常微分方程期末试题知识点复习考点归纳总结参考
常微分方程复习资料
(16)
2
(18)
1 a2 x2
dx arc sin
x C a
(19) (20)
1 a x
2 2
dx ln( x a 2 x 2 ) C
dx x a
2 2
ln | x x 2 a 2ln | cos x | C (22) cot xdx ln | sin x | C (23) sec xdx ln | sec x tan x | C (24) csc xdx ln | csc x cot x | C 注:1、从导数基本公式可得前 15 个积分公式,(16)-(24)式后几节证。 2、以上公式把 x 换成 u 仍成立, u 是以 x 为自变量的函数。 3、复习三角函数公式:
f ( y, y)型, 例如:yy ( y) 2 0
dp dp , 代入原方程得yp p2 0 dy dy dp dy 当y 0, p 0时,约去p并分离变量得 p y dy p C1 y C1 y dx y C2 eC1x 令y p,则y p
常微分方程复习资料
一.基本概念: 含有一元未知函数一 y(x)(即待求函数)的导数或微分 的方程,称为常微分方程。 显然一个微分方程若有解,则必有无穷多解; 若 n 阶微分方程的解仲含有 n 个独立的附加条件(称为 定解条件)定出了所有任意常数的解称为特解; 微分方程连同定解条件一起,合称为一个定解问题; 当定解条件是初始条件(给出 y, y, y,, y ( n1) 在同一点 x0 处 的值)时,称为初值问题。 二.一阶微分方程 y ( x, y) 的解法
积分类型 1. f (ax b)dx 1 f (ax b)d (ax b) (a 0) a 1 2. f ( x ) x 1 dx f ( x )d ( x ) ( 0)
常微分方程期末试题知识点复习考点归纳总结参考
期末考试一、填空题(每空2 分,共16分)。
1.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 2. 方程组n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 维空间中的一条积分曲线.3.),(y x f y '连续是保证方程),(d d y x f xy =初值唯一的 条件. 4.方程组⎪⎪⎩⎪⎪⎨⎧=-=x ty y t x d d d d 的奇点)0,0(的类型是 5.方程2)(21y y x y '+'=的通解是 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是7.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是8.方程440y y y '''++=的基本解组是二、选择题(每小题 3 分,共 15分)。
9.一阶线性微分方程d ()()d y p x y q x x+=的积分因子是( ). (A )⎰=x x p d )(e μ (B )⎰=x x q d )(e μ (C )⎰=-x x p d )(e μ (D )⎰=-x x q d )(e μ10.微分方程0d )ln (d ln =-+y y x x y y 是( )(A )可分离变量方程 (B )线性方程(C )全微分方程 (D )贝努利方程11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( ).(A) 1±=x (B)1±=y(C )1±=y , 1±=x (D )1=y , 1=x12.n 阶线性非齐次微分方程的所有解( ).(A )构成一个线性空间 (B )构成一个1-n 维线性空间(C )构成一个1+n 维线性空间 (D )不能构成一个线性空间13.方程222+-='x y y ( )奇解.(A )有一个 (B )有无数个 (C )只有两个 (D )无三、计算题(每小题8分,共48分)。
常微分方程期末复习提要(1)
常微分方程期末复习提要中央电大 顾静相常微分方程是广播电视大学本科开放教育数学与应用数学专业的统设必修课程.本课程的主要任务是要使学生掌握常微分方程的基本理论和方法,增强运用数学手段解决实际问题的能力.本课程计划学时为54,3学分,主要讲授初等积分法、基本定理、线性微分方程组、线性微分方程、定性理论简介等内容。
本课程的文字教材是由潘家齐教授主编、中央电大出版社出版的主辅合一型教材《常微分方程》.现已编制了28学时的IP 课件供学生在网上学习.一、复习要求和重点第一章 初等积分法1.了解常微分方程、常微分方程的解的概念,掌握常微分方程类型的判别方法.常微分方程与解的基本概念主要有:常微分方程,方程的阶,线性方程与非线性方程,解,通解,特解,初值问题。
2.了解变量分离方程的类型,熟练掌握变量分离方程解法.(1)显式变量可分离方程为:)()(d d y g x f x y = ; 当0≠g 时,通过积分⎰⎰+=C x x f y g y d )()(d 求出通解。
(2)微分形式变量可分离方程为: y y N x M x y N x M d )()(d )()(2211=;当0)()(21≠x M y N 时,通过积分 ⎰⎰+=C x x M x M y y N y N d )()(d )()(2112求出通解。
3.了解齐次方程的类型,熟练掌握齐次方程(即第一类可化为变量可分离的方程)的解法.第一类可化为变量可分离方程的一阶齐次微分方程为:)(d d x y g x y = ; 令x y u =,代入方程得xu u g x u -=)(d d ,当0)(≠-u u g 时,分离变量并积分,得⎰=-uu g u x C )(d 1e ,即)(e u C x ϕ=,用x y u =回代,得通解)(e x y C x ϕ=. 4.了解一阶线性方程的类型,熟练掌握常数变易法,掌握伯努利方程的解法.(1)一阶线性齐次微分方程为:0)(d d =+y x p xy 通解为:⎰=-x x p C y d )(e 。
常微分方程期末复习提纲
y ce p(x)dx, c为任意常数
20 常数变易法求解
dy P(x) y Q(x) dx
(1)
(将常数c变为x的待定函数 c(x), 使它为(1)的解)
令y c(x)e p(x)dx为(1)的解,则
dy dc(x) e p(x)dx c(x) p(x)e p(x)dx dx dx
代入(1)得
X x Y y ,
则方程化为
dY a1 X b1Y dX a2 X b2Y
为 (1)的情形,可化为变量分离方程求解.
解的步骤:
10
解方程组aa21xx
b1 b2
y y
c1 c2
0 ,
0
得解 yx
,
20
作变换YX
x y
,
方程化为
dY dX
a1 X a2 X
b1Y b2Y
第一章:绪论
一、常微分方程与偏微分方程
定义1: 联系自变量、未知函数及未知函数导数(或微分)的关 系式称为微分方程.
如果在一个微分方程中,自变量的个数只有一个,则这 样的微分方程称为常微分方程.
如果在一个微分方程中,自变量的个数为两个或两个以上,称 为偏微分方程.
二、微分方程的阶
定义2 :微分方程中出现的未知函数的最高阶导数或微分的 阶数称为微分方程的阶数.
方程两边同乘以 1 , 得
( y)
1 dy f (x)dx 0,
( y)
1
( f (x)) 0 ( y)
y
x
是恰当方程.
对一阶线性方程:
dy (P(x) y Q(x))dx 0, 不是恰当方程.
方程两边同乘以e P(x)dx , 得
e
P(
【总结】常微分方程知识总结
(1) 概念微分方程:一般,凡表示未知函数、未知函数的导数与自变量的之间关系的方程。
微分方程的阶:微分方程中所出现的未知函数的最高阶导数的阶数。
如: 一阶:2dyx dx= 二阶:220.4d sdt=-三阶:32243x y x y xy x ''''''+-=四阶:()4410125sin 2y y y y y x ''''''-+-+=一般n 阶微分方程的形式:()(),,,,0n F x y y y'= 。
这里的()ny 是必须出现。
(2)微分方程的解设函数()y x ϕ=在区间上有阶连续导数,如果在区间上,()()()(),,0n F x x x x ϕϕϕ⎡⎤'≡⎢⎥⎣⎦则()y x ϕ=称为微分方程()(),,,,0n F x y y y '= 的解。
注:一个函数有阶连续导数→该函数的阶导函数也是连续的。
函数连续→函数的图像时连在一起的,中间没有断开(即没有间断点)。
导数→导函数简称导数,导数表示原函数在该点的斜率大小。
导函数连续→原函数的斜率时连续变化的,而并没有在某点发生突变。
函数连续定义:设函数()y f x =在点的某一邻域内有定义,如果()()00lim x x f x f x →=则称函数()f x 在点连续。
左连续:()()()000lim x x f x f x f x --→==左极限存在且等于该点的函数值。
右连续:()()()000lim x x f x f x f x ++→==右极限存在且等于该点的函数值。
在区间上每一个点都连续的函数,叫做函数在该区间上连续。
如果是闭区间,包括端点,是指函数在右端点左连续,在左端点右连续。
函数在点连续()()()()00lim lim lim x x x x x x f x f x f x f x -+→→→=== 1、()f x 在点有定义 2、()0lim x x f x →极限存在3、()()00lim x x f x f x →=(3)微分方程的通解如果微分方程中含有任意常数,且任意常数的个数与微分方程的阶数相同,这样的解叫微注:任意常数是相互独立的:它们不能合并使得任意常数的个数减少。
常微分方程基本知识点
常微分方程基本知识点第一章 绪论1. 微分方程的概念(常微分与偏微),什么是方程的阶数,线性与非线性,齐次与非齐次,解、特解、部分解和通解的概念及判断! (重要)例:03)(22=-+y dx dyx dx dy(1阶非线性); x e dx yd y=+22sin 。
2.运用导数的几何意义建立简单的微分方程。
(以书后练习题为主) (习题1,2,9题)例:曲线簇cx x y -=3满足的微分方程是:__________.第二章 一阶方程的初等解法1.变量分离方程的解法(要能通过适当的变化化成变量分离方程);(重要)2.齐次方程的解法(变量代换);(重要)3.线性非齐次方程的常数变易法;4.分式线性方程、贝努利方程、恰当方程的概念及判断(要能熟练的判断各种类型的一阶方程)(重要);例题:(1).经变换_____y c u os =___________后,方程1cos sin '+=+x y y y 可化为___线性_____方程;(2).经变换_____y x u 32-=____________后,方程1)32(1'2+-=y x y 可化为____变量分离__方程; (3).方程0)1(222=+-dy e dx ye x x x 为:线性方程。
(4).方程221'y x y -=为:线性方程。
5.积分因子的概念,会判断某个函数是不是方程的积分因子;6.恰当方程的解法(分项组合方法)。
(重要)第三章 一阶方程的存在唯一性定理1.存在唯一性定理的内容要熟记,并能准确确定其中的h ;2.会构造皮卡逐步逼近函数序列来求第k 次近似解!(参见书上例题和习题3.1的1,2,3题)第四章 高阶微分方程1.n 阶线性齐次(非齐次)微分方程的概念,解的概念,基本解组,解的线性相关与线性无关,齐次与非齐次方程解的性质;2.n 阶线性方程解的Wronskey 行列式与解的线性相关与线性无关的关系;3.n 阶线性齐次(非齐次)微分方程的通解结构定理!!(重要)4.n 阶线性非齐次微分方程的常数变易法(了解);5.n 阶常系数线性齐次与非齐次微分方程的解法(Eurler 待定指数函数法确定基本解组),特解的确定(,特解的确定(比较系数法、复数法比较系数法、复数法);(重要) 例题:t te x x 24=-¢¢,确定特解类型?(习题4.2相关题目)6.2阶线性方程已知一个特解的解法(作线性齐次变换)。
常微分方程复习资料
第二章 一阶微分方程的初等解法
§2.1 变量分离方程与变量变换 §2.2 线性微分方程与常数变易法 §2.3 恰当微分方程与积分因子 §2.4 一阶隐式微分方程与参数表示
变量分离方程的求解
1、形式: dy f ( x )( y ) dx
2、求解方法: 分离变量、 两边积分、 考虑特殊情况
3、方程 dy p( x )y 的解为: dx
D(D 1) pD q y f (et )
机动 目录 上页 下页 返回 结束
c(x)
Q(
x)e
p(
x
)dx
dx
~
c
y e ( p(x)dx
Q(
x)e
p(
x
)
dxdx
~
c)
(3)
二 伯努利(Bernoulli )方程
伯努利方程:形如 dy p(x) y Q(x) yn 的方程, dx
这里P( x), Q( x)为x的连续函数。
解法:
10 引入变量变换 z y1n ,方程变为
dy a1x b1 y c1 dx a2 x b2 y c2
k(a2 x b2 y) c1 a2 x b2 y c2
f (a2x b2 y)
3. a1 b1
a2 b2
0,
且C1、C2不同时为零的情形
aa21
x x
b1 b2
y y
c1 c2
