300元C .290元D .280元【答案】B 【解析】试题分析:观察图象,我们可知当销售量为1万时,月收入是800,当销售量为2万时,月收入是11,所以每销售1万,可多得11-800=500,即可得到结果.由图象可知,当销售量为1万时,月收入是800,当销售量为2万时,月收入是11,所以每销售1万,可多得11-800=500,因此营销人员没有销售业绩时收入是800-500=1.故选B .考点:本题考查的是一次函数的应用点评:本题需仔细观察图象,从中找寻信息,并加以分析,从而解决问题.9.如果1≤a 2221a a -+的值是( )A .6+aB .﹣6﹣aC .﹣aD .1 【答案】D【分析】根据二次根式的性质、绝对值的性质,可化简整式,根据整式的加减,可得答案.【详解】由2,得 2212121a a a a a -+-=-+-=故选D .【点睛】 本题考查了二次根式的性质与化简,掌握二次根式的性质及绝对值的意义是关键,即()2(0)00(0)a a a a a a a >⎧⎪===⎨⎪-<⎩. 10.如图,在RtΔABC 中,∠A = 90°,∠ABC 的平分线交AC 于点D ,AD = 3,BC=10,则ΔBDC 的面积是( )A .15B .12C .30D .10【答案】A【分析】作垂直辅助线构造新三角形,继而利用AAS 定理求证△ABD 与△EBD 全等,最后结合全等性质以及三角形面积公式求解本题.【详解】作DE ⊥BC ,如下图所示:∵BD 是∠ABC 的角平分线,∴∠ABD=∠EBD .又∵∠A=∠DEB=90°,BD=BD ,∴()ABD EBD AAS ≅,∴DE=DA=1.在△BDC 中,111031522BDC SBC DE =••=⨯⨯=. 故选:A .【点睛】本题考查全等三角形的判定和性质,该题辅助线的做法较为容易,有角度相等以及公共边的提示,图形构造完成后思路便会清晰,后续只需保证计算准确即可.二、填空题11.在植树活动中,八年级一班六个小组植树的棵树分别是:5,7,3,x ,6,4.已知这组数据的众数是5,则该组数据的方差是_________. 【答案】53【分析】根据众数、平均数、方差的定义进行计算即可.【详解】∵这组数据5、7、3、x 、6、4的众数是5,∴x =5,∴这组数据5、7、3、5、6、4的平均数是5735646+++++=5, ∴S 2=16[(5−5)2+(7−5)2+(3−5)2+(5−5)2+(6−5)2+(4−5)2]=53, 故答案为53. 【点睛】本题考查了众数、方差,掌握众数、平均数、方差的定义是解题的关键.12.如图,已知Rt ABC ∆的两条直角边长分别为6、8,分别以它的三边为直径向上作三个半圆,求图中阴影部分的面积为______.【答案】1【分析】先分别求出以6、8为直径的三个半圆的面积,再求出三角形ABC 的面积,阴影部分的面积是三角形ABC 的面积加以AC 为直径和以BC 为直径的两个半圆的面积再减去以AB 为直径的半圆的面积.【详解】解:由勾股定理不难得到AB=10以AC 为直径的半圆的面积:π×(6÷2)2×12=92π=4.5π, 以BC 为直径的半圆的面积:π×(8÷2)2×=8π,以AB 为直径的半圆的面积:π×(10÷2)2×12=12.5π, 三角形ABC 的面积:6×8×12=1, 阴影部分的面积:1+4.5π+8π−12.5π=1;故答案是:1.【点睛】本题考查了勾股定理的运用,解答此题的关键是,根据图形中半圆的面积、三角形的面积与阴影部分的面积的关系,找出对应部分的面积,列式解答即可.13.为了增强学生体质,某学校将“抖空竹”引阳光体育一小时活动,图1是一位同学抖空竹时的一个瞬间,小明把它抽象成图2的数学问题:已知//,80,110AB CD EAB ECD ∠=︒∠=︒,则E ∠的度数是_____.【答案】30°【分析】过E 点作EF ∥AB ,由两直线平行,同旁内角互补即可求解.【详解】解:过E 点作EF ∥AB ,如下图所示:∵EF ∥AB ,∴∠EAB+∠AEF=180°,又∠EAB=80°∴∠AEF=100°∵EF ∥AB ,AB ∥CD∴EF ∥CD∴∠CEF+∠ECD=180°,又∠ECD=110°∴∠CEF=70°∴∠AEC=∠AEF-∠CEF=100°-70°=30°.故答案为:30°.【点睛】本题考查平行线的构造及平行线的性质,关键是能想到过E 点作EF ∥AB ,再利用两直线平行同旁内角互补即可解决.14.在ABC ∆中,AB AC =,AB 的垂直平分线与AC 所在的直线相交所得到的锐角为40,则B 等于______________度.【答案】65°或25°【分析】(1)当△ABC 是锐角三角形时,根据题目条件得到∠A=50°,利用△ABC 是等腰三角形即可求解;(2)当△ABC 是钝角三角形时,同理可得即可得出结果.【详解】解:(1)当△ABC 是锐角等腰三角形时,如图1所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠A=180°-90°-40°=50°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-50°)÷2=65°(2)当△ABC是钝角三角形时,如图2所示由题知:DE⊥AB,AD=DB,∠AED=40°∴∠AED+∠ADE=∠BAC∴∠BAC=90°+40°=130°∵AB=AC∴△ABC是等腰三角形∴∠ABC=∠ACB∴∠ABC=(180°-130°)÷2=25°∴∠ABC=65°或25°故答案为:65°或25°【点睛】本题主要考查的是垂直平分线以及三角形的外角性质,正确的运用这两个知识点是解题的关键.15.已知249-+是完全平方式,则m=__________.x mx【答案】±1【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【详解】∵249x mx-+是一个完全平方式,∴m=±1.故答案为±1.【点睛】本题主要考查的是完全平方式,熟练掌握完全平方式的特点是解题的关键.16.分解因式:223a 3b -=________.【答案】3(a+b )(a-b )【分析】先提公因式,再利用平方差公式进行二次分解即可.【详解】解:3a 2-3b 2=3(a 2-b 2)=3(a+b )(a-b ).故答案为:3(a+b )(a-b ).【点睛】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.17.等腰三角形有一个角为30,则它的底边与它一腰上的高所在直线相交形成的锐角等于_____度.【答案】60或15.【分析】先分情况讨论30为顶角或者底角,再根据各情况利用三角形内角和定理求解即可.【详解】解:①当等腰ABC ∆底角30ABC BAC ∠=∠=︒时如下图:过B 作BD AC ⊥垂足为D∴90D ∠=︒∵在等腰ABC ∆中,30ABC BAC ∠=∠=︒∴在Rt ABD ∆中,9060DBA BAC =︒-=︒∠∠∴此时底边与它一腰上的高所在直线相交形成的锐角等于60︒.②当等腰ABC ∆顶角=30ACB ︒∠时如下图:过B 作BD AC ⊥垂足为D。
初中数学2018广东省深圳市龙华区初二上学期期末考试(解析版)
【答案】 (1)8 (2)5 【解析】 (1)原式 (2)原式
, .
18 【答案】 (1)
(2)
【解析】 (1) ① ②得: 把 代入①得:
原方程组的解为
(2) ① ②得: 把 代入①得:
原方程组的解为
; ,
19 【答案】 (1)50
(2)
(3)129.6 【解析】 (1)由题意可得, 本次问卷调查的学生共有: (2)步行的有:
---- 8 ----
////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
11
【答案】 D
【解析】 A、当 时,
,函数图象经过第一、三、四象限,故本选项错误;
B、当 时, 随 的增大而增大,当 时, 随 的增大而减小,故本选项错误;
C、当 时,则
,函数图象与 轴的交点为 ,与 轴的交点
,
函数的图象与坐标轴围成的三角形的面积
,故本选项错误;
D、把 代入
得
,则函数图象一定经过点 ,故本选项正确.
两点到投放点距离之和的最小值是________.
三、解答题(共 8 题,共 52 分)
17 (8 分) 计算题 (1)
(2)
---- 3 ----
18 (8 分) 解方程组 (1)
(2)
19 (6 分) 随着新学校建成越来越多,绝大部分孩子已能就近入学,某数学学习兴趣小组 对八年级(1)班学生上学的交通方式进行问卷调查,并将调查结果画出下列两个不完整的 统计图(图 1、图 2).请根据图中的信息完成下列问题. (1)该班参与本次问卷调查的学生共有________人; (2)请补全图 1 中的条形统计图; (3)在图 2 的扇形统计图中,“骑车”所在扇形的圆心角的度数是________度.
2018-2019初二数学龙华区统考试卷
龙华区2018—2019学年第一学期期末学业质量监测试卷八年级数学说明:1.试题卷共4页,答题卡共4页.考试试卷90分钟,满分100分. 2.请在答题卡上填涂学校、班级、姓名,不得在其它地方作任何标记.3.本卷选择题1~12,每小题选出答案后,用2B 铅笔将答题卷选择题答题区内对应题目的答案标号涂黑;非选择题的答案(含作辅助线)必须用规定的笔,写在答题卷指定的答题区内,写在本卷或其它地方无效...第一部分 (选择题,共36分)一、选择题(本题共有12小题,每小题3分,共36分,每小题有四个选项,其中只有一个是正确的) 1.2的平方根是( )A .4B .4±C .2D .2±2.下列各点位于平面直角坐标系内第二象限的是()A .()31−,B .()30−,C .()31−,D .()01,3.在Rt ABC △中,9012B BC AC ===∠,,,则AB 的长是()A .1B .3C .2D .54.下列运算正确的是()A .235+=B .4334−=C .3223⨯=D .4224÷=5.如图,在数轴上表示实数15的点可能是()A .点PB .点QC .点RD .点S6.已知直线m n ∥,将一块含30︒角的直角三角板ABC ,按如图的方式放置,其中A B 、两点分别落在直线m n 、上,若125=︒∠,则2∠的度数是( ) A .25︒ B .30︒ C .35︒ D .55︒7.甲、乙、丙、丁四个小组的同学分别参加了班里组织的中华古诗词知识竞赛,在相同条件下各小组的成绩情况如下表所示,若要从中选出一个小组参加年级的比赛,那么应选( )甲组乙组丙组丁组平均分 85 90 88 90 方差3.5 3.5 44.2 A .甲组B .乙组C .丙组D .丁组8.已知12x y =−⎧⎨=⎩是关于x y 、的二元一次方程3mx y −=的一个解,则m 的值是()A .1−B .1C .5−D .59.如图,已知点()12A −,是一次函数y kx b =+(0k ≠)的图象上的一点,则下列判断中正确的是( )A .y 随x 的增大而减小B .00k b ><,C .当0x <时,0y <D .方程2kx b +=的解是1x =−10.下列命题中,是真命题的是( )A .无限小数都输无理数;B .数轴上的点表示的数都是有理数;C .一个三角形中至少有一个角不大于60︒D .三角形的一个外角大于任何一个内角.11.某公司有生手工和熟手工两个工种的工人,已知一个生手工每天制造的零件比一个熟手工少30个,一个生手工与两个熟手工每天共可制造180个零件,求一个生手工与一个熟手工每天各能制造多少个零件?设一个生手工每天能制作x 个零件,一个熟手工每天能制造y 个零件,根据题意可列方程组为( )A .302180y x x y −=⎧⎨+=⎩B .302180x y x y −=⎧⎨+=⎩C .302180y x x y −=⎧⎨+=⎩D .302180x y x y −=⎧⎨+=⎩12.一列动车从A 地开往B 地,一列普通列车从B 地开往A 地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),图中的折线表示y 与x 之间的函数关系,下列说法中:①A 地到B 地相距1000千米;②两车出发后3小时相遇;③普通列车的速度是100千米/小时;④动车从A 地到达B 地的时间是4小时.正确的个数是( ) A .1个 B .2个 C .3个D .4个第二部分 (非选择题,共64分)二、填空题(每小题3分,共12分.)请把答案填在答题卷相应的表格里.13.若点()21A −,关于x 轴的对称点A '的坐标是()m n ,,则m n +的值是________.14.某次数学测试,某班一个学校小组的六位同学的成绩如下:84,75,75,92,86,99.则这六位同学成绩的中位数是________.15.如图,已知圆柱底面的周长为6cm ,圆柱高为2cm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为________.16.如图,Rt ABC △中,9021C AC BC ∠===,,,以斜边AB 为一边向右上方作正方形ABDE ,连接CD ,则CD 的长为________.三、解答题(本题共7小题,共52分)17.计算题(本题共两小题,第1小题4分,第2小题5分,共9分)(1)22−(2))1−18.解方程组(本题共两小题,每小题4分,共8分)(1)10216y x x y =−⎧⎨+=⎩(2)237328x y x y +=⎧⎨+=⎩19.(本题6分)某校为了解本校学生每周参加课外辅导班的情况,随机调查了部分学生一周内参加课外辅导班的学科数,并将调查的结果绘制成如图1、图2所示的两幅不完整的统计图.其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上.请根据统计图中的信息,解答下列问题:图1 图2(1)请将图2的统计图补充完整;(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是________个学科;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有________人.20.(本题6分)如图,已知ABC∥,交AB于=,D为AC的中点,过点D作DE BC△中,AB BC点E.=;(1)求证:AE DE∠的度数.(2)若65C=︒∠,求BDE21.(本题6分)阅读如下材料,然后解答后面的问题;已知直线1:22l y x =−−与直线2:24l y x =−+如图所示,可以看到,直线12l l ∥,且直线2l 可以由直线1l 想上平移6个长度单位得到,直线2l 也可以由直线1l 向右平移3个长度单位得到.这样,求直线2l 的函数表达式,可以由直线1l 的函数表达式直接得到.即:如果将直线1l 向右平移3个长度单位后得到2l ,得2l 的函数表达式为:()232y x =−−−,即24y x =−+.(1)将直线23y x =−向上平移2个长度单位后所得的直线的函数表达式是________; (2)将直线31y x =+向右平移()0m m >个单位后所得的直线的函数表达式是________; (3)已知将直线112y x =+向左平移()0n n >个长度单位后得到直线152y x =+,则n =________.22.(本题8分)某校计划建一间多功能数学实验室,将采购两类桌椅:A 类是三角形桌,每桌可坐3人,B 类是五边形桌,每桌可坐5人.学校拟选甲、乙两间公司中的一间来采购,两间公司的标价均相同,且规定两类桌椅均只能在同一间公司采购.甲公司对两类桌椅均是以标价出售;乙公司对A 类桌椅涨价20%、B 类桌椅降价20%出售.经咨询,两间公司给出的数量和费用如下表:((2)如果该数学实验室需设置48个座位,学校到甲公司采购,应分别采购A B 、两类桌椅各多少套时所需费用最少?23.(本题9分)如图,已知长方形OABC 的顶点A 在x 轴上,顶点C 在y 轴上,1812OA OC ==,,D E 、分别为OA BC 、上两点,将长方形OABC 沿直线DE 折叠后,点A 刚好与点C 重合,点B 落在点F 处,再将其打开、展平. (1)点B 的坐标是________;(2)求直线DE 的函数表达式;(3)设动点P 从点D 出发,以1个单位长度/s 的速度沿折线D A B C →→→向终点C 运动,运用时间为t 秒.求当2PDE OCD S S =△△时t 的值.整体分析(1)难度系数:★★,区分度体现在:第16、22、23题(三题都不算太难,22题易错)(2)重点考察:二次根式;平面直角坐标系;勾股定理;平行线与三角形;数据与统计;一次函数图形变化及运用:(3)易错题:16,22,23题考点分析龙华区2018—2019学年第一学期期末学业质量监测试卷八年级数学答案一、选择题 1.D 2.A 3.B 4.D5.C6.C7.B8.C9.D10.C11.A12.C二、填空题 13.3 14.8515.16三、解答题17.(1)1(2)418.(1)64x y =⎧⎨=⎩(2)21x y =⎧⎨=⎩19.(1)35B =画图(2)1(3)30020.(1)证明:∵AB BC=∴BAC BCA =∠∠ ABC △为等腰三角形又∵DE BC ∥ ∴ADE ACB =∠∠ ∴EAD ADE =∠∠∴AED △是等腰三角形AE DE=(2)解:∵AB BC =点D 为AC 中点 ∴BD AC ⊥ 又∵65C =︒∠ ∴25DBC =︒∠ ∵DE BC ∥∴25DBC BDE ==︒∠∠21.(1)21y x =−(2)331y x m =−+(3)822.解:(1)设第一次购买时,A 类标价x 元,B 类标价y 元()()651900310.2710.21660x y x y +=⎧⎪⎨++−=⎪⎩解得150200x y =⎧⎨=⎩(2)设到甲公司和和购a 套A ,b 单独B ,总费用为w 元()354815020001609.6a b w a b a b +=⎧⎪⎨=+<<<<⎪⎩,()15040483w a a =+−301920a =+∵4835ab −=且为正整数 ∴483a −是5的正整数倍∴1a =,6或11∴当1a =时,w 最小为195023.解:(1)()1812,(2)()50D ,()1312E ,31522y x =−12OCD S OD OC=△××1512302==×× 260OCD S =△①当P 在AD 上0t B <≤660PDE S t ==△10t =②当P 在AB 上 1325t <≤130460PDE S t =−=△352t =③P 在BE 上2530t <<180660PDE S t =−=△20t =(舍)④P 在EC 上3043t <≤618060PDE S t =−=△40t =∴10t =或352或40。
广东省深圳市龙华区2018-2019学年八年级数学(上)期末试卷附答案解析
