中考数学总复习 全部导学案(教师版)

合集下载

九年级数学导学案全册

九年级数学导学案全册

九年级数学导学案全册一、整体介绍九年级数学导学案全册是为了帮助九年级学生系统地学习和掌握数学知识而设计的教学辅助材料。

本导学案旨在以清晰的结构和详细的内容,帮助学生理解和掌握每个知识点,并培养学生的问题解决能力和数学思维。

二、导学目标本导学案的目标是帮助学生在九年级学习阶段掌握以下内容:1. 复习和巩固七、八年级学到的数学知识;2. 学习并理解九年级新引入的数学概念和方法;3. 培养学生的问题解决能力和逻辑思维。

三、具体内容1. 单元一:代数运算本单元将复习和巩固整数、有理数的加减乘除运算,并引入一次、二次方程的解法。

通过练习提高学生的计算能力和代数运算技巧。

2. 单元二:平面几何本单元将复习和巩固平面图形的性质和计算方法,包括三角形、四边形和圆的周长、面积计算。

同时引入椭圆、双曲线等二次曲线的基本性质和计算方法。

3. 单元三:立体几何本单元将复习和巩固立体图形的性质和计算方法,包括球体、圆柱体、圆锥体和棱柱、棱锥的体积和表面积计算。

同时引入三角锥、圆锥、三角棱柱等复杂立体图形的计算方法。

4. 单元四:数据统计与概率本单元将复习和巩固数据统计中的表格、图表的制作和分析方法,同时引入概率的基本概念和计算方法。

通过实际案例和练习,培养学生的数据分析和概率计算能力。

四、学习方法和建议1. 在学习过程中,学生应注意理解每个知识点的定义、性质和计算方法。

2. 学生可以通过课堂讲解、课后习题练习以及自主学习的方式来巩固所学内容。

3. 遇到困难和疑惑时,学生可以寻求老师和同学的帮助,或参考相关的数学学习资料。

五、总结九年级数学导学案全册是九年级学生学习数学的重要辅助材料。

通过学习和掌握本导学案中的知识,学生将能够提高数学思维能力,解决实际问题,并为高中数学的学习打下坚实的基础。

希望本导学案能够帮助九年级学生在数学学习中取得优秀的成绩,为未来的学习和发展打下坚实的基础。

新人教版中考总复习1---5节复习课导学案

新人教版中考总复习1---5节复习课导学案

第一节实数
第二节整式
第3节分式
第4节二次根式
【复习目标】
1.了解二次根式、最简二次根式、同类二次根式等概念
2.结合二次根式的概念和性质求字母的取值范围
3.熟练掌握二次根式的性质和运算
第5节一次方程(组)
复习目标:
1、了解方程和方程(组)的解的意;
2、熟练掌握一次方程(组)的解法;
3、会利用方程(组)的解求方程(组)中的待定系数;
4、会根据具问题中的数量关系列出简单的一次方程(组)
新人教版九年级数学中考总复习学校:丰溪镇中心学校教师姓名:陈瑞。

中考数学总复习全部导学案

中考数学总复习全部导学案

苏教版初中数学一轮复习资料(教师用)目录1、第1课时实数的有关概念....................................................................... (2)2、第2课时实数的运算....................................................................... .. (4)3、第3课时整式与分解因式....................................................................... (6)4、第4课时分式与分式方程....................................................................... (8)5、第5课时二次根式....................................................................... (10)6、第6课时一元一次方程和二元一次方程(组) (12)7、第7课时一元二次方程....................................................................... (14)8、第8课时方程的应用(一)................................................................... (16)9、第9课时方程的应用(二)................................................................... (18)10、第10课时一元一次不等式(组) (20)11、第11课时平面直角坐标系、函数及图像 (22)12、第12课时一次函数图像及性质 (24)13、第13课时一次函数应用....................................................................... (26)14、第14课时反比例函数图像和性质 (28)15、第15课时二次函数图像和性质 (30)16、第16课时二次函数应用....................................................................... (32)17、第17课时数据描述与分析(一) (34)18、第18课时数据描述与分析(二) (36)19、第19课时概率及其简单应用(一) (38)20、第20课时概率及其简单应用(二) (40)21、第21课时线段、角、相交线与平行线 (42)22、第22课时三角形基础知识........................................................................4423、第23课时全等三角形....................................................................... (46)24、第24课时等腰三角形....................................................................... (48)25、第25课时直角三角 (50)26、第26课时尺规作图....................................................................... (52)27、第27课时锐角三角函数....................................................................... (54)28、第28课时锐角三角函数应用 (56)29、第29课时多边形及其内角和、梯形 (58)30、第30课时平行四边形....................................................................... (60)31、第31课时矩形、菱形、正方形(一) (62)32、第32课时矩形、菱形、正方形(二) (64)33、第33课时四边形综 (66)34、第34课时相似图形....................................................................... (68)35、第35课时相似图形的应用........................................................................7036、第36课时圆的基本性质....................................................................... (72)37、第37课时直线与圆、圆与圆的位置关系 (74)38、第38课时圆有关的计算....................................................................... (76)39、第39课时圆的综合....................................................................... (78)40、第40课时图形的变换(一)................................................................... (80)第1课时实数的有关概念【知识梳理】1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0. 4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9.平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a 的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x 就叫做a 的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x 的立方等于a,即x 3=a ,那么这个数x 就叫做a 的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a 的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】 例1.下列运算正确的是( )A .33--=B .3)31(1-=-C 3=±D 3=-例 )A . C .2- D .2例3.2的平方根是( )A .4 B..例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b < 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3现在已知1⊕1 = 4,那么2009⊕2009 = .【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( ) A .16 B .16- C .18 D .18- 2.2-的倒数是( )0 a 11-b例5图A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<<4.已知实数a 在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a - 5.2-的相反数是( )A .2B .2-C .12D .12- 6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 .8.如果2()13⨯-=,则“”内应填的实数是( ) A . 32 B . 23 C .23- D .32-第2课时 实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.10 第4题3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.6.有理数的运算律:加法交换律:a+b=b+a(a b、为任意有理数)加法结合律:(a+b)+c=a+(b+c)(a, b,c为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名. 例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.例4.A .523=+B .623=⨯C .13)13(2-=-D .353522-=-例5.计算:(1) 911)1(8302+-+--+-π (2)0(tan 45π-+o北汉8 90 伦-4 多伦纽国际标准时-5 例2图…例3图(3)102)21()13(2-+--;(4)2008011(1)()3π--+- 【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -=D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间4.如图,数轴上点P 表示的数可能是( )AB. C . 3.2- D.5.计算: (1)02200960cos 16)21()1(-+--- (2))10112-⎛⎫-+ ⎪⎝⎭第3课时 整式与分解因式第4题图【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:nn a a 1=-(a≠0,n 为正整数);2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.(2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.(4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+; (6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()±+=±a ab b a b2()-=+-;222a b a b a b5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准.⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.(3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】【例1】下列计算正确的是()A. a+2a=3a2B. 3a-2a=aC. a2•a3=a6D.6a2÷2a2=3a2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是()结果A .mB .m 2C .m +1D .m -1【例3】若2320a a --=,则2526a a +-= .【例4】下列因式分解错误的是() A .22()()x y x y x y -=+- B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = .3. 已知a=1.6?109,b=4?103,则a 2?2b=( )A. 2?107B. 4?1014C.3.2?105D. 3.2?1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中22a b =--=.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,. 第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式B A 叫做分式.2.分式的基本性质:(1)基本性质:(2)约分:(3)通分:3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根.【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中2x =+3.先化简11112-÷-+x x x )(,然后请你给x 选取一个合适值,再求此时原式的值. 4.解下列方程(1)013522=--+x x x x (2)41622222-=-+-+-xx x x x 5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.【当堂检测】1.