0 0
X x Y y ,
初值条件/Initial Value Conditions/ 对于 n 阶方程 y(n) f (x, y, y,, y(n1) )
初值条件可表示为
y(x0) y0, y(x0) y0 , y(x0) y0,, y(n1) (x0) y0(n1)
《常微分方程》知识点整理
《常微分方程》知识点整理
一、定义与特点
常微分方程(ordinary differential equation)是数学中描述物理、
化学、生物等过程的重要工具,它描述物体状态及其变化的模型,可以用
来研究物体的动力、动力学、物理现象等问题。
它可以从几何角度、分析
角度以及物理角度这三个角度来看待,它是一个研究条件下物体状态和变
化的数学方程。
常微分方程有以下几个特点:
1.常微分方程是一类特殊的未知函数问题,它由一个函数及它的一阶
或多阶导数组成。
2.未知函数有可能是多元函数,也可能是单元函数,可以是实函数也
可以是复函数。
3.常微分方程的形式因微分函数种类而各异,有非线性方程、线性方程、常系数方程、变系数方程等类型。
4.常微分方程的解可以是定状态的、非定状态的、稳定的或不稳定的,它可以有解或得不到解。
5.常微分方程具有很深的理论性,可用来求解物理、化学、力学等问题,可以修正原来结论,使现象更加接近实际情况。
二、种类
1.线性常微分方程:线性微分方程是常微分方程中最简单的类型,它
的特点是多重未知函数的阶和系数形式都是定值,而不依赖于其他函数,
它的解可以直接用几何方法求解(比如可以用函数级数的展开形式求解)。
2.二次可积常微分方程:这类方程中。
常微分方程期末复习
1.求下列方程的通解。
1sin 4-=-x e dxdyy . 解:方程可化为1sin 4-+-=x e dxde y y令ye z =,得x z dxdzsin 4+-= 由一阶线性方程的求解公式,得[]xx x dx dx ce x x c e x x e c dx xe e z -----+-=+-=+⎰⎰=⎰)cos (sin 2)cos (sin 2)sin 4()1()1(所以原方程为:y e =xcex x -+-)cos (sin 22.求下列方程的通解。
1)(122=⎥⎦⎤⎢⎣⎡-dx dy y .解:设t p dxdysin ==,则有t y sec =, 从而c tgt t tdt c tdt tgt tx +=+=+⋅=⎰⎰2sec sec sin 1,故方程的解为221)(y c x =++, 另外1±=y 也是方程的解 .3.求方程2y x dxdy+=通过)0,0(的第三次近似解. 解:0)(0=x ϕ 20121)(x xdx x x==⎰ϕ5204220121)41()(x x dx x x x x +=+=⎰ϕ dx x x x x dx x x x x x x⎰⎰⎪⎭⎫ ⎝⎛+++=⎥⎦⎤⎢⎣⎡++=0710402523201400141)20121()(ϕ 8115216014400120121x x x x +++=4.求解下列常系数线性方程。
0=+'+''x x x解:对应的特征方程为:012=++λλ, .解得i i 23,23212211--=+-=λλ 所以方程的通解为:)23sin 23cos(2121t c t c ex t +=-5.求解下列常系数线性方程。
t e x x =-'''解:齐线性方程0=-'''x x 的特征方程为013=-λ,解得231,13,21i±-==λλ, 故齐线性方程的基本解组为:i e i ee t23sin ,23cos ,2121--,因为1=λ是特征根,所以原方程有形如t tAe t x =)(,代入原方程得,tt t t e Ate Ate Ae =-+3,所以31=A ,所以原方程的通解为2121-+=e c e c x tt te i e c i 3123sin 23cos 213++-6.试求下列线性方程组的奇点,并通过变换将奇点变为原点,进一步判断奇点的类型及稳定性:5,1--=+--=y x dtdyy x dt dx 解: ⎩⎨⎧=--=+--050!y x y x 解得⎩⎨⎧-==23y x 所以奇点为()2,3-经变换,⎩⎨⎧+=-=33y Y x X方程组化为⎪⎩⎪⎨⎧-=--=Y X dtdy Y X dt dx因为,01111≠---又01)1(11112=++=+-+λλλ 所以i i --=+-=1,121λλ,故奇点为稳定焦点,所对应的零解为渐近稳定的。
常微分方程复习提要全文
式
dyi (x) dx
fi (x, y1(x),
, yn (x)), (i 1.2
n)
则称 y1(x), , yn (x) 为微分方程组(3.1)在区间 [a,b] 的一个解。
通解及通积分:
含有n个任意常数 c1, cn 的方程组(3.1)的解
y1 1(x, c1, cn )
yn
n (x, c1,
齐次方程组的解组线性相关性的判别法:
推论3.3 方程组(3.8)的n个解在其定义区间I上线性 无关的充要条件是它们的朗斯基行列式W(x)在I上任一点
不为零.
解组
线性相关 W ( x0 )=0 线性无关 W ( x0 ) 0
我们把一阶线性齐次方程组(3.8)的n个线性无关解 称为它的基本解组。其对应的矩阵称为基本解矩阵。
(其中F为已知的函数)
定义(P3) :微分方程中出现的未知函数的 最高阶导数的阶数(或微分的阶数)称为微分方程的 阶数.
定义(P4) :如果一个微分方程关于未知函数 及其各阶导数都是一次的,则称它为线性微分方程, 否则称之为非线性微分方程.
定义(P4): 设函数 y x在区间I上连续,且有
dy1
dx
a11( x) y1
a12 ( x) y2
dy2 dx
a21( x) y1
a22 ( x) y2
dyn dx
an1( x) y1
an2 ( x) y2
a1n ( x) yn f1( x),
a2n ( x) yn f2 ( x), (3.6)
ann ( x) yn fn ( x).
解法:两边除以yn ,得 yn dy p( x) y1n f ( x) dx
令z y1n ,则 dz (1 n) yn dy ,代入方程
常微分方程复习提纲
2012-2013第二学期常微分方程期末复习提纲第一章绪论掌握微分方程的概念, 能正确判断微分方程的阶数以及是否线性方程.第二章一阶微分方程的解法1 掌握变量分离方程的解法.2 掌握恰当方程的判定以及求解方法. 对于非恰当方程, 重点掌握如何求只与x或y有关的积分因子, 并由此求解方程.3 了解一些常见的能够化为变量分离方程的类型以及所用的变换. 例如齐次方程ddy ygx x⎛⎫= ⎪⎝⎭, 111222dda xb y cyx a x b y c++=++, ()ddyf ax by cx=++等类型.重点掌握形如111222d da xb y cyx a x b y c++=++的方程的求解方法.第三章一阶微分方程的解的存在定理1 简要理解解的存在性定理.2 了解利普希兹(Lipschitz)条件与偏导连续的关系.第四章高阶微分方程1 熟悉齐次与非齐次线性方程的解的结构以及性质定理2 掌握Wronsky行列式与线性相关或无关的关系.3 掌握基本解组相关概念.4 重点掌握常系数高阶非齐次线性微分方程的求法.特征根法和比较系数法.5 了解常见的可以降阶的高阶方程的类型, 重点掌握不显含未知函数的高阶方程的降阶求解法.第五章方程组1 熟悉基解矩阵的概念.2 掌握Atexp与基解矩阵的关系.3 重点掌握利用特征值求基解矩阵以及标准基解矩阵Atexp的方法.(只考虑有n个特征值的情形即可)。
《常微分方程》知识点整理
dyydy1.(变量分离方程)形如dx 《常微分方程》复习资料f (x )ϕ( y )(1.1)的方程,称为变量分离方程,这里 f (x ),ϕ( y ) 分别是 x , y 的连续函数.dy解法:(1)分离变量,当ϕ( y ) ≠ 0 时,将(1.1)写成ϕ( y )= f (x )dx ,这样变量就“分离”了;(2)两边积分得⎰ ϕ( y ) = ⎰f (x )dx + c (1.2),由(1.2)所确定的函数 y = ϕ(x , c ) 就为(1.1)的解.注:若存在 y 0 ,使ϕ( y 0 ) = 0 ,则 y = y 0 也是(1.1)的解,可能它不包含在方程(1.2)的通解中,必须予以补上.dyy2.(齐次方程)形如 = g ( ) 的方程称为齐次方程,这里 g (u ) 是u 的连续函数.dx x解法:(1)作变量代换(引入新变量) u = ,方程化为 xdu = g (u ) - u ,(这里由于 dx x dy = x du dx dx + u ); (2) 解以上的分离变量方程; (3) 变量还原.3.(一阶线性微分方程与常数变异法)一阶线性微分方程 a (x ) dy dx+ b (x ) y + c (x ) = 0 在 a (x ) ≠ 0 的区间上可写成dy= P (x ) y + Q (x ) (3.1),这里假设 P (x ), Q (x ) 在考虑的区间上是 x 的连续函数.若 Q (x ) = 0 ,则(3.1)变为 dx dy= P (x ) y (3.2),(3.2)称为一阶齐次线性方程.若Q (x ) ≠ 0 ,则(3.1)称为一阶非齐次线性方程. dx解法:(1)解对应的齐次方程 dy= P (x ) y ,得对应齐次方程解 y = ce ⎰ p ( x ) dx , c 为任意常数;dx(2)常数变异法求解(将常数c 变为 x 的待定函数c (x ) ,使它为(3.1)的解):令 y = c (x )e ⎰p ( x )dx为(3.1)的解,则dy = dc (x ) e ⎰ p ( x )dx + c (x ) p (x )e ⎰ p ( x )dx ,代入(3.1)得 dc (x )= Q (x )e -⎰ p ( x )dx ,积分得c (x ) = ⎰ Q (x )e -⎰ p ( x )dx + c ; dx dx dx(3)故(3.1)的通解为 y = e ⎰p ( x )dx(⎰ Q (x )e -⎰ p ( x )dxdx + c ) .4.(伯努利方程)形如dy = P (x ) y + Q (x ) y n 的方程,称为伯努利方程,这里 P (x ), Q (x ) 为 x 的连续函数.dx解法:(1)引入变量变换 z = y1-n,方程变为dz = (1- n )P (x )z + (1- n )Q (x ) ;dx(2) 求以上线性方程的通解; (3) 变量还原.5.(可解出 y 的方程)形如 y =dyf (x , dy) (5.1)的方程,这里假设 f (x , y ') 有连续的偏导数. dx解法:(1)引进参数 p = ,则方程(5.1)变为 y = dxf (x , p ) (5.2);(2) 将(5.2)两边对 x 求导,并以 dy = p 代入,得 p = ∂f + ∂f ∂p(5.3),这是关于变量 x , p 的一阶微分方dx ∂x ∂p ∂x程;(3)(i )若求得(5.3)的通解形式为 p = ϕ(x , c ) ,将它代入(5.2),即得原方程(5.1)的通解 y =f (x ,ϕ(x ,c )) ,c 为任意常数;=⎩⎩ ⎩dy ⎩dy ⎩ ⎧x =ψ ( p , c )(ii )若求得(5.3)的通解形式为 x =ψ ( p , c ) ,则得(5.1)的参数形式的通解为⎨y =,其中f (ψ ( p , c ), p )p 是参数, c 是任意常数;⎧Φ(x , p , c ) = 0(iii ) 若求得(5.3)的通解形式为Φ(x , p , c ) = 0 ,则得(5.1)的参数形式的通解为⎨ y = f (x , p ),其中 p是参数, c 是任意常数.6.(可解出 x 的方程)形如 x =dyf ( y , dy ) (6.1)的方程,这里假设 f ( y , y ') 有连续的偏导数. dx解法:(1)引进参数 p = ,则方程(6.1)变为 x = dxf ( y , p ) (6.2);(2) 将(6.2)两边对 y 求导,并以 dx = 1 代入,得 1 = ∂f +∂f ∂p(6.3),这是关于变量 y , p 的一阶微分方 dy p p ∂y ∂p ∂y程;⎧x = f ( y , p )(3)若求得(6.3)的通解形式为Φ( y , p , c ) = 0 ,则得(6.1)的参数形式的通解为⎨Φ( y , p , c ) = 0 ,其中 p 是参数, c 是任意常数.7.(不显含 y 的方程)形如 F (x , dy) = 0 的方程,这里假设 F (x , y ') 有连续的偏导数. dx解法:(1)设 p =,则方程变为F (x , p ) = 0 ;dx⎧x = ϕ(t )(2)引入参数t ,将 F (x , p ) = 0 用参数曲线表示出来,即⎨⎩ ,(关键一步也是最困难一步); =ψ (t )(3) 把 x = ϕ(t ) , p =ψ (t ) 代入 dy = pdx ,并两边积分得 y =⎰ψ (t )ϕ'(t )dt + c ;⎧⎪x = ϕ(t )(4) 通解为⎨⎪ y = ⎰ ψ (t )ϕ'(t )dt + c . 8.