广东省深圳市龙华区2018-2019学年八年级数学(上)期末试卷含答案解析一、选择题(每小题3分,共36分)1.(3分)2的平方根为()A.4B.±4C.D.±2.(3分)下列各点位于平面直角坐标系内第二象限的是()A.(﹣3,1)B.(﹣3,0)C.(3,﹣1)D.(0,1)3.(3分)在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.4.(3分)下列运算正确的是()A.B.C.D.5.(3分)如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S6.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°7.(3分)甲、乙、丙、丁四个小组的同学分别参加了班里组织的中华古诗词知识竞赛,在相同条件下各小组的成绩情况如下表所示,若要从中选择出一个小组参加年级的比赛,那么应选()甲乙丙丁平均分85908890方差 3.5 3.54 4.2A.甲组B.乙组C.丙组D.丁组8.(3分)已知是关于x、y的二元一次方程mx﹣y=3的一个解,则m的值是()A.﹣1B.1C.﹣5D.59.(3分)如图所示,已知点A(﹣1,2)是一次函数y=kx+b(k≠0)的图象上的一点,则下列判断中正确的是()A.y随x的增大而减小B.k>0,b<0C.当x<0时,y<0D.方程kx+b=2的解是x=﹣110.(3分)下列命题中是真命题的是()A.无限小数都是无理数B.数轴上的点表示的数都是有理数C.一个三角形中至少有一个角不大于60°D.三角形的一个外角大于任何一个内角11.(3分)某公司有生手工和熟手工两个工种的工人,已知一个生手工每天制造的零件比一个熟手工少30个,一个生手工与两个熟手工每天共可制造180个零件,求一个生手工与一个熟手工每天各能制造多少个零件?设一个生手工每天能制作x个零件,一个熟手工每天能制造y个零件,根据题意可列方程组为()A.B.C.D.12.(3分)一列动车从A地开往B地,一列普通列车从B地开往A地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系,下列说法中正确的是:()①AB两地相距1000千米;②两车出发后3小时相遇;③普通列车的速度是100千米/小时;④动车从A地到达B地的时间是4小时.A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.(3分)若点A(2,﹣1)关于x轴的对称点A的坐标是(m,n),则m+n的值是.14.(3分)某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是.15.(3分)如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为cm.16.(3分)如图,Rt△ABC中,∠C=90°,AC=2,BC=1,以斜边为一边向右上方作正方形ABDE,连接CD,则CD的长为.三、解答题(本大题有7题,共52分)17.(9分)计算题(1)(2)18.(8分)解方程组(1)(2)19.(6分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:(1)请将图2的统计图补充完整;(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.20.(6分)如图,已知△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E.(1)求证:AE=DE;(2)若∠C=65°,求∠BDE的度数.21.(6分)阅读如下材料,然后解答后面的问题:已知直线l1:y=﹣2x﹣2和直线l2:y=﹣2x+4如图所示,可以看到直线l1∥l2,且直线l2可以由直线l1向上平移6个长度单位得到,直线l2可以由直线l1向右平移3个长度单位得到.这样,求直线l2的函数表达式,可以由直线l1的函数表达式直接得到.即:如果将直线l1向上平移6的长度单位后得到l2,得l2的函数表达式为:y=﹣2x﹣2+6,即y=﹣2x+4;如果将直线l1向右平移3的长度单位后得到得l2,l2的函数表达式为:y=﹣2(x﹣3)﹣2,即y=﹣2x+4.(1)将直线y=2x﹣3向上平移2个长度单位后所得的直线的函数表达式是;(2)将直线y=3x+1向右平移m(m>0)两个长度单位后所得的直线的函数表达式是;(3)已知将直线y=x+1向左平移n(n>0)个长度单位后得到直线y=x+5,则n=.22.(8分)某校计划建一间多功能数学实验室,将采购两类桌椅:A类是三角形桌,每桌可坐3人,B类是五边形桌,每桌可坐5人.学校拟选择甲、乙两家公司中的一家来采购,两家公司的标价均相同,且规定两类桌椅均只能在同一家公司采购.甲公司对两类桌椅均是以标价出售;乙公司对A类桌椅涨价20%、B类桌椅降价20%出售.经咨询,两家公司给出的数量和费用如下表:A类桌椅(套)B类桌椅(套)总费用(元)甲公司651900乙公司371660(1)求第一次购买时,A、B两类桌椅每套的价格分别是多少?(2)如果该数学实验室需设置48个座位,学校到甲公司采购,应分别采购A、B两类桌椅各多少套时所需费用最少?23.(9分)如图,已知长方形OABC的顶点A在x轴上,顶点C在y轴上,OA=18,OC=12,D、E分别为OA、BC上的两点,将长方形OABC沿直线DE折叠后,点A刚好与点C重合,点B落在点F处,再将其打开、展平.(1)点B的坐标是;(2)求直线DE的函数表达式;(3)设动点P从点D出发,以1个单位长度/秒的速度沿折线D→A→B→C向终点C运动,运动时间为t秒,求当S△PDE=2S△OCD时t的值.广东省深圳市龙华区2018-2019学年八年级数学(上)期末试卷含答案解析一、选择题(每小题3分,共36分)1.(3分)2的平方根为()A.4B.±4C.D.±【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:2的平方根是,故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)下列各点位于平面直角坐标系内第二象限的是()A.(﹣3,1)B.(﹣3,0)C.(3,﹣1)D.(0,1)【分析】根据所给点的横纵坐标的符号可得所在象限.【解答】解:A、(﹣3,1),在第二象限,故此选项正确;B、(﹣3,0),在x轴上,故此选项错误;C、(3,﹣1),在第四象限,故此选项错误;D、(0,1),在y轴上,故此选项错误;故选:A.【点评】本题主要考查象限内点的符号特点;用到的知识点为:符号为(﹣,+)的点在第二象限.3.(3分)在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.4.(3分)下列运算正确的是()A.B.C.D.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式=4,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S【分析】根据图示,判断出在哪两个整数之间,即可判断出数轴上表示实数的点可能是哪个.【解答】解:∵2<<3,∴数轴上表示实数的点可能是点Q.故选:B.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.6.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°【分析】根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【解答】解:∵直线m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.7.(3分)甲、乙、丙、丁四个小组的同学分别参加了班里组织的中华古诗词知识竞赛,在相同条件下各小组的成绩情况如下表所示,若要从中选择出一个小组参加年级的比赛,那么应选()甲乙丙丁平均分85908890方差 3.5 3.54 4.2A.甲组B.乙组C.丙组D.丁组【分析】根据图表先找出乙、丁的平均成绩好且相等,再比较它的方差即可得出答案.【解答】解:由图表可知,乙、丁的平均成绩较好,应从乙、丁中选,由于S2乙<S2丁,故丁的方差大,波动大,则要从中选择出一个小组参加年级的比赛,那么应选乙组;故选:B.【点评】本题考查了方差,掌握平均数和方差的定义是解题的关键,方差它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.(3分)已知是关于x、y的二元一次方程mx﹣y=3的一个解,则m的值是()A.﹣1B.1C.﹣5D.5【分析】把x与y的值代入方程计算即可求出m的值.【解答】解:把代入方程得:﹣m﹣2=3,解得:m=﹣5,故选:C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.(3分)如图所示,已知点A(﹣1,2)是一次函数y=kx+b(k≠0)的图象上的一点,则下列判断中正确的是()A.y随x的增大而减小B.k>0,b<0C.当x<0时,y<0D.方程kx+b=2的解是x=﹣1【分析】根据一次函数的性质判断即可.【解答】解:由图象知,A、y随x的增大而增大;B、k>0,b>0;C、当x<0时,y>0或y<0;D、方程kx+b=2的解是x=﹣1,故选:D.【点评】本题考查了一次函数与一元一次方程的关系,一次函数图象与系数的关系,正确的识别图象是解题的关键.10.(3分)下列命题中是真命题的是()A.无限小数都是无理数B.数轴上的点表示的数都是有理数C.一个三角形中至少有一个角不大于60°D.三角形的一个外角大于任何一个内角【分析】根据无理数,有理数的定义,三角形内角和定理,三角形的外角的性质一一判断即可.【解答】解:A、无限小数都是无理数.错误,无限循环小数是有理数;B、数轴上的点表示的数都是有理数.错误,应该是数轴上的点表示的数都是实数;C、一个三角形中至少有一个角不大于60°,正确;D、三角形的一个外角大于任何一个内角,错误,应该是三角形的一个外角大于任何一个和它不相邻内角;故选:C.【点评】本题考查无理数,有理数的定义,三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.(3分)某公司有生手工和熟手工两个工种的工人,已知一个生手工每天制造的零件比一个熟手工少30个,一个生手工与两个熟手工每天共可制造180个零件,求一个生手工与一个熟手工每天各能制造多少个零件?设一个生手工每天能制作x个零件,一个熟手工每天能制造y个零件,根据题意可列方程组为()A.B.C.D.【分析】找到两个等量关系列出方程组即可.【解答】解:设一个生手工每天能制作x个零件,一个熟手工每天能制造y个零件,根据题意得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够根据题意找到两个等量关系,这是列方程的依据.12.(3分)一列动车从A地开往B地,一列普通列车从B地开往A地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系,下列说法中正确的是:()①AB两地相距1000千米;②两车出发后3小时相遇;③普通列车的速度是100千米/小时;④动车从A地到达B地的时间是4小时.A.1个B.2个C.3个D.4个【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,AB两地相距1000千米,故①正确,两车出发后3小时相遇,故②正确,普通列车的速度是:=千米/小时,故③错误,动车从A地到达B地的时间是:1000÷()=4(小时),故④正确,故选:C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.二、填空题(本题共4小题,每小题3分,共12分)13.(3分)若点A(2,﹣1)关于x轴的对称点A的坐标是(m,n),则m+n的值是3.【分析】直接利用关于x轴对称点的性质,横坐标相同,纵坐标互为相反数进而得出答案.【解答】解:∵点A(2,﹣1)关于x轴的对称点A的坐标是(m,n),∴m=2,n=1,故m+n=3.故答案为:3.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.(3分)某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是85.【分析】直接根据中位数的定义求解.【解答】解:将这6位同学的成绩重新排列为75、75、84、86、92、99,所以这六位同学成绩的中位数是=85,故答案为:85.【点评】本题考查了中位数的概念.找中位数时需要对这一组数据按照从大到小或从小到大的顺序进行排序.15.(3分)如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为2cm.【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6cm,圆柱高为2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC=cm,∴这圈金属丝的周长最小为2AC=2cm.故答案为:2.【点评】本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.(3分)如图,Rt△ABC中,∠C=90°,AC=2,BC=1,以斜边为一边向右上方作正方形ABDE,连接CD,则CD的长为.【分析】过D作DG⊥CB交CB的延长线于G,根据正方形的性质得到AB=BD,∠ABD=90°,根据余角的性质得到∠CAB=∠DBG,根据全等三角形的性质得到BG=AC=2,DG=BC=1,根据勾股定理即可得到结论.【解答】解:过D作DG⊥CB交CB的延长线于G,∵四边形ABDE是正方形,∴AB=BD,∠ABD=90°,∵∠ACB=∠DGB=90°,∴∠ABC+∠BAC=∠ABC+∠DBG=90°,∴∠CAB=∠DBG,∴△ABC≌△BDG(AAS),∴BG=AC=2,DG=BC=1,∴CD===,故答案为:.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,则的作出辅助线是解题的关键.三、解答题(本大题有7题,共52分)17.(9分)计算题(1)(2)【分析】(1)首先化简二次根式以及结合平方差公式计算进而合并得出答案;(2)直接利用二次根式的乘法运算法则以及化简二次根式得出答案.【解答】解:(1)原式=2+3﹣4=1;(2)原式=6×+4﹣3+=3+4﹣3+=4+.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.18.(8分)解方程组(1)(2)【分析】(1)把①代入②得出2x+(10﹣x)=16,求出x,把x=6代入①求出y即可;(2)①+②得出5x+5y=15,求出2x+2y=6③,①﹣③求出y,把y=1代入①求出x即可.【解答】解:(1),把①代入②得:2x+(10﹣x)=16,解得:x=6,把x=6代入①得:y=10﹣6=4,所以原方程组的解为:;(2),①+②得:5x+5y=15,x+y=3,2x+2y=6③,①﹣③得:y=1,把y=1代入①得:2x+3=7,解得:x=2,所以原方程组的解为:.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.19.(6分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:(1)请将图2的统计图补充完整;(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有300人.【分析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得.【解答】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为:1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000×=300(人),故答案为:300.【点评】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.20.(6分)如图,已知△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E.(1)求证:AE=DE;(2)若∠C=65°,求∠BDE的度数.【分析】(1)根据平行线的性质和等腰三角形的性质解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.【解答】证明:(1)∵△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E,∵DE∥BC,∴∠C=∠ADE,∵AB=BC,∴∠C=∠A,∴∠A=∠ADE,∴AE=DE;(2)∵△ABC中,AB=BC,∠C=65°,∴∠ABC=180°﹣65°﹣65°=50°,∵DE是△ABC的中位线,∴AE=BE,∵AE=DE,∴BE=DE,∴∠EBD=∠EDB,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠DBC=25°,∴∠EDB=25°.【点评】此题考查三角形的中位线定理,关键是根据三角形中位线定理、等腰三角形的性质解答.21.(6分)阅读如下材料,然后解答后面的问题:已知直线l1:y=﹣2x﹣2和直线l2:y=﹣2x+4如图所示,可以看到直线l1∥l2,且直线l2可以由直线l1向上平移6个长度单位得到,直线l2可以由直线l1向右平移3个长度单位得到.这样,求直线l2的函数表达式,可以由直线l1的函数表达式直接得到.即:如果将直线l1向上平移6的长度单位后得到l2,得l2的函数表达式为:y=﹣2x﹣2+6,即y=﹣2x+4;如果将直线l1向右平移3的长度单位后得到得l2,l2的函数表达式为:y=﹣2(x﹣3)﹣2,即y=﹣2x+4.(1)将直线y=2x﹣3向上平移2个长度单位后所得的直线的函数表达式是y=2x﹣1;(2)将直线y=3x+1向右平移m(m>0)两个长度单位后所得的直线的函数表达式是y=3x﹣3m+1;(3)已知将直线y=x+1向左平移n(n>0)个长度单位后得到直线y=x+5,则n=8.【分析】(1)利用一次函数图象上加下减的平移规律求解即可;(2)利用一次函数图象左加右减的平移规律求解即可;(3)利用一次函数图象左加右减的平移规律列出关于n的方程,求解即可.【解答】解:(1)将直线y=2x﹣3向上平移2个长度单位后所得的直线的函数表达式是y=2x﹣3+2,即y=2x ﹣1.故答案为y=2x﹣1;(2)将直线y=3x+1向右平移m(m>0)两个长度单位后所得的直线的函数表达式是y=3(x﹣m)+1,即y =3x﹣3m+1.故答案为y=3x﹣3m+1;(3)∵将直线y=x+1向左平移n(n>0)个长度单位后得到直线y=(x+n)+1,即y=x+n+1,∴n+1=5,解得n=8.故答案为8.【点评】此题主要考查了一次函数图象与几何变换,根据阅读材料得出一次函数图象的平移规律是解题关键.22.(8分)某校计划建一间多功能数学实验室,将采购两类桌椅:A类是三角形桌,每桌可坐3人,B类是五边形桌,每桌可坐5人.学校拟选择甲、乙两家公司中的一家来采购,两家公司的标价均相同,且规定两类桌椅均只能在同一家公司采购.甲公司对两类桌椅均是以标价出售;乙公司对A类桌椅涨价20%、B类桌椅降价20%出售.经咨询,两家公司给出的数量和费用如下表:A类桌椅(套)B类桌椅(套)总费用(元)甲公司651900乙公司371660(1)求第一次购买时,A、B两类桌椅每套的价格分别是多少?(2)如果该数学实验室需设置48个座位,学校到甲公司采购,应分别采购A、B两类桌椅各多少套时所需费用最少?【分析】(1)根据题意和表格中的数据可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到相应的不等式,然后根据不等式的性质和一次函数的性质即可解答本题,注意3x+5y =48.【解答】解:(1)设A、B两类桌椅每套的价格分别是a元、b元,,解得,,答:A、B两类桌椅每套的价格分别是150元、200元;(2)设到甲公司采购A类桌椅x套,B类桌椅y套,所需费用为w元,w=150x+200y=50(3x+4y),∵3x+5y=48,∴3x=48﹣5y,∴w=50(48﹣5y+4y)=50(48﹣y)=﹣50y+2400,∴w随y的增大而减小,∵3x+5y=48,∴y的最大值是9,此时x=1,∴当y=9时,w取得最小值,此时w=1950,答:应分别采购A、B两类桌椅分别1套、9套时所需费用最少.【点评】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.23.(9分)如图,已知长方形OABC的顶点A在x轴上,顶点C在y轴上,OA=18,OC=12,D、E分别为OA、BC上的两点,将长方形OABC沿直线DE折叠后,点A刚好与点C重合,点B落在点F处,再将其打开、展平.(1)点B的坐标是(18,12);(2)求直线DE的函数表达式;(3)设动点P从点D出发,以1个单位长度/秒的速度沿折线D→A→B→C向终点C运动,运动时间为t秒,求当S△PDE=2S△OCD时t的值.【分析】(1)根据矩形的性质可得AB=OC=12,BC=AO=18,可求点B坐标;(2)由折叠的性质可得AD=CD,∠ADE=∠CDE,根据勾股定理可求OD=5,即CD=AD=13,根据等腰三角形的性质可求CE=13,即可得点D,点E的坐标,则用待定系数法可求直线DE的函数表达式;(3)分点P在AD上,AB上,BC上三种情况讨论,根据三角形面积的求法可求t的值.【解答】解:(1)∵四边形ABCO是矩形,∴AB=OC,BC=AO,∵OA=18,OC=12,∴AB=12,BC=18,∴点B坐标(18,12)故答案为:(18,12)(2)∵折叠∴AD=CD,∠ADE=∠CDE,∵OC2+OD2=CD2,∴144+OD2=(18﹣OD)2,∴OD=5,∴CD=13,点D坐标为(5,0),∵BC∥AO,∴∠CED=∠EDA,且∠ADE=∠CDE,∴∠CED=∠CDE,∴CE=CD=13,∴点E坐标为(13,12),设直线DE的函数表达式为y=kx+b,∴解得:k=,b=﹣∴解析式y=x﹣(3)∵S△PDE=2S△OCD,∴S△PDE=2××OC×OD=12×5=60当点P在AD上时,S△PDE=×PD×12=60,∴PD=10∴t==10,当点P在AB上时,S△PDE=S梯形ABED﹣S△PBE﹣S△APD=108﹣×5×(12﹣AP )﹣×13×AP=60∴AP =∴t ==当点P在BC上时,S△PDE =×PE×12=60∴PE=10∴t ==40综上所述:当S△PDE=2S△OCD时,t的值为10,,40.【点评】本题是四边形综合题,考查了矩形的性质,勾股定理,待定系数法求一次函数解析式,三角形面积的求法,用分类讨论思想解决问题是本题的关键.。