当99a =时,分式211a a --的值是 .2.当x 时,分式112--x x 有意义;当x 时,该式的值为0. 3.计算22()ab ab 的结果为 .4. .若分式方程xx k x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x y x 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值 7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x 8.解分式方程. (1)22011x x x -=+- (2) x2)3(x 22x x -=--; (3)11322x x x -=--- (4)11-x 1x 1x 22=+-- 第5课时 二次根式【知识梳理】1.二次根式:(1)定义:____________________________________叫做二次根式.2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式.(2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式.5.二次根式的乘法、除法公式:(1)a b=ab a 0b 0⋅≥≥(,)(2)a a =a 0b 0b b≥f (,) 6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.【思想方法】 非负性的应用【例题精讲】【例1】要使式子1x +有意义,x 的取值范围是( ) A .1x ≠ B .0x ≠ C .10x x >-≠且 D .10x x ≠≥-且【例2】估计132202⨯+的运算结果应在( ). A .6到7之间 B .7到8之间 C .8到9之间 D .9到10之间【例3】 若实数x y ,满足22(3)0x y ++-=,则xy 的值是 .【例4】如图,A ,B ,C ,D 四张卡片上分别写有523π7-,,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示);(2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π (2)101(1)527232-⎛⎫π-+-+-- ⎪⎝⎭. 【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a . 【当堂检测】1.计算:(1)01232tan 60(12)+--+-+o .(2)cos45°·(-21)-2-(22-3)0+|-32|+121-(3)026312(cos 304sin 6022+-+o o. 2.如图,实数a 、b 在数轴上的位置,化简222()a b a b -第6课时 一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题.2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 .3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义.【思想方法】方程思想和转化思想【例题精讲】例1. (1)解方程.x x +--=21152156 (2)解二元一次方程组?⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值.方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________.例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= .⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交10 元用电费外,超过部分还要按每度0.5 元交费. ①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .【当堂检测】1.方程x -=52的解是___ ___.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元.3.若关于x 的方程x k =-153的解是x =-3,则k =_________.4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____. 5.解下列方程(组): (1)()x x -=--3252; (2)....x x +=-0713715023;(3)⎩⎨⎧=+=+832152y x y x ; (4)x x -+=-2114135; 6.当x =-2时,代数式x bx +-22的值是12,求当x =2时,这个代数式的值.7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?8.甲、乙两人同时解方程组8(1)5 (2)mx ny mx ny +=-⎧⎨-=⎩由于甲看错了方程①中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确,m n 的值.第7课时 一元二次方程【知识梳理】1.一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2.一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根.当b 2-4ac <0时,方程 实数根.【思想方法】aac b b x 242-±-=1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想【例题精讲】例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0(1)求证:不论k 取什么实数值,这个方程总有实数根;(2)若等腰三角形ABC 的一边长为a=4,另两边的长b .c 恰好是这个方程的两个根,求△ABC 的周长.【当堂检测】一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ ②01x 2=+ ③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=-- ⑥0x 22x 32=-+2.一元二次方程3x2=2x的解是.3.一元二次方程(m-2)x2+3x+m2-4=0有一解为0,则m的值是.4.已知m是方程x2-x-2=0的一个根,那么代数式m2-m = .5.一元二次方程ax2+bx+c=0有一根-2,则b ca4 的值为.6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根, 则k的取值范围是__________.7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是.二、选择题:8.对于任意的实数x,代数式x2-5x+10的值是一个( )A.非负数B.正数C.整数D.不能确定的数9.已知(1-m2-n2)(m2+n2)=-6,则m2+n2的值是()A.3B.3或-2C.2或-3D. 210.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()(A)x2+4=0 (B)4x2-4x+1=0(C)x2+x+3=0(D)x2+2x-1=011.下面是李刚同学在测验中解答的填空题,其中答对的是()A.若x2=4,则x=2 B.方程x(2x-1)=2x-1的解为x=1C.方程x2+2x+2=0实数根为0个 D.方程x2-2x-1=0有两个相等的实数根12.若等腰三角形底边长为8,腰长是方程x2-9x+20=0的一个根,则这个三角形的周长是() A.16 B.18 C.16或18 D.21三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x2-4x-4=0 (4)x2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0第8课时方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要.【注意点】分式方程的检验,实际意义的检验.【例题精讲】例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了()A.4场 B.5场 C.6场 D.13场例2. 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x,女生人数为y,则下列方程组中,能正确计算出x 、y 的是( )A .⎩⎪⎨⎪⎧x –y= 49y=2(x+1)B .⎩⎪⎨⎪⎧x+y= 49y=2(x+1)C .⎩⎪⎨⎪⎧x –y= 49y=2(x –1)D .⎩⎪⎨⎪⎧x+y= 49y=2(x –1) 例3. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意得到的方程是( )例4.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺数为x 张,•信封个数分别为y 个,则可列方程组 .例5. 团体购买公园门票票价如下:100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元.(1)请你判断乙团的人数是否也少于50人.(2)求甲、乙两旅行团各有多少人?【当堂检测】1.某市处理污水,需要铺设一条长为1000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm,则可得方程.2. “鸡兔同笼”是我国民间流传的诗歌形式的数学题, “鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x只,兔为y只,所列方程组正确的是()3.为满足用水量不断增长的需求,某市最近新建甲、乙、•丙三个水厂,这三个水厂的日供水量共计11.8万m3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t土石,运输公司派出A 型,B•型两种载重汽车,A型汽车6辆,B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆,B型汽车6辆,分别运5次,也可把土石运完,那么每辆A型汽车,每辆B型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km远的郊区进行抢修.维修工骑摩托车先走,15min后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩费,进价分别是A•种彩票每张1.5元,B种彩票每张2元,C种彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费0.2元,B型彩票一张获手续费0.3元,C 型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A、B、C三种彩票20扎,请你设计进票方案.第9课时方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是()A.16 B.25 C.34 D.61例2. 如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米 例3. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x = B.22500(1)3600x +=C.22500(1%)3600x +=D.22500(1)2500(1)3600x x +++= 例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s 的速度向D移动.⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30kg30kg以下但不超过50kg 50kg 以上第10课时 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法. 【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( )A. 0b a >-B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( )A.12x >-B.2x >- C.2x <-D.12x <-例 3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是B AO C)c a (b >-10 10 10 1( )A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( )A. 49kgB. 50kgC. 24kgD. 25kg例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( )A .0B .1C .2D .3例7.解不等式组:(1)21113x xx +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x 【当堂检测】1.苹果的进价是每千克3.8元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元.43212. 解不等式723<-x ,将解集在数轴上表示出来,并写出它的正整数解.3. 解不等式组⎪⎩⎪⎨⎧-<+--+≥+224313322x x x x ,并把它的解集在数轴上表示出来.4. 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y与x 之间的函数关系式; (2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.第11课时 平面直角坐标系、函数及其图像【知识梳理】 一、平面直角坐标系1. 坐标平面上的点与有序实数对构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于⎪⎩⎪⎨⎧原点轴轴y x 对称点的坐标⎪⎩⎪⎨⎧----),(),(),(b a b a b a5.两点之间的距离6.线段AB 的中点C ,若),(),,(),,(002211y x C y x B y x A 则2,2210210y y y x x x +=+=二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式有意义 (2)实际问题具有实际意义3.函数的表示方法; (1)解析法 (2)列表法 (3)图象法 【思想方法】 数形结合 【例题精讲】例1.函数22y x =-中自变量x 的取值范围是 ;函数y =x 的取值范围是 .例 2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = .。