(不显含 x 的方程)形如 F ( y , dy) = 0 的方程,这里假设 F ( y , y ') 有连续的偏导数.dx解法:(1)设 p = ,则方程变为 F ( y , p ) = 0 ; dx⎧ y = ϕ(t )(2)引入参数t ,将 F ( y , p ) = 0 用参数曲线表示出来,即⎨ p =ψ ,(关键一步也是最困难一步); (t )dyϕ'(t )(3)把 y = ϕ(t ) , p =ψ (t ) 代入 dx = p ,并两边积分得 x = ⎰ ψ dt + c ;(t )⎧x = ϕ'(t )⎪ (4)通解为⎨dt + c ψ (t ) . ⎪⎩y = ϕ(t ) 9.( F (x , y(k ), , y (n -1) , y n ) = 0(k ≥ 1) 型可降阶高阶方程)特点:不显含未知函数 y 及 y ', , y (k -1) .p ⎰解法:令y(k ) =z(x) ,则y(k +1) =z',y(n)=z(n-k ) .代入原方程,得F (x, z(x), z'(x), , z(n-k ) (x)) = 0 .若能求得z(x) ,1 = +⎰x ⎪ 0n 0 ⎰⎪ ⎨ dx将 y(k )= z (x ) 连续积分 k 次,可得通解.10.( y(n )= f ( y , y (k ) , , y (n -1) ) 型可降阶高阶方程)特点:右端不显含自变量 x .' '' = dp dy dP ''' 2 d 2p dP 2 解法:设 y = p ( y ) ,则 y = P , y = P + P ( ) , ,代入原方程得到新函数 P ( y ) 的(n -1) 阶 dy dx dy dy 2dydy dy方程,求得其解为 dx = P ( y ) = ϕ( y , C 1, , C n -1 ) ,原方程通解为⎰ ϕ( y , C , , Cn -1 )= x + C n .11.(恰当导数方程)特点:左端恰为某一函数Φ(x , y , y ', , y (n -1)) 对 x 的导数,即 ddxΦ(x , y , y ', , y (n -1) ) = 0 .解法:类似于全微分方程可降低一阶Φ(x , y , y ', , y (n -1)) = C ,再设法求解这个方程.12.(齐次方程)特点: F (x , ty , ty ', , ty (n )) = t k F (x , y , y ', , y (n ) ) ( k 次齐次函数).解法:可通过变换 y = e ⎰zdx将其降阶,得新未知函数z (x ).因为 y ' = ze ⎰zdx, y ' = (z '+ z 2)e ⎰zdx, , y(n )= Φ(z , z ', , z (n -1) )e ⎰zdx,代入原方程并消去e k ⎰ zdx ,得新函数 z (x ) 的(n -1) 阶方程 f (x , z , z ', , z (n -1)) = 0 .⎧dy13.(存在唯一性定理)考虑初值问题⎪ dx f (x , y ) (13.1),其中 f (x , y ) 在矩形区域 R : x - x≤ a , y - y≤ b 上连⎨0 0 ⎪ y (x ) = y ⎩ 0 0续,并且对 y 满足 Lipschitz 条件:即存在 L > 0 ,使对所有(x , y 1 ), (x , y 2 ) ∈ R 常成立 bf (x , y 1 ) - f (x , y 2 ) ≤ L y 1 - y 2 , 则初值问题(13.1)在区间 x - x 0 ≤ h 上的解存在且唯一,这里h = min(a ,M), M = Max ( x , y )∈R f (x , y ) .x初值问题(13.1)等价于积分方程 y y 0 0 ⎧ϕ (x ) = yf (t , y )dt ,构造Picard 逐步逼近函数列{ϕn (x )}⎨ϕ (x ) = y +f (ξ,ϕn -1(ξ ))dxx 0 ≤ x ≤ x 0 + h , n = 1, 2, .⎩x 014.(包络的求法)曲线族Φ(x , y , c ) = 0 (14.1)的包络包含在下列两方程 ⎧Φ(x , y , c ) = 0 Φ' (x , y , c ) = 0消去参数c 而得到的曲线⎩ c F (x , y ) = 0 之中.曲线 F (x , y ) = 0 称为(14.1)的c - 判别曲线.15.(奇解的直接计算法)方程 F (x , y , dy) = 0(15.1)的奇解包含在由方程组⎧F (x , y , p ) = 0 消去参数 p 而得到的曲dx ⎨F '(x , y , p ) = 0 ⎩ c线Φ(x , y ) = 0 之中,此曲线称为(15.1)的 p - 判别曲线,这里 F (x , y , p ) = 0 是 x , y , p 的连续可微函数. 注: p - 判别曲线是否为方程的奇解,尚需进一步讨论. 16.(克莱罗方程)形如 y = xdy+ f ⎛ dy ⎫(16.1)的方程,称为克莱罗方程,这里 f ''( p ) ≠ 0 . ⎪ dx ⎝ ⎭= x⎨y = xp + f ( p )⎩x (t ) x (t ) x (t ) 解法:令 p = dy,得 y = xp + f ( p ) .两边对 x 求导,并以dy= p 代入,即得 p = x dp + p + f '( p ) dp,经化简, dx得dp[x + f '( p )] = 0 . dx dpdx dx dx如果 = 0 ,则得到 p = c .于是,方程(16.1)的通解为: y = cx + f (c ) .dx如果 x + f '( p ) = 0 ,它与等式 y = xp + f ( p ) 联立,则得到方程(16.1)的以 p 为参数的解:⎧x + f '( p ) = 0或⎩⎧x + f '(c ) = 0 ⎨y = xc + f (c )其中c 为参数.消去参数 p 便得方程的一个解.17.(函数向量组线性相关与无关)设 x 1 (t ), x 2 (t ), , x m (t ) 是一组定义在区间[a , b ] 上的函数列向量,如果存在一组不全为 0 的常数c 1 , c 2 , c m ,使得对所有 a ≤ t ≤ b ,有恒等式c 1 x 1 (t ) + c 2 x 2 (t ) + + c m x m (t ) = 0 , 则称 x 1 (t ), x 2 (t ), , x m (t ) 在区间[a , b ] 上线性相关;否则就称这组向量函数在区间[a , b ] 上线性无关.⎡ x 11 (t )⎤ ⎡ x 12 (t ) ⎤ ⎡ x 1n (t ) ⎤⎢ x (t )⎥ ⎢ x (t )⎥ ⎢ x (t )⎥ 18.(Wronsky 行列式)设有 n 个定义在 a ≤ t ≤ b 上的向量函数 x (t ) = ⎢ 21 ⎥ , x (t ) = ⎢ 22 ⎥ , , x (t ) = ⎢ 2n ⎥ , 1 ⎢ ⎥ 2 ⎢ ⎥ n ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎣ n 1 ⎦ ⎣ n 2 ⎦ ⎣ nn⎦ x 11 (t ) x 12 (t ) x 1n (t ) x 21 (t ) x 22 (t ) x 2n (t )由这 n 个向量函数所构成的行列式W [x 1 (t ), x 2 (t ), x n (t ) W (t ) ≡称为这 n 个向量函数所构成的 Wronsky 行列式.x n 1 (t ) x n 2 (t ) x nn (t )如果向量函数 x 1 (t ), x 2 (t ), , x n (t ) 在 a ≤ t ≤ b 上线性相关,则它们的 Wronsky 行列式W (t ) ≡ 0, a ≤ t ≤ b . 19.(基解矩阵的计算公式)(1) 如果矩阵 A 具有 n 个线性无关的特征向量v 1, v 2 , , v n ,它们相应的特征值为λ1, λ2 , , λn (不必互不相同),那么矩阵Φ(t ) = [e λ1t v , e λ2t v , , e λn tv ], -∞ < x < +∞ 是常系数线性微分方程组 x ' = Ax 的一个基解矩阵;12n(2) 矩阵 A 的特征值、特征根出现复根时(略); (3) 矩阵 A 的特征根有重根时(略).d n x d n -1 x 20.(常系数齐线性方程)考虑方程 L [x ] = dt n为n 阶常系数齐线性方程.+ a 1 dt n -1 + + a n x = 0 (20.1),其中 a 1, a 2 , a n 为常数,称(20.1)解法:(1)求(20.1)特征方程的特征根λ1, λ2 , , λk ;(2) 计算方程(20.1)相应的解:(i ) 对每一个实单根λk ,方程有解eλk t;(ii ) 对每一个 m > 1重实根λk ,方程有 m 个解: eλk t, t e λk t , t 2e λk t , , t m -1e λk t ;m m m 2 ⎨1 ⎩(iii ) 对每一个重数是 1 的共轭复数α ± β i ,方程有两个解: eαtcos β t , e αt sin β t ;(iv ) 对每一个重数是 m > 1的共轭复数αe αt cos β t , te α t cos β t , , t m -1e α t cos β t ;± βi ,方程有2m 个解: ;e αt sin β t , te αt sin β t , , t m -1e αtsin β t(3) 根据(2)中的(i )、(ii )、(iii )、(iv )情形,写出方程(20.1)的基本解组及通解.21.(常系数非齐次线性方程) y ' + py ' + qy = f (x ) 二阶常系数非齐次线性方程对应齐次方程 y '' + py ' + qy = 0 ,通解结构 y = Y + y .设非齐次方程特解 y = Q (x )e λ x 代入原方程 Q ''(x ) + (2λ + p )Q '(x ) + (λ 2+ p λ + q )Q (x ) = P (x )(1)若λ 不是特征方程的根, λ 2+ p λ + q ≠ 0 ,可设Q (x ) = Q (x ) , y = Q m (x )e λ x;(2)若λ 是特征方程的单根, λ 2 + p λ + q = 0 , 2λ + p ≠ 0 ,可设Q (x ) = xQ (x ) ,y = xQ m (x )e λ x;(3)若λ 是特征方程的重根, λ 2 + p λ + q = 0 , 2λ + p = 0 ,可设Q (x ) = x 2Q (x ) , y = x 2Q (x )eλ x.综上讨论,设 y = x k eλ xQ(x ) , ⎧0λ不是根⎪ λ 是单根. ⎪ λ是重根m m m k =。
常微分方程总复习
常微分方程复习总结初等积分法一、主要概念常微分方程:未知函数是一个变元的函数,由这样的函数及其导数(或微分)构成的等式。
方程的阶:在微分方程中,未知函数最高阶导数的阶数,称为方程的阶。
微分方程的解:一个函数代入微分方程中去,使得它成为关于自变量的恒等式,称此函数为微分方程的解。
通解:n 阶方程,其解中含有n 个(独立的)任意常数,此解称为方程的通解。
由隐式表出的通解称为通积分。
特解:给通解中的任意常数以定值,所得到的解称为特解,由隐式给出的特解称为特积分。
初值问题:求微分方程满足初值条件的解的问题。
变量可分离方程: 形如 )()(d d y g x f xy=或 y y N x M x y N x M d )()(d )()(2211= 的方程称为变量可分离方程。
齐次微分方程:形如)(d d xyx y ϕ=的方程,称为齐次微分方程。
线性微分方程:未知函数和它的导数都是一次的微分方程。
一阶线性微分方程:一阶线性微分方程的形式是 )()(d d x f y x p x y =+ 如果0)(≡x f ,即0)(d d =+y x p xy称为一阶线性齐次方程。
如果)(x f 不恒为零,则称)()(d d x f y x p x y=+为一阶线性非齐次方程。
伯努利(Bernoulli )方程:形如 n y x f y x p xy)()(d d =+ (1,0≠n ) 的方程,称为伯努利方程。
全微分方程:如果微分形式的一阶方程0d ),(d ),(=+y y x N x y x M (1.1)的左端恰好是一个二元函数),(y x U 的全微分,即y y x N x y x M y x U d ),(d ),(),(d += (1.2)则称方程(1.1)是全微分方程或恰当方程,而函数),(y x U 称为微分式(1.2)的原函数。
积分因子:假如存在这样的连续可微函数0),(≠y x μ,使方程0d ),(),(d ),(),(=+y y x N y x x y x M y x μμ成为全微分方程,我们就把),(y x μ称为方程(1.1)的一个积分因子。
常微分方程-总复习
dy a1 x b1 y c1 dx a2 x b2 y c2
dx
x
2.3 恰当方程和积分因子 2.3.1 恰当方程 定义、判别方法、求解方法 2.3.2 积分因子 定义、特殊类型方程的积分因子的求法 2.4 一阶隐方程和参数表示
第三章 一阶微分方程解的存在定理
解的存在唯一性定理的内容及证明过程。
近似计算和误差估计;
解对初值的可微性
第四章 高阶微分方程