2018-2019学年 八年级(上)期末数学试卷(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(每题3分,共30分)1.如图所示的图案是我国几家银行标志,其中不是轴对称图形的是()A.B.C.D.2.下列运算中,正确的是()A.a2•a4=a8B.a10÷a5=a2C.(a5)2=a10D.(2a)4=8a43.下列变形属于因式分解的是()A.4x+x=5x B.(x+2)2=x2+4x+4C.x2+x+1=x(x+1)+1D.x2﹣3x=x(x﹣3)4.石墨烯目前是世界上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为()A.0.34×10﹣9B.3.4×10﹣9C.3.4×10﹣10D.3.4×10﹣115.已知图中的两个三角形全等,图中的字母表示三角形的边长,则∠1等于()A.72°B.60°C.50°D.58°6.如图,等腰△ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.16C.8D.107.下列各式成立的是()A.B.(﹣a﹣b)2=(a+b)2C.(a﹣b)2=a2﹣b2D.(a+b)2﹣(a﹣b)2=2ab8.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF9.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④10.已知x=3y+5,且x2﹣7xy+9y2=24,则x2y﹣3xy2的值为()A.0B.1C.5D.12二、填空题(本大题共6小题,每小题3分,共18分)11.因式分解:2a2﹣8=.12.若代数式有意义,则实数x的取值范围是.13.一个n边形的内角和是540°,那么n=.14.如图,Rt△ABC中,∠C=90°,AD为△ABC的角平分线,与BC相交于点D,若CD=4,AB =15,则△ABD的面积是.15.如图,在△ABC中,AB=AC,点D在AC上,过点D作DF⊥BC于点F,且BD=BC=AD,则∠CDF的度数为.16.如图,△ABC角平分线AE、CF交于点P,BD是△ABC的高,点H在AC上,AF=AH,下列结论:①∠APC=90°+ABC;②PH平分∠APC;③若BC>AB,连接BP,则∠DBP=∠BAC﹣∠BCA;④若PH∥BD,则△ABC为等腰三角形,其中正确的结论有(填序号).三、解答题17.(10分)计算(1)(2﹣)0﹣()﹣2(2)(﹣3a2)3÷6a+a2•a318.(10分)计算(1)(x+1)2﹣(x+1)(x﹣1)(2)﹣x﹣219.(10分)如图,D、C、F、B四点在一条直线上,AB=DE,AC⊥BD,EF⊥BD,垂足分别为点C、点F,CD=BF.求证:(1)△ABC≌△EDF;(2)AB∥DE.20.(10分)如图,已知A(﹣2,4),B(4,2),C(2,﹣1)(1)作△ABC关于x轴的对称图形△A1B1C1,写出点C关于x轴的对称点C1的坐标;(2)P为x轴上一点,请在图中找出使△PAB的周长最小时的点P并直接写出此时点P的坐标(保留作图痕迹).21.(12分)某工厂现在平均每天比原计划多生产50台机器,现在生产600台机器所需要时间与原计划生产450台机器所需时间相同.(1)现在平均每天生产多少台机器;(2)生产3000台机器,现在比原计划提前几天完成.22.(10分)已知代数式.(1)先化简,再求当x=3时,原代数式的值;(2)原代数式的值能等于﹣1吗?为什么?23.(12分)如图,已知△ABC中AB=AC,在AC上有一点D,连接BD,并延长至点E,使AE =AB.(1)画图:作∠EAC的平分线AF,AF交DE于点F(用尺规作图,保留作图痕迹,不写作法);(2)在(1)的条件下,连接CF,求证:∠ABE=∠ACF;(3)若AC=8,∠E=15°,求三角形ABE的面积.24.(14分)因式分解是把多项式变形为几个整式乘积的形式的过程.(1)设有多项式x2+2x﹣m分解后有一个因式是x+4,求m的值.(2)若有甲、乙两个等容积的长方体容器,甲容器长为x﹣1,宽为x﹣2.体积为x4﹣x3+ax2+bx ﹣6,(x为整数),乙容器的底面是正方形.①求出a,b的值;②分别求出甲、乙两容器的高.(用含x的代数式表示)25.(14分)在Rt△ABC中,∠B=90°,AB=8,CB=5,动点M从C点开始沿CB运动,动点N从B点开始沿BA运动,同时出发,两点均以1个单位/秒的速度匀速运动(当M运动到B点即同时停止),运动时间为t秒.(1)AN=;CM=.(用含t的代数式表示)(2)连接CN,AM交于点P.①当t为何值时,△CPM和△APN的面积相等?请说明理由.②当t=3时,试求∠APN的度数.2018-2019学年八年级(上)期末数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项不符合题意;B、不是轴对称图形,故本选项符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意.故选:B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.【分析】根据同底数幂的乘除法则,及幂的乘方法则,结合各选项进行判断即可.【解答】解:A、a2•a4=a6,计算错误,故本选项错误;B、a10÷a5=a5,计算错误,故本选项错误;C、(a5)2=a10,计算正确,故本选项正确;D、(2a)4=16a4,计算错误,故本选项错误;故选:C.【点评】本题考查了同底数幂的乘除运算及幂的乘方的运算,属于基础题,掌握运算法则是关键.3.【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,结合选项进行判断即可.【解答】解:A、是整式的计算,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、符合因式分解的定义,故本选项正确.故选:D.【点评】本题考查了因式分解的意义,属于基础题,掌握因式分解的定义是关键.4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 000 34=3.4×10﹣10;故选:C.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.【分析】根据全等三角形的性质即可求出答案.【解答】解:由于两个三角形全等,∴∠1=180﹣50°﹣72°=58°,故选:D.【点评】本题考查了全等三角形的性质,属于基础题型.解答本题的关键是熟练运用全等三角形的性质6.【分析】由于△ABC是等腰三角形,底边BC=5,周长为21,由此求出AC=AB=8,又DE是AB的垂直平分线,根据线段的垂直平分线的性质得到AE=BE,由此得到△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB,然后利用已知条件即可求出结果.【解答】解:∵△ABC是等腰三角形,底边BC=5,周长为21,∴AC=AB=8,又∵DE是AB的垂直平分线,∴AE=BE,∴△BEC的周长=BE+CE+CB=AE+CE+BC=AC+CB=13,∴△BEC的周长为13.故选:A.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.7.【分析】根据完全平方公式和分式的化简判断即可.【解答】解:A、,错误;B、(﹣a﹣b)2=(a+b)2,正确;C、(a﹣b)2=a2﹣2ab+b2,错误;D、(a+b)2﹣(a﹣b)2=4ab,错误;故选:B.【点评】此题考查完全平方公式,关键是根据完全平方公式和分式的化简判断.8.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选:D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS和HL是解题的关键.9.【分析】根据等边三角形的判定判断,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.【解答】解:①两个角为60度,则第三个角也是60度,则其是等边三角形;②有一个角等于60°的等腰三角形是等边三角形;③三个外角相等,则三个内角相等,则其是等边三角形;④根据等边三角形的性质,可得该等腰三角形的腰与底边相等,则三角形三边相等.所以都正确.故选:A.【点评】此题主要考查等边三角形的判定,三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形.10.【分析】依据x﹣3y=5两边平方,可得x2﹣6xy+9y2=25,再根据x2﹣7xy+9y2=24,即可得到xy的值,进而得出x2y﹣3xy2的值.【解答】解:∵x=3y+5,∴x﹣3y=5,两边平方,可得x2﹣6xy+9y2=25,又∵x2﹣7xy+9y2=24,两式相减,可得xy=1,∴x2y﹣3xy2=xy(x﹣3y)=1×5=5,故选:C.【点评】本题主要考查了完全平方公式的运用,应用完全平方公式时,要注意:公式中的a,b 可是单项式,也可以是多项式;对形如两数和(或差)的平方的计算,都可以用这个公式.二、填空题(本大题共6小题,每小题3分,共18分)11.【分析】首先提取公因式2,进而利用平方差公式分解因式即可.【解答】解:2a2﹣8=2(a2﹣4)=2(a+2)(a﹣2).故答案为:2(a+2)(a﹣2).【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.【分析】根据分式有意义的条件可得x﹣3≠0,再解即可.【解答】解:由题意得:x﹣3≠0,解得:x≠3,故答案为:x≠3.【点评】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.13.【分析】根据n边形的内角和为(n﹣2)•180°得到(n﹣2)•180°=540°,然后解方程即可.【解答】解:设这个多边形的边数为n,由题意,得(n﹣2)•180°=540°,解得n=5.故答案为:5.【点评】本题考查了多边的内角和定理:n边形的内角和为(n﹣2)•180°.14.【分析】作DE⊥AB于E,根据角平分线的性质求出DE,根据三角形的面积公式计算即可.【解答】解:作DE⊥AB于E,∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=4,∴△ABD的面积=,故答案为:30【点评】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.15.【分析】设∠A=α,可得∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,再根据△ABC中,∠A+∠ABC+∠C=180°,即可得到∠C的度数,再根据DF⊥BC,即可得出∠CDF的度数.【解答】解:∵AB=AC,BD=BC=AD,∴∠ACB=∠ABC,∠A=∠ABD,∠C=∠BDC,设∠A=α,则∠ABD=α,∠C=∠BDC=2α,∠ABC=2α,∵△ABC中,∠A+∠ABC+∠C=180°,∴α+2α+2α=180°,∴α=36°,∴∠C=72°,又∵DF⊥BC,∴Rt△CDF中,∠CDF=90°﹣72°=18°,故答案为:18°.【点评】本题主要考查了等腰三角形的性质以及三角形内角和定理的运用,解题时注意:等腰三角形的两个底角相等.16.【分析】①利用三角形的内角和定理以及角平分线的定义即可判断.②利用反证法进行判断.③根据∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),由此即可判断.④利用全等三角形的性质证明CA=CB即可判断.【解答】解:∵△ABC角平分线AE、CF交于点P,∴∠CAP=∠BAC,∠ACP=∠ACB,∴∠APC=180°﹣(∠CAP+∠ACP)=180°﹣(∠BAC+∠ACB)=180°﹣(180°﹣∠ABC)=90°+∠ABC,故①正确,∵PA=PA,∠PAF=∠PAH,AF=AH,∴△PAF≌△PAH(SAS),∴∠APF=∠APH,若PH是∠APC的平分线,则∠APF=60°,显然不可能,故②错误,∵∠DBP=∠DBC﹣∠PBC=90°﹣∠ACB﹣(180°﹣∠BAC﹣∠ACB)=(∠BAC﹣∠ACB),故③错误,∵BD⊥AC,PH∥BD,∴PH⊥AC,∴∠PHA=∠PFA=90°,∵∠ACF=∠BCF,CF=CF,∠CFA=∠CFB=90°,∴△CFA≌△CFB(ASA),∴CA=CB,故④正确,故答案为①④.【点评】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.三、解答题17.【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用积的乘方运算法则以及整式的乘除运算法则计算得出答案.【解答】解:(1)原式=1﹣4=﹣3;(2)原式=﹣27a6÷6a+a2•a3=﹣a5+a5=﹣3a5.【点评】此题主要考查了整式的乘除运算,正确掌握相关运算法则是解题关键.18.【分析】(1)先利用完全平方公式和平方差公式计算,再去括号、合并同类项即可得;(2)根据分式的混合运算顺序和运算法则计算可得.【解答】解:(1)原式=x2+2x+1﹣(x2﹣1)=x2+2x+1﹣x2+1=2x+2;(2)原式=﹣=﹣=.【点评】本题主要考查分式的加减法,解题的关键是熟练掌握分式的加减混合运算顺序和运算法则及完全平方公式、平方差公式.19.【分析】(1)由垂直的定义,结合题目已知条件可利用HL证得结论;(2)由(1)中结论可得到∠D=∠B,则可证得结论.【解答】证明:(1)∵AC⊥BD,EF⊥BD,∴△ABC和△EDF为直角三角形,∵CD=BF,∴CF+BF=CF+CD,即BC=DF,在Rt△ABC和Rt△EDF中,∴Rt△ABC≌Rt△EDF(HL);(2)由(1)可知△ABC≌△EDF,∴∠B=∠D,∴AB∥DE.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定方法(即SSS、SAS、ASA、AAS和HL)和性质(即对应边相等、对应角相等)是解题的关键.20.【分析】(1)分别作出点A、B、C关于x轴的对称点,再顺次连接可得;(2)连接AB1,交x轴于点P,根据图形可得点P的坐标.【解答】解:(1)如图1所示,△A1B1C1即为所求;C1的坐标为(2,1).(2)如图所示,连接AB1,交x轴于点P,点P的坐标为(2,0).【点评】本题主要考查作图﹣轴对称变换,解题的关键是熟练掌握轴对称变换的定义和性质.21.【分析】(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,根据工作时间=工作总量÷工作效率结合现在生产600台机器所需要时间与原计划生产450台机器所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由提前完成的天数=工作总量÷原计划工作效率﹣工作总量÷现在工作效率,即可得出结论.【解答】解:(1)设原计划平均每天生产x台机器,则现在平均每天生产(x+50)台机器,依题意,得:=,解得:x=150,经检验,x=150是原方程的解,且符合题意,∴x+50=200.答:现在平均每天生产200台机器.(2)﹣=20﹣15=5(天).答:现在比原计划提前5天完成.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22.【分析】(1)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得;(2)根据题意得出=﹣1,解之求得x的值,再根据分式有意义的条件即可作出判断.【解答】解:(1)原式=[﹣]•=(﹣)•=•=,当x=3时,原式==2;(2)若原代数式的值等于﹣1,则=﹣1,解得x=0,而x=0时,原分式无意义,所以原代数式的值不能等于﹣1.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式的混合运算顺序和运算法则及分式有意义的条件.23.【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AC、AE相交,然后以这两点为圆心,以大于它们长度为半径画弧,两弧相交于一点,过点A与这一点作出射线与BE的交点即为所求的点F;(2)求出AE=AC,根据角平分线的定义可得∠EAF=∠CAF,再利用“边角边”证明△AEF和△ACF全等,根据全等三角形对应角相等可得∠ABE=∠ACF;(3)作高线EG,根据三角形的外角性质得∠EAG=30°,根据直角三角形的性质可得高线EG =4,根据三角形面积公式可得结论.【解答】(1)解:如图所示;(2)证明:∵AB=AC,AE=AB,∴AE=AC,∵AF是∠EAC的平分线,∴∠EAF=∠CAF,在△AEF和△ACF中,,∴△AEF≌△ACF(SAS),∴∠E=∠ACF,∵AB=AE,∴∠ABE=∠E,∴∠ABE=∠ACF.(3)解:如图,过E作EG⊥AB,交BA的延长线于G,∵AB=AC=AE=8,∴∠ABE=∠AEB=15°,∴∠GAE=∠ABE+∠AEB=30°,∴EG=AE=4,∴三角形ABE的面积===16.【点评】本题考查了全等三角形的判断与性质,等腰三角形的性质,角平分线的作法,确定出全等三角形的条件是解题的关键.24.【分析】(1)根据分解因式的定义,假设未知数,进行求解;(2)同上一问,假设未知数,进行求解;然后对体积的表达式进行因式分解,得到乙容器的高;【解答】解:(1)设原式分解后的另一个因式为x+n,则有:x2+2x﹣m=(x +4)(x +n )=x 2+(4+n )x +4n∴4+n =2可得n =﹣24n =﹣m 可得m =8综上所述:m =8(2)①设甲容器的高为x 2+mx ﹣3,则有:(x ﹣1)(x ﹣2)(x 2+mx ﹣3)=x 4﹣x 3+ax 2+bx ﹣6 ∴x •(﹣2)•x 2+(﹣1)•x •x 2+x •x •mx =﹣2x 3﹣x 3+mx 3=(m ﹣3)x 3=﹣x 3从而得m ﹣3=﹣1m =2原甲容器的体积=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=x 4﹣x 3﹣9x 2+13x ﹣6从而得a =﹣9,b =13②由乙容器的底面为正方形可得:x 4﹣x 3﹣9x 2+13x ﹣6=(x ﹣1)(x ﹣2)(x 2+2x ﹣3)=(x ﹣1)(x ﹣2)(x +3)(x ﹣1)=(x ﹣1)2(x 2+x ﹣6)故答案为:甲容器的高为x 2+2x ﹣3,乙容器的高为x 2+x ﹣6【点评】该题通过设置未知数,运用多项式乘多项式的方法求解未知数的值.25.【分析】(1)根据路程=速度×时间,可用含t 的代数式表示BN ,CM 的长,即可用含t 的代数式表示AN 的长;(2)①由题意可得S △ABM =S △BNC ,根据三角形面积公式可求t 的值;②过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,可证四边形PGBF 是矩形,可得PF =BG ,根据三角形的面积公式,可得方程组,求出PG ,PF 的长,根据勾股定理可求PN 的长,通过证△ANE ∽△CNB ,可求AE ,NE 的长,即可求∠APN 的度数.【解答】解:(1)∵M ,N 两点均以1个单位/秒的速度匀速运动,∴CM =BN =t ,∴AN =8﹣t ,故答案为:8﹣t ,t ;(2)①若△CPM 和△APN 的面积相等∴S △CPM +S 四边形BMPN =S △APN +S 四边形BMPN ,∴S △ABM =S △BNC ,∴=∴8×(5﹣t )=5t∴t =∴当t =时,△CPM 和△APN 的面积相等;②如图,过点P 作PF ⊥BC ,PG ⊥AB ,过点A 作AE ⊥CN ,交CN 的延长线于点E ,连接BP ,∵PG ⊥AB ,PF ⊥BC ,∠B =90°,∴四边形PGBF 是矩形,∴PF =BG ,∵t =3,∴CM =3=BN ,∴BM =2,AN =5,∵S △ABM =S △ABP +S △BPM ,∴∴16=8PG +2PF ①∵S △BCN =S △BCP +S △BPN ,∴×5×3=∴15=3PG +5PF ②由①②组成方程组解得:PG =,PF =,∴BG =∴NG =BN ﹣BG =3﹣=在Rt△PGN中,PN==,在Rt△BCN中,CN==∵∠B=∠E=90°,∠ANE=∠BNC∴△ANE∽△CNB∴∴∴AE=,NE=∵PE=EN+PN∴PE=+=∴AE=PE,且AE⊥PE∴∠APN=45°【点评】本题是三角形综合题,考查了三角形的面积公式,勾股定理,矩形的判定,相似三角形的判定和性质等知识,本题的关键是求出PN的长.。