初中数学总复习导学案

初中数学总复习导学案

初三数学总复习实数的概念一:【课前预习】 (一):【知识梳理】1.实数的有关概念(1)有理数: 和 统称为有理数。

(2)有理数分类①按定义分: ②按符号分:有理数()()0()()()()⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩;有理数()()()()()()⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩(3)相反数:只有 不同的两个数互为相反数。

若a 、b 互为相反数,则 。

(4)数轴:规定了 、 和 的直线叫做数轴。

(5)倒数:乘积 的两个数互为倒数。

若a (a≠0)的倒数为1a.则 。

(6)绝对值:(7)无理数: 小数叫做无理数。

(8)实数: 和 统称为实数。

(9)实数和 的点一一对应。

2.实数的分类:实数()()()()()()()()()()()()⎧⎫⎧⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎩⎭⎪⎪⎫⎧⎪⎨⎬⎪⎩⎭⎩零3.科学记数法、近似数和有效数字(1)科学记数法:把一个数记成±a³10n的形式(其中1≤a<10,n 是整数)(2)近似数是指根据精确度取其接近准确数的值。

取近似数的原则是“四舍五入”。

(3)有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数字的有效数字。

(二):【课前练习】 1.|-22|的值是( )A .-2 B.2 C .4 D .-4 2.下列说法不正确的是( )A .没有最大的有理数B .没有最小的有理数C .有最大的负数D .有绝对值最小的有理数3.在(0022sin 4500.2020020002273π⋅⋅⋅、、、、这七个数中,无理数有( ) A .1个;B .2个;C .3个;D .4个 4.下列命题中正确的是( )A .有限小数是有理数B .数轴上的点与有理数一一对应C .无限小数是无理数D .数轴上的点与实数一一对应5.近似数0.030万精确到 位,有 个有效数字,用科学记数法表示为 万二:【经典考题剖析】1.在一条东西走向的马路旁,有青少年宫、学校、商场、医院四家公共场所.已知青少年宫在学校东300m 处,商场在学校西200m 处,医院在学校东500m 处.若将马路近似地看作一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100m .(1)在数轴上表示出四家公共场所的位置;(2)列式计算青少年宫与商场之间的距离.:2.下列各数中:-1,0,169,2π,1.1010016.0, ,12-, 45cos ,- 60cos , 722,2,π-722.有理数集合{ …}; 正数集合{ …}; 整数集合{ …}; 自然数集合{ …}; 分数集合{ …}; 无理数集合{ …}; 绝对值最小的数的集合{ …};3. 已知(x-2)2=0,求xyz 的值..4.已知a 与 b 互为相反数,c 、d 互为倒数,m 的绝对值是2求32122()2()m ma b cd m -+-÷ 的值5. a 、b 在数轴上的位置如图所示,且a >b ,化简a a b b a -+--三:【课后训练】2、一个数的倒数的相反数是115,则这个数是()A .65B .56C .-65D .-563、一个数的绝对值等于这个数的相反数,这样的数是( ) A .非负数 B .非正数 C .负数 D .正数4. 数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是 2 ”,这种说明问题的方式体现的数学思想方法叫做( ) A .代人法B .换元法C .数形结合D .分类讨论5. 若a 的相反数是最大的负整数,b 是绝对值最小的数,则a +b=___________.6.已知x y y x -=-,4,3x y ==,则()3x y += 7.光年是天文学中的距离单位,1光年大约是9500000000000km ,用科学计数法表 示 (保留三个有效数字)0ba8.当a 为何值时有:①23a -=;②20a -=;③23a -=-9. 已知a 与 b 互为相反数,c 、d 互为倒数,x 的绝对值是2的相反数的负倒数,y 不能作除数,求20022001200012()2()a b cd y x+-++的值.10. (1)阅读下面材料:点 A 、B 在数轴上分别表示实数a ,b ,A 、B 两点之间的距离表示为|AB|,当A 上两点 中有一点在原点时,不妨设点A 在原点,如图1-2-4所示,|AB|=|BO|=|b|=|a -b|;当A 、B 两点都不在原点时,①如图1-2-5所示,点A 、B 都在原点的右边,|AB|=|BO|-|OA|=|b|-|a|=b -a=|a -b|; ②如图1-2-6所示,点A 、B 都在原点的左边,|AB|=|BO|-|OA|=|b|-|a|=-b -(-a)=|a -b|;③如图1-2-7所示,点A 、B 在原点的两边多边,|AB|=|BO|+|OA|=|b|+|a|=a+(-b)=|a -b|综上,数轴上 A 、B 两点之间的距离|AB|=|a -b| (2)回答下列问题:①数轴上表示2和5的两点之间的距离是_____,数轴上表示-2和-5的两点之间的距离是____,数轴上表示1和-3的两点之间的距离是______.②数轴上表示x 和-1的两点A 和B 之间的距离是________,如果 |AB|=2,那么x为_________.③当代数式|x+1|+|x -2|=2 取最小值时,相应的x 的取值范围是_________.四:【课后小结】初三数学总复习实数的运算一:【课前预习】 (一):【知识梳理】1. 有理数加、减、乘、除、幂及其混合运算的运算法则(1)有理数加法法则:①同号两数相加,取________的符号,并把__________②绝对值不相等的异号两数相加,取________________的符号,并用 ____________________。

中考数学总复习的教案5篇

中考数学总复习的教案5篇

中考数学总复习的教案5篇中考数学总复习的教案篇1一、第一轮复习【3月初—4月中旬】1、第一轮复习的形式:“梳理知识脉络,构建知识体系”————理解为主,做题为辅(1)目的:过三关①过记忆关必须做到:在准确理解的基础上,牢记所有的基本概念(定义)、公式、定理,推论(性质,法则)等。

②过基本方法关需要做到:以基本题型为纲,理解并掌握中学数学中的基本解题方法,例如:配方法,因式分解法,整体法,待定系数法,构造法,反证法等。

③过基本技能关应该做到:无论是对典型题、基本题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。

(2)宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。

①数与代数分为3个大单元:数与式、方程与不等式、函数。

②空间和图形分为5个大单元:几何基本概念(线与角)与三角形,四边形,圆与视图,相似与解直角三角形,图形的变换。

③统计与概率分为2个大单元:统计与概率。

(3)配套练习以《中考精英》为主,复习完每个单元进行一次单元测试,重视补缺工作。

2、第一轮复习应注意的问题(1)必须扎扎实实夯实基础中考试题按难:中:易=1:2:7的比例,基础分占总分的70%,因此必须对基础数学知识做到“准确理解”和“熟练掌握”,在应用基础知识时能做到熟练、正确和迅速。

(2)必须深钻教材,不能脱离课本。

(3)掌握基础知识,一定要从理解角度出发。

数学知识的学习,必须要建立逻辑思维能力,基础知识只有理解透了,才可以举一反三、触类旁通。

相对而言,“题海战术”在这个阶段是不适用的。

(5)定期检查学生完成的作业,及时反馈对于作业、练习、测验中的问题,将问题渗透在以后的教学过程中,进行反馈、矫正和强化。

二、第二轮复习【4月中旬—5月初】1、第二轮复习的形式第一阶段是总复习的基础,侧重双基训练,第二阶段是第一阶段复习的延伸和提高,侧重培养学生的数学能力。

第二轮复习时间相对集中,在第一轮复习的基础上,进行拔高,适当增加难度;主要集中在热点、难点、重点内容上,特别是重点;注意数学思想的形成和数学方法的掌握,这就需要充分发挥教师的主导作用。

北师大版九年级数学下册中考复习教案与导学案

北师大版九年级数学下册中考复习教案与导学案

靖边第五中学九年级数学备课组第课时年月日星期靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第课时年月日星期靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第课时年月日星期靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第课时年月日星期的半径,靖边第五中学九年级数学备课组O的直径,靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组第课时年月日星期靖边第五中学九年级数学备课组靖边第五中学九年级数学备课组九年级数学复习教案课时:时间:3.31 星期:六与电阻R成反比例函数关系,可设关系式为)在函数图象上,则可得k的值从而解决问题.第4题九年级数学复习教案课时: 时间:4.1 星期: 日y=中九年级数学复习教案课时:时间:4.5 星期:星期四本节课完成后,我感到也有不足的地方:课堂容量稍有点偏大,学生没有时间独立完成作业。

虽然我对每个问题及时小结、归纳,但没有留一定时间让学生整理消化。

九年级数学复习教案课时:时间:4.6 星期:星期五上课时请同学们分小组回忆、总结本章的知识点,。

如何求抛物线与两坐标轴的交点?如何求一般式情况下的二次函数的最值?两点,则AB=在如何备复习课,准确把握一个单元及一节课的重点及突破难点方面有了很大提高;同时在驾驭课堂方面有了很大进步。

认为要上好一堂复习课应该注意以下几点:1、课前精心备课,加强备课组的联系。

2、重视课本,夯实基础。

3、复习不要只讲究块,而要注意前后的联系,尤其是初三的知识要注意随时渗透。

九年级数学复习教案课时:时间:4.9 星期:星期一a>0顶点式的几种特殊形式.,⑵教后反思:通过本节课的备课与教学,我感受颇多:1.每一个学生都有一定的知识体验和生活积累,每个学生都会有各自的思维方式和解决问题的策略.这一堂课我让学生成为数学学习的主人,自己充当数学学习的组织者,取得了意想不到的效果,学生不但能用一般式,顶点式解决问题,还能深层挖掘,巧妙地用交点式解决问题,可见学生的潜力无穷。