4.1 线性微分方程的一般理论 4.1.1 齐线性方程解的性质与结构 定理2-定理6 4.1.2 非齐线性方程与常数变易法 定理7 常数变易法 4.2 常系数线性方程的解法 4.2.2 复值函数与复值解 复值函数的运算性质、定理8、定理9
4.2.2 常系数齐线性方程和欧拉方程 欧拉待定指数函数法、根据特征根的性质确定 方程的基本解组、欧拉方程的求解 4.2.3 非齐线性方程-比较系数法
第五章 线性微分方程组
5.1 解的存在唯一性定理 5.1.1 记号和定义 将n阶线性微分方程的初值问题化为等价的微分 方程组的初值问题 5.1.2 存在唯一性定理 5.2 线性微分方程组的一般理论 5.2.1 齐线性微分方程组
定理2-定理6 定理1*定理2* 5.2.2 非齐线性微分方程组 定理7 定理8 常数变易公式
常微分方程
总复习
第一章 绪论
基本概念 常微分方程、偏微分方程、微分方程的阶 线性和非线性微分方程 解:隐式解、通解、特解 积分曲线
第二章 一阶微分方程
2.1 变量分离方程和变量变换 2.1.1 变量分离方程 2.1.2 可化为变量分离方程的类型 y 1) dy g
2) 2.2 线性方程与常数变易法 一阶齐线性微分方程、一阶非齐线性微分方程、 伯努利方程
(完整版)高等数学期末复习考试之常微分方程部分
第11章 常微分方程习题课一. 内容提要1.基本概念含有一元未知函数)(x y (即待求函数)的导数或微分的方程,称为常微分方程;其中出现的)(x y 的最高阶导数的阶数称为此微分方程的阶;使微分方程在区间I 上成为恒等式的函数=y )(x ϕ称为此微分方程在I 上的解;显然一个微分方程若有解,则必有无穷多解;若n 阶微分方程的解中含有n 个不可合并的任意常数,则称其为此微分方程的通解;利用n 个独立的附加条件(称为定解条件)定出了所有任意常数的解称为特解;微分方程连同定解条件一起,合称为一个定解问题;当定解条件是初始条件(给出)1(,,,-'n y y y Λ在同一点0x 处的值)时,称为初值问题.2.一阶微分方程),(y x f y ='的解法(1)对于可分离变量方程)()(d d y x xy ψϕ=, 先分离变量(当0)(≠y ψ时)得x x y ψy d )()(d ϕ=, 再两边积分即得通解 C x x y y +=⎰⎰d )()(d ϕψ.(2)对于齐次方程d d y y f x x ⎛⎫= ⎪⎝⎭, 作变量代换x y u =,即xu y =,可将其化为可分离变量的方程,分离变量后,积分得C x x u u f u +=-⎰⎰d )(d ,再以xy 代替u 便得到齐次方程的通解.(3)形如)(111d d c y b x a c by ax f x y ++++=的方程, ①若1,c c 均为零,则是齐次方程;②若1,c c 不全为零,则不是齐次方程,但当k b b a a ==11时,只要作变换y b x a v 11+=,即可化为可分离变量的方程111)(d d a c v c kv f b x v +++=; 当11b b a a ≠时,只要作平移变换⎩⎨⎧-=-=00y y Y x x X ,即⎩⎨⎧+=+=00y Y y x X x (其中),(00y x 是线性方程组⎩⎨⎧=++=++0 0111c y b x a c by ax 的惟一解),便可化为齐次方程)(d d 11Yb X a bY aX f X Y ++=. (4)全微分方程若方程0d ),(d ),(=+y y x Q x y x P 之左端是某个二元函数),(y x u u =的全微分,则称其为全微分方程,显然C y x u =),(即为通解,而原函数),(y x u 可用曲线积分法、不定积分法或观察法求得. 通常用充要条件xQ y P ∂∂=∂∂来判定0d ),(d ),(=+y y x Q x y x P 是否为全微分方程.对于某些不是全微分方程的0d ),(d ),(=+y y x Q x y x P ,可乘上一个函数),(,y x μ使之成为全微分方程0d ),(d ),(=+y y x Q x y x P μμ(注意到当0),(≠y x μ时0d ),(d ),(=+y y x Q x y x P μμ与原方程同解),并称),(,y x μ为积分因子;一般说来,求积分因子比较困难,但有时可通过观察得到.(5)一阶线性微分方程)()(x Q y x p y =+'的通解公式当)(x Q 不恒为零时,称其为一阶线性非齐次微分方程;当)(x Q 恒为零,时,即0)(=+'y x p y 称为一阶线性齐次微分方程,这是一个可分离变量的方程,易知其通解为⎰=-x x p C Y d )(e ;由此用“常数变易法”即可得到非齐次微分方程的通解)(d e )(e d )(d )(⎰⎰+⎰=-x x Q C y x x p x x p .(6)对于Bernoulli 方程n y x Q y x p y )()(=+' (1,0≠n ),只需作变换n y z -=1,即可化为一阶线性方程)()1()()1(d d x Q n z x p n xz -=-+. 3.高阶方程的降阶解法以下三种方程可通过变量代换降成一阶方程再求解:(1)对于方程)()(x f y n =,令)1(-=n y z 化为)(x f z =';在实际求解中,只要对方程连续积分n 次,即得其通解n n n n C x C x C x x f x y ++++=--⎰⎰111d )(d Λ4434421Λ次. (2)对于),(y x f y '=''(不显含y ),作变换y P '=,则P y '='',于是 化一阶方程),(P x f P =';显然对),()1()(-=n n y x f y 可作类似处理.(3)对于),(y y f y '=''(不显含x ),作变换y P '=,则y P P y d d ='',于是可化为一阶方程),(d d P y f yP P =.4.线性微分方程解的结构(1)线性齐次微分方程解的性质对于线性齐次微分方程来说,解的线性组合仍然是解.(2)线性齐次微分方程解的结构若n y y y ,,,21Λ是n 阶线性齐次微分方程的线性无关的解,则其通解为n n y c y c y c Y +++=Λ2211.(3)线性非齐次微分方程解的结构线性非齐次微分方程的通解y ,等于其对应的齐次方程的通解Y 与其自身的一个特解*y 之和,即*+=y Y y .(4)线性非齐次微分方程的叠加原理1ο设*k y (m k ,,2,1Λ=)是方程)()()()(1)1(1)(x f y x p y x p y x p y k n n n n =+'+++--Λ的解,则∑=*mk k y 1是方程∑=--=+'+++mk k n n n n x f y x p y x p y x p y11)1(1)()()()()(Λ 的解. 2ο若实变量的复值函数)(i )(x v x u +是方程=+'+++--y x p y x p y x p y n n n n )()()(1)1(1)(Λ)(i )(21x f x f + 的解,则此解的实部)(x u 是方程)()()()(11)1(1)(x f y x p y x p y x p y n n n n =+'+++--Λ的解;虚部)(x v 是方程)()()()(21)1(1)(x f y x p y x p y x p y n n n n =+'+++--Λ的解.(5)线性非齐次方程的解与对应的齐次方程解的关系线性非齐次方程任意两个解的差是对应的齐次方程的解.5.常系数线性微分方程的解法(1)求常系数线性齐次微分方程通解的“特征根法”1ο写出01)1(1)(=+'+++--y p y p y p y n n n n Λ的特征方程0111=++++--n n n n p r p r p r Λ,并求特征根;2ο根据特征根是实根还是复根以及重数写出通解中对应的项(见(2)下列两种情况可用“待定系数法”求常系数线性非齐次方程的特解ο1对于x m x P x f λe )()(=,应设特解x m k x Q x y λe )(=*x m m m m k a x a x a x a x λ)e (1110++++=--Λ, 其中k 等于λ为特征根的重数(n k ≤≤0),01,,,m a a a L 是待定系数.将*y 代入原方程,可定出01,,,m a a a L ,从而求得*y .ο2对于()e [()cos sin ]x l s f x P x x P x λωω=+ (0≠ω),应设特解 ]sin )(cos )([e x x T x x R x y m m x k ωωλ+=*,其中k 等于i μλω=+为特征根的重数(20n k ≤≤),)(),(x T x R m m 是待定的},max{s l m =次多项式.将*y 代原方程,即可定出)(),(x T x R m m ,从而求得*y .或因为()e [()cos ()sin ]x l s f x P x x P x x λωω=+Re e (()i ())(cos isin )x l s Px P x x x λωω⎡⎤=-+⎣⎦ (i )Re ()e x m Q x λω+⎡⎤=⎣⎦(其中()m Q x ()i ()l s P x P x =-是max{,}m l s =次的复系数多项式).对于方程()(1)11n n n n y p y p y p y --'++++=L (i )()e x m Q x λω+可设其特解 (i )()e k x m Y x Z x λω*+=,(()m Z x 是m 次待定复系数多项式,k 等于i μλω=+为特征根的重数),将(i )()e k x m Y x Z x λω*+=代入方程()(1)11n n n n y p y p y p y --'++++=L (i )()e x m Q x λω+中,可定出()m Z x ,于是(i )()e k x m Y x Z x λω*+=,从而原方程的特解Re y Y **=.3o 特例(i )()(1)(i )11()e ()cos ()e ()sin ()e ,()e x x l l x l n n x n n l f x P x x f x P x x Y Z x y p y p y p y P x λλλωλωωω*+-+-==='++++=L 当或时,设将其代入,求得,Re Im .Y y Y y Y *****==则原方程的一个特解或6.Euler 方程的解法(1) 形如)(1)1(11)(x f y p y x p y x p y x n n n n n n =+'+++---Λ的线性变系数微分方程称为Euler 方程,是一种可化为常系数的变系数微分方程.(2) 解法只需作变换 t x e =,即x t ln =,即可将其化为常系数线性微分方程.若引入微分算子td d D =,则 y y x D =',y y x )1D(D 2-='',,Λy n y x n n )1(D )1D(D )(+--=Λ, 于是很容易写出对应的齐次方程的特征方程.7. 应用常微分方程解决实际问题的一般步骤(1) 在适当的坐标系下,设出未知函数)(x y y =,据已知条件写出相关的量;(2) 根据几何、物理、经济及其它学科的规律(往往是瞬时规律或局部近似规律)建立微分方程;(3) 提出定解条件;(4) 求定解问题的解;(5) 分析解的性质,用实践检验解的正确性.二.课堂练习(除补充题外,均选自复习题12)1.填空题(1)已知2e 1x y =及2e 2x x y =是方程0)24(42=-+'-''y x y x y 的解,则其通解为 )(e 212x C C x +.解:因2e 1x y =,2e 2x x y =都是解,且线性无关,故)(e 212x C C x +是通解.(2)设一质量为m 的物体,在空气中由静止开始下落 .若空气阻力为v k R =,则其下落的距离s 所满足的微分方程是s g m ''=, 初始条件是 (0)0,(0)0 s s '==. 解:因为ma F =,而v k mg F -=,s v '=,s a ''=,故得方程s m s k mg ''='-,化简得g s mk ='+''s ; 在如图所示的坐标系下,初始条件为 0)0(,0)0(='=s s . (3)微分方程x x y y y e 62=+'-''的特解*y 的形式为 )e ( 2x b ax x +.解: 因为特征方程为0122=+-r r ,121==r r ,而1=λ是二重特征根,故应设x b ax x y )e (2+=*.(4)若x x x x y x y x y 522322221e e ,e ,++=+==都是线性非齐次微分方程)()()(x f y x q y x p y =+'+''的解,则其通解为25212 e e x x C C x ++.解:由线性非齐次方程的解与对应的齐次方程解的关系可O s (0)s ()s t知,x y y Y 2121e =-=, x y y Y 5232e =-=都是对应的齐次方程的解,且线性无关,故对应的齐次方程的通解为x x C C Y C Y C Y 52212211e e +=+=;由非齐次方程解的结构得其通解252211e e x C C y Y y x x ++=+=.(5)(补充)已知)(x f 满足⎰+=x t t f t x xf 0 2d )(1)(,则221() e x f x x =.