┃精选3套试卷┃2018届深圳市八年级上学期期末联考数学试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.计算4的结果是( )A .2±B .2C .2-D .4【答案】B【分析】根据算术平方根的概念,求4的算术平方根即可.【详解】解:4=2故选:B .【点睛】本题考查算术平方根,掌握概念正确理解题意是解题关键.2.如图,已知∠ACB =∠DBC ,添加以下条件,不能判定△ABC ≌△DCB 的是()A .∠ABC =∠DCB B .∠ABD =∠DCAC .AC =DBD .AB =DC【答案】D【分析】根据全等三角形的判定定理 逐个判断即可.【详解】A 、∵在△ABC 和△DCB 中ABC DCBBC CB ACB DBC∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴△ABC ≌△DCB (ASA ),故本选项不符合题意;B 、∵∠ABD =∠DCA ,∠DBC =∠ACB ,∴∠ABD+∠DBC =∠ACD+∠ACB ,即∠ABC =∠DCB ,∵在△ABC 和△DCB 中ABC DCBBC CB ACB DBC∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴△ABC ≌△DCB (ASA ),故本选项不符合题意;C 、∵在△ABC 和△DCB 中BC CB ACB DBC AC DB =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DCB (SAS ),故本选项不符合题意;D 、根据∠ACB =∠DBC ,BC =BC ,AB =DC 不能推出△ABC ≌△DCB ,故本选项符合题意;故选:D .【点睛】本题考查了全等三角形的判定定理,能灵活运用全等三角形的判定定理进行推理是解此题的关键,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .3.下列手机APP 图案中,属于轴对称的是( )A .B .C .D .【答案】B【分析】根据轴对称的定义即可判断.【详解】A 不是轴对称图形,B 是轴对称图形,C 不是轴对称图形,D 不是轴对称图形,故选B.【点睛】此题主要考查轴对称图形的定义,解题的关键是熟知轴对称图形的定义.425 )A .±5B .5C .5D 5【答案】C 25,再根据平方根定义求出即可. 255,5的平方根是5255故选C .【点睛】本题考查了对平方根和算术平方根的应用,主要考查学生对平方根和算术平方根的定义的理解能力和计算能力,难度不大.5.叶绿体是植物进行光合作用的场所,叶绿体DNA 最早发现于衣藻叶绿体,长约0.00005米.其中,0.00005用科学记数法表示为( )A .0.5×10﹣4B .5×10﹣4C .5×10﹣5D .50×10﹣3【解析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定, 0.00005=5510-⨯,故选C.6.下列长度的线段中,不能构成直角三角形的是( )A .9,12,15B .14,48,50C D .1,2【答案】C【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【详解】解:A. 92+122=152,故是直角三角形,不符合题意; B. 142+482=502,故是直角三角形,不符合题意;C. 222+≠,故不是直角三角形,符合题意;D. 22212+=,故是直角三角形,不符合题意.故选:C .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.下列二次根式中,最简二次根式的是( )A B C D 【答案】C【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A A 选项错误;B ,被开方数为小数,不是最简二次根式;故B 选项错误;C C 选项正确;D D 选项错误;考点:最简二次根式.8.下列式子,表示4的平方根的是( )AB .42CD .【答案】D【分析】根据平方根的表示方法判断即可.【详解】解:表示4的平方根的是,故选D .【点睛】本题考查了实数的平方根,熟知定义和表示方法是解此题的关键.9.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将()2101,()21011换算成十进制数应为: ()21021011202124015=⨯+⨯+⨯=++=;()32102101112021212802111=⨯+⨯+⨯+⨯=+++=.按此方式,将二进制()21001换算成十进制数和将十进制数13转化为二进制的结果分别为( ) A .9,()21101B .9, ()21110C .17,()21101D .17,()21110【答案】A【分析】首先理解十进制的含义,然后结合有理数混合运算法则及顺序进一步计算即可.【详解】将二进制()21001换算成十进制数如下: ()3210210011202021280019=⨯+⨯+⨯+⨯=+++=;将十进制数13转化为二进制数如下:1326÷=……1,623÷=……0,321÷=……1,∴将十进制数13转化为二进制数后得()21101,故选:A.【点睛】本题主要考查了有理数运算,根据题意准确理解十进制与二进制的关系是解题关键.10.若分式22x x +-的值为0,则x 的值是( ) A .2- B .2 C .2± D .任意实数【分析】根据分式的值为零的条件:分子=0且分母≠0,列出方程和不等式即可求出x 的值. 【详解】解:∵分式22x x +-的值为0 ∴2020x x +=⎧⎨-≠⎩ 解得:2x =-故选A .【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0,是解决此题的关键.二、填空题11.若10m =5,10n =4,则102m+n ﹣1=_____.【答案】1【分析】直接利用同底数幂的乘除运算法则将原式变形得出答案.【详解】解:∵1m =5,1n =4,∴21210(10)1010+-=⨯÷m n m n=25×4÷1=1,故答案为:1.【点睛】本题考查了同底数幂的乘除运算法则,熟练掌握运算法则是解题的关键.12.如图,直线AB CD ∥,BE 平分ABC ∠,交CD 于点D ,30CDB ∠=︒,那么C ∠的度数为________.【答案】120°【分析】由AB CD ∥,BE 平分ABC ∠,得∠CBD=∠ABD=30°,进而即可得到答案.【详解】∵AB CD ∥,∴∠ABD=30CDB ∠=︒,∵BE 平分ABC ∠,∴∠CBD=∠ABD=30°,∴C ∠=180°-30°-30°=120°.故答案是:120°.【点睛】本题主要考查平行线的性质与角平分线的定义以及三角形内角和定理,掌握“双平等腰”模型,是解题的关键.13.如图, 在平面直角坐标系中, 一次函数y=x+32的图象与x 轴交于点A, 与y 轴交于点B, 点P 在线段AB 上, PC ⊥x 轴于点C, 则△PCO 周长的最小值为_____【答案】323+【解析】先根据一次函数列出PCO ∆周长的式子,再根据垂线公理找到使周长最小时点P 的位置,然后结合一次函数的性质、等腰直角三角形的性质求解即可.【详解】由题意,可设点P 的坐标为(,32)(0)a a a +<,32OC a PC a ∴=-=+PCO ∴∆周长为3232OC PC OP a a OP OP ++=-+++=+则求PCO ∆周长的最小值即为求OP 的最小值如图,过点O 作⊥OD AB由垂线公理得,OP 的最小值为OD ,即此时点P 与点D 重合由直线32y x =+的解析式得,(32,0),(0,32)A B -,则32OA OB ==BAO ∴∆是等腰直角三角形,45BAO ∠=︒DAO ∴∆是等腰直角三角形,22,32OD AD OD AD OA =+==解得3OD =则PCO ∆周长的最小值为3232323OP OD +=+=+故答案为:323+.【点睛】本题考查了一次函数的几何应用、等腰直角三角形的判定与性质、垂线公理等知识点,依据题意列出PCO ∆周长的式子,从而找到使其最小的点P 位置是解题关键.14.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的平分线,DE ⊥AB 于E ,若CB =6,那么DE+DB=_________.【答案】1【分析】据角平分线上的点到角的两边的距离相等可得CD DE =,然后求出BD DE BC +=.【详解】解:90C ∠=︒,AD 是BAC ∠的平分线,DE AB ⊥,CD DE ∴=,DE DB DB CD BC ∴+=+=,6BC =,6DE DB ∴+=.故答案为:1.【点睛】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.15.在实数范围内,把多项式239x -因式分解的结果是________. 【答案】(333x x【分析】首先提取公因式3,得到23(3)x -,再对多项式因式利用平方差公式进行分解,即可得到答案.【详解】239x -=23(3)x - =3(3)(3)x x 故答案是:3(3)(3)x x【点睛】本题考查了对一个多项式在实数范围内进行因式分解.能够把提取公因式后的多项式因式写成平方差公式的形式是解此题的关键.16.一组数据4,1-,2-,4,3-,4,4-,4中,出现次数最多的数是4,其频率是__________.【答案】0.5【分析】根据频率=某数出现的次数÷数字总数,4在这组数据中出现了4次,这组数据总共有8个数字,代入公式即可求解.【详解】解:4÷8=0.5故答案为:0.5【点睛】本题主要考查的是频率的计算,正确的掌握频率的计算公式,将相应的数据代入是解本题的关键.17.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB 的度数为____________.【答案】20°或40°或70°或100°【详解】解:在Rt△ABC中,∠C=90°,∠A=40°,分四种情况讨论:①当AB=BP1时,∠BAP1=∠BP1A=40°;②当AB=AP3时,∠ABP3=∠AP3B=12∠BAC=12×40°=20°;③当AB=AP4时,∠ABP4=∠AP4B=12×(180°﹣40°)=70°;④当AP2=BP2时,∠BAP2=∠ABP2,∴∠AP2B=180°﹣40°×2=100°;综上所述:∴∠APB的度数为:20°、40°、70°、100°.故答案为20°或40°或70°或100°.三、解答题18.如图均为2×2的正方形网格,每个小正方形的边长均为1.请分别在四个图中各画出一个与△ABC成轴对称、顶点在格点上,且位置不同的三角形.【答案】见解析【解析】试题分析:根据轴对称图形的性质,不同的对称轴,可以有不同的对称图形,所以可以称找出不同的对称轴,再思考如何画对称图形.试题解析:如图所示,19.已知22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,请化简后在–4≤x≤4范围内选一个你喜欢的整数值求出对应值. 【答案】21(2)x -; 当x=1时,原式=1. 【分析】先计算括号内的部分,再将除法转化为乘法,得出结果,再【详解】解:原式=22(2)(2)(1)[](2)(2)4x x x x x x x x x x+------÷ =2224(2)4x x x x x x x --+-⋅- = 24(2)4x x x x x --⋅- =21(2)x -, ∵–4≤x≤4且为整数,∴x=±4,±3,±2,±1,0,又根据题目和计算过程中x≠0,2,4,当x=1时,原式=1.【点睛】本题考查了分式的化简求值,解题的关键是掌握分式化简的运算法则,同时注意x 不能取的值. 20.我县电力部门实行两种电费计价方法,方法一是使用峰谷电:每天8:00至22:00用电每千瓦时收费0.56元(峰电价);22:00到次日8:00,每千瓦时收费0.28元(谷电价),方法二是不使用峰谷电:每千瓦时均收费0.53元(1)如果小林家使用峰谷电后,上月付费95.2元,比不使用峰谷电少付费10.8元,则上月使用峰电和谷电各是多少千瓦时?(2)如果小林家上月总用电量140千瓦时,那么当峰电用量为多少时,使用峰谷电比较合算.【答案】(1)上月使用“峰电”和“谷电”各140千瓦时、60千瓦时;(2)当“峰电“用量不超过1千瓦时,使用“峰谷电”比较合算.【分析】(1)设该家庭上月使用峰电x 千瓦时,谷电y 千瓦时,根据“电费95.2元”,比不使用“峰谷”的电费少付费10.8元作为相等关系列方程组,求解即可;(2)设“峰电“用量为z 千瓦时时,根据不等式关系:使用“峰谷电”的电费≤不使用“峰谷电”的电费,列出不等式计算即可求解.【详解】解:(1)设该家庭上月使用“峰电”x 千瓦时,“谷电”y 千瓦时,则总用电量为(x+y )千瓦时.由题意得()0.560.2895.20.5395.210.8x y x y +=⎧⎨+=+⎩, 解得14060x y =⎧⎨=⎩, 答:上月使用“峰电”和“谷电”各140千瓦时、60千瓦时;(2)设当“峰电“用量为z 千瓦时时,使用“峰谷电”比较合算,依题意有0.56z+0.28(140-z )≤140×0.53,解得z≤1.答:当“峰电“用量不超过1千瓦时,使用“峰谷电”比较合算.【点睛】本题主要考查了二元一次方程组的应用和一元一次不等式的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量(不等)关系,列出方程组,再求解.21.已知120MAN ∠=︒,AC 平分MAN ∠,点,B D 分别在,AN AM 上.(1)如图1,若CD AM ⊥于点D ,CB AN ⊥于点B .①利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可得,AC AD 的数量关系为________. ②请问:AC 是否等于AB AD +呢?如果是,请予以证明.(2)如图2,若180ABC ADC ∠+∠=︒,则(1)中的结论是否仍然成立?若成立,请予以证明;若不成立,请说明理由.【答案】(1)①12AD AC =(或2AC AD =),理由见解析;②AD AB AC +=,理由见解析;(2)仍成立,理由见解析【分析】(1)①由题意利用角平分线的性质以及含30角的直角三角形性质进行分析即可;②根据题意利用①的结论进行等量代换求解即可;(2)根据题意过点C 分别作,AM AN 的垂线,垂足分别为,E F ,进而利用全等三角形判定得出()CED CFB AAS ∆≅∆,以此进行分析即可.【详解】解:(1)①12AD AC =(或2AC AD =) AC 平分,120MAN MAN ∠∠=︒,60CAD ∴∠=︒,又90ADC ∠=︒,30ACD ∴∠=︒利用等腰三角形“三线合一”,将ADC ∆补成一个等边三角形,可知12AD AC = ②AD AB AC += 证明:由①知,12AD AC =同理,AC 平分,120MAN MAN ∠∠=︒,60CAB ∴∠=︒,又90ABC ∠=︒,30ACB ∴∠=︒,12AB AC = AD AB AC ∴+=(2)仍成立证明:过点C 分别作,AM AN 的垂线,垂足分别为,E FAC 平分,MAN ∠CE CF ∴=,180,180ABC ADC ADC CDE ∠+∠=︒∠+∠=︒CDE ABC ∴∠=∠又90CED CFB ∠=∠=︒()CED CFB AAS ∴∆≅∆ED FB ∴=AD AB AE ED AF FB AE AF ∴+=-++=+由(1)中②知AE AF AC +=AD AB AC ∴+=.【点睛】本题考查等腰三角形性质以及全等三角形判定,熟练掌握角平分线的性质以及含30角的直角三角形性质和全等三角形判定定理是解题的关键.22.计算或因式分解:(121()32-+-; (2)因式分解:(2)(4)1x x --+;(3)计算:232652(2)5(10)(2)x y xy x y x y xy xy •÷-+-÷.【答案】(1)3;(2)()23x -;(3)32x --【分析】(1)根据立方根的定义、算术平方根的定义和绝对值的定义计算即可;(2)先根据多项式乘多项式法则去括号,然后利用完全平方公式因式分解即可;(3)根据幂的运算性质、单项式乘单项式法则、单项式除以单项式法则、多项式除以单项式法则计算即可.【详解】解:(121()32-+- =1313()322+⨯-+ =113()22+-+=3(2)(2)(4)1x x --+=2681x x -++=269x x -+=()23x -(3)232652(2)5(10)(2)x y xy x y x y xy xy •÷-+-÷=2563685(10)(2)x y xy x y x •÷-+-=655740(10)(2)x y x y x ÷-+-=42x x -+-=32x --【点睛】此题考查的是实数的混合运算、因式分解和整式的乘除法,掌握立方根的定义、算术平方根的定义、绝对值的定义、多项式乘多项式法则、利用完全平方公式因式分解、幂的运算性质、单项式乘单项式法则、单项式除以单项式法则、多项式除以单项式法则是解决此题的关键.23.计算(每小题4分,共16分)(1)(((201220130222-+-- (2)已知22360a a +-=.求代数式3(21)(21)(21)a a a a +-+-的值.(1)先化简,再求值22211111m m m m m m -+-⎛⎫÷-- ⎪-+⎝⎭,其中m . (4)解分式方程:31221x x=--+1.【答案】(1)1;(2)7;(1;(4)116 【分析】(1)根据幂的乘方、平方差公式、去绝对值解决即可.(2)根据整式乘法法则,将原式变形成2a 2+1a+1,再将22360a a +-=变形成2a 2+1a=6,代入计算即可.(1)根据分式的基本性质,先将原式化简成1m,将m 的值代入计算即可. (4)根据等式和分式的基本性质,将分式方程化简成整式方程求解即可.【详解】(1)(((201220130222+--,((2012222212⎡⎤=++-⨯-⎣⎦; ()(2012121=-,21=+,=1.(2)解:原式=6a 2+1a-(4a 2-1)=6a 2+1a-4a 2+1=2a 2+1a+1∵2a 2+1a-6=0∴2a 2+1a=6原式=6+1=7(1)21(1)(1)(1)1)(1)1m m m m m m m --+--=÷+-+()原式(11•1(1)m m m m m -+=+- 1m= 3133m m =∴= (4)313,221x x =-+-- 方程两边都乘以()21x -得:()3261x ,=-+-解得:116x =, 检验:当116x 时,2(x ﹣1)≠0, 所以116x 是原方程的解, 即原方程的解为116x . 【点睛】本题考查了幂的乘方、平方差公式、整式运算法则、分式的化简求值及解分式方程,解决本题的关键是熟练掌握整式和分式的运算法则,等式的基本性质.24.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)补全频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数是多少;(3)本次调查学生参加户外活动时间的众数是多少,中位数是多少;(4)本次调查学生参加户外活动的平均时间是否符合要求?【答案】(1)频数分布直方图如图所示;见解析;(2)在扇形统计图中的圆心角度数为144°;(3)1小时,1小时;(4)平均活动时间符合要求.【分析】(1)先根据条形统计图和扇形统计图的数据,由活动时间为0.5小时的数据求出参加活动的总人数,然后求出户外活动时间为1.5小时的人数;(2)先根据户外活动时间为1小时的人数,求出其占总人数的百分比,然后算出其在扇形统计图中的圆心角度数;(3)根据中位数和众数的概念,求解即可.(4)根据平均时间=总时间÷总人数,求出平均时间与1小时进行比较,然后判断是否符合要求;【详解】(1)调查总人数为:10÷20%=50(人),户外活动时间为1.5小时的人数为:50×24%=12(人),频数分布直方图如右图所示;(2)户外活动时间为1小时的人数占总人数的百分比为:2050×100%=40%, 在扇形统计图中的圆心角度数为:40%×360°=144°.(3)将50人的户外活动时间按照从小到大的顺序排列, 可知第25和第26人的户外运动时间都为1小时,故本次户外活动时间的中位数为1小时;由频数分布直方图可知,户外活动时间为1小时的人数最多,故本次户外活动时间的众数为1小时. (4)户外活动的平均时间为:150×(10×0.5+20×1+12×1.5+8×2)=1.18(小时), ∵1.18>1,∴平均活动时间符合要求.【点睛】本题考查的是统计图,熟练掌握直方图和扇形统计图是解题的关键.25.如图,EA EB =,ED EC =,AEB DEC ∠=∠(1)求证:AD BC =;(2)连接DC ,求证:ADE CDE BCD ∠=∠+∠.【答案】 (1)证明见解析;(2)证明见解析.