教师版中考数学总复习全部导学案

教师版中考数学总复习全部导学案

教师版中考数学总复习全部导学案Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】苏教版初中数学一轮复习资料(教师用)目录1、第1课时实数的有关概念 (2)2、第2课时实数的运算 (4)3、第3课时整式与分解因式 (6)4、第4课时分式与分式方程 (8)5、第5课时二次根式 (10)6、第6课时一元一次方程和二元一次方程(组) (12)7、第7课时一元二次方程 (14)8、第8课时方程的应用(一) (16)9、第9课时方程的应用(二) (18)10、第10课时一元一次不等式(组) (20)11、第11课时平面直角坐标系、函数及图像 (22)12、第12课时一次函数图像及性质 (24)13、第13课时一次函数应用 (26)14、第14课时反比例函数图像和性质 (28)15、第15课时二次函数图像和性质 (30)16、第16课时二次函数应用 (32)17、第17课时数据描述与分析(一) (34)18、第18课时数据描述与分析(二) (36)19、第19课时概率及其简单应用(一) (38)20、第20课时概率及其简单应用(二) (40)21、第21课时线段、角、相交线与平行线 (42)22、第22课时三角形基础知识 (44)23、第23课时全等三角形 (46)24、第24课时等腰三角形 (48)25、第25课时直角三角形 (50)26、第26课时尺规作图 (52)27、第27课时锐角三角函数 (54)28、第28课时锐角三角函数应用 (56)29、第29课时多边形及其内角和、梯形 (58)30、第30课时平行四边形 (60)31、第31课时矩形、菱形、正方形(一) (62)32、第32课时矩形、菱形、正方形(二) (64)33、第33课时四边形综合 (66)34、第34课时相似图形 (68)35、第35课时相似图形的应用 (70)36、第36课时圆的基本性质 (72)37、第37课时直线与圆、圆与圆的位置关系 (74)38、第38课时圆有关的计算 (76)39、第39课时圆的综合 (78)40、第40课时图形的变换(一) (80)第1课时实数的有关概念【知识梳理】1.实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.2.数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3.绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.5.有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6.科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=×105,=×10-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8.数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9.平方根:一般地,如果一个数x的平方等于a,即x2=a那么这个数x就叫做a的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10.开平方:求一个数a的平方根的运算,叫做开平方.11.算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根,0的算术平方根是0.12.立方根:一般地,如果一个数x 的立方等于a,即x 3=a ,那么这个数x 就叫做a 的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0.13.开立方:求一个数a 的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】例1.下列运算正确的是( )A .33--=B .3)31(1-=-C3=± D3=- 例)A.. C.2- D.2例的平方根是( )A .4 B..例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( )A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元D .117.2610⨯元 例5.实数a b ,在数轴上对应点的位置如图所示,则必有( )A .0a b +>B .0a b -<C .0ab >D .0a b< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得a 0 例5图(a +1)⊕b = n +2, a ⊕(b +1)= n -3现在已知1⊕1 = 4,那么2009⊕2009 = .【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( ) A .16 B .16- C .18 D .18- 2.2-的倒数是( )A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<<4.已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为( )A .1B .1-C .12a -D .21a - 5.2-的相反数是( )A .2B .2-C .12D .12- 的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 .8.如果2()13⨯-=,则“”内应填的实数是( ) A . 32 B . 23 C .23- D .32- 第2课时 实数的运算【知识梳理】第4题1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除;0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数.5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.6.有理数的运算律:加法交换律:a+b=b+a(a b、为任意有理数)加法结合律:(a+b)+c=a+(b+c)(a, b,c为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A.伦敦时间2006年6月17日凌晨1时. B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.例4.A .523=+C .13)13(2-=- D .353522-=-例5.计算:(1) 911)1(8302+-+--+-π (2)0(tan 45π--+o (3)102)21()13(2-+--; (4)2008011(1)()3π--+-【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=8 90 -4 国际标准时间-5 例2图……例3图C .325()a a -=D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元3.估计68的立方根的大小在( )与3之间 与4之间 与5之间 与6之间4.如图,数轴上点P 表示的数可能是( )AB.C . 3.2-D .5.计算:(1)02200960cos 16)21()1(-+--- (2))10112-⎛⎫- ⎪⎝⎭ 第3课时 整式与分解因式【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即n n n b a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:n n aa 1=-(a≠0,n 为正整数); 2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除.(2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项.(4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方,即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)第4题图它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解.6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉.(3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2•a 3=a 6 2÷2a 2=3a 2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )m A .m B .m 2C .m +1D .m -1【例3】若2320a a --=,则2526a a +-= .【例4】下列因式分解错误的是( )A .22()()x y x y x y -=+-B .2269(3)x x x ++=+C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时,(a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=109,b=4103,则a 22b=( ) A. 2107 B. 41014 D. 1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中22a b =-=.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式.2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中22x =+. 3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+xx x x (2)41622222-=-+-+-x x x x x 5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x有意义;当x 时,该式的值为0.3.计算22()ab ab的结果为 .4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 C. 35.若分式32-x 有意义,则x 满足的条件是:( )A .0≠xB .3≥xC .3≠xD .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值 7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程.(1)22011xx x -=+- (2)x2)3(x 22x x -=--; (3) 11322xx x -=--- (4)11-x 1x 1x 22=+-- 第5课时 二次根式【知识梳理】 1.二次根式:(1)定义:____________________________________叫做二次根式. 2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式.(2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1)a b=ab a 0b 0⋅≥≥(,)(2)a a=a 0b 0b b≥(,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.【思想方法】 非负性的应用【例题精讲】 【例1】要使式子1x +有意义,x 的取值范围是( ) A .1x ≠ B .0x ≠ C .10x x >-≠且 D .10x x ≠≥-且【例2】估计132202⨯+的运算结果应在( ). A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间【例3】 若实数x y ,满足22(3)0x y ++-=,则xy 的值是 .【例4】如图,A ,B ,C ,D 四张卡片上分别写有523π7-,,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率. 【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π (2)11(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1)01232tan 60(12)+--+-+.(2)cos45°·(-21)-2-(22-3)0+|-32|+121- (3)026312(cos 304sin 6022+-+.2.如图,实数a 、b 在数轴上的位置,化简222()a b a b -第6课时 一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 . 3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义. 【思想方法】 方程思想和转化思想【例题精讲】例1. (1)解方程.x x+--=21152156(2)解二元一次方程组⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值. 方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________. 例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= .例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 元交费.①该厂某户居民 2 月份用电 90 度,超过了规定的 A 度,则超过部分应该交电费多少元(用 A 表示) .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 . 【当堂检测】1.方程x -=52的解是___ ___.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元. 3.若关于x 的方程x k =-153的解是x =-3,则k =_________.⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____. 5.解下列方程(组):(1)()x x -=--3252; (2)....x x +=-0713715023;(3)⎩⎨⎧=+=+832152y x y x ; (4)x x -+=-2114135;6.当x =-2时,代数式x bx +-22的值是12,求当x =2时,这个代数式的值.7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少8.甲、乙两人同时解方程组8(1)5 (2)mx ny mx ny +=-⎧⎨-=⎩由于甲看错了方程①中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确,m n 的值.第7课时 一元二次方程【知识梳理】1.一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2.一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根. 当b 2-4ac <0时,方程 实数根.aacb b x 242-±-=【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法); (3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0例2.已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢为什么 例4.已知关于x 的方程x 2―(2k+1)x+4=0(1)求证:不论k 取什么实数值,这个方程总有实数根;(2)若等腰三角形ABC 的一边长为a=4,另两边的长b .c 恰好是这个方程的两个根,求△ABC 的周长. 【当堂检测】 一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ ②01x 2=+③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=--⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 . 4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = . 5.一元二次方程ax 2+bx+c=0有一根-2,则bc a 4+的值为 .6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根, 则k的取值范围是__________.7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是.二、选择题:8.对于任意的实数x,代数式x2-5x+10的值是一个( )A.非负数B.正数C.整数D.不能确定的数9.已知(1-m2-n2)(m2+n2)=-6,则m2+n2的值是()或-2 或-3 D. 210.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()(A)x2+4=0 (B)4x2-4x+1=0(C)x2+x+3=0(D)x2+2x-1=011.下面是李刚同学在测验中解答的填空题,其中答对的是()A.若x2=4,则x=2 B.方程x(2x-1)=2x-1的解为x=1C.方程x2+2x+2=0实数根为0个 D.方程x2-2x-1=0有两个相等的实数根12.若等腰三角形底边长为8,腰长是方程x2-9x+20=0的一个根,则这个三角形的周长是()或18三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x2-4x-4=0 (4)x2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0第8课时方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要.【注意点】分式方程的检验,实际意义的检验.【例题精讲】例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了( ) A .4场 B .5场 C .6场 D .13场例2. 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )A .⎩⎨⎧x –y= 49y=2(x+1)B .⎩⎨⎧x+y= 49y=2(x+1)C .⎩⎨⎧x –y= 49y=2(x –1)D .⎩⎨⎧x+y= 49y=2(x –1) 例3. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米设李老师每小时走x 千米,依题意得到的方程是( ) 例4.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺数为x 张,•信封个数分别为y 个,则可列方程组 .例5. 团体购买公园门票票价如下:100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元.(1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人 【当堂检测】1.某市处理污水,需要铺设一条长为1000m的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm,则可得方程.2. “鸡兔同笼”是我国民间流传的诗歌形式的数学题, “鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔”解决此问题,设鸡为x 只,兔为y只,所列方程组正确的是()3.为满足用水量不断增长的需求,某市最近新建甲、乙、•丙三个水厂,这三个水厂的日供水量共计万m3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m3.(1)求这三个水厂的日供水量各是多少万立方米(2)在修建甲水厂的输水管道的工程中要运走600t土石,运输公司派出A 型,B•型两种载重汽车,A型汽车6辆,B型汽车4辆,分别运5次,可把土石运完;或者A型汽车3辆,B型汽车6辆,分别运5次,也可把土石运完,那么每辆A型汽车,每辆B型汽车每次运土石各多少吨(每辆汽车运土石都以准载重量满载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km远的郊区进行抢修.维修工骑摩托车先走,15min后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的倍,求这两种车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A、B、C三种不同价格的彩费,进价分别是A•种彩票每张元,B种彩票每张2元,C种彩票每张元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案;(2)若销售A型彩票一张获手续费元,B型彩票一张获手续费元,C型彩票一张获手续费元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案(3)若经销商准备用45000元同时购进A 、B 、C 三种彩票20扎,请你设计进票方案.第9课时 方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( ) A .16 B .25 C .34 D .61例2. 如图,在宽为20米、长为30米的矩形地面上修 建两条同样宽的道路,余下部分作为耕地.若耕地面积 需要551米2,则修建的路宽应为( ) A .1米B .米C .2米D .米例3. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x =B.22500(1)3600x +=C.22500(1%)3600x += D.22500(1)2500(1)3600x x +++=例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( ) A .11 B .8 C .7 D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少这时应进台灯多少个例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s的速度向D移动.⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg (第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg .(1)乙班比甲班少付出多少元(2)甲班第一次,第二次分别购买苹果多少千克第10课时 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法. 【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( )A. 0b a >-B. 0ab <C. 0b a <+D.例2. 不等式112x ->的解集是( )A.12x >- B.2x >- C.2x <- D.12x <-例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是B A O C0)c a (b >-10 1 0 1 0 1A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( )A. 49kgB. 50kgC. 24kgD. 25kg例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( )A .0B .1C .2D .3例7.解不等式组:(1)21113x xx +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x 【当堂检测】1.苹果的进价是每千克元,销售中估计有5%的苹果正常损耗.为避免亏本,商家把售价应该至少定为每千克 元.2. 解不等式723<-x ,将解集在数轴上表示出来,并写出它的正整数解.3. 解不等式组⎪⎩⎪⎨⎧-<+--+≥+224313322x x x x ,并把它的解集在数轴上表示出来.4. 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:脐 橙 品 种 A B C 每辆汽车运载量(吨)6544321(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案并求出最大利润的值.第11课时 平面直角坐标系、函数及其图像【知识梳理】 一、平面直角坐标系1. 坐标平面上的点与有序实数对构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于⎪⎩⎪⎨⎧原点轴轴y x 对称点的坐标⎪⎩⎪⎨⎧----),(),(),(b a b a b a5.两点之间的距离6.线段AB 的中点C ,若),(),,(),,(002211y x C y x B y x A 则2,2210210y y y x x x +=+=二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式有意义 (2)实际问题具有实际意义3.函数的表示方法; (1)解析法 (2)列表法(3)图象法。