解:两边对x 求导得)()()(2x f x x f x x f ='+,整理得()1()()f x x f x x'=-, 分离变量后积分得c x x x f ln ln 2)(ln 2+-=,即22e )(x x c x f =,0≠x ; 又当1=x 时,)1e (1d e 1)1(211 0 222-+=+=⎰c t t c t f t ,即c c c -+=2121e 1e 故1=c ,所以22e 1)(x xx f =. (6)(补充)设)(x f 有连续导数,且1)0(=f .若曲线积分⎰-+L y x x f x x yf 2d ])([d )(与路径无关,则 22e 3 )(--=x x f x .解: 记2)(),(x x f Q x yf P -==.因为积分与路径无关,故有xQ y P ∂∂=∂∂,即x x f x f 2)()(-'=,亦即x x f x f 2)()(=-'.它的通解为 ]d e 2[e ]d e 2[e )(d d c x x c x x x f x x x x +=+⎰⎰=⎰⎰--x c x e 22+--=. 由1)0(=f 得3=c ,于是22e 3)(--=x x f x .2π4(),=()1(0)π,(1) πe .y x y y x x y o x x y y αα∆=∆=+∆+==(7)(补充)已知在任意点处的增量其中, 则解:由题设知,2d .d 1y y x x =+ arctan 12π4d d ln arctan ,e .1(0)ππ,(1)πe .x y xy x C y C y xy C y ==+=+===分离变量得,积分得即由得故2.选择题(1)函数221e c x c y +=(21,c c 为任意常数)是微分方程02=-'-''y y y 的(A) 通解. (B)特解.(C)不是解. (D)解,但不是通解,也不是特解.答( D )解:因为221e c x c y +=x c 2e =,经检验是解,但含有任意常数,故不是特解,又因为只含一个独立的任意常数,故也不是通解.(2)微分方程x y y 2sin 222='-'',其特解形式为=*y(A)x C x B A 4sin 4cos ++. (B)x Cx x Bx A 4sin 4cos ++.(C)x C x B Ax 4sin 4cos ++. (D)x Cx x Bx Ax 4sin 4cos ++. 答( C)解:x y y 2sin 222='-''1cos 4x =-,特解为***+=21y y y .因为022=-r r ,2,021==r r ,而0=λ是特征方程的单根,故应设Ax y =*1;而i 4i =+ωλ不是特征方程根,故应设x C x B y 4sin 4cos 2+=*,因此***+=21y y y x C x B Ax 4sin 4cos ++=.(3)微分方程x y x y y x d )45(d )2(+=-是(A)一阶线性齐次方程. (B)一阶线性非齐次方程.(C)齐次方程. (D)可分离变量方程.答( C )解:原方程可化为x yx y yx y x x y -⋅+=-+=245245d d .(4)(补充)具有特解x y -=e 1,x x y -=e 22, x y e 33=的三阶常系数线性齐次微分方程是(A)0=+'-''-'''y y y y . (B)0=-'-''+'''y y y y . (C)0=-'+''-'''y y y y . (D)0=+'-''+'''y y y y .答( B )解: 由方程的特解可知,其特征根为1,1321=-==r r r ,于是特征方程为0)1()1(2=-+r r 即0123=--+r r r ,故方程为0=-'-''+'''y y y y .(5)(补充)方程09=+''y y 通过点)1,(-π且在该点处与直线1πy x +=-相切的积分曲线为(A)x C x C y 3sin 3cos 21+=. (B)x C x y 3sin 3cos 2+=. (C)x y 3cos =. (D)x x y 3sin 313cos -=.答( D) 解:因为092=+r ,i 32,1±=r ,故通解为x C x C y 3sin 3cos 21+=.由初始条件1)(,1)(='-=ππy y 得31,121-==C C ,所以所求积分曲线为 x x y 3sin 313cos -=.(6)(补充) 方程x y y x sin 3e )4(+=-的特解应设为 (A)x B A x sin e +.(B)x C x B A x sin cos e ++.(C)x C x B Ax x sin cos e ++. (D))sin cos e (x C x B A x x ++.答(D)解:对应的齐次方程的特征方程为014=-r ,特征根为 i ,i ,1 ,14321-==-==r r r r .令)()(sin 3e )(21x f x f x x f x +=+=.对于x x f e )(1=,因1=λ是 单特征根,故设x Ax y e 1=*;对于x x f sin 3)(2=,因i i μλω=+=是单特征 根,故设)sin cos (2x C x B x y +=*;从而)sin cos e (21x C x B A x y y y x ++=+=***. (7)(06考研)函数212e e e x x x y C C x -=++满足的一个微分方程是 (A)23e x y y y x '''--=. (B) 23e x y y y '''--=. (C) 23e x y y y x '''+-=. (D) 23e x y y y '''+-=.答(D)解:因为121,2r r ==-,即特征方程为220r r +-=,故排除(A )、 (B ).由1λ=是特征方程的单根,知()e x f x A =,故排除(C ). 3.求下列方程的通解(2) ()x y y x y -=ln 2d d ; 解:方程化为y yx y y x ln 22d d =+,是一阶线性方程.⎥⎦⎤⎢⎣⎡+⎰⎰=⎰-C y y y x y y yyd e ln 2e d 2d 12⎥⎦⎤⎢⎣⎡+⋅=⎰C y y y y y d ln 2122 ⎥⎦⎤⎢⎣⎡+⎪⎭⎫⎝⎛-=C y y y y 22241ln 2121221ln -+-=Cy y .(5)0d d d d 22=+-++y x yx x y y y x x ;解:原方程可化为()()0arctan d 21d 21d 22=⎪⎭⎫⎝⎛++y x y x ,故通解为C yx y x =++arctan 212122. (10) y x x y +=+'2.解:设y x u +=2,即y x u +=22,则x xu u x y2d d 2d d -=.代入原方程得 ⎪⎭⎫ ⎝⎛+=121d d u x x u .此为齐次方程,再设xu v =,则x v x v x u d d d d +=,故方程化为v v x v x v 21d d +=+.分离变量为 x x v v v v d 112d 22-=--,两边积分得 ()()()12ln ln 1ln 3112ln 3112ln 21C x v v v v +-=⎥⎦⎤⎢⎣⎡-++---.代回原变量并整理得 ()C xy x y x ++=+23332.4.求下列微分方程满足所给初始条件的特解(1)()0d 2d 223=-+y xy x x y ,11==x y;解:原方程化为()2232d d x xy y x y -=,即2322d d x yx y y x -=-.令1-=x Z ,得322d d yZ y y Z =+.⎪⎪⎭⎫ ⎝⎛+⎰⎰=⎰-C y y Z y yyyd e 2ed 23 d 2()C y y +=ln 212,即 ()C y y x +=ln 2112,故通解为()C y x y +=ln 22.由11==x y,得1=C ,所以特解为 ()1ln 22+=y x y . (3)02sin 2=-''y y ,()20π=y ,()10='y ;解:令y P '=,则y P P y d d ='',原方程化为 y y yP P cos sin 2d d 2=,即y y P P sin d sin 2d 2=.积分得 C y P +=22sin .由()20π=y ,()10='y ,得0=C ,故y P y sin =='.解之得C x y+=2tan ln .由()20π=y ,0=C .故特解为 x y e arctan 2=.5(补充).设x y e =是微分方程x y x p y x =+')(的一个解,求此微分方程满足条件0)2(ln =y 的特解.解:将x y e =代入微分方程得)(e x p x x +x x =e ,解之得x x x p x -=-e )(,于是此微分方程为x y x x y x x =-+'-)e (,即1)1e (=-+'-y y x .其对应的齐次方程的通解为xxC Y +-=ee ,于是此微分方程的通解为xxx C y e ee +=+-.由0)2(ln =y 得21e--=C ,故特解为21e ee -+--=x xx y .6(补充).设)(:x y y L =是一条向上凸的连续曲线,其上任意一点),(y x 处的曲率为211y '+,且此曲线上点)1,0(处的切线方程为1+=x y ,求该曲线的方程.解:因为曲线向上凸,故0<''y ,于是有='+''-32)1(y y 211y '+,化简得二阶方程)1(2y y '+-=''.令y P '=,则P y '='',故方程化为)1(2P P +-='.分离变量后积分得x C P -=1arctan .由题设有1)0()0(='=y P ,于是可定出41π=C ,所以πtan()4y P x '==-,再积分得2πln cos()4y x C =-+.由1)0(=y 得2ln 2112+=C ,因此该曲线:L π1ln cos()1ln 242y x =-++. 7(补充).某湖泊的水量为V ,每年排入湖泊内含污染物A 的污水量为6V ,流入湖泊内不含A 的水量为6V ,流出湖泊的水量为3V .已知1999年底湖中A 的含量为05m ,超过国家规定指标.为了治理污染,从2000年初起,限定排入湖泊中含A 污水的浓度不超过Vm 0.问至少需经过多少年,湖泊中污物A 的含量降至0m 以内?(注:设湖水中A 的浓度是均匀的.)解:设2000年初(记此时0=t )开始,第t 年湖泊中污物A 的总量为m ,浓度为V m ,则在时间间隔]d ,[t t t +内,排入湖泊中污染物A 的量为t mt V V m d 6d 600=⋅,流出湖泊的水中A 的量为t m t V V m d 3d 3=⋅,因而在此间隔内湖泊中污染物A 的改变量为t m mm d )36(d 0-=,005m m t ==.分离变量解得30e 2t C m m --=,由005m m t ==得029m C -=,故)e 91(230t m m -+=.令0m m =,解得 3ln 6=t ,即至少需经过3ln 6年湖泊中污物A 的含量降至0m 以内.8.求下列Euler 方程的通解(2)x y y x y x =+'-''642.解:设tx e =,方程化为 t y t yty e 6d d 5d d 22=+-.………………….(*)0652=+-r r ⇒21=r ,32=r . t t C C y 32 21e e +=. 设t a y e =*,代入方程(*),得 ()t t a a a e 65e =+-.由此定出21=a ,故ty e 21=*.从而原方程的通解为 x x C x C y 213221++=.9.设对于半空间0>x 内任意的光滑有向封闭曲面S , 都有0d d e d d )(d d )(2=--⎰⎰y x z x z x xyf z y x xf xS, 其中()x f 在()+∞,0内具有连续的一阶导数,且()1lim 0=+→x f x ,求()x f .解:由曲面积分与曲面无关的条件0=∂∂+∂∂+∂∂zRy Q x P ,有 ()()()0e 2=--+'x x xf x f x f x ,即()()x x x f x x f 2e 111=⎪⎭⎫ ⎝⎛--'.所以 ()⎥⎦⎤⎢⎣⎡+⎰⎰=⎰⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-C x x x f x x x x x d e e 1e d 112d 11⎥⎦⎤⎢⎣⎡+⋅⋅=⎰-C x x x x x x x d e e 11e 2()C xx x +=e e 1.由()1lim 0=+→x f x ,即()1e e 1lim 0=++→C xx x x ,可求出1-=C ,故 ()()1e e 1-=x x xx f .10(补充).设函数)0)((≥x x y 二阶可导且1)0(,0)(=>'y x y .过曲线)(x y y =上任意一点),(y x P ,作该曲线的切线及Ox 轴的垂线,上述二直线与Ox 轴所围成的三角形的面积记为1S ,区间] ,0[x 上以)(x y y =为曲边的曲边梯形面积记为2S ,并设212S S -恒为1,求此曲线)(x y y =的方程.解:曲线)(x y y =上点),(y x P 处的切线方程为))((x X x y y Y -'=-.