【分析】(1)由AEB DEC ∠=∠,则∠AED=∠BEC ,即可证明△ADE ≌△BCE ,即可得到AD=BC ; (2)连接DC ,由(1)得ADE BCE ∠=∠,EC ED =,则CDE DCE ∠=∠,再根据BCE DCE BCD ∠=∠+∠,即可得到答案.【详解】(1)证明:∵AEB DEC ∠=∠∴AED BEC ∠=∠在ADE ∆和BCE ∆中,∵EA EB AED BEC ED EC =⎧⎪∠=∠⎨⎪=⎩∴ADE ∆≌BCE ∆(SAS ),∴AD BC =;(2) 如图,连接DC ,由ADE ∆≌BCE ∆,得ADE BCE ∠=∠,∵EC ED =,∴CDE DCE ∠=∠,∵BCE DCE BCD ∠=∠+∠,∴ADE CDE BCD ∠=∠+∠.【点睛】本题考查了全等三角形的判定与性质,以及等腰三角形性质,正确找出三角形全等的条件是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.现实世界中,对称现象无处不在,中国的方块字中有些也具有对称性,下列美术字是轴对称图形的是( )A .诚B .信C .友D .善 【答案】D【分析】根据轴对称图形的概念逐一进行分析即可得.【详解】A.不是轴对称图形,故不符合题意;B.不是轴对称图形,故不符合题意;C.不是轴对称图形,故不符合题意;D.是轴对称图形,符合题意,故选D.【点睛】本题考查了轴对称图形的识别,熟知“平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形是轴对称图形”是解题的关键.2.已知(x+y)2 = 1,(x -y)2=49,则xy 的值为( )A .12B .-12C .5D .-5【答案】B【分析】根据完全平方公式把2()x y +和2()x y -展开,然后相减即可求出xy 的值. 【详解】由题意知:222()21x y x xy y +=++=①, 222()249x y x xy y -=-+=②,①-②得:()222222149x xy y x xy y++--+=-, ∴22222248x xy y x xy y ++-+-=-,即448xy =-,∴12xy =-,故选:B .【点睛】本题考查了完全平方公式,灵活运用完全平方公式,熟记公式的结构特征是解题的关键.3.如图,AB AF ⊥,EF AF ⊥,BE 与AF 交于点C ,点D 是BC 的中点,2AEB B ∠=∠.若8BC =,EF =AF 的长是( )A 6B 7C .3D .5【答案】C 【分析】根据直角三角形的性质和等腰三角形的判定和性质即可得到结论.【详解】∵AB ⊥AF ,∴∠FAB=90°,∵点D 是BC 的中点,∴AD=BD=12BC=4, ∴∠DAB=∠B ,∴∠ADE=∠B+∠BAD=2∠B ,∵∠AEB=2∠B ,∴∠AED=∠ADE ,∴AE=AD ,∴AE=AD=4,∵7,EF ⊥AF ,∴()222247AE EF -=-=3,故选:C .【点睛】本题考查了直角三角形斜边中线的性质,三角形的外角性质,等腰三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.4.若点()1,a y ,()21,a y +在直线2y kx =+上,且12y y >,则该直线经过象限是( ) A .一、二、三B .一、二、四C .二、三、四D .一、三、四【答案】B【分析】根据两个点的横坐标、纵坐标的大小关系,得出y 随x 的增大而减小,进而得出k 的取值范围,再根据k 、b 的符号,确定图象所过的象限即可.【详解】解:∵a <a+1,且y1>y2,∴y 随x 的增大而减小,因此k<0,当k<0,b=2>0时,一次函数的图象过一、二、四象限,故选:B.【点睛】本题考查一次函数的图象和性质,掌握一次函数的增减性是正确解答的前提.5.甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.1.其中说法正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选B.【点睛】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.6.下列多项式能用平方差公式分解因式的是()A.﹣x2+y2 B.﹣x2﹣y2 C.x2﹣2xy+y2 D.x2+y2【答案】A【解析】试题分析:能够运用平方差公式分解因式的多项式必须是二项式,两项都能写成平方的形式,且符号相反.根据平方差公式的特点可得到只有A可以运用平方差公式分解,考点:因式分解-运用公式法.7.如果把分式232x x y -中的x ,y 都扩大3倍,那么分式的值( ) A .扩大3倍B .不变C .缩小3倍D .扩大9倍【答案】B【分析】根据分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变,可得答案. 【详解】()23322332333232x x x x y x y x y⨯⋅==⨯-⨯--. 故选:B .【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为0的整式,分式的值不变.8.不等式组372291x x +≥⎧⎨-<⎩的非负整数解的个数是( ) A .4B .5C .6D .7【答案】B【分析】先求出不等式组的解集,再求出不等式组的非负整数解,即可得出答案. 【详解】解:37202912x x +≥⎧⎨-<⎩①② ∵解不等式①得:53x -解不等式②得:x <5,∴不等式组的解集为553x -< ∴不等式组的非负整数解为0,1,2,3,4,共5个,故选:B .【点睛】本题考查了解一元一次不等式组和一元一次不等式组的整数解,能求出不等式组的解集是解此题的关键. 9.下列实数中,无理数是( )A .3.14B .2.12122 CD .227 【答案】C【解析】根据无理数的三种形式,结合选项找出无理数的选项.【详解】3.14和2.12122和227都是分数,是有理数;【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.10.下列各组数,能够作为直角三角形的三边长的是( )A .2,3,4B .4,5,7C .0.5,1.2,1.3D .12,36,39【答案】C【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.解:A 、32+22≠42,不能构成直角三角形,故选项错误;B 、42+52≠72,不能构成直角三角形,故选项错误;C 、0.52+1.22=1.32,能构成直角三角形,故选项正确;D 、122+362≠392,不能构成直角三角形,故选项错误.故选C .考点:勾股定理的逆定理.二、填空题11.如图,20,30,50A B C ︒︒︒∠=∠=∠=,则ADB ∠的度数为_____________;【答案】100°【分析】根据三角形的外角性质计算即可.【详解】解:∠BEA 是△ACE 的外角,∴∠BEA=∠A+∠C=70°,∠BDA 是△BDE 的外角,∴∠BDA=∠BEA+∠B=100°,故答案为:100°.【点睛】本题考查的是三角形的外角性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键. 12.如图,在△ABC 中,∠A=36°,AB =AC ,BD 是∠ABC 的角分线.若在边AB 上截取BE =BC ,连接DE ,则图中共有_________个等腰三角形.【答案】1.【解析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【详解】∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=12∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°−∠DBC−∠C=180°−36°−72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°−36°)÷2=72°,∴∠ADE=∠BED−∠A=72°−36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有1个.故答案为1.考点:等腰三角形的判定13.x 减去y 大于-4,用不等式表示为______.【答案】x-y >-4【分析】x 减去y 即为x-y ,据此列不等式.【详解】解:根据题意,则不等式为:4x y ->-;故答案为:4x y ->-.【点睛】本题考查了由实际问题抽象出一元一次不等式,解答本题的关键是读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.14.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为______.【答案】(32,3). 【解析】解:作N 关于OA 的对称点N′,连接N′M 交OA 于P ,则此时,PM+PN 最小,∵OA 垂直平分NN′,∴ON=ON′,∠N′ON=2∠AON=60°,∴△NON′是等边三角形,∵点M 是ON 的中点,∴N′M ⊥ON ,∵点N (3,0),∴ON=3,∵点M 是ON 的中点,∴OM=1.5,∴PM=32,∴P (32,32).故答案为:(32,32).点睛:本题考查了轴对称﹣最短路线问题,等边三角形的判定和性质,解直角三角形,关键是确定P 的位置.15.因式分解:16x 2﹣25=______.【答案】(4x+5)(4x ﹣5)【分析】直接使用平方差公式进行因式分解即可.【详解】解:由题意可知:2221625(4)5(45)(45)xx x x ,故答案为:(45)(45)x x .【点睛】本题考查了使用乘法公式进行因式分解,熟练掌握乘法公式是解决本题的关键.16.如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB =10,EF =2,那么AH 等于【答案】6【解析】试题分析:由全等可知:AH =DE ,AE =AH +HE ,由直角三角形可得:222AE DE AB +=,代入可得.考点:全等三角形的对应边相等,直角三角形的勾股定理,正方形的边长相等17.将长方形纸片ABCD 沿EF 折叠,如图所示,若∠1=48°,则∠AEF =_____度.【答案】114°【分析】根据折叠性质求出∠2和∠3,根据平行线性质求出∠AEF +∠2=180°,代入求出即可.【详解】根据折叠性质得出∠2=∠3=12(180°-∠1)=12×(180°-48°)=66°, ∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AEF +∠2=180°,∴∠AEF =114°,故答案为:114°.【点睛】本题考查了矩形性质,平行线性质,折叠性质的应用,关键是求出∠2的度数和得出∠AEF+∠2=180°.三、解答题18.如图,把△ABC放置在每个小正方形边长为1的网格中,点A,B,C均在格点上,建立适当的平面直角坐标系xOy,使点A(1,4),△ABC与△A'B'C'关于y轴对称.(1)画出该平面直角坐标系与△A'B'C';(2)在y轴上找点P,使PC+PB'的值最小,求点P的坐标与PC+PB'的最小值.【答案】(1)详见解析;(2)图详见解析,点P的坐标为(0,1),PC+PB'的最小值为25.【分析】(1)根据点A的坐标找到坐标原点并建立坐标系,然后分别找到A、B、C关于y轴的对称点A'、B'、C' ,连接A'B'、B'C' 、A'C'即可;(2)直接利用轴对称求最短路线的方法、利用待定系数法求一次函数的解析式以及勾股定理得出答案.【详解】解:(1)根据点A的坐标找到坐标原点并建立坐标系,然后分别找到A、B、C关于y轴的对称点A'、B'、C' ,连接A'B'、B'C' 、A'C',如图所示:△A'B'C'即为所求;(2)如图所示:BC与y轴交于点P,根据对称的性质可得PB= PB'∴PC+PB'=PC+PB=BC,根据两点之间线段最短,此时PC+PB'最小,且最小值即为BC的长。
2018-2019学年广东省深圳中学八年级(上)期末数学试卷-解析版
【解析】
解:
由①,得x≥2,
由②,得x<3,
所以不等式组的解集是:2≤x<3.
不等式组的解集在数轴上表示为:
.
故选:A.
分别求出各个不等式的解集,再求出这些解集的公共部分并在数轴上表示出来即可.
本题考查的是解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
三、计算题(本大题共1小题,共6.0分)
19.计算:
四、解答题(本大题共6小题,共48.0分)
20.解方程组:
21. 如图,A,B分别为CD,CE的中点,AE⊥CD于点A,BD⊥CE于点B.求∠AEC的度数.
22.为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:
②若△OPB是等腰三角形,请直接写出满足条件的t的值;
③若△QPB是直角三角形,请直接写出满足条件的t的值.
答案和解析
1.【答案】C
【解析】
解:A、0是有理数,所以A选项错误;
B、π不是有理数,是无理数,所以B选项错误;
C、4是有理数中的正整数,所以C选项正确;
D、 是一个无理数,所以选项D错误.
故选:C.
17.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为______°.
18. 如图,△ABC是边长为1的等边三角形,过点C的直线m平行AB,D、E分别是线段AB、直线m上的点,先按如图方式进行折叠,点A、C分别落在A′、C′处,且A′C′经过点B,DE为折痕,当C′E⊥m时, 的值为______.
深圳市龙华新区八年级上学期期末数学试卷含答案
广东省深圳市龙华新区八年级上学期期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)16的算术平方根是()A.4B.﹣4 C.±4 D.82.(3分)平面直角坐标系内,若点A(3,﹣2)与点B(a,b)关于y轴对称,则下列结论中正确的是()A.a=3,b=﹣2 B.a=3,b=2 C.a=﹣3,b=2 D.a=﹣3,b=﹣23.(3分)如图,已知正方形A的面积为3,正方形B的面积为4,则正方形C的面积为()A.1B.5C.7D.254.(3分)已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值()A.1B.2C.﹣1 D.﹣25.(3分)如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17°B.34°C.56°D.68°6.(3分)某足球队共有23名队员,他们的年龄情况如图所示,则该足球队年龄的众数、中位数分别是()A.25,26 B.26,2 C.5,6 D.30,267.(3分)下列无理数中,在﹣4与﹣3之间的是()A.﹣B.C.﹣D.8.(3分)已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.9.(3分)《九章算术》中记载一个这样的问题“五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”如果设雀重x两,燕重y两,根据题意列出方程组正确的是()A.B.C.D.10.(3分)下列命题中是真命题的是()A.如果a2=b2,则a=bB.无限小数都是无理数C.三角形的一个外角大于任何一个内角D.过直线外一点有且只有一条直线与已知直线垂直11.(3分)如图是由三个棱长均为1的正方体箱子堆积而成的几何体,在底端的顶点A处有一只蚂蚁,它想吃到顶端的顶点B处的食物,则它沿该几何体表面爬行的最短路程等于()A.B.2+1 C.D.512.(3分)如图,一只长方形ABCD中,AB=4,BC=2,正方形DEFG的边长为2,且点G在CD上,动点P从点B出发,以1个单位长度/s的速度沿折线B→C→G→F向终点F运动,设运动时间为xs,△PAB 的面积为y,则y与x之间的函数关系用图象可以表示为()A.B.C.D.二、填空题(共4小题,每小题3分,满分12分)13.(3分)若正比例函数y=kx的图象经过点P(,2),则k的值为.14.(3分)小亮对甲、乙、丙三个市场一月份每天的鸡蛋价格进行调查,计算后发现这个月三个市场的鸡蛋价格平均值相同,方差分别为S甲2=1.25,S乙2=0.98,S丙2=1.15,则一月份鸡蛋价格最稳定的市场是.15.(3分)如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴于点C,则OC= .16.(3分)如图,已知点E是长方形ABCD中AD边上一点,将四边形BCDE沿直线BE折叠,折叠后点C的对应点为C′,点D的对应点为D′,若点A在C′D′上,且AB=5,BC=4,则AE= .三、解答题(共7小题,满分52分)17.(9分)计算题(1)()2﹣|﹣|(2)﹣2+.18.(10分)解方程组(1)(2).19.(6分)某校举办“社会主义核心价值观”知识演讲比赛,八(1)班计划从甲、乙两位同学中选出一位参加学校的决赛,已知这两位在预赛中各项成绩如表图,且甲、乙两人预赛四项成绩的平均分相同.项目甲乙演讲内容95 m语言表达90 85形象风度85 m现场效果90 95(1)表中m的值为;(2)把图中的统计图补充完整;(3)若将演讲内容、语言表达、形象风度、现场效果四项得分按4:3:1:2的比例确定两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由.20.(6分)如图,已知CE、CF分别是△ABC中∠ACB及外角∠ACD的平分线,点E在AB上,EF交AC于点M,且EF∥BC.(1)若∠B=45°,∠A=55°,求∠F的度数.(2)求证:ME=MF.21.(6分)某手机专卖店销售A、B两种型号的手机各一台共可获利1000元,后因市场变化,A种型号手机打8折销售,B种型号打7折销售,这样各销售一台手机共可获利760元,A、B两种型号手机原来每台的利润是多少元?22.(7分)如图,已知y=3x+3与x轴交于点B,与y轴交于点A,与函数y=x的图象交于点P.(1)在该坐标系中画出函数y=x﹣1的图象,并说明点P也在函数y=x﹣1的图象上;(2)设直线y=x﹣1与x轴交于点C,与y轴交于点D,求证:PQ平分∠APC.(3)连接AC,则△APC的面积为.23.(8分)如图,已知正方形OABC的边长为3,点D在BC上,点E在AB上,且BD=1.(1)点D的坐标是;(2)若∠ODE=90°,求点E的坐标;(3)设一次函数y=kx﹣2k的图象与x轴交于点P,与正方形OABC的边交于点Q,若△OPQ为等腰三角形,求该一次函数的解析式.广东省深圳市龙华新区八年级上学期期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)16的算术平方根是()A.4B.﹣4 C.±4 D.8考点:算术平方根.专题:计算题.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,直接利用此定义即可解决问题.解答:解:∵4的平方是16,∴16的算术平方根是4.故选A.点评:此题主要考查了算术平方根的定义,此题要注意平方根、算术平方根的联系和区别.2.(3分)平面直角坐标系内,若点A(3,﹣2)与点B(a,b)关于y轴对称,则下列结论中正确的是()A.a=3,b=﹣2 B.a=3,b=2 C.a=﹣3,b=2 D.a=﹣3,b=﹣2考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.解答:解:∵点A(3,﹣2)与点B(a,b)关于y轴对称,∴a=﹣3,b=﹣2,故选:D.点评:此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.3.(3分)如图,已知正方形A的面积为3,正方形B的面积为4,则正方形C的面积为()A.1B.5C.7D.25考点:勾股定理.分析:直接根据勾股定理即可得出结论.解答:解:∵正方形A的面积为3,正方形B的面积为4,∴正方形C的面积=3+4=7.故选C.点评:本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.4.(3分)已知x=2,y=﹣1是方程ax+y=3的一组解,则a的值()A.1B.2C.﹣1 D.﹣2考点:二元一次方程的解.专题:计算题.分析:把x与y的值代入方程中计算即可求出a的值.解答:解:把x=2,y=﹣1代入方程得:2a﹣1=3,解得:a=2,故选B.点评:此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.5.(3分)如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A.17°B.34°C.56°D.68°考点:平行线的性质.