九年级数学总复习教案(优秀6篇)

九年级数学总复习教案(优秀6篇)

九年级数学总复习教案(优秀6篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!九年级数学总复习教案(优秀6篇)好的数学教学教案很有意义的。

九年级数学总复习_全部导学案(4份)

九年级数学总复习_全部导学案(4份)

第1课时 实数的有关概念一、选择题1.计算(-2)2-(-2) 3的结果是( ) A. -4 B. 2 C. 4 D. 122.下列计算错误的是( )A .-(-2)=2B =C .22x +32x =52x D .235()a a =3.2008年5月27日,北京奥运会火炬接力传递活动在古城南京境内举行,火炬传递路线全程约12900m ,将12900用科学记数法表示应为( )A .0.129×105B .41.2910⨯C .312.910⨯D .212910⨯ 4.下列各式正确的是( )A .33--=B .326-=-C .(3)3--=D .0(π2)0-=5.若23(2)0m n -++=,则2m n +的值为( ) A .4-B .1-C .0D .46.计算2(3)-的结果是( )A .6-B .6C .9-D .9 7.方程063=+x 的解的相反数是( )A .2B .-2C .3D .-3 8.下列实数中,无理数是( )B.2π C.13D.129.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.用激光测距仪测量两座山峰之间的距离,从一座山峰发出的激光经过5410-⨯秒到达另一座山峰,已知光速为8310⨯米/秒,则两座山峰之间的距离用科学记数法......表示为( ) A .31.210⨯米B .31210⨯米C .41.210⨯米D .51.210⨯米11.纳米是非常小的长度单位,已知1纳米=10-6毫米,某种病毒的直径为100纳米,如将这种病毒排成1毫米长,则病毒的个数是( )A.102个 B 104个 C 106个 D 108个12.巳知某种型号的纸100张厚度约为lcm ,那么这种型号的纸13亿张厚度约为( ) A .1.3×107km B .1.3×103km C .1.3×102km D .1.3×10km 二、填空题:13.若n m ,互为相反数,=-+555n m .14.唐家山堰塞湖是“5.12汶川地震”形成的最大最险的堰塞湖,垮塌山体约达2037万立方米,把2037万立方米这个数用科学记数法表示为 立方米.15.如果2180a -=,那么a 的算术平方根是 .16.若商品的价格上涨5%,记为+5%,则价格下跌3%,记作 . 17.如果□+2=0,那么“□”内应填的实数是______________.18.“五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为280元的运动服,打折后他比按标价购买节省 元.19. 某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学有_________名.20.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人.21.一组有规律排列的式子:―ab 2,25a b ,―38a b ,411ab …,(ab≠0),其中第7个式子是 , 第n 个式子是 .(n 为正整数)22.6月1日起,某超市开始有偿提供可重复使用的三种环保购物袋,每只售价分别为1元、2元和3元,这三种环保购物袋每只最多分别能装大米3公斤、5公斤和8公斤.6月7日,小星和爸爸在该超市选购了3只环保购物袋用来装刚买的20公斤散装大米,他们选购的3只 环保购物袋至少..应付给超市元.23.将正整数按如图所示的规律排列下去,若有序实数对 (n ,m )表示第n 排,从左到右 第m 个数,如(4,2)表示实数9, 则表示实数17的有序实数对是 . 24.如图所示, ①中多边形(边数为12)是由 正三角形“扩展”而来的, ②中多边形是由正方形“扩展” 而来的,,依此类推,则由正n 边形“扩展”而来的多边形的边数为 . 25.探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是( )第25题图① ② ③ ④ 第24题图第2课时 实数的运算一、选择题1.某市今年1月份某一天的最高气温是3℃,最低气温是﹣4℃,那么这一天的最高气温比最低气温高( )A .﹣7℃B .7℃C .﹣1℃D .1℃2.在2008年德国世界杯足球赛中,32支足球队将分为8个小组进行单循环比赛,小组比赛规则如下:胜一场得3分,平一场得1分,负一场得0分.若小组赛中某队的积分为5分,则该队必是 ( )A .两胜一负B .一胜两平C .一胜一平一负D .一胜两负3.扬州市旅游经济发展迅速,据扬州市统计局统计,2008年全年接待境内外游客约11370000人次,11370000用科学记数法表示为( ) A .1.137×107 B .1.137×108 C .0.1137×108 D .1137×1044.在下列实数中,无理数是( )A .13B .πC D .2275.小明和小莉出生于1998年12月份,他们的出生日不是同一天,但都是星期五,且小明比小莉出生早,两人出生日期之和是22,那么小莉的出生日期是( ) A .15号 B .16号 C .17号 D .18号6.()23-运算的结果是( )A .-6B .6C .-9D .97. ) A .3-B .3或3-C .9D .38.估计30的值 ( ) A .在3到4之间 B .在4到5之间 C .在5到6之间D .在6到7之间9.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2, 3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为( ) A.5049B. 99!C. 9900D. 2!二、填空题:10.改革开放以来,我国教育事业快速发展,去年普通高校招生人数达540万人,用科学记数法表示540万人为 人.11.已知点()P x y ,位于第二象限,并且4y x +≤,x y ,为整数,写出一个..符合上述条件的点P 的坐标:12.如图,在数轴上表示到原点的距离为3个单位的点有13. 2008(1)-+_______420=-.14.2008年5月26日下午,奥运圣火扬州站的传递在一路“中国加油”声中胜利结束,全程11.8第12题图千米,11.8千米用科学记数法表示是________米.15.计算:23-+= ;(2)(3)-⨯-= . 16.若()2240a c --=,则=+-c b a . 17.在函数y =x 的取值范围是____________.三、计算:(1)0(1)π-⋅sin 60°+321(2)()4-⋅(2)0113(()3---(3)9212)1(103+⎪⎭⎫ ⎝⎛-+--(4)1301()(2)3(92-+-+--(5)101453(2007π)2-⎛⎫+⨯- ⎪⎝⎭(6)122(4)3-⎛⎫-- ⎪⎝⎭(7)112)4cos30|3-⎛⎫++- ⎪⎝⎭°1112sin 452o -⎛⎫-+ ⎪⎝⎭第3课时整式与分解因式一、选择题1.下列运算正确的是()A.a2·a=3aB.a6÷a2=a4C.a+a=a2D.(a2)3=a52.计算:()23ab=()A.22a b B.23a b C.26a b D.6ab3.下列计算正确的是()A.623a a a÷=B.()122--=C.()236326x x x-=-·D.()0π31-=4.下列因式分解错误的是( )A.22()()x y x y x y-=+-B.2269(3)x x x++=+C.2()x xy x x y+=+D.222()x y x y+=+5.若的值为则2y-x2,54,32==yxA.53B. -2C.553D.566.下列命题是假.命题的是()A. 若x y<,则x+2008<y+2008 B. 单项式2347x y-的系数是-4C. 若21(3)0,x y-+-=则1,3x y== D. 平移不改变图形的形状和大小7.一个正方体的表面展开图如图所示,每一个面上都写有一个整数,并且相对两个面上所写的两个整数之和都相等,那么()A.a=1,b=5 B.a=5,b=1 C.a=11,b=5 D.a=5,b=118. 在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙),根据两个图形中阴影部分的面积相等,可以验证()A.2222)(bababa++=+B.2222)(bababa+-=-C.))((22bababa-+=-D.222))(2(babababa-+=-+二.填空题.a图甲第8题9.分解因式:328m m -= .33416m n mn -=3214x x x +-= ____.33222ax y axy ax y +-= _______. =++22363b ab a . 2232ab a b a -+= ___.10.计算:31(2)(1)4a a -⋅- = .11.计算: ⎪⎭⎫⎝⎛-⋅23913x x =________;()=÷523y y ________. 12.用正三角形和正六边形按如图所示的规律 拼图案,即从第二个图案开始,每个图案都比上一个图案多一个正六边形和两个正三角形,则第n 个图案中正三角形的个数为(用含n 的代数式表示).三.解答题:13.先化简,再求值:(2)(2)(2)a a a a -+--,其中1a =-.14.已知2514x x -=,求()()()212111x x x ---++的值15.如图所示,在长和宽分别是a 、b 的矩形纸片的四个角都剪去一个边长为x 的正方形. (1) 用a ,b ,x 表示纸片剩余部分的面积;(2) 当a =6,b =4,且剪去部分的面积等于剩余部分的面积时, 求正方形的边长.第一个图案 第二个图案 第三个图案 …第12题图第4课时 分式一、选择题 1.化简分式2bab b +的结果为( )A .1a b+ B .11a b + C .21a b +D .1ab b+ 2.要使22969m m m --+的值为0,则m 的值为( )A .m=3B .m=-3C .m=±3D .不存在 3.若解方程333-=-x mx x 出现增根,则m 的值为( ) A . 0 B .-1 C .3 D .1 4.如果04422=+-y xy x ,那么yx y x +-的值等于( )A .31- B . y31- C . 31 D .y31 二、填空题.5.当x = 时,分式6422---x x x 的值为0.6.若一个分式含有字母m ,且当5m =时,它的值为12,则这个分式可以是 .(写出一个..即可) 7.已知432z y x ==,求分式yx zy x 32534++-= 8.若分式方程12552=-+-x ax x 的解为x =0,则a 的值为 . 9.已知分式方程k x k=++131无解,则k 的值是 . 三、解答题 10.化简: (1)211()(1)11x x x ---+ (2)24142x x +-+11.先化简,再求值:224242x x x +---,其中2x =.12.当a=2时,求1121422+÷++-a a a a 的值.13.先化简,再求值:2224124422a a a a a a⎛⎫--÷ ⎪-+--⎝⎭,其中a 是方程2310x x ++=的根.三、解分式方程. (1)01221=---x x (2) 123514-+=--+x x x x (3)163104245--+=--x x x x (4)4)25.01(11=++x x (5)52742316--=+-x x x x (6) 141112-=--+-x x x x x四、当m 为何值时,分式方程xxx m --=+-2142无解?第5课时二次根式一、选择题: 1. 2的值()A .在1到2之间B .在2到3之间C .在3到4之间D .在4到5之间2.)A .BC .2-D .23. 下列运算正确的是()A 3=B .0(π 3.14)1-=C .1122-⎛⎫=- ⎪⎝⎭D 3=±4. 若b a y b a x +=-=,,则xy 的值为 ( )A .a 2B .b 2C .b a +D .b a - 5.下列计算正确的是( )A . 22-=-= C. 325a a a ⋅= D.22x xx -= 6. )A .点PB .点QC .点MD .