切线与Ox 轴的交点为)(0 ,)()(x y x y x '-.由1)0(,0)(=>'y x y ,知0)(>x y ,于是211()()()2()2()y x y x S y x x x y x y x ⎛⎫=--= ⎪''⎝⎭;而⎰=x t t y S 0 2d )( (0≥x );故由条件1221≡-S S 得1d )( 02=-'⎰x t t y y y ,由此还可得1)0(='y .将1d )( 02=-'⎰x t t y y y 两边对x 求导并整理得2)(y y y '=''.令P y =',则y P P y d d ='',于是方程化为P yP y =d d ,解之得y C P y 1==',由1)0(='y 和1)0(=y 得11=C ,于是y y =',从而x C y e 2=.再由1)0(=y 得12=C ,故所求曲线方程为x y e =.11(06考研).设函数()f u 在(0, )+∞内具有二阶导数,且z f =满足等式22220zz x y ∂∂+=∂∂. (1) 验证()()0f u f u u'''+=; (2) 若(1)0,(1)1f f '==,求函数()f u 的表达式. 解: (1)由(),z f u u ==()2222223222()()()y z z x f u f u f u x x x y x y ∂∂''''==⋅+⋅∂∂++,()2222223222()()()y z z x f u f u f u y y x y x y ∂∂''''==⋅+⋅∂∂++. 因为22220z z x y ∂∂+=∂∂,所以有()0f u ''+=,即 ()()0f u f u u'''+=. (2)由(1)得11()f u C u '=+,由(1)1f '=知10C =,即1()f u u'=;于是得2()ln f u u C =+,由(1)0f =,得20C =,所以()ln f u u =.12(07考研).解初值问题2(),(1)1,(1) 1.y x y y y y ''''⎧+=⎨'==⎩解:令2,,(),y P y P P x P P '''''==+=则原方程化为即d 1.d x x P P P-=于是()11d d 111e e d d ().PPPP x C P P P C P P C P ---⎡⎤⎰⎰=+=+=+⎢⎥⎣⎦⎰⎰由11d (1)1,0,d x yP y C P x='=====得且即解得322221,(1)1,33y x C y C =+==又由得故3221.33y x =+12(07考研). 设幂级数0n n n a x ∞=∑在(, )-∞+∞内收敛,其和函数()y x 满足 240,(0)0,(0) 1.y xy y y y ''''--=== (I )证明22,1,2,;1n n a a n n +==+L(II )求()y x 的表达式.解:(I )对0n n n y a x ∞==∑求一、二阶导数,得1212,(1),n n n n n n y na xy n n a x ∞∞--=='''==-∑∑代入240y xy y '''--=并整理得201(1)(2)240.nnnn n nn n n n n ax na x a x ∞∞∞+===++--=∑∑∑ 于是 202240,(1)(2)2(2)0,1,2,,n n a a n n a n a n +-=⎧⎨++-+==⎩L从而有 22,1,2,.1n n a a n n +==+L(II )因为01(0)0,(0)1,y a y a '====故 20,0,1,2;k a k ==L212121*********,0,1,2,.21!!k k k k a a a a a k k k k k k k +---=======-L L所以22212121000()e ,(, ).!!k k nk x n k n k k k x x y a x a xx x x k k ∞∞∞∞+++=========∈-∞+∞∑∑∑∑213().()()3()6,()1().f x xf x f x x y f x x x D x f x '-=-==补充设满足且由曲线与 直线及轴所围的平面图形绕轴旋转一周得到的旋 转体的体积最小,求33d d 3232.()36,1()e6e d 6d 6.xx xx f x y y x x y f x C x x x C x x Cx x ---⎰⎰'-=-⎡⎤⎡⎤==+-=-⎰⎰⎢⎥⎢⎥⎣⎦⎣⎦=+满足的方程解可写为 其通解:()112322001265402()π()d π(6)d π(1236)d 36 π2.75V C f x x Cx x x C x Cx x xC C ==+⎰⎰=++⎰=++旋转体的体积为()2322π()π207,()0,777.()67.C V C C V C C f x x x '''=+==-=>=-=-令,得惟一驻点且故是极小值点,也是最小值点于是。
(完整版)高等数学期末复习考试之常微分方程部分.doc
第 11 章 常微分方程习题课一 .内容提要1.基本概念含有一元未知函数 y( x) ( 即待求函数 )的导数或微分的方程 ,称 为常微分方程 ;其中出现的 y( x) 的最高阶导数的阶数称为此微分方 程的阶; 使微分方程在区间 I 上成为恒等式的函数 y( x) 称为此微分方程在 I 上的解 ;显然一个微分方程若有解 ,则必有无穷多解 ;若 n 阶微分方程的解中含有 n 个不可合并的任意常数 ,则称其为此微分方程的 通解 ;利用 n 个独立的附加条件 (称为定解条件 )定出了所有任意常数的解称为 特解 ;微分方程连同定解条件一起 ,合称为一个定解问题 ;当定解条件是初始条件(给出 y, y ,, y ( n 1) 在同一点x 0 处的值 )时 ,称为初值问题 .2.一阶微分方程 y f ( x, y) 的解法(1)对于可分离变量方程dy(x) ( y) ,dx先分离变量 (当 ( y) 0 时)得 dy(x)dx ,ψ( y)再两边积分即得通解dy (x)dx C .( y)dyf y ,x(2)对于齐次方程 dx作变量代换y,即 yxu ,可将其化为可分离变量的方程 ,分x u 离变量后 ,积分得dudx C 再以y代替 u 便得到齐次方f (u) uxx程的通解 .(3)形如dyf ( ax by c) 的方程 , dxa 1 xb 1 yc 1 ①若 c,c 1 均为零 ,则是齐次方程 ;②若 c,c 1 不全为零 ,则不是齐次方程 ,但当ab k 时 ,只要作变换 va 1xb 1 y ,即可化为可分离a 1b 1变量的方程dvb 1 f (kvc ) a 1 ;dxv c 1当 a b时,只要作平移变换Xx x 0, 即a 1b 1 Y y y 0 x X x 0 ( 其中 (x 0 , y 0 ) 是线性方程组 ax byc 0 的惟一y Y y 0 a 1 x b 1 y c 1 0解 ),便可化为齐次方程dYf ( aX bY) .dXa 1 Xb 1Y(4)全微分方程若 方 程 P(x, y)dx Q ( x, y) dy 0 之 左 端 是 某 个 二 元 函 数u u( x, y) 的全微分 ,则称其为 全微分方程 ,显然 u( x, y)C 即为通解 ,而原函数 u( x, y) 可用曲线积分法、不定积分法或观察法求得.通常用充要条件 PQ 来判定 P( x, y)dx Q(x, y)dy 0 是否yx为全微分方程.对于某些不是全微分方程的P( x, y)dx Q(x, y)dy0 ,可乘上一个函数 (, x, y) 使之成为全微分方程P(x, y)dx Q (x, y)dy 02/19(注意到当 ( x, y) 0 时 P( x, y)dx Q (x, y)dy0 与原方程同解 ),并称(, x, y) 为积分因子 ;一般说来 ,求积分因子比较困难 ,但有时可通过观察得到 .(5)一阶线性微分方程 yp(x) y Q( x) 的通解公式当 Q( x) 不恒为零时 ,称其为一阶线性非齐次微分方程 ;当 Q(x) 恒为零 ,时,即 y p( x) y0 称为一阶线性齐次微分方程,这是一个可分离变量的方程 ,易知其通解为 Y Cep ( x )dx;由此用“常数变易法”即可得到非齐次微分方程的通解y ep ( x)dx(CQ(x)e p( x)d x dx ).(6) 对于 Bernoulli 方程 yp( x) y Q (x) y n ( n 0,1 ),只需作变换z y1 n,即可化为一阶线性方程 dz (1 n) p( x)z (1 n)Q( x) .dx3.高阶方程的降阶解法以下三种方程可通过变量代换降成一阶方程再求解:(1)对于方程 y (n) f ( x) ,令 z y (n 1) 化为 zf (x) ; 在实际求解中 ,只要对方程连续积分 n 次 ,即得其通解ydxf (x)dx C 1 x n1C n 1 x C n .n 次(2)对于 y f ( x, y ) (不显含 y ),作变换 P y ,则 y P ,于是化一阶方程 P f (x, P) ;显然对 y ( n)f (x, y ( n 1) ) 可作类似处理 .(3)对于 yf ( y, y ) (不显含 x ),作变换 Py ,则 yPdP,于是dy可化为一阶方程 PdPf ( y, P) .dy4.线性微分方程解的结构(1)线性齐次微分方程解的性质对于线性齐次微分方程来说,解的线性组合仍然是解 .(2)线性齐次微分方程解的结构若 y1 , y2 , , y n是 n 阶线性齐次微分方程的线性无关的解,则其通解为Y c1 y1c2 y2c n y n.(3)线性非齐次微分方程解的结构线性非齐次微分方程的通解y ,等于其对应的齐次方程的通解Y 与其自身的一个特解 y 之和 ,即y Y y .(4)线性非齐次微分方程的叠加原理1 设 y k( k 1,2, , m )是方程y ( n ) p1 (x) y( n 1) p n 1 (x) y p n ( x) y f k ( x)m的解 ,则y k 是方程k 1y ( n) p1 ( x) y (n 1) mp n 1 (x) y p n ( x) y f k (x)k 1的解 .2 若实变量的复值函数 u( x) i v( x) 是方程y (n) p1 ( x) y (n 1) p n 1 (x) y p n ( x) y f 1 ( x) if 2 ( x)的解 ,则此解的实部u( x)是方程y ( n)p1 ( x) y( n 1)p n 1 (x) y p n (x) y f1 ( x)的解 ;虚部v(x)是方程y ( n )p1 (x) y( n 1)p n 1 (x) y p n ( x) y f 2 ( x)的解 .(5)线性非齐次方程的解与对应的齐次方程解的关系线性非齐次方程任意两个解的差是对应的齐次方程的解.5.常系数线性微分方程的解法(1)求常系数线性齐次微分方程通解的“特征根法”1 写出y(n ) p1y( n 1) p n 1 y p n y 0 的特征方程r n p1 r n 1 p n 1 r p n 0 ,并求特征根;2 根据特征根是实根还是复根以及重数写出通解中对应的项(见下表 )特征根 r 为给出通解中的单实根 1 项: Ce rxk 重实根k 项: e rx(C1 C 2 x C k x k 1 )一对单复根 2 项: e x(C1cos x C 2 sin x)r1,2 i一对 k 重复根 2 k 项 : e x[( C1 C2 x C k x k 1 ) cos xr1,2 i(D1 D 2 x D k x k 1 ) sin x](2)下列两种情况可用“待定系数法”求常系数线性非齐次方程的特解1对于 f ( x) P m (x)e x,应设特解y x k Q m ( x)e x x k ( a0 x m a1 x m 1a m 1 x a m )e x,其中 k 等于为特征根的重数( 0 k n ), a0, a1,L , a m是待定系数 .将 y 代入原方程,可定出 a0, a1,L , a m,从而求得 y .2 对于 f ( x) e x [ P l ( x) cos x P s sin x] (0 ),应设特解yx k e x [ R m (x) cos x T m ( x) sin x] ,其中 k 等于i 为特征根的重数 ( 0 kn), R m ( x),T m ( x) 是2待 定 的 m max{ l , s} 次 多 项 式 . 将 y 代原方程,即可定出R m ( x),T m ( x) ,从而求得 y .或因为 f ( x) e x [ P l ( x) cos x P s (x)sin x]Re e x (P l (x) iP s ( x))(cos x isin x)Re Q m ( x)e ( i ) x(其中 Q m ( x) P l ( x) iP s ( x) 是 m max{ l , s} 次的复系数多项式) .