分析:首先由AB∥CD,求得∠ABC的度数,又由BC平分∠ABE,求得∠CBE的度数,然后根据三角形外角的性质求得∠BED的度数.解答:解:∵AB∥CD,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠CBE=∠ABC=34°,∴∠BED=∠C+∠CBE=68°.故选D.点评:此题考查了平行线的性质,角平分线的定义以及三角形外角的性质.此题难度不大,解题时要注意数形结合思想的应用.6.(3分)某足球队共有23名队员,他们的年龄情况如图所示,则该足球队年龄的众数、中位数分别是()A.25,26 B.26,2 C.5,6 D.30,26考点:众数;条形统计图;中位数.分析:根据众数和中位数的概念求解.解答:解:这组数据中,年龄为26岁的队员人数最多为7人,故众数为26,∵共有23名队员,∴第12名队员的岁数为中位数,即中位数为:26.故选B.点评:审题老师您好,麻烦您把B选项的第二个数字改为26,(如图),谢谢.7.(3分)下列无理数中,在﹣4与﹣3之间的是()A.﹣B.C.﹣D.考点:估算无理数的大小.分析:根据被开方数越大它的负平方根越小,可得﹣<﹣<﹣,可得答案.解答:解:由﹣<﹣<﹣,得﹣4<﹣<﹣3,故选:A.点评:本题考查了估算无理数的大小,利用被开方数越大它的负平方根越小得出﹣<﹣<﹣是解题关键.8.(3分)已知函数y=kx+b的图象如图所示,则函数y=﹣bx+k的图象大致是()A.B.C.D.考点:一次函数图象与系数的关系.专题:数形结合.分析:根据一次函数与系数的关系,由函数y=kx+b的图象位置可得k>0,b>0,然后根据系数的正负判断函数y=﹣bx+k的图象位置.解答:解:∵函数y=kx+b的图象经过第一、二、三象限,∴k>0,b>0,∴函数y=﹣bx+k的图象经过第一、二、四象限.故选C.点评:本题考查了一次函数与系数的关系:由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y 轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.k >0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b<0⇔y=kx+b的图象在一、三、四象限;k<0,b >0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.9.(3分)《九章算术》中记载一个这样的问题“五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,问:每只雀、燕的重量各为多少?”如果设雀重x两,燕重y两,根据题意列出方程组正确的是()A.B.C.D.考点:由实际问题抽象出二元一次方程组.分析:设雀重x两,燕重y两,根据五只雀、六只燕,共重1斤(等于16两),雀重燕轻,互换其中一只,恰好一样重,列方程组即可.解答:解:设雀重x两,燕重y两,由题意得,.故选D.点评:本题考查了有实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.10.(3分)下列命题中是真命题的是()A.如果a2=b2,则a=bB.无限小数都是无理数C.三角形的一个外角大于任何一个内角D.过直线外一点有且只有一条直线与已知直线垂直考点:命题与定理.分析:根据平方根的定义对A进行判断;根据无理数的定义对B进行判断;根据三角形外角性质对C进行判断;根据垂线公理对D进行判断.解答:解:A、如果a2=b2,则a=b或a=﹣b,所以A选项错误;B、无限不循环小数都是无理数,所以B选项错误;C、三角形的一个外角大于任何一个与之不相邻的内角,所以C选项错误;D、过直线外一点有且只有一条直线与已知直线垂直,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.11.(3分)如图是由三个棱长均为1的正方体箱子堆积而成的几何体,在底端的顶点A处有一只蚂蚁,它想吃到顶端的顶点B处的食物,则它沿该几何体表面爬行的最短路程等于()A.B.2+1 C.D.5考点:平面展开-最短路径问题.分析:先画出正方体的侧面展开图,再利用勾股定理求解即可.解答:解:如图所示,由图可知,AB==.故选A.点评:本题考查的是平面展开﹣最短路径问题,根据题意画出正方体的侧面展开图,利用勾股定理求解是解答此题的关键.12.(3分)如图,一只长方形ABCD中,AB=4,BC=2,正方形DEFG的边长为2,且点G在CD上,动点P从点B出发,以1个单位长度/s的速度沿折线B→C→G→F向终点F运动,设运动时间为xs,△PAB 的面积为y,则y与x之间的函数关系用图象可以表示为()A.B.C.D.考点:动点问题的函数图象.分析:当点P在不同线段上时,求出△PAB的面积y与x的关系式,确定函数图象.解答:解:0≤t≤2时,y=×4×t=2t,2≤t≤4时,y=×4×2=4,4≤t≤6时,y=×4×(t﹣2)=2t﹣4,∵0≤t≤6,∴B适合.故选:B.点评:本题考查的是动点问题的函数图象,根据自变量的取值范围确定函数解析式是解题的关键,注意分段函数图象的画法.二、填空题(共4小题,每小题3分,满分12分)13.(3分)若正比例函数y=kx的图象经过点P(,2),则k的值为.考点:一次函数图象上点的坐标特征.专题:计算题.分析:根据一次函数图象上点的坐标特征得到k=2,然后解方程即可.解答:解:∵正比例函数y=kx的图象经过点P(,2),∴k=2,∴k=.故答案为.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.14.(3分)小亮对甲、乙、丙三个市场一月份每天的鸡蛋价格进行调查,计算后发现这个月三个市场的鸡蛋价格平均值相同,方差分别为S甲2=1.25,S乙2=0.98,S丙2=1.15,则一月份鸡蛋价格最稳定的市场是乙.考点:方差.分析:根据方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好可得答案.解答:解:∵0.98<1.15<1.25,∴一月份鸡蛋价格最稳定的市场是乙,故答案为:乙.点评:此题主要考查了方差,关键是掌握方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.15.(3分)如图,已知直线y=2x+4与x轴交于点A,与y轴交于点B,以点A为圆心,AB为半径画弧,交x轴于点C,则OC=2﹣2.考点:一次函数图象上点的坐标特征.专题:计算题.分析:先根据坐标轴上点的坐标特征得到A(﹣2,0),B(0,4),再利用勾股定理计算出AB=2,然后根据圆的半径相等得到AC=AB=2,再利用OC=AC﹣AO进行计算即可.解答:解:当y=0时,2x+4=0,解得x=﹣2,则A(﹣2,0);当x=0时,y=2x+4=4,则B(0,4),所以AB==2,因为以点A为圆心,AB为半径画弧,交x轴于点C,所以AC=AB=2,所以OC=AC﹣AO=2﹣2.故答案为2﹣2.点评:本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.16.(3分)如图,已知点E是长方形ABCD中AD边上一点,将四边形BCDE沿直线BE折叠,折叠后点C的对应点为C′,点D的对应点为D′,若点A在C′D′上,且AB=5,BC=4,则AE=.考点:翻折变换(折叠问题).分析:如图,求出AC′=3,AD′=2;证明ED=ED′(设为λ),得到AE=4﹣λ;运用勾股定理列出关于λ的方程,求出λ即可解决问题.解答:解:如图,∵四边形ABCD为矩形,∴∠D=∠C=∠DAB=90°;AB=DC=5,AD=BC=4;根据翻折变换的性质可知:∠D′=∠D=90°,∠C′=∠C=90°;BC′=BC=4,D′C′=DC=5;由勾股定理得:AC′2=AB2﹣BC′2,∴AC′=3,AD′=5﹣3=2;由题意得:ED=ED′(设为λ),则AE=4﹣λ;由勾股定理得:(4﹣λ)2=22+λ2,解得:λ=,AE=.故答案为.点评:该题主要考查了翻折变换、矩形的性质、勾股定理及其应用问题;牢固掌握矩形的性质、勾股定理等是解题的关键.三、解答题(共7小题,满分52分)17.(9分)计算题(1)()2﹣|﹣|(2)﹣2+.考点:实数的运算.分析:(1)根据完全平方公式计算即可;(2)先化简再计算即可.解答:解:(1)原式=6+2+4﹣4=8;(2)原式=﹣+4=2+4=6.点评:本题考查了实数的运算,以及把二次根式化为最简二次根式,分母有理化是解题的关键.18.(10分)解方程组(1)(2).考点:解二元一次方程组.专题:计算题.分析:(1)方程组利用加减消元法求出解即可;(2)方程组利用加减消元法求出解即可.解答:解:(1),②﹣①得:2y=4,即y=2,把y=2代入①得:x=﹣1,则方程组的解为;(2),①×5﹣②得:6x=3,即x=,把x=代入①得:1﹣y=﹣4,即y=5,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.(6分)某校举办“社会主义核心价值观”知识演讲比赛,八(1)班计划从甲、乙两位同学中选出一位参加学校的决赛,已知这两位在预赛中各项成绩如表图,且甲、乙两人预赛四项成绩的平均分相同.项目甲乙演讲内容95 m语言表达90 85形象风度85 m现场效果90 95(1)表中m的值为90;(2)把图中的统计图补充完整;(3)若将演讲内容、语言表达、形象风度、现场效果四项得分按4:3:1:2的比例确定两人的最终得分,并选择最终得分较高的同学作为代表参赛,那么谁将代表八(1)班参赛?请说明理由.考点:条形统计图;统计表;加权平均数.分析:(1)根据平均数公式即可列方程求解;(2)根据(1)的结果即可补全直方图;(3)利用加权平均数公式求得两人的成绩,即可作出比较.解答:解:(1)根据题意得:=,解得:m=9.故答案是:90;(2)如图所示:;(3)甲的成绩:=91.5(分),乙的成绩是:=80.5(分),的甲的成绩好,应该选甲参赛.点评:本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(6分)如图,已知CE、CF分别是△ABC中∠ACB及外角∠ACD的平分线,点E在AB上,EF交AC于点M,且EF∥BC.(1)若∠B=45°,∠A=55°,求∠F的度数.(2)求证:ME=MF.考点:等腰三角形的判定与性质;平行线的性质.分析:(1)求出∠FCD=50°;由EF∥CD,得到∠F=∠FCD=50°.(2)证明ME=MC;证明MF=MC,得到ME=MF.解答:解:(1)∵∠B=45°,∠A=55°,∴∠ACD=∠A+∠B=100°;∵CF平分∠ACD,∴∠FCD=50°;而EF∥CD,∴∠F=∠FCD=50°.(2)∵CE平分∠ACB,∴∠ACE=∠BCE;而EF∥BC,∴∠MEC=∠BCE,∴∠MEC=∠MCE,∴ME=MC;同理可证MF=MC,∴ME=MF.点评:该题主要考查了平行线的性质、等腰三角形的判定及其性质等几何知识点及其应用问题;牢固掌握平行线的性质、等腰三角形的判定及其性质是解题的关键.21.(6分)某手机专卖店销售A、B两种型号的手机各一台共可获利1000元,后因市场变化,A种型号手机打8折销售,B种型号打7折销售,这样各销售一台手机共可获利760元,A、B两种型号手机原来每台的利润是多少元?考点:二元一次方程组的应用.分析:设A型号手机原来每台利润为x元,B型号手机原来每台的利润是y元,根据A种型号手机打8折销售,B种型号打7折销售,这样各销售一台手机共可获利760元,列方程组求解.解答:解:设A型号手机原来每台利润为x元,B型号手机原来每台的利润是y元,由题意得,,解得:.答:A型号手机原来每台利润为600元,B型号手机原来每台的利润是400元.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.22.(7分)如图,已知y=3x+3与x轴交于点B,与y轴交于点A,与函数y=x的图象交于点P.(1)在该坐标系中画出函数y=x﹣1的图象,并说明点P也在函数y=x﹣1的图象上;(2)设直线y=x﹣1与x轴交于点C,与y轴交于点D,求证:PQ平分∠APC.(3)连接AC,则△APC的面积为9.考点:两条直线相交或平行问题.专题:计算题.分析:(1)先用描点法画出函数y=x﹣1的图象,再根据两直线相交的问题,通过解方程组得到P点坐标为(﹣,﹣),然后根据一次函数图象上点的坐标特征判断点P在函数y=x﹣1的图象上;(2)利用点A和C的坐标特征可得点A和点C关于直线y=x对称,根据对称的性质可得直线y=x垂直平分AC,于是可得到PO平分∠APC;(3)先确定B点坐标,然后根据三角形面积公式和△APC的面积=S△ABC+S△PBC进行计算.解答:(1)解:如图,解方程组得,则P点坐标为(﹣,﹣),当x=﹣时,y=x﹣1=×(﹣)﹣1=﹣,所以点P在函数y=x﹣1的图象上;(2)证明:∵点A(0,3)和点C(3,0)关于直线y=x对称,∴直线y=x垂直平分AC,∴PO平分∠APC;(3)解:B(﹣1,0),A(0,3),△APC的面积=S△ABC+S△PBC=×(3+1)×3+×(3+1)×=9.故答案为9.点评:本题考查了两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.23.(8分)如图,已知正方形OABC的边长为3,点D在BC上,点E在AB上,且BD=1.(1)点D的坐标是(2,3);(2)若∠ODE=90°,求点E的坐标;(3)设一次函数y=kx﹣2k的图象与x轴交于点P,与正方形OABC的边交于点Q,若△OPQ为等腰三角形,求该一次函数的解析式.考点:一次函数综合题.分析:(!)由正方形OABC的边长为3,得点D的纵坐标为3,BD=1,得点D的横坐标为2;(2)通过△OCD∽△DBE得到对应边的比相等,求得BE的长,得到AE的长,求出点E的坐标;(3)根据一次函数y=kx﹣2k得到点P的坐标,再由△POQ为等腰三角形,点Q在四边形OABC的边上,求出点Q不同位置的坐标,用待定系数法求出一次函数的解析式.解答:解:(1)∵正方形OABC的边长为3,∴D的纵坐标为3,∵BD=1,∴CD=2,∴D(2,3),故答案为:D(2,3);(2)如图1,∵∠ODE=90°∠OCB=90°,∴∠ODC+∠BDE=∠ODC=∠COD=90°,∴∠COD=∠BDE,∴△OCD∽△DBE,∴=,∴BE=∴AE=,∴E(3,);(3)如图2,∵直线y=kx﹣2k与x轴交与点P,∴点P的坐标为(2,0),∴OP=2,∵点Q在四边形OABC的边上,△POQ为等腰三角形,当OQ=OP=2时,点Q在边OC上,∴点Q的坐标(0,2),∴2=﹣2k,∴k=﹣1,当PQ″=OP=2时,点Q″在AB边上,AQ″==,∴点Q″的坐标(3,),∴=3k﹣2k,∴k=,当OQ′=PQ′时,点Q在BC边上,∴点Q的坐标(1,3),∴3=k﹣2k,∴k=﹣3,综上所述:所求一次函数的解析式为:y=﹣x+2或y=﹣3x+6或y=x﹣2.点评:本题主要考查了平面直角坐标系中点的坐标的求法,相似三角形的判定和性质以及待定系数法一次函数解析式的综合应用,要注意的是(3)中,要根据Q点的不同位置进行分类求解.。
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
广东省深圳市深圳中学2018--2019八年级上学期期末考试
广东省深圳市深圳中学2018--2019八年级上学期期末考试一、选择题(本大题共12小题,共36.0分)1.-2018的相反数是()A. 2018B.C.D.2.现在网购越来越多地成为人们的一种消费方式,刚刚过去的2014年的“双11”网上促销活动中,天猫的支付交易额突破570亿元,将570亿元用科学记数法表示为()A. B. C. D.3.下列运算正确的是()A. B. C. D.4.下面哪个图形不能折成一个正方体()A. B.C. D.5.如图轴对称图形的是()A. B. C. D.6.若-2a m b4与5a n+2b2m+n可以合并成一项,则m n的值是()A. 0B.C. 1D. 27.一组数据4,2,x,3,9的平均数为4,则这组数据的众数和中位数分别是()A. 3,2B. 2,2C. 2,3D. 2,48.如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为MN,则线段BN的长为()A. B. C. 4 D. 59.若x2-2(k-1)x+9是完全平方式,则k的值为()A. B. C. 或3 D. 4或10.关于x的一次函数y=kx+k2+1的图象可能正确的是()A. B. C. D.11.若不等式组<>有2个整数解,则a的取值范围为()A. B. C. D.12.如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,DH⊥BC于H交BE于G.下列结论:①BD=CD;②AD+CF=BD;③CE=BF;④AE=BG.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共4小题,共12.0分)13.一个不透明的袋中共有20个球,它们除颜色不同外,其余均相同,其中:8个白球,5个黄球,5个绿球,2个红球,则任意摸出一个球是红球的概率是______.14.如图,AB∥CD,AE平分∠CAB交CD于点E,若∠C=40°,则∠AED=______.15.如图,已知点A1的坐标为(0,1),直线1为y=x.过点A1作A1B1⊥y轴交直线1于点B1,过点B1作A2B1⊥1交y轴于点A2;过点A2作A2B2⊥y轴交直线1于点B2,过点B2作A3B2⊥1交y轴于点A3,……,则A n B n的长是______.16.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是______.三、计算题(本大题共1小题,共9.0分)17.具店在该买卖中赚了多少钱?(2)为了满足市场需求,二季度厨具店决定采购电饭煲和电压锅共50台,且电饭煲的数量不大于电压锅的,请你通过计算判断,如何进货厨具店赚钱最多?最大利润是多少?四、解答题(本大题共6小题,共43.0分)18.计算:-(π-3.14)0+|-6|+()-2.19.解不等式组:>,并把解集在数轴上表示出来.20.我校八年级的体育老师为了了解本年级学生喜欢球类运动的情况,抽取了该年级部分学生对篮球、足球、排球、乒乓球的爱好情况进行了调查,并将调查结果绘制成如图两幅不完整的统计图(说明:每位学生只选一种自己最喜欢的一种球类),请根据这两幅图形解答下列问题:(1)在本次调查中,体育老师一共调查了多少名学生?(2)将两个不完整的统计图补充完整;(3)求出乒乓球在扇形中所占的圆心角的度数?(4)已知该校有760名学生,请你根据调查结果估计爱好足球和排球的学生共计多少人?21.如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE≌△BCD;(2)若AE=3,ED=,求BC的长度.22.如图,直线y=kx+b经过点A(-5,0),B(-1,4)(1)求直线AB的表达式;(2)求直线CE:y=-2x-4与直线AB及y轴围成图形的面积;(3)根据图象,直接写出关于x的不等式kx+b>-2x-4的解集.23.如图,直线y=2x-2与x轴交于点A,与y轴交于点B.点C是该直线上不同于B的点,且CA=AB.(1)写出A、B两点坐标;(2)过动点P(m,0)且垂直于x轴的直线与直线AB交于点D,若点D不在线段BC 上,求m的取值范围;(3)若直线BE与直线AB所夹锐角为45°,请直接写出直线BE的函数解析式.答案和解析【解析】解:-2018的相反数是2018.故选:A.只有符号不同的两个数叫做互为相反数.本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.2.【答案】B【解析】解:将570用科学记数法表示为5.70×1010.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:A、a3和a4不是同类项不能合并,故本选项错误;B、2a3•a4=2a7,故本选项正确;C、(2a4)3=8a12,故本选项错误;D、a8÷a2=a6,故本选项错误;故选:B.根据合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法分别求出每个式子的值,再判断即可.本题考查了合并同类项法则,单项式乘以单项式,积的乘方,同底数幂的除法的应用,主要考查学生的计算能力和判断能力.【解析】解:根据正方体展开图的特征,A图不能折成正方体;B、C、D图能折成正方体.故选:A.根据正方体展开图的11种特征,A图不属于正方体展开图,不能折成正方体;B、D图属于正方体展开图的“1-4-1”型,能折成正方体;C图属于正方体展开图的“3-3”型,能折成正方体.据此解答.