点N7.下列根式中属最简二次根式的是( )8. +y)2,则x -y 的值为( )A.-1B.1C.2D.39. 一个正方体的水晶砖,体积为100cm 3,它的棱长大约在( )A. 4cm~5cm 之间B. 5cm~6cm 之间C. 6cm~7cm 之间D. 7cm~8cm 之间10. 3a =-,则a 与3的大小关系是( )A . 3a <B .3a ≤ C.3a > D .3a ≥ 11.下列说法中正确的是() A B .8的立方根是±2 C .函数y=x 的取值范围是x >1 D .若点P(2,a)和点Q(b ,-3)关于x 轴对称,则a+b 的值为-5二、填空题:1.=_________.2.的结果是.3. 若|1|0a +=,则a b -= .5.函数y =x 的取值范围是________. 6. 对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =ba ba -+, 如3※2=52323=-+.那么12※4= . 7.已知等边三角形ABC 的边长为33+,则ΔABC 的周长是________8.计算:tan60°-2-2 + 20080_________三、解答题 : 1.计算: (1) 103130tan 3)14.3(27-+︒---)(π(2)101(1)52-⎛⎫π-+-+- ⎪⎝⎭(3)0112sin 602-⎛⎫+- ⎪⎝⎭(4)01)41.12(45tan 32)31(-++---2.先化简,再求值:33)225(423-=---÷--a a a a a ,其中第6课时 一元一次方程及二元一次方程(组)一、选择题1.在解方程()()032312=---x x 中,去括号正确的是 ( ) A .09612=+--x x B.03622=---x xC.09622=---x x .D.09622=+--x x2.几个同学在日历竖列上圈出了三个数,算出它们的和,其中错误的一个是( )A. 28B. 33C. 45D. 573.甲、乙两个工程队共有100人,且甲队的人数比乙队的人数的4倍少10人,如果设乙队的人数为x 人,则所列的方程为( )A. 1004=+x xB. 100104=-+x xC.()100104=-+x xD. 1001041=+-x x4.若2(341)3250x y y x +-+--=则x =( )A .-1B .1C .2D .-25.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,则k的值为( )A.43-B.43C.34D.34-6.已知 与 是同类项,则 与 的值分别是 ( ) A.4、1 B.1、4 C.0、8 D.8、0 二、填空题 7.在349x y +=中,如果26y =,那么x = .8.在方程组 中,m 与n 互为相反数,则 9.娃哈哈矿泉水有大箱和小箱两种包装,3大箱、2小箱共92瓶;5大箱、3小箱共150瓶,那么一大箱有___________瓶,一小箱有__________瓶.10.当m=______,n=______时, 是二元一次方程.11.如果 那么 12.写出一个二元一次方程组,使这个方程组的解为x 2y 2=⎧⎨=-⎩,你所写的方程组是 .13.一个三位数的数字和为11,十位数字是x ,个位数字是十位数字的3倍,百位数字比十位数字的2倍少1,则这个三位数是______________ . 三、解方程(组)14.35122--=+x x 15.⎩⎨⎧=+=+032ny x my x .__________=x ()()x x x x --=--320379821=+-n m y x ,53=-y x .________38=+-y x m n m y x 344-yx n 5m n16. 17.四.解答题 18.已知方程 的两个解为 和 ,求 的值.19.某村果园里,13的面积种植了梨树,14的面积种植了苹果树,其余5ha 地种植了桃树.这个村的果园共有多少ha ?20.为了防控甲型H1N1流感,某校积极进行校园环境消毒,购买了甲.乙两种消毒液共100瓶,其中甲种6元/瓶,乙种9元/瓶.(1)如果购买这两种消毒液共用780元,求甲、乙两种消毒液各购买多少瓶? (2)该校准备再次..购买这两种消毒液(不包括已购买的100瓶),使乙种瓶数是甲种瓶数的2倍,且所需费用不多于...1200元(不包括780元),求甲种消毒液最多能再购买多少瓶?21.已知某铁路桥长800米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用45秒,整列火车完全在桥上的时间是35秒,求火车的速度和长度.⎩⎨⎧=+-=8372y x x y ⎩⎨⎧=-=-74143y x y x ⎩⎨⎧==333y x b kx y +=⎩⎨⎧-==271y x b k ,第7课时 一元二次方程一、选择题1.下列方程中是一元二次方程的是( )A .2x +1=0B .y 2+x =1C .x 2+1=0D . 2.用配方法解方程2250x x --=时,原方程应变形为( ) A .()216x += B .()216x -= C .()229x +=D .()229x -=3.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( ) A .14B .12C .12或14D .以上都不对4.方程2x =x 的解是 ( )A .x =1B .x =0C . x 1=1 x 2=0D . x 1=﹣1 x 2=0 5.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是( ) A .1k >- B . 1k >-且0k ≠ C .1k < D .1k <且0k ≠6.在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( ) A .213014000x x +-= B .2653500x x +-= C .213014000x x --=D .2653500x x --=二、填空题7.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______. 8.某种品牌的手机经过四.五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .9.两圆的圆心距为3,两圆的半径分别是方程0342=+-x x 的两个根,则两圆的位置关系是 .10.若方程022=+-cx x 有两个相等的实数根,则c = .11.已知:m 是方程0322=--x x 的一个根,则代数式=-22m m . 三、解方程:12.(1) (2) (3)13.如图,利用一面墙(墙长度不超过45m ),用80m 长的篱笆围一个矩形场地. ⑴怎样围才能使矩形场地的面积为750m 2?11=+x x 2410x x +-=0132=--x x )1(332+=+x x 第6题图⑵能否使所围矩形场地的面积为810m 2,为什么?14.试说明:不论m 为何值,关于x 的方程2)2)(3(m x x =--总有两个不相等的实数根.15.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?16.某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件. (1) 求A 、B 两种纪念品的进价分别为多少?(2)若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出后总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?第21题图第13题图第8课时 方程的应用(一)一、选择题 :1.中国人民银行宣布,从2007年6月5日起,上调人民币存款利率,一年定期存款利率上调到3.06%.某人于2007年6月5日存入定期为1年的人民币5000元(到期后银行将扣除20%的利息锐).设到期后银行应向储户支付现金x 元,则所列方程正确的是( ) A .50005000 3.06%x -=⨯B .500020%5000(1 3.06%)x +⨯=⨯+C .5000 3.06%20%5000(1 3.06%)x +⨯⨯=⨯+D .5000 3.06%20%5000 3.06%x +⨯⨯=⨯2. 某蔬菜公司收购到某种蔬菜140吨,准备加工上市销售.该公司的加工能力是:每天可以精加工6吨或粗加工16吨.现计划用15天完成加工任务,该公司应按排几天精加工,几天粗加工?设安排x 天精加工,y 天粗加工.为解决这个问题,所列方程组正确的是( ) A.14016615x y x y +=⎧⎨+=⎩B.14061615x y x y +=⎧⎨+=⎩C.15166140x y x y +=⎧⎨+=⎩D.15616140x y x y +=⎧⎨+=⎩3. 有两块面积相同的小麦试验田,分别收获小麦9000kg •和15000kg .已知第一块试验田每公顷的产量比第二块少3000kg ,•若设第一块试验田每公顷的产量为xkg ,根据题意,可得方程( )900015000900015000..30003000900015000900015000..30003000A B x x x x C D x x x x==+-==+-4. 某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,若利润平均月增长率为x ,则依题意列方程为( )A .25(1+x )2=82.75B .25+50x=82.75C .25+75x=82.75D .25[1+(1+x )+(1+x )]=82.75二、填空题 :5. 某市在端年节准备举行划龙舟大赛,预计15个队共330人参加.已知每个队一条船,每条船上人数相等,且每条船上有1人击鼓,1人掌舵,其余的人同时划桨.设每条船上划桨的有x 人,那么可列出一元一次方程为 ______ .6. 某市在旧城改造过程中,需要整修一段全长2400m 的道路.为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务.求原计划每小时修路的长度.若设原计划每小时修路x m ,则根据题意可得方程 . 7.轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_____________. 三、解答题8. 某供电公司分时电价执行时段分为平、谷两个时段,平段14小时,为8:00~22:00,谷段为22:00~次日8:00,10小时.平段用电价格在原销售电价基础上每千瓦时上浮0.03元,谷段电价在原销售电价基础上每千瓦时下浮0.25元,小明家5月份实用平段电量40千瓦时,谷段电量60千瓦时,按分时电价付费42.73元.(1)问小明该月支付的平段、谷段电价每千瓦时各为多少元?(2)如不使用分时电价结算,5月份小明家将多支付电费多少元?9. 某乡积极响应党中央提出的“建设社会主义新农村”的号召,在本乡建起了农民文化活动室,现要将其装修.若甲、•乙两个装修公司合做需8天完成,需工钱8000元;若甲公司单独做6天后,剩下的由乙公司来做,还需12天完成,共需工钱7500元.若只选一个公司单独完成,从节约开始角度考虑,该乡是选甲公司还是选乙公司?请你说明理由.10. “爱心”帐篷集团的总厂和分厂分别位于甲、乙两市,两厂原来每周生产帐篷共9千顶,现某地震灾区急需帐篷14千顶,•该集团决定在一周内赶制出这批帐篷.为此,全体职工加班加点,•总厂和分厂一周内制作的帐篷数分别达到了原来的1.6倍和1.5倍,恰好按时完成了这项任务.(1)在赶制帐篷的一周内,总厂和分厂各生产帐篷多少千顶?(2)现要将这批帐篷用卡车一次性运送到该地震灾区的A,B两地,•由于两市通往A,B两地道路的路况不同,卡车的运载量也不同,已知运送帐篷每千顶所需的车辆数,两地所急需的帐篷数如下表所示:请设计一种运送方案,使所需的车辆总数最少,说明理由,并求出最少车辆总数.第9课时 方程的应用(二)一、选择题1. 如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是( ) A.k >14-B.k >14-且0k ≠C.k <14- D.14k ≥-且0k ≠2. 已知a 、b 、c 分别是三角形的三边,则关于x 的一元二次方程(a + b)x 2 + 2cx + (a + b)=0的根的情况是( ) A .没有实数根 B .