对于方程y ( n)1 ( n 1)L p n 1y nyQ m ( x)e (i ) xp yp可设其特解Yx k Z m ( x)e (i ) x,( Z m ( x) 是 m 次待定复系数多项式, k 等于 i 为特征根的重数),将 Yx k Z m (x)e ( i ) x代入方程y ( n )p 1 y ( n 1) Lp n 1 y p n y Q m ( x)e (i ) x中,可定出 Z m (x) ,于是 Yx k Z m ( x)e ( i ) x ,从而原方程的特解y Re Y .3o特例当 f ( x) e x P l ( x)cos x 或f (x) e x P l ( x)sin x 时,设Y Z l ( x)e ( i ) x , 将其代入y ( n) p 1 y ( n 1) Lp n 1 yp n y P l ( x)e ( i ) x ,6/19求得 Y ,则原方程的一个特解y ReY 或 y ImY .6.Euler 方程的解法(1)形如x n y (n )p1 x n 1 y( n 1)p n 1xy p n y f (x)的线性变系数微分方程称为 Euler 方程 ,是一种可化为常系数的变系数微分方程 .(2)解法只需作变换x e t,即t ln x ,即可将其化为常系数线性微分方程 .d ,则若引入微分算子 Ddtxy D y , x2 y D(D 1) y ,, x n y (n )D(D 1) (D n1) y , 于是很容易写出对应的齐次方程的特征方程.7.应用常微分方程解决实际问题的一般步骤(1)在适当的坐标系下 ,设出未知函数y y( x) ,据已知条件写出相关的量 ;(2)根据几何、物理、经济及其它学科的规律(往往是瞬时规律或局部近似规律)建立微分方程 ;(3)提出定解条件 ;(4)求定解问题的解 ;(5)分析解的性质,用实践检验解的正确性 .二 .课堂练习 (除补充题外 ,均选自复习题12)1.填空题22(1)已知 y 1 e x 及 y 2xe x 是方程 y4xy( 4x 2 2) y0 的解 ,2则其通解为e x (C 1 C 2 x) .222解 : 因 y 1e x , y 2 xe x 都是解 ,且线性无关 ,故 e x (C 1 C 2 x) 是通解 .(2)设一质量为 m 的物体 ,在空气中由静止开始下落 .若空气阻力为 R kv,则其下落的距离 s所满足的微分方程是 sksg ,m 初始条件是 s(0) 0, s (0) 0 .解 : 因为 F ma 而 F mg k v v s , a s , 故得方程 O s(0), ,mg k sms ,化简得 sk sg ;s(t )m在如图所示的坐标系下 ,初始条件为 s( 0)0, s (0) 0.s(3) 微 分 方 程 y 2 y y 6xe x 的 特 解 y的形式为x 2 (axb)e x .解 : 因为特征方程为 r 2 2r 1 0 , r 1 r 21, 而 1 是二重特征根 ,故应设 yx 2 (ax b)e x .(4)若 y 1x 2 , y 2x 2e 2 x , y 3 x 2e 2xe 5x 都是线性非齐次微分 方 程 yp( x) y q( x) yf (x)的解,则其通解为C 1e 2x C 2e 5xx 2 .解:由线性非齐次方程的解与对应的齐次方程解的关系可知 ,Y 1y 2 y 1 e 2 x , Y 2 y 3 y 2 e 5 x 都是对应的齐次方程的解,且 线 性 无 关 ,故 对 应 的 齐次方 程 的 通 解 为Y C 1Y 1 C 2 Y 2 C 1e 2 xC 2 e 5 x ; 由非齐次方程解的结构得其通解y Y y 1C 1e 2 x C 2e 5 x x 2 .(5)(补充 )已知 f ( x) 满足 xf ( x)1x 2f (t) dt ,则 f (x)x2t 1 e 2 .x解 :两边对 x 求导得 f ( x)xf (x) x 2 f (x) ,整理得f ( x)x1f ( x) ,xx 2ln c ,即 f (x)x 2分离变量后积分得 ln f ( x)ln x ce 2, x 0 ;2xx 1时(1) 11t 2 1(e 111又当 , f2c e 2d tc 21) ,即 ce 21 ce 2ct1 ,所以 f (x)x 2故 c 1 e 2 .x(6)( 补 充 ) 设 f ( x) 有 连 续 导 数 , 且 f (0) 1.若曲线积分 Lyf (x)dx[ f ( x) x 2 ]dy 与路径无关 ,则 f ( x)3e x 2x 2 .解 : 记 P yf ( x), Qf ( x) x 2.因为积分与路径无关,故有PQ,亦即.它的通解为 yx ,即f ( x) f (x) 2xf ( x) f ( x)2xf ( x) dxdxc] e x [ 2xe xdx c]2x2 ce x .e[ 2 xe dx由 f (0) 1 得 c 3 ,于是 f (x)3e x 2x 2 .(7)( 补充 ) 已知 yy( x)在任意点 x 处的增量 yy x , 其中 =o( x),21xπy(0) π,则 y(1) πe 4.解:由题设知,dyy .dx1 x 2分离变量得dydx ,积分得 ln y arctanx C 1,即 y Ce arctan x .y1 x 2π由 y(0) π得C π,故y(1) πe 4 .2.选择题(1)函数 yc 1e 2x c 2 ( c 1 ,c 2 为任意常数 )是微分方程 yy 2 y 0的(A) 通解 .(B) 特解 .(C) 不是解 .(D) 解,但不是通解 ,也不是特解 .答(D)解 :因为 y c 1e 2 x c 2 ce 2x ,经检验是解 ,但含有任意常数 ,故不是特解 ,又因为只含一个独立的任意常数 ,故也不是通解 .(2)微分方程 y2 y2 sin 2 2x ,其特解形式为 y(A) A B cos4x C sin 4x . (B) A Bx cos4x Cx sin 4x .(C) Ax B cos4x C sin 4x .(D) Ax Bx cos4x Cxsin 4x .答( C) 解 : y 2 y 2 sin 2 2x1 cos4x 特解为 y y 1 y2 .,因为r 22 r0 , r1 0, r22 而 0 是特征方程的单根 , 故应, 设 y 1 Ax ; 而i4i 不是特征方程根,故应设y 2B cos 4xC sin 4x ,因此 y y 1 y 2Ax B cos4 x C sin 4x .(3)微分方程 (2 x y)dy (5x 4y)dx 是(A) 一阶线性齐次方程 .(B) 一阶线性非齐次方程 .(C) 齐次方程 .(D) 可分离变量方程 .答(C)解 :原方程可化为dy5x 4 y5 4 yx . dx 2x y y2x(4)(补充 )具有特解y1 e x, y2 2xe x, y3 3e x的三阶常系数线性齐次微分方程是(A) y y y y 0 . (B) y y y y 0 .(C) y y y y 0 . (D) y y y y 0 .答(B) 解 : 由方程的特解可知 ,其特征根为r1 r2 1, r3 1 ,于是特征方程为 ( r 1)2 ( r 1) 0 即 r 3 r 2 r 1 0 ,故方程为y y y y0 .(5)( 补充 ) 方程y9 y 0 通过点 ( , 1) 且在该点处与直线y 1 xπ相切的积分曲线为(A) y C1 cos3x C2 sin3x . (B) y cos3x C2 sin 3x .(C) y cos3x. (D) y cos3x 1sin3x .3答( D)解 : 因为r2 9 0 , r1, 2 3i ,故通解为 y C 1 cos3x C2 sin3x .由初始条件 y( ) 1, y ( ) 1得C1 1,C2 1,所以所求积分曲线3为y x 1sin 3x.cos3 3(6)(补充 ) 方程 y( 4 ) y e x 3sin x 的特解应设为(A) Ae x B sin x . (B) Ae x B cos x C sin x .(C) Axe xB cos xC sin x .(D) x(Ae xB cos xC sin x) .答(D)解 :对应的齐次方程的特征方程为 r 4 1 0 ,特征根为r 1 1, r 2 1, r 3 i, r 4 i .令 f ( x)e x 3sin xf 1 (x) f 2 (x) .对于 f 1 ( x) e x ,因1 是单特征根 ,故设 y 1 Axe x ; 对于 f 2 ( x) 3sin x ,因ii 是单特征根 ,故设y 2 x(B cos x C sin x) ;从而 yy 1 y 2x( Ae xB cos xC sin x) .(7)(06 考研 )函数 y C 1e x C 2e 2x xe x 满足的一个微分方程是 (A) y y 2y 3xe x .(B) y y 2 y 3e x .(C) yy2y 3xe x .(D) yy 2 y 3e x .答(D)解 :因为 r 1 1,r 22 ,即特征方程为 r 2 r 2 0 ,故排除( A )、(B ).由1是特征方程的单根,知 f (x)Ae x ,故排除( C ) .3.求下列方程的通解(2)dyy x ; dx2 ln y解 :方程化为dx2 x2ln y 是一阶线性方程.dyy y ,1 22ln y y 2 dy Cx2 y d y2y dydy C1ey ln yey 2y1121 212.y 222 y ln y4y Cln y 2 Cy(5) xdx ydyydx xdy0 ;x2y2解 :原方程可化为 1 21 2 d arctanx,故通解为d 2 x d 2 yy1 x21 y2arctanxC .22y(10) y x x 2 y .解 :设 ux2y ,即 u2x2y ,则dy2u du2x .代入原方程得dx dxdu1 x 1 .此为齐次方程 ,再设 v u ,则 duv xdv,故方程化dx 2 ux dxdx为 v x dvv 1.分离变量为2vdv11dx ,两边积分得dx2v2v 2 v x1 ln 2v 2v 1 1ln 2v 1 1ln v 1 ln x ln C 1 .2 3 3代回原变量并整理得 x 2 3 x 3 3 xy C .y24.求下列微分方程满足所给初始条件的特解(1) y 3dx 2 x 2xy 2 dy 0 , y x11 ;解 :原方程化为 y 3dx 2 xy 2x2,即dx2 x 2 x 2 .dydyyy 3令 Z x 1dZ 22,得 dy y Zy 3.221Ze yd y2 e y d ydyC 2 ln y C ,即 y 3y 21 12 ln y C 故通解为 y2x 2 ln y C .x y 2 ,由 y x 1 1 ,得 C 1 ,所以特解为 y 2 x 2 ln y 1 . (3) 2ysin 2 y 0 , y 02 , y 0 1 ;解:令 Py ,则 yPdP,原方程化为 2PdP2 sin y cos y ,即dydy2PdP 2 sin yd sin y .积分得 P 2sin 2 y C .由 y 0, y 0 1,sin y .解之得 ln tany2得 C 0 ,故 yPx C .由 y 0, C 0 .2arctan e x .22故特解为 y5(补充).设y e x是微分方程xy p(x) y x 的一个解,求此微分方程满足条件 y(ln 2)0 的特解.解 : 将y e x代入微分方程得 xe x p(x) e x x ,解之得p( x) xe x x ,于是此微分方程为 xy ( xe x x) y x ,即y (e x1) y 1 .x其对应的齐次方程的通解为Y Ce e x ,于是此微分方程的通Ce e x x e x 1解为 y . 由y(ln 2) 0得 C e 2,故特解为e x x1y e x e 2 .6(补充).设L : y y( x) 是一条向上凸的连续曲线,其上任意一点( x, y) 处的曲率为 1 ,且此曲线上点(0,1) 处的切线方程为1 y 2y x 1 ,求该曲线的方程.解 : 因为曲线向上凸 ,故y 0 ,于是有y 1 ,化简y 2 )3(1 1 y 2得二阶方程 y (1 y 2 ) .令 P y ,则 y P ,故方程化为P (1 P 2 ) .分离变量后积分得arctanP C1 x . 由题设有P(0) y (0) 1 ,于是可定出 C1 4 ,所以y P tan( 4x) ,再积分π得 y ln cos(πx) C2 . 由y(0) 1得C2 11ln 2 ,因此该曲线4 2L : y ln cos(πx) 11ln 2 .4 27(补充).某湖泊的水量为V ,每年排入湖泊内含污染物 A 的污水量为 V ,流入湖泊内不含 A 的水量为 V ,流出湖泊的水量为 V.已知 6 6 31999 年底湖中 A 的含量为 5m 0 ,超过国家规定指标 .为了治理污染,从 2000 年初起 ,限定排入湖泊中含 A 污水的浓度不超过m 0.V问至少需经过多少年 ,湖泊中污物 A 的含量降至 m 0 以内 ?(注 :设湖水中 A 的浓度是均匀的 .)解 :设 2000 年初 (记此时 t 0 )开始 ,第 t 年湖泊中污物 A 的总量为 m ,浓度为m,则在时间间隔 [t , t dt] 内,排入湖泊中污染物 A 的量为Vm 0 V dtm 0dt ,流出湖泊的水中 A 的量为 m Vdtmdt ,因而在 V6 6 V 3 3此间隔内湖泊中污染物 A 的改变量为 dm(mm)dt , m t 0 5m 0 .63m 0 t9m 0 , 故分 离 变 量 解 得 mCe 3, 由 m t 05m 0 得 C2t2mm 0(1 9e 3 ) .2令 m m 0 ,解得 t 6 ln 3 ,即至少需经过 6 ln 3 年湖泊中污物 A 的含量降至 m 0 以内 .8.