此题考查了展开图折叠成几何体,正方体展开图有11种特征,分四种类型,即:第一种:“1-4-1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2-2-2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3-3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1-3-2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.5.【答案】D【解析】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、是轴对称图形,故此选项正确;故选:D.根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析.此题主要考查了轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.6.【答案】C【解析】解:由-2a m b4与5a n+2b2m+n可以合并成一项,得,解得,m n=20=1.故选:C.根据-2a m b4与5a n+2b2m+n可以合并成一项,可得同类项,根据同类项的定义,可得m、n的值,根据乘方,可得答案.本题考查了合并同类项,利用同类项得出m、n的值是解题关键.7.【答案】C【解析】解:∵一组数据4,2,x,3,9的平均数为4,∴(4+2+x+3+9)÷5=4,解得,x=2,∴这组数据按照从小到大排列是:2,2,3,4,9,∴这组数据的众数是2,中位数是3,故选:C.根据一组数据4,2,x,3,9的平均数为4,可以求得x的值,从而可以将这组数据按照从小到大排列起来,从而可以求得这组数据的众数和中位数.本题考查众数、中位数、算术平均数,解答本题的关键是明确题意,会求一组数据的众数和中位数.8.【答案】C【解析】解:设BN=x,由折叠的性质可得DN=AN=9-x,∵D是BC的中点,∴BD=3,在Rt△BDN中,x2+32=(9-x)2,解得x=4.故线段BN的长为4.故选:C.设BN=x,则由折叠的性质可得DN=AN=9-x,根据中点的定义可得BD=3,在Rt△BDN中,根据勾股定理可得关于x的方程,解方程即可求解.考查了翻折变换(折叠问题),涉及折叠的性质,勾股定理,中点的定义以及方程思想,综合性较强,但是难度不大.9.【答案】D【解析】解:∵x2-2(k-1)x+9是完全平方式,∴k-1=±3,解得:k=4或-2,故选:D.利用完全平方公式的结构特征判断即可确定出k的值.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.10.【答案】C【解析】解:令x=0,则函数y=kx+k2+1的图象与y轴交于点(0,k2+1),∵k2+1>0,∴图象与y轴的交点在y轴的正半轴上.故选:C.根据图象与y轴的交点直接解答即可.本题考查一次函数的图象,考查学生的分析能力和读图能力.11.【答案】B【解析】解:解x<1得x<2.则不等式组的解集是a<x<2.则整数解是1,0.则-1≤a<0.故选:B.首先解第一个不等式求得不等式组的解集,然后根据整数解的个数确定整数解,则a的范围即可求得.此题考查的是一元一次不等式组的解法.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.【答案】C【解析】解:∵CD⊥AB,∠ABC=45°,∴△BCD是等腰直角三角形.∴BD=CD.故①正确;在Rt△DFB和Rt△DAC中,∵∠DBF=90°-∠BFD,∠DCA=90°-∠EFC,且∠BFD=∠EFC,∴∠DBF=∠DCA.又∵∠BDF=∠CDA=90°,BD=CD,∴△DFB≌△DAC.∴BF=AC;DF=AD.∵CD=CF+DF,∴AD+CF=BD;故②正确;在Rt△BEA和Rt△BEC中∵BE平分∠ABC,∴∠ABE=∠CBE.又∵BE=BE,∠BEA=∠BEC=90°,∴Rt△BEA≌Rt△BEC.∴CE=AE=AC.又由(1),知BF=AC,∴CE=AC=BF;故③正确;连接CG.∵△BCD是等腰直角三角形,∴BD=CD又DH⊥BC,∴DH垂直平分BC.∴BG=CG在Rt△CEG中,∵CG是斜边,CE是直角边,∴CE<CG.∵CE=AE,∴AE<BG.故④错误.故选:C.根据∠ABC=45°,CD⊥AB可得出BD=CD,利用AAS判定Rt△DFB≌Rt△DAC,从而得出DF=AD,BF=AC.则CD=CF+AD,即AD+CF=BD;再利用AAS判定Rt△BEA≌Rt△BEC,得出CE=AE=AC,又因为BF=AC所以CE=AC=BF,连接CG.因为△BCD是等腰直角三角形,即BD=CD.又因为DH⊥BC,那么DH 垂直平分BC.即BG=CG.在Rt△CEG中,CG是斜边,CE是直角边,所以CE<CG.即AE<BG.本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.在复杂的图形中有45°的角,有垂直,往往要用到等腰直角三角形,要注意掌握并应用此点.13.【答案】【解析】解:∵20个球中共有2个红球,∴任意摸出一个球是红球的概率是.故答案是:.本题属于比较简单的概率计算问题,用红球总数除以袋中球的总数即可.考查了概率的公式,此题是比较简单的概率计算问题,用符合要求的球的总数除以袋子中球的个数即可.14.【答案】110°【解析】解:∵AB∥CD,∴∠C+∠CAB=180°,∵∠C=40°,∴∠CAB=180°-40°=140°,∵AE平分∠CAB,∴∠EAB=70°,∵AB∥CD,∴∠EAB+∠AED=180°,∴∠AED=180°-70°=110°,故答案为:110°.根据平行线性质求出∠CAB的度数,根据角平分线求出∠EAB的度数,根据平行线性质求出∠AED的度数即可.本题考查了角平分线定义和平行线性质的应用,解题时注意:两条平行线被第三条直线所截,同旁内角互补.15.【答案】2n-1【解析】解:∵点A1的坐标为(0,1),∴点B1的坐标为(1,1),A1B1=1.∵A2B1⊥1交y轴于点A2,直线1为y=x,∴△A1A2B1为等腰直角三角形,∴点A2的坐标为(0,2),点B2的坐标为(2,2),∴A2B2=2.同理,可得:A3B3=4,A4B4=8,…,∴A n B n=2n-1.故答案为:2n-1.由点A1的坐标可得出点B1的坐标,进而可得出A1B1的长,由A2B1⊥1交y轴于点A2结合直线1为y=x可得出△A1A2B1为等腰直角三角形,根据等腰直角三角形的性质可得出点A2的坐标,利用一次函数图象上点的坐标可得出点B2的坐标,进而可得出A2B2的长,同理,可得出A3B3,A4B4,…的长,再根据各线段长度的变化可找出变化规律“A n B n=2n-1”,此题得解.本题考查了一次函数图象上点的坐标特征、等腰直角三角形以及规律型:点的坐标,根据线段长度的变化找出变化规律“A n B n=2n-1”是解题的关键.16.【答案】4【解析】解:如图,在AC上截取AE=AN,连接BE.∵∠BAC的平分线交BC于点D,∴∠EAM=∠NAM,在△AME与△AMN中,,∴△AME≌△AMN(SAS),∴ME=MN.∴BM+MN=BM+ME≥BE.∵BM+MN有最小值.当BE是点B到直线AC的距离时,BE⊥AC,又AB=4,∠BAC=45°,此时,△ABE为等腰直角三角形,∴BE=4,即BE取最小值为4,∴BM+MN的最小值是4.故答案为:4.从已知条件结合图形认真思考,通过构造全等三角形,利用三角形的三边的关系确定线段和的最小值.本题考查了轴对称的应用.易错易混点:解此题是受角平分线启发,能够通过构造全等三角形,把BM+MN进行转化,但是转化后没有办法把两个线段的和的最小值转化为点到直线的距离而导致错误.规律与趋势:构造法是初中解题中常用的一种方法,对于最值的求解是初中考查的重点也是难点.17.【答案】解:(1)每件电饭锅的利润:250-200=50(元);每件电压锅的利润:200-160=40(元)设购进的电饭煲x台,则购进的电压锅(30-x)台.由题意得:200x+160(30-x)=5600解得:x=20则电压锅:30-20=10(台)总利润=50×20+40×10=1400 (元)答:橱具店在该买卖中赚了1400元.(2)设采购的电饭煲有n台,则采购的电压锅有(50-n)台由题意得:总利润z=50n+40 (50-n)=200+10n∵n≤(50-n),∴n≤当n=18时,总利润z最大,则最大的利润为200+10×18=380(元)答:采购18台电饭煲,32台电压锅时,进货厨具店赚钱最多,最大利润是380元.【解析】通过审题,表格显示了两种商品的进价和售价;(1)题目给出两种电器的总数量和进货的总花费;设其中一个电器购进x台,则另一种电器购进(30-x)台,由购进总费用可以求各种电器的数量,然后再分别乘以每种电器的利润,最后把各种电器的利润相加起来.(2)题目给出了两种的电器的和和两种电器的数量之间的关系,同时记得结合表格中的数据;可以设其中的一种电器数量为 n 台,总利润为z元,从而列出方程,根据两种电器之间的数量关系,确定取值范围,从而求出利润的最大值;主要考查:一次函数应用问题,经济利润问题;也可以用二元一次方程的思路进行解答,一定要认真分析表格中的数据信息和题目的要求;18.【答案】解:原式=2-1+6+4=11.【解析】直接利用零指数幂的性质以及负指数幂的性质以及算术平方根的定义分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.19.【答案】解:>①②解不等式①得:x>-1,解不等式②得:x≤3,则不等式组的解集是:-1<x≤3,不等式组的解集在数轴上表示为:【解析】先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.本题考查了不等式组的解法,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.20.【答案】解:(1)∵喜欢足球的有40人,占20%,∴一共调查了:40÷20%=200(人),(2)∵喜欢乒乓球人数为60人,∴所占百分比为:×100%=30%,∴喜欢排球的人数所占的百分比是1-20%-30%-40%=10%,∴喜欢排球的人数为:200×10%=20(人),∴喜欢篮球的人数为200×40%=80(人),由以上信息补全条形统计图得:(3)乒乓球在扇形中所占的圆心角的度数为:30%×360°=108°;(4)爱好足球和排球的学生共计:760×(20%+10%)=228(人).【解析】(1)读图可知喜欢足球的有40人,占20%,求出总人数;(2)根据总人数求出喜欢乒乓球的人数所占的百分比,得出喜欢排球的人数,再根据喜欢篮球的人数所占的百分比求出喜欢篮球的人数,从而补全统计图;(3)根据喜欢乒乓球的人数所占的百分比,即可得到乒乓球在扇形中所占的圆心角的度数;(4)根据爱好足球和排球的学生所占的百分比,即可估计爱好足球和排球的学生总数.本题考查条形统计图和扇形统计图,解题的关键是必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21.【答案】证明:(1)∵∠ACB=∠ECD=90°,∴∠ACD+∠BCD=∠ACD+∠ACE,即∠BCD=∠ACE.∵BC=AC,DC=EC,∴△ACE≌△BCD(SAS).(2)∵△ACB是等腰直角三角形,∴∠B=∠BAC=45°,∵△ACE≌△BCD,∴∠B=∠CAE=45°,AE=DB=3,∴∠DAE=∠CAE+∠BAC=45°+45°=90°,∴AD2+AE2=DE2.∴AD=,∴AB=2+3=5.∴BC=.【解析】(1)本题要判定△ACE≌△BCD,已知△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,则DC=EA,AC=BC,∠ACB=∠ECD,又因为两角有一个公共的角∠ACD,所以∠BCD=∠ACE,根据SAS得出△ACE≌△BCD.(2)由(1)的论证结果得出∠DAE=90°,利用勾股定理得出答案即可.本题考查三角形全等的判定与性质,等腰直角三角形的性质,及勾股定理的运用,掌握三角形全等的判定方法是解决问题的关键.22.【答案】解:(1)∵直线y=kx+b经过点A(-5,0),B(-1,4),,解得,∴y=x+5(2)∵若直线y=-2x-4与直线AB相交于点C,∴ ,解得,故点C(-3,2).∵y=-2x-4与y=x+5分别交y轴于点E和点D,∴D(0,5),E(0,-4),直线CE:y=-2x-4与直线AB及y轴围成图形的面积为:DE•|C x|=×9×3=.(3)根据图象可得x>-3.【解析】(1)利用待定系数法求一次函数解析式解答即可;(2)联立两直线解析式,解方程组即可得到点C的坐标;(3)根据图形,找出点C右边的部分的x的取值范围即可.此题主要考查了待定系数法求一次函数解析式,以及一次函数的交点,一次函数与一元一次不等式的关系,关键是正确从函数图象中获得正确信息.23.【答案】解:(1)对于直线y=2x-2令x=0,得到y=-2,令y=0,得到x=1,∴A(1,0),B(0,-2).(2)如图1中,作CF⊥x轴与F.∵CA=AB,∠CAF=∠OAB,∠CFA=∠AOB=90°,∴△CAF≌△BAO,∴AF=OA=1,CF=OB=2,∴F(2,0),观察图象可知m的取值范围为:m<0或m>2.(3)如图2中,作AE⊥AB,使得AE=AB,作EH⊥x轴于H,则△ABE是等腰直角三角形,∠ABE=45°.∵∠AOB=∠BAE=∠AHE=90°,∴∠OAB+∠ABO=90°,∠OAB+∠HAE=90°,∴∠ABO=∠HAE,∵AB=AE,∴△ABO≌△EAH,∴AH=OB=2,EH=OA=1,∴E(3,-1),设直线BE的解析式为y=kx+b,则有,解得,∴直线BE的解析式为y=x-2,当直线BE′⊥直线BE时,直线BE′也满足条件,直线BE′的解析式为y=-3x-2,∴满足条件的直线BE的解析式为y=x-2或y=-3x-2.【解析】(1)利用待定系数法即可解决问题;(2)如图1中,作CF⊥x轴与F.利用全等三角形的性质求出点F坐标即可判断;(3)如图2中,作AE⊥AB,使得AE=AB,作EH⊥x轴于H,则△ABE是等腰直角三角形,∠ABE=45°.利用全等三角形的性质求出点E坐标,当直线BE′⊥直线BE 时,直线BE′也满足条件,求出直线BE′的解析式即可;本题考查一次函数的性质、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。
广东省深圳市龙华实验学校2018-2019学年八上数学期末试卷
广东省深圳市龙华实验学校2018-2019学年八上数学期末试卷一、选择题1.下列式子中不是分式的是( )A.B.C.D.2.如果关于x 的分式方程13555mx m x x x x -=----的解为整数,且关于y 的不等式组()61952242y y y y m +⎧<-⎪⎨⎪+≤-⎩无解,则符合条件的所有负整数m 的和为( )A.12-B.8-C.7-D.2-3.小明步行到距家2km 的图书馆借书,然后骑共享单车返家,骑车的平均速度比步行的平均速度每小时快8km ,若设步行的平均速度为xkm/h ,返回时间比去时省了20min ,则下面列出的方程中正确的是( ) A .212103x x =⨯+ B .12238x x ⨯=+C .21283x x+=+ D .21283x x-=+ 4.下列因式分解正确的是( ) A .a 2+8ab+16b 2=(a+4b )2B .a 4﹣16=(a 2+4)(a 2﹣4) C .4a 2+2ab+b 2=(2a+b )2D .a 2+2ab ﹣b 2=(a ﹣b )25.下列各式计算正确的是( ) A .223a a a +=B .326()a a -=C .326a a a ⋅=D .()222a b a b +=+6.已知x 2+kx +4可以用完全平方公式进行因式分解,则k 的值为( ) A .-4 B .2 C .4 D .±47.已知△ABC 在平面直角坐标系中,将△ABC 的三个顶点的纵坐标保持不变,横坐标都乘以-1,得到△A 1B 1C 1,则下列说法正确的是( ) A .△ABC 与△A 1B 1C 1 关于 x 轴对称 B .△ABC 与△A 1B 1C 1 关于 y 轴对称C .△A 1B 1C 1是由△ABC 沿 x 轴向左平移一个单位长度得到的D .△A 1B 1C 1是由△ABC 沿 y 轴向下平移一个单位长度得到的8.Rt △ABO 与Rt △CBD 在平面直角坐标系中的位置如图所示,∠ABO =∠CBD =90°,若点A (2),∠CBA =60°,BO =BD ,则点C 的坐标是( )A .(2,) B .(1) C,1) D .(2) 9.在平面直角坐标系中,点M (-1,3)关于x 轴对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限10.在平面直角坐标系内,点 O 为坐标原点, (4,0)A -, (0,3)B ,若在该坐标平面内有以 点 P (不与点 A B O 、、重合)为一个顶点的直角三角形与 Rt ABO ∆全等,且这个以点 P 为顶点的直角三角形 Rt ABO ∆有一条公共边,则所有符合的三角形个数为( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年广东省深圳市龙华区八年级(上)期末数学试卷一、选择题(每小题3分,共36分)1.(3分)2的平方根为()A.4B.±4C.D.±2.(3分)下列各点位于平面直角坐标系内第二象限的是()A.(﹣3,1)B.(﹣3,0)C.(3,﹣1)D.(0,1)3.(3分)在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.4.(3分)下列运算正确的是()A.B.C.D.5.(3分)如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S6.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°7.(3分)甲、乙、丙、丁四个小组的同学分别参加了班里组织的中华古诗词知识竞赛,在相同条件下各小组的成绩情况如下表所示,若要从中选择出一个小组参加年级的比赛,那么应选()甲乙丙丁平均分85908890方差 3.5 3.54 4.2A.甲组B.乙组C.丙组D.丁组8.(3分)已知是关于x、y的二元一次方程mx﹣y=3的一个解,则m的值是()A.﹣1B.1C.﹣5D.59.(3分)如图所示,已知点A(﹣1,2)是一次函数y=kx+b(k≠0)的图象上的一点,则下列判断中正确的是()A.y随x的增大而减小B.k>0,b<0C.当x<0时,y<0D.方程kx+b=2的解是x=﹣110.(3分)下列命题中是真命题的是()A.无限小数都是无理数B.数轴上的点表示的数都是有理数C.一个三角形中至少有一个角不大于60°D.三角形的一个外角大于任何一个内角11.(3分)某公司有生手工和熟手工两个工种的工人,已知一个生手工每天制造的零件比一个熟手工少30个,一个生手工与两个熟手工每天共可制造180个零件,求一个生手工与一个熟手工每天各能制造多少个零件?设一个生手工每天能制作x个零件,一个熟手工每天能制造y个零件,根据题意可列方程组为()A.B.C.D.12.(3分)一列动车从A地开往B地,一列普通列车从B地开往A地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系,下列说法中正确的是:()①AB两地相距1000千米;②两车出发后3小时相遇;③普通列车的速度是100千米/小时;④动车从A地到达B地的时间是4小时.A.1个B.2个C.3个D.4个二、填空题(本题共4小题,每小题3分,共12分)13.(3分)若点A(2,﹣1)关于x轴的对称点A的坐标是(m,n),则m+n的值是.14.(3分)某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是.15.(3分)如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为cm.16.(3分)如图,Rt△ABC中,∠C=90°,AC=2,BC=1,以斜边为一边向右上方作正方形ABDE,连接CD,则CD的长为.三、解答题(本大题有7题,共52分)17.(9分)计算题(1)(2)18.(8分)解方程组(1)(2)19.(6分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:(1)请将图2的统计图补充完整;(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是个学科;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有人.20.