可能有且只有一个实数根 C .有两个相等的实数根 D .有两个不相等的实数根3. 如图所示的两架天平保持平衡,且每块巧克力的质量相等,•每个果冻的质量也相等,则一块巧克力的质量是( )A .20gB .25gC .15gD .30g4. 今年我市小春粮油再获丰收,全市产量预计由前年的45万吨提升到50万吨,设从前年到今年我市的粮油产量年平均增长率为x ,则可列方程为( )A .45250x +=B .245(1)50x +=C .250(1)45x -= D.45(12)50x += 二、填空题5. 一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是 .6. 关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为 . 7. 若一个等腰三角形三边长均满足方程x 2-6x+8=0,则此三角形的周长为____.8.在一幅长50cm ,宽30cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个规划土地的面积是1800cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为 . 9.参加会议的人两两彼此握手,统计一共握了45次手,那么到会人数是 人. 三、解答题10. 08年奥运会时,某工艺厂当时准备生产奥运会标志“中国印”和奥运会吉祥物“福娃”.该厂主要用甲、乙两种原料,•已知生产一套奥运会标志需要甲原料和乙原料分别为4盒和3盒,生产一套奥运会吉祥物需要甲原料和乙原料分别为5盒和10盒.该厂购进甲、乙原料的量分别为20000盒和30000盒,如果所进原料全部用完,求该厂能生产奥运会标志和奥运会吉祥物各多少套?11.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2:1.在温室内,沿前侧内墙保留3m 宽的空地,其它三侧内墙各保留1m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288m 2?12.商店经销一种销售成本为每千克40元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克.针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少? (月销售利润=月销售量×销售单价-月销售成本)第11题图13.某移动公司开通了两种通讯业务:“全球通”使用者先缴50元/月基础费,然后每通话1分钟,再付电话费0.4元;“神州行”不缴月基础费,每通话1分钟,•付话费0.6元(这里均指市内通话).若一个月通话时间为x分钟,两种通讯方式的费用分别为y1元和y2元.(1)分别写出y1,y2与x的关系式.(2)一个月内通话多少分钟时,两种通讯方式的费用相同?(3)请你运用你所学的知识帮助李大伯选一种便宜的通讯方式.14.某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?15.如图所示,要在底边BC=160cm,高AD=120cm的△ABC铁皮余料上,截取一个矩形EFGH,使点H在AB上,点G在AC上,点E、F在BC上,AD交HG于点M.(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函数关系式;(2)设矩形EFGH的面积为S,确定S与x的函数关系式;(3)当x为何值时,矩形EFGH的面积为S最大?第15题图第10课时 一元一次不等式(组)一、选择题1.已知不等式:①1x >,②4x >,③2x <,④21x ->-,从这四个不等式中取两个,构成正整数解是2的不等式组是( ) A .①与②B .②与③C .③与④D .①与④2.若0a b <<,则下列式子:①12a b +<+;②1ab>;③a b ab +<;④11a b <中,正确的有( )A .1个B .2个C .3个D .4个3. 下列哪个不等式组的解集在数轴上表示如图所示 ( ) A .21x x ≥⎧⎨<-⎩B .21x x ≤⎧⎨>-⎩C . 21x x >⎧⎨≤-⎩D .21x x <⎧⎨≥-⎩4. 小颖准备用21元钱买笔和笔记本.已知每支笔3元,每个笔记本2元,她买了4个笔记本,则她最多还可以买( )支笔. A .1B .2C .3D .45. 已知两圆的半径分别是5和6,圆心距x 满足522841314x x x x +⎧+⎪⎨⎪-+⎩,则两圆的位置关系是( ) A. 内切 B. 外切 C. 相交 D. 外离6.直线y =k 1x +b 与直线y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ) A.x >1 B.x <1 C.x >-2 D.x <-2二、填空题:7. 不等式210x +>的解集是 . 8. 不等式组3010x x -<⎧⎨+⎩≥的解集是 .9.已知三个连续整数的和小于10,且最小的整数大于1,则三个连续整数中,最大的整数为 .10. 若关于x 的不等式组3(2)224x x a xx --<⎧⎪⎨+>⎪⎩,有解,则实数a 的取值范围是 . 11.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为.k 1x +b 第3题图三、解答题:12. 解不等式3x+2>2(x-1),并将解集在数轴上表示出来.13. 解不等式组331213(1)8xxx x-⎧++⎪⎨⎪--<-⎩,,≥并写出该不等式组的整数解.14. 中国移动某公司组织一场篮球对抗赛.为组织该活动此公司已经在此前花费了费用120万元.对抗赛的门票价格分别为80元、200元和400元.已知2000张80元的门票和1800张200元的门票已经全部卖出.那么,如果要不亏本,400元的门票最低要卖出多少张?15.把一堆苹果分给几个孩子,如果每人分3个,那么多8个;如果前面每人分5个,那么最后一人得到的苹果不足3个. 问有几个孩子?有多少苹果?16.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,右表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?第11课时 平面直角坐标系、函数及其图像一、选择题:1.(2008贵阳)对任意实数x ,点P (x ,x 2-2x )一定不在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.如图是中国象棋棋盘的一部分,若○帅在点(1,-1) 上,○车在点(3,-1)上,则○马在点( ) A .(-1,1) B .(-1,2) C .(-2,1) D .(-2,2)3.已知平面直角坐标系上的三个点O (0,0),A (-1,1),B (-1,0),将△ABO 绕点O 按顺时针方向旋转135°,则点A ,B 的对应点A ,B 的坐标分别是( ) A .,(2,2) B .0),(2,2) C .(0,2) D .,,2) 4.已知点A (2a+3b ,-2)和点B (8,3a+2b )关于x 轴对称,那么a+b=( ) A .2 B .-2 C .0 D .45.若点A (-2,n )在x 轴上,则点B (n -1,n+1)在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限6. 如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转900得到月牙②,则点A 的对应点A’的坐标为( ) A .(2,2) B .(2,4) C .(4,2) D .(1,2)7.如图,A ,B 的坐标为(2,0),(0,1)若将线段AB 平移至11A B ,则a +b 的值为( ) A .2B .3C .4D .58.已知点A (m 2+1,n 2-2)与点B (2m ,4n+6)关于原点对称,则A 关于x 轴的对称点的坐标为_____,B 关于y 轴的对称点的坐标为______.第2题图第6题图)bx第7题图二、填空题:9.已知A ,B ,C ,D 点的坐标如图所示,E 是图中两条 虚线的交点,若△ABC 和△ADE 相似,则E 点的坐标 为___ ____.10.在如图的直角坐标系中,△ABC 的顶点都在网格点上,A 点 坐标为(2,-1),则△ABC 的面积为_______平方单位. 11.在直角坐标系中,已知点A (-5,0),B (-5,-5), ∠OAB=90°,有直角三角形与Rt △ABO 全等并以BA 为公共 边,则这个三角形未知顶点的坐标是_______.12.已知m 为整数,且点(12-4m ,19-3m )在第二象限,则m 2+2005的值为______. 三、解答题13.如图所示,在直角坐标系中,矩形ABCD 的边AD 在x 轴上,点A 在原点,AB=3,AD=5,矩形以每秒2个单位长度沿x 轴正方向做匀速运动.同时点P 从A 点出发以每秒1个单位长度沿A─B─C─D 的路线做匀速运动.当P 点运动到D 点时停止运动,矩形ABCD 也随之停止运动.(1)求P 点从A 点运动到D 点所需的时间; (2)设P 点运动时间为t (s ); ①当t=5时,求出点P 的坐标;②若△OAP 的面积为S ,试求出S 与t 之间的函数关系式(并写出相应的自变量t 的取值范围).第9题图第10题图第13题图第12课时 一次函数图象和性质一、选择题1.一次函数y =2x -2的图象不经过...的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限2.P 1(x 1,y 1),P 2(x 2,y 2)是正比例函数y = -x 图象上两点,则下列判断正确的是( ) A .y 1>y 2 B .y 1<y 2 C .当x 1<x 2时,y 1>y 2 D .当x 1<x 2时,y 1<y 2 3.直线3y kx =+与x 轴的交点是(1,0),则k 的值是( )A .3B .2C .-2D .-34.若正比例函数y=(1-2m)x 的图象经过点(x 1,y 1)和点(x 2,y 2)当x 1<x 2时,y 1>y 2 ,则m 的取值范围是( )A .m<0B .m>0C .m <12D .m >125.关于函数y=-2x+1,下列结论正确的是( )A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .当x >21,时y <0 D .y 随x6.一次函数y kx b =+(k b ,是常数,0k ≠则不等式0kx b +>的解集是( )A .2x >-B .0x >C .2x <-D .0x <二、填空题 7.若一次函数的图象经过点(1,-3)与(2,1),则它的解析式为_________,函数y 随x 的增大而____________. 8.一次函数y=2x -3的图象可以看作是函数y=2x 的图象向__________平移________个单位长度得到的.9.如图,是一个正比例函数的图像,把该图像向左平移一个单位长度,得到的函数图像的解析式为 .10.已知关于x 、y 的一次函数()12y m x =--的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是 .11.一次函数的图象过点(0,2),且函数y 的值随自变量x 的增大而增大,请写出一个符合条件的函数解析式: .12.如图所示的是函数y kx b =+与y =求方程组y kx by mx n=+⎧⎨=+⎩的解是 .x x第6题图第12题图三、解答题12.已知一次函数y=(2m+4)x+(3-n).⑴当m、n是什么数时,y随x的增大而增大?⑵当m、n是什么数时,函数图象经过原点?⑶若图象经过一、二、三象限,求m、n的取值范围.13.作出函数y=1x42-的图象,并根据图象回答问题:⑴当x取何值时,y>0?⑵当-1≤x≤2时,求y的取值范围.14.已知一次函数y= kx+b的图象经过点(-1,1)和点(1,-5),求:(1)函数的解析式;(2)将该一次函数的图象向上平移3个单位,直接写出平移后的函数解析式.15.已知一次函数与反比例函数的图象交于点(3)(23)P m Q--,,,.(1)求这两个函数的函数关系式;(2)在给定的直角坐标系(如图)中,画出这两个函数的大致图象;(3)当x为何值时,一次函数的值大于反比例函数的值?当x为何值时,一次函数的值小于x第13题图。