求下列 Euler 方程的通解(2) x 2 y 4xy6 y x .解 :设 xt,方程化为d 2 y dy6 y edt 25r2dt5r 6 0r 1 2 , r 23 .设 y ae t ,代入方程( * ),得 e ta1, 故 y 1e t.从而原方程的通解为 2 2e t . .(* )y C 1e 2 t C 2e 3 t.a 5a 6ae t .由此定出y C 1 x 2C 2 x 31x .2设对于半空间 , 都有内任意的光滑有向封闭曲面xf ( x)dydz xyf ( x)dzdx e 2 x zdxdy 0 ,S其中 f x 在 0,内具有连续的一阶导数 , 且 limf x 1 , 求x 0f x .解 :由曲面积分与曲面无关的条件PQ R 0, 有xyzxf xf xxf xe2x0 , 即 f x1 1f x 1 e 2 x .xx11所以 f xe1 xdx2 x e 1 x dxC1 edxxe x 1 1 e 2x e x xdx C1 e x e x C .x x x由 lim f x 1, 即 lim 1 e x e xC 1 ,可求出 C1 ,故 x 0x 0 x f x 1 e x e x 1 .x10(补充 ).设函数 y( x)( x 0) 二阶可导且 y (x)0, y(0) 1 .过曲线yy(x) 上任意一点 P( x, y) ,作该曲线的切线及 Ox 轴的垂线 ,上述二直线与 Ox 轴所围成的三角形的面积记为S 1 ,区间 [0, x] 上以y y(x) 为曲边的曲边梯形面积记为 S 2,并设 2S 1 S 2 恒为 1,求此曲线 yy(x) 的方程 .解 :曲线 y y( x) 上点 P(x, y) 处的切线方程为 Y yy (x)( X x) . 切 线 与 Ox 轴 的 交 点 为 (xy( x), 0) . 由 y ( x)0, y(0) 1 , 知y ( x)y( x) 0 ,于是S 11y( x) xx y( x)2( x); 而 S 2y(t )dt ( x 0 ); 故由yx2y ( x)2 y (x)1得y2x条件 2S 1 S 2y(t )dt1,由此还可得 y (0)1.y将y 2x( y )2 .令 y P ,y(t )dt 1 两边对 x 求导并整理得 yyy则 yPdP, 于 是 方 程 化为 ydPP , 解之 得 y P C 1 y , 由dydyy (0) 1和 y( 0) 1得 C 1 1,于是 yy ,从而 yC 2e x .再由 y(0) 1得 C 2 1 ,故所求曲线方程为 ye x .11 .) 内具有二阶导数,且(06 考研 ) 设函数 f (u) 在 (0,zf ( x222z 2z0 .y) 满足等式2y 2x ( 1) 验证 f(u)f (u) ;u( 2) 若 f (1) 0, f (1) 1,求函数 f (u) 的表达式 .解 : (1)由 zf (u),ux 2 y 2 ,得z f (u)x,2z f (u)x 2 f (u)y 2,x x 2y 2 x 2x 2y 2y 23x 2 2z f (u)y,2zf (u)y 2f (u)x 23.yx 2y 2 y 2x 2y 2y 2x 2 2 因为2z2z0 ,所以有 f(u)f (u) 0 ,即x 2 y 2x 2y 2f (u) f (u) 0 .u(2)由(1)得 f (u) 1C ,由f (1) 1 知 C0 ,即 f (u) 1 ;u11u于是得 f (u) ln u C 2 ,由 f (1) 0,得 C 2 0 ,所以 f (u)ln u .12(07 考研 ).解初值问题y ( x y 2 )y ,y(1)1, y (1)1.解:令 y P, 则 y P ,原方程化为 P (x P 2 ) P, 即dx1 x P. dP P1dPC1 1dPP C1 dP P(C1 P).于是 x e P Pe P dP由 P x 1 y (1) 1,得C1 0,且P x,即dyx. dx31,故 y 31 .解得 y 2 x2 C2 , 又由 y(1) 1得C2 2 x23 3 3 312(07 考研). 设幂级数a n x n在 ( , ) 内收敛,其和n 0函数 y(x)满足y 2xy 4y 0, y(0) 0, y (0) 1.(I )证明a n2 2 a n ,n 1,2,L ;n 1(I I )求y( x)的表达式.解:( I )对yn 0a n x n求一、二阶导数,得y na n x n 1 , y n( n 1)a n x n 2 ,n 1 n 2代入 y 2xy 4 y 0并整理得( n 1)(n 2) a n 2 x n 2na n x n 4a n x n 0.n 0 n 1 n 0于是2a2 4a0 0,(n 1)(n 2)a n 2 2(n 2)a n 0, n 1,2,L ,从而有2a n 2 n 1an,n1,2,L .( II )因为y(0) a0 0, y (0) a1 1, 故a0, k 0,1,2L ;a2k 12 a2 k 11a 2k 11 1 a2 k 3L1 a 1 1 , k 0,1,2,L .2kkk k 1k ! k !所以ya n x na 2k 1x 2k 1x 2 k 1 ( x 2 )kx2).k 0k !xk!xe , x ( ,n 0k 0k 0补充 设 满足 xf ( x) 3 f (x) 6x 2 , 且由曲线y 与 13( ). f (x)f (x) 直线 x 1及 x 轴所围的平面图形 D 绕x 轴旋转一周得到的旋转体的体积最小 , 求 f (x).解:满足的方程 可写为. f (x)y3 y6x,x3 d x3dx31其通解xxyf (x) eC6xedxxC6 dxx 2Cx 3 6x 2 .旋转体的体积为V (C) π01 f 2 (x)dx π01 (Cx 3 6x 2 )2 dxπ01 (C 2 x 6 12Cx 5 36x 4 )dx π C 2 2C36 .75令 V (C) 2C 2 ,得惟一驻点 C 7, 且 V (C)2π 0, π 7 0 7 故 C 7是极小值点,也是最小值.点于是f (x)6x 2 7 x 3 .19/19。
常微分方程知识点
常微分方程知识点常微分方程是微积分的一个重要分支,是描述物理、生物、经济等各类现象的一种数学模型。
常微分方程描述了未知函数与其导数之间的关系,在实际问题中具有广泛的应用。
下面将介绍常微分方程的基本概念、解的存在唯一性、一阶常微分方程和高阶常微分方程等知识点。
1.基本概念:常微分方程描述的是函数与其导数之间的关系。
常微分方程可以分为初值问题和边值问题。
初值问题是给定了函数在特定点的初始值和导数,要求求解函数在整个定义域上的表达式;边值问题是给定了函数在两个点的值,要求求解函数在这两个点之间的表达式。
2.解的存在唯一性:对于一阶常微分方程的初值问题,如果方程的右端函数在整个定义域上连续且满足利普希茨条件,那么方程存在唯一解。
其中利普希茨条件是指有一个正数L,使得对于任意t和s,满足,f(t)-f(s),≤L,t-s。
3.一阶常微分方程:一阶常微分方程描述的是未知函数y与其一阶导数y'之间的关系。
一阶常微分方程的一般形式为dy/dt = f(t, y),其中f(t, y)是已知函数。
一阶常微分方程的解可以通过分离变量、线性方程、齐次方程和恰当方程等方法求解。
4.高阶常微分方程:高阶常微分方程描述的是未知函数与其高阶导数之间的关系。
高阶常微分方程的一般形式为d^n y/dt^n = F(t, y, y', ..., y^n-1),其中F(t, y, y', ..., y^n-1)是已知函数。
高阶常微分方程的解可以通过代数法、特征方程和待定系数法等方法求解。
5.变量分离方法:当一阶常微分方程的右端可以写成g(y)·h(t)的形式时,可以使用变量分离方法求解。
将方程改写为1/g(y) dy = h(t) dt,然后对两边分别积分得到∫1/g(y) dy = ∫h(t) dt,从而求得y的表达式。
6.线性方程方法:当一阶常微分方程可以写成y'+p(t)y=q(t)的形式时,可以使用线性方程方法求解。
常微分方程常考知识点总结
常微分方程常考知识点总结一、基本概念。
1. 常微分方程的定义。
- 含有一个自变量和它的未知函数以及未知函数的导数(或微分)的等式称为常微分方程。
例如:y' + 2y = 0,这里y = y(x)是未知函数,x是自变量,y'是y对x的一阶导数。
2. 阶数。
- 方程中未知函数导数的最高阶数称为方程的阶。
如y''+3y' - 2y = x是二阶常微分方程,因为方程中未知函数y的最高阶导数是二阶导数y''。
3. 解、通解、特解。
- 解:如果函数y = φ(x)代入常微分方程后,使方程成为恒等式,那么y=φ(x)就称为该常微分方程的解。
- 通解:如果常微分方程的解中含有独立的任意常数,且任意常数的个数与方程的阶数相同,这样的解称为通解。
例如,对于一阶常微分方程y'=y,其通解为y = Ce^x(C为任意常数)。
- 特解:在通解中给任意常数以确定的值而得到的解称为特解。
比如在y = Ce^x中,当C = 1时,y = e^x就是一个特解。
二、一阶常微分方程。
1. 可分离变量方程。
- 形式为g(y)dy = f(x)dx的方程称为可分离变量方程。
- 求解方法:将方程两边同时积分,即∫ g(y)dy=∫ f(x)dx + C,得到方程的通解。
例如,对于方程y'=(y)/(x),可化为(dy)/(y)=(dx)/(x),积分得lny=lnx+C,即y = Cx (C≠0)。
2. 齐次方程。
- 形式为y'=φ((y)/(x))的方程称为齐次方程。
- 求解方法:令u = (y)/(x),则y = ux,y'=u + xu',原方程化为u+xu'=φ(u),这是一个可分离变量方程,按照可分离变量方程的方法求解。
例如,对于方程y'=(y)/(x)+tan(y)/(x),令u=(y)/(x),方程化为u + xu'=u+tan u,即xu'=tan u,然后分离变量求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
期末考试
一、填空题(每空2 分,共16分)。
1.方程22d d y x x y +=满足解的存在唯一性定理条件的区域是 . 2. 方程组
n x x x R Y R Y F Y ∈∈=,),,(d d 的任何一个解的图象是 维空间中的一条积分曲线.
3.),(y x f y '连续是保证方程),(d d y x f x
y =初值唯一的 条件. 4.方程组⎪⎪⎩⎪⎪⎨⎧=-=x t
y y t x d d d d 的奇点)0,0(的类型是 5.方程2)(2
1y y x y '+'=的通解是 6.变量可分离方程()()()()0=+dy y q x p dx y N x M 的积分因子是
7.二阶线性齐次微分方程的两个解)(1x y ϕ=,)(2x y ϕ=成为其基本解组的充要条件是
8.方程440y y y '''++=的基本解组是
二、选择题(每小题 3 分,共 15分)。
9.一阶线性微分方程
d ()()d y p x y q x x
+=的积分因子是( ). (A )⎰=x x p d )(e μ (B )⎰=x x q d )(e μ (C )⎰=-x x p d )(e μ (D )⎰=-x x q d )(e μ
10.微分方程0d )ln (d ln =-+y y x x y y 是( )
(A )可分离变量方程 (B )线性方程
(C )全微分方程 (D )贝努利方程
11.方程x (y 2-1)d x+y (x 2-1)d y =0的所有常数解是( ).
(A) 1±=x (B)1±=y
(C )1±=y , 1±=x (D )1=y , 1=x
12.n 阶线性非齐次微分方程的所有解( ).
(A )构成一个线性空间 (B )构成一个1-n 维线性空间
(C )构成一个1+n 维线性空间 (D )不能构成一个线性空间
13.方程222+-='x y y ( )奇解.
(A )有一个 (B )有无数个 (C )只有两个 (D )无
三、计算题(每小题8分,共48分)。
14.求方程22
2d d x y xy x y -=的通解
15.求方程0d )ln (d 3=++y x y x x y
的通解
16.求方程2
221)(x y x y y +'-'=的通解
17.求方程53x
y y e '''-=的通解
18.求方程2(cos 7sin )x y y y e x x '''+-=-的通解
19.求方程组
35,53dY AY A dx ⎛⎫== ⎪-⎝⎭
的实基本解组
四、应用题(本小题 11 分,共11分)。
20.(1)求函数()at
f t e =的拉普拉斯变换 (2)求初值问题3322(0)0,(0)0
t
x x x e x x '''⎧-+=⎨'==⎩的解
五、证明题(本小题10分,共10分)。
21 .证明:对任意0x 及满足条件001y 的0y ,方程22d (1)d 1y y y x x y -=++的满足条件00()y x y =的解()y y x =在(,)-∞+∞上存在。