(6分)如图,已知△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E.(1)求证:AE=DE;(2)若∠C=65°,求∠BDE的度数.21.(6分)阅读如下材料,然后解答后面的问题:已知直线l1:y=﹣2x﹣2和直线l2:y=﹣2x+4如图所示,可以看到直线l1∥l2,且直线l2可以由直线l1向上平移6个长度单位得到,直线l2可以由直线l1向右平移3个长度单位得到.这样,求直线l2的函数表达式,可以由直线l1的函数表达式直接得到.即:如果将直线l1向上平移6的长度单位后得到l2,得l2的函数表达式为:y=﹣2x﹣2+6,即y=﹣2x+4;如果将直线l1向右平移3的长度单位后得到得l2,l2的函数表达式为:y=﹣2(x﹣3)﹣2,即y=﹣2x+4.(1)将直线y=2x﹣3向上平移2个长度单位后所得的直线的函数表达式是;(2)将直线y=3x+1向右平移m(m>0)两个长度单位后所得的直线的函数表达式是;(3)已知将直线y=x+1向左平移n(n>0)个长度单位后得到直线y=x+5,则n =.22.(8分)某校计划建一间多功能数学实验室,将采购两类桌椅:A类是三角形桌,每桌可坐3人,B类是五边形桌,每桌可坐5人.学校拟选择甲、乙两家公司中的一家来采购,两家公司的标价均相同,且规定两类桌椅均只能在同一家公司采购.甲公司对两类桌椅均是以标价出售;乙公司对A类桌椅涨价20%、B类桌椅降价20%出售.经咨询,两家公司给出的数量和费用如下表:A类桌椅(套)B类桌椅(套)总费用(元)甲公司651900乙公司371660(1)求第一次购买时,A、B两类桌椅每套的价格分别是多少?(2)如果该数学实验室需设置48个座位,学校到甲公司采购,应分别采购A、B两类桌椅各多少套时所需费用最少?23.(9分)如图,已知长方形OABC的顶点A在x轴上,顶点C在y轴上,OA=18,OC=12,D、E分别为OA、BC上的两点,将长方形OABC沿直线DE折叠后,点A刚好与点C重合,点B落在点F处,再将其打开、展平.(1)点B的坐标是;(2)求直线DE的函数表达式;(3)设动点P从点D出发,以1个单位长度/秒的速度沿折线D→A→B→C向终点C运动,运动时间为t秒,求当S△PDE=2S△OCD时t的值.2018-2019学年广东省深圳市龙华区八年级(上)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)2的平方根为()A.4B.±4C.D.±【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:2的平方根是,故选:D.【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.(3分)下列各点位于平面直角坐标系内第二象限的是()A.(﹣3,1)B.(﹣3,0)C.(3,﹣1)D.(0,1)【分析】根据所给点的横纵坐标的符号可得所在象限.【解答】解:A、(﹣3,1),在第二象限,故此选项正确;B、(﹣3,0),在x轴上,故此选项错误;C、(3,﹣1),在第四象限,故此选项错误;D、(0,1),在y轴上,故此选项错误;故选:A.【点评】本题主要考查象限内点的符号特点;用到的知识点为:符号为(﹣,+)的点在第二象限.3.(3分)在Rt△ABC中,∠B=90°,BC=1,AC=2,则AB的长是()A.1B.C.2D.【分析】根据勾股定理即可得到结论.【解答】解:在Rt△ABC中,∠B=90°,BC=1,AC=2,∴AB===,故选:B.【点评】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.4.(3分)下列运算正确的是()A.B.C.D.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的乘法法则对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=3,所以B选项错误;C、原式==,所以C选项错误;D、原式=4,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.5.(3分)如图,数轴上表示实数的点可能是()A.点P B.点Q C.点R D.点S【分析】根据图示,判断出在哪两个整数之间,即可判断出数轴上表示实数的点可能是哪个.【解答】解:∵2<<3,∴数轴上表示实数的点可能是点Q.故选:B.【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.6.(3分)已知直线m∥n,将一块含30°角的直角三角板ABC,按如图所示方式放置,其中A、B两点分别落在直线m、n上,若∠1=25°,则∠2的度数是()A.25°B.30°C.35°D.55°【分析】根据平行线的性质即可得到∠3的度数,再根据三角形内角和定理,即可得到结论.【解答】解:∵直线m∥n,∴∠3=∠1=25°,又∵三角板中,∠ABC=60°,∴∠2=60°﹣25°=35°,故选:C.【点评】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.7.(3分)甲、乙、丙、丁四个小组的同学分别参加了班里组织的中华古诗词知识竞赛,在相同条件下各小组的成绩情况如下表所示,若要从中选择出一个小组参加年级的比赛,那么应选()甲乙丙丁平均分85908890方差 3.5 3.54 4.2A.甲组B.乙组C.丙组D.丁组【分析】根据图表先找出乙、丁的平均成绩好且相等,再比较它的方差即可得出答案.【解答】解:由图表可知,乙、丁的平均成绩较好,应从乙、丁中选,由于S2乙<S2丁,故丁的方差大,波动大,则要从中选择出一个小组参加年级的比赛,那么应选乙组;故选:B.【点评】本题考查了方差,掌握平均数和方差的定义是解题的关键,方差它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.8.(3分)已知是关于x、y的二元一次方程mx﹣y=3的一个解,则m的值是()A.﹣1B.1C.﹣5D.5【分析】把x与y的值代入方程计算即可求出m的值.【解答】解:把代入方程得:﹣m﹣2=3,解得:m=﹣5,故选:C.【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.(3分)如图所示,已知点A(﹣1,2)是一次函数y=kx+b(k≠0)的图象上的一点,则下列判断中正确的是()A.y随x的增大而减小B.k>0,b<0C.当x<0时,y<0D.方程kx+b=2的解是x=﹣1【分析】根据一次函数的性质判断即可.【解答】解:由图象知,A、y随x的增大而增大;B、k>0,b>0;C、当x<0时,y>0或y<0;D、方程kx+b=2的解是x=﹣1,故选:D.【点评】本题考查了一次函数与一元一次方程的关系,一次函数图象与系数的关系,正确的识别图象是解题的关键.10.(3分)下列命题中是真命题的是()A.无限小数都是无理数B.数轴上的点表示的数都是有理数C.一个三角形中至少有一个角不大于60°D.三角形的一个外角大于任何一个内角【分析】根据无理数,有理数的定义,三角形内角和定理,三角形的外角的性质一一判断即可.【解答】解:A、无限小数都是无理数.错误,无限循环小数是有理数;B、数轴上的点表示的数都是有理数.错误,应该是数轴上的点表示的数都是实数;C、一个三角形中至少有一个角不大于60°,正确;D、三角形的一个外角大于任何一个内角,错误,应该是三角形的一个外角大于任何一个和它不相邻内角;故选:C.【点评】本题考查无理数,有理数的定义,三角形内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11.(3分)某公司有生手工和熟手工两个工种的工人,已知一个生手工每天制造的零件比一个熟手工少30个,一个生手工与两个熟手工每天共可制造180个零件,求一个生手工与一个熟手工每天各能制造多少个零件?设一个生手工每天能制作x个零件,一个熟手工每天能制造y个零件,根据题意可列方程组为()A.B.C.D.【分析】找到两个等量关系列出方程组即可.【解答】解:设一个生手工每天能制作x个零件,一个熟手工每天能制造y个零件,根据题意得:,故选:A.【点评】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够根据题意找到两个等量关系,这是列方程的依据.12.(3分)一列动车从A地开往B地,一列普通列车从B地开往A地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系,下列说法中正确的是:()①AB两地相距1000千米;②两车出发后3小时相遇;③普通列车的速度是100千米/小时;④动车从A地到达B地的时间是4小时.A.1个B.2个C.3个D.4个【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图象可得,AB两地相距1000千米,故①正确,两车出发后3小时相遇,故②正确,普通列车的速度是:=千米/小时,故③错误,动车从A地到达B地的时间是:1000÷()=4(小时),故④正确,故选:C.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.二、填空题(本题共4小题,每小题3分,共12分)13.(3分)若点A(2,﹣1)关于x轴的对称点A的坐标是(m,n),则m+n的值是3.【分析】直接利用关于x轴对称点的性质,横坐标相同,纵坐标互为相反数进而得出答案.【解答】解:∵点A(2,﹣1)关于x轴的对称点A的坐标是(m,n),∴m=2,n=1,故m+n=3.故答案为:3.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.14.(3分)某次数学测试,某班一个学习小组的六位同学的成绩如下:84、75、75、92、86、99,则这六位同学成绩的中位数是85.【分析】直接根据中位数的定义求解.【解答】解:将这6位同学的成绩重新排列为75、75、84、86、92、99,所以这六位同学成绩的中位数是=85,故答案为:85.【点评】本题考查了中位数的概念.找中位数时需要对这一组数据按照从大到小或从小到大的顺序进行排序.15.(3分)如图,已知圆柱底面周长为6cm,圆柱高为2cm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为2cm.【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为6cm,圆柱高为2cm,∴AB=2cm,BC=BC′=3cm,∴AC2=22+32=13,∴AC=cm,∴这圈金属丝的周长最小为2AC=2cm.故答案为:2.【点评】本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.(3分)如图,Rt△ABC中,∠C=90°,AC=2,BC=1,以斜边为一边向右上方作正方形ABDE,连接CD,则CD的长为.【分析】过D作DG⊥CB交CB的延长线于G,根据正方形的性质得到AB=BD,∠ABD =90°,根据余角的性质得到∠CAB=∠DBG,根据全等三角形的性质得到BG=AC=2,DG=BC=1,根据勾股定理即可得到结论.【解答】解:过D作DG⊥CB交CB的延长线于G,∵四边形ABDE是正方形,∴AB=BD,∠ABD=90°,∵∠ACB=∠DGB=90°,∴∠ABC+∠BAC=∠ABC+∠DBG=90°,∴∠CAB=∠DBG,∴△ABC≌△BDG(AAS),∴BG=AC=2,DG=BC=1,∴CD===,故答案为:.【点评】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,则的作出辅助线是解题的关键.三、解答题(本大题有7题,共52分)17.(9分)计算题(1)(2)【分析】(1)首先化简二次根式以及结合平方差公式计算进而合并得出答案;(2)直接利用二次根式的乘法运算法则以及化简二次根式得出答案.【解答】解:(1)原式=2+3﹣4=1;(2)原式=6×+4﹣3+=3+4﹣3+=4+.【点评】此题主要考查了实数运算,正确化简二次根式是解题关键.18.(8分)解方程组(1)(2)【分析】(1)把①代入②得出2x+(10﹣x)=16,求出x,把x=6代入①求出y即可;(2)①+②得出5x+5y=15,求出2x+2y=6③,①﹣③求出y,把y=1代入①求出x 即可.【解答】解:(1),把①代入②得:2x+(10﹣x)=16,解得:x=6,把x=6代入①得:y=10﹣6=4,所以原方程组的解为:;(2),①+②得:5x+5y=15,x+y=3,2x+2y=6③,①﹣③得:y=1,把y=1代入①得:2x+3=7,解得:x=2,所以原方程组的解为:.【点评】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键.19.(6分)某校为了解本校学生每周参加课外辅导班的情况,随机调査了部分学生一周内参加课外辅导班的学科数,并将调查结果绘制成如图1、图2所示的两幅不完整统计图(其中A:0个学科,B:1个学科,C:2个学科,D:3个学科,E:4个学科或以上),请根据统计图中的信息,解答下列问题:(1)请将图2的统计图补充完整;(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科;(3)若该校共有2000名学生,根据以上调查结果估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有300人.【分析】(1)由A的人数及其所占百分比求得总人数,总人数减去其它类别人数求得B 的人数即可补全图形;(2)根据众数的定义求解可得;(3)用总人数乘以样本中D和E人数占总人数的比例即可得.【解答】解:(1)∵被调查的总人数为20÷20%=100(人),则辅导1个学科(B类别)的人数为100﹣(20+30+10+5)=35(人),补全图形如下:(2)根据本次调查的数据,每周参加课外辅导班的学科数的众数是1个学科,故答案为:1;(3)估计该校全体学生一周内参加课外辅导班在3个学科(含3个学科)以上的学生共有2000×=300(人),故答案为:300.【点评】此题主要考查了条形统计图的应用以及扇形统计图应用、利用样本估计总体等知识,利用图形得出正确信息求出样本容量是解题关键.20.(6分)如图,已知△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB于点E.(1)求证:AE=DE;(2)若∠C=65°,求∠BDE的度数.【分析】(1)根据平行线的性质和等腰三角形的性质解答即可;(2)根据等腰三角形的性质和三角形内角和解答即可.【解答】证明:(1)∵△ABC中,AB=BC,D为AC中点,过点D作DE∥BC,交AB 于点E,∴DE是△ABC的中位线,∵DE∥BC,∴∠C=∠ADE,∵AB=BC,∴∠C=∠A,∴∠A=∠ADE,∴AE=DE;(2)∵△ABC中,AB=BC,∠C=65°,∴∠ABC=180°﹣65°﹣65°=50°,∵DE是△ABC的中位线,∴AE=BE,∵AE=DE,∴BE=DE,∴∠EBD=∠EDB,∵DE∥BC,∴∠EDB=∠DBC,∴∠EBD=∠DBC=25°,∴∠EDB=25°.【点评】此题考查三角形的中位线定理,关键是根据三角形中位线定理、等腰三角形的性质解答.21.(6分)阅读如下材料,然后解答后面的问题:已知直线l1:y=﹣2x﹣2和直线l2:y=﹣2x+4如图所示,可以看到直线l1∥l2,且直线l2可以由直线l1向上平移6个长度单位得到,直线l2可以由直线l1向右平移3个长度单位得到.这样,求直线l2的函数表达式,可以由直线l1的函数表达式直接得到.即:如果将直线l1向上平移6的长度单位后得到l2,得l2的函数表达式为:y=﹣2x﹣2+6,即y=﹣2x+4;如果将直线l1向右平移3的长度单位后得到得l2,l2的函数表达式为:y=﹣2(x﹣3)﹣2,即y=﹣2x+4.(1)将直线y=2x﹣3向上平移2个长度单位后所得的直线的函数表达式是y=2x﹣1;(2)将直线y=3x+1向右平移m(m>0)两个长度单位后所得的直线的函数表达式是y =3x﹣3m+1;(3)已知将直线y=x+1向左平移n(n>0)个长度单位后得到直线y=x+5,则n =8.【分析】(1)利用一次函数图象上加下减的平移规律求解即可;(2)利用一次函数图象左加右减的平移规律求解即可;(3)利用一次函数图象左加右减的平移规律列出关于n的方程,求解即可.【解答】解:(1)将直线y=2x﹣3向上平移2个长度单位后所得的直线的函数表达式是y=2x﹣3+2,即y=2x﹣1.故答案为y=2x﹣1;(2)将直线y=3x+1向右平移m(m>0)两个长度单位后所得的直线的函数表达式是y =3(x﹣m)+1,即y=3x﹣3m+1.故答案为y=3x﹣3m+1;(3)∵将直线y=x+1向左平移n(n>0)个长度单位后得到直线y=(x+n)+1,即y=x+n+1,∴n+1=5,解得n=8.故答案为8.【点评】此题主要考查了一次函数图象与几何变换,根据阅读材料得出一次函数图象的平移规律是解题关键.22.(8分)某校计划建一间多功能数学实验室,将采购两类桌椅:A类是三角形桌,每桌可坐3人,B类是五边形桌,每桌可坐5人.学校拟选择甲、乙两家公司中的一家来采购,两家公司的标价均相同,且规定两类桌椅均只能在同一家公司采购.甲公司对两类桌椅均是以标价出售;乙公司对A类桌椅涨价20%、B类桌椅降价20%出售.经咨询,两家公司给出的数量和费用如下表:A类桌椅(套)B类桌椅(套)总费用(元)甲公司651900乙公司371660(1)求第一次购买时,A、B两类桌椅每套的价格分别是多少?(2)如果该数学实验室需设置48个座位,学校到甲公司采购,应分别采购A、B两类桌椅各多少套时所需费用最少?【分析】(1)根据题意和表格中的数据可以列出相应的方程组,从而可以解答本题;(2)根据题意可以得到相应的不等式,然后根据不等式的性质和一次函数的性质即可解答本题,注意3x+5y=48.【解答】解:(1)设A、B两类桌椅每套的价格分别是a元、b元,,解得,,答:A、B两类桌椅每套的价格分别是150元、200元;(2)设到甲公司采购A类桌椅x套,B类桌椅y套,所需费用为w元,w=150x+200y=50(3x+4y),∵3x+5y=48,∴3x=48﹣5y,∴w=50(48﹣5y+4y)=50(48﹣y)=﹣50y+2400,∴w随y的增大而减小,∵3x+5y=48,∴y的最大值是9,此时x=1,∴当y=9时,w取得最小值,此时w=1950,答:应分别采购A、B两类桌椅分别1套、9套时所需费用最少.【点评】本题考查一次函数的应用、二元一次方程组的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答.23.(9分)如图,已知长方形OABC的顶点A在x轴上,顶点C在y轴上,OA=18,OC =12,D、E分别为OA、BC上的两点,将长方形OABC沿直线DE折叠后,点A刚好与点C重合,点B落在点F处,再将其打开、展平.(1)点B的坐标是(18,12);(2)求直线DE的函数表达式;(3)设动点P从点D出发,以1个单位长度/秒的速度沿折线D→A→B→C向终点C运动,运动时间为t秒,求当S△PDE=2S△OCD时t的值.【分析】(1)根据矩形的性质可得AB=OC=12,BC=AO=18,可求点B坐标;(2)由折叠的性质可得AD=CD,∠ADE=∠CDE,根据勾股定理可求OD=5,即CD =AD=13,根据等腰三角形的性质可求CE=13,即可得点D,点E的坐标,则用待定系数法可求直线DE的函数表达式;(3)分点P在AD上,AB上,BC上三种情况讨论,根据三角形面积的求法可求t的值.【解答】解:(1)∵四边形ABCO是矩形,∴AB=OC,BC=AO,∵OA=18,OC=12,∴AB=12,BC=18,∴点B坐标(18,12)故答案为:(18,12)(2)∵折叠∴AD=CD,∠ADE=∠CDE,∵OC2+OD2=CD2,∴144+OD2=(18﹣OD)2,∴OD=5,∴CD=13,点D坐标为(5,0),∵BC∥AO,∴∠CED=∠EDA,且∠ADE=∠CDE,∴∠CED=∠CDE,∴CE=CD=13,∴点E坐标为(13,12),设直线DE的函数表达式为y=kx+b,∴解得:k=,b=﹣∴解析式y=x﹣(3)∵S△PDE=2S△OCD,∴S△PDE=2××OC×OD=12×5=60当点P在AD上时,S△PDE=×PD×12=60,∴PD=10∴t==10,当点P在AB上时,S△PDE=S梯形ABED﹣S△PBE﹣S△APD=108﹣×5×(12﹣AP)﹣×13×AP=60∴AP=∴t==当点P在BC上时,S△PDE=×PE×12=60∴PE=10∴t==40综上所述:当S△PDE=2S△OCD时,t的值为10,,40.【点评】本题是四边形综合题,考查了矩形的性质,勾股定理,待定系数法求一次函数解析式,三角形面积的求法,用分类讨论思想解决问题是本题的关键.。