初三数学中考总复习优质教案全集

初三数学中考总复习优质教案全集

初三数学中考总复习优质教案全集一、教学内容1. 实数与函数实数的概念、性质与运算一次函数、二次函数的性质与图像比例函数、反比例函数的性质与应用2. 方程与不等式一元一次方程、一元二次方程的解法二元一次方程组的解法与应用不等式的性质与解法3. 几何图形三角形、四边形的性质与判定圆的性质与计算解析几何初步4. 统计与概率数据的收集、整理与描述概率的计算与应用二、教学目标1. 系统掌握初中数学的基本知识和技能,提高解决问题的能力。

2. 培养学生的逻辑思维能力和空间想象力,提高数学素养。

3. 培养学生运用数学知识解决实际问题的能力,增强数学应用意识。

三、教学难点与重点1. 教学难点:函数的性质与图像、几何图形的判定、统计与概率的计算。

2. 教学重点:实数的运算、方程的解法、几何图形的性质与计算、统计与概率的应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。

2. 学具:课本、练习本、草稿纸、计算器等。

五、教学过程1. 实数与函数(1)导入:通过生活中的实例,引出实数的概念。

(2)讲解:详细讲解实数的性质与运算,结合例题进行讲解。

(3)随堂练习:让学生练习实数的运算,及时解答学生的疑问。

2. 方程与不等式(1)导入:通过实际问题,引出方程与不等式的概念。

(2)讲解:详细讲解方程与不等式的解法,结合例题进行讲解。

(3)随堂练习:让学生练习解方程与不等式,及时解答学生的疑问。

3. 几何图形(1)导入:通过观察生活中的几何图形,引出几何图形的性质。

(2)讲解:详细讲解三角形、四边形、圆的性质与计算,结合例题进行讲解。

(3)随堂练习:让学生练习几何图形的计算,及时解答学生的疑问。

4. 统计与概率(1)导入:通过数据分析,引出统计与概率的重要性。

(2)讲解:详细讲解统计与概率的计算方法,结合例题进行讲解。

(3)随堂练习:让学生练习统计与概率的计算,及时解答学生的疑问。

六、板书设计1. 实数与函数:板书实数的性质、函数的性质与图像。

九年级数学导学案(全册)整理

九年级数学导学案(全册)整理

九年级数学导学案(全册)整理导学案1单元:有理数综合运用研究目标:- 理解有理数的概念和表示方法- 掌握有理数的加法和减法运算规则- 进一步熟练运用有理数进行混合运算教学内容:1. 有理数的引入和定义2. 有理数的表示方法3. 有理数的加法和减法规则4. 有理数的混合运算练教学步骤:1. 导入:通过实例引导学生认识有理数的概念和意义。

2. 定义:给出有理数的准确定义,并介绍有理数的表示方法。

3. 讲解:详细介绍有理数的加法和减法规则,包括同号相加、异号相减等。

4. 练:通过练题让学生巩固对有理数运算规则的掌握,进行混合运算。

5. 总结:对本节课的研究内容进行总结和归纳。

课后作业:- 完成课堂上的练题- 预下节课的内容,完成预题导学案2单元:平面图形的认识研究目标:- 了解平面图形的种类和属性- 掌握平面图形的命名和分类方法- 进一步熟练绘制和测量平面图形教学内容:1. 平面图形的定义和分类2. 平面图形的命名规则3. 平面图形的性质和特点4. 绘制和测量平面图形的方法教学步骤:1. 导入:利用一个日常生活中的例子引出平面图形的概念和意义。

2. 定义:给出平面图形的准确定义,并介绍不同种类的平面图形。

3. 讲解:通过示意图或实际测量过程,说明平面图形的命名规则和性质。

4. 练:让学生绘制和测量不同种类的平面图形,加深对其属性的理解和掌握。

5. 总结:对本节课研究内容进行总结和归纳。

课后作业:- 练题:根据给定条件,命名和绘制不同种类的平面图形。

- 思考题:举例说明平行线和垂直线的性质和判定方法。

...(后续导学案依次展开)总结该份文档整理了九年级数学导学案的内容,包括有理数综合运用、平面图形的认识等单元内容。

每个导学案都设定了学习目标、教学内容、教学步骤和课后作业,以满足学生对数学知识的学习和实践需求。

希望这份文档能为您提供有益的参考,帮助您更好地教授九年级数学课程。

2024年中考数学一轮复习全套导学案解析版

2024年中考数学一轮复习全套导学案解析版

2024年中考数学一轮复习全套导学案解析版2024年中考数学一轮复习全套导学案解析版一、中考数学复习导学案总览中考数学复习是一项系统性、全面性的工作,为了帮助广大考生更好地备战中考数学,我们精心编制了这套导学案。

本套导学案紧密结合中考数学考试大纲,内容涵盖了整数、分数、小数、百分数、比例、代数、几何等知识点,旨在帮助考生建立扎实的知识基础,培养解题思维,提高应试能力。

二、各章节导学案详细解析1、整数、分数、小数、百分数本章节导学案首先对各类数的基本概念、性质和运算法则进行了梳理,随后通过例题解析,让考生熟悉各类数的运算技巧。

针对整数、分数、小数、百分数之间的相互转换,我们提供了详细的转换方法,帮助考生提高运算速度和准确率。

2、比例比例是数学中重要的概念之一,本章节导学案从比例的基本概念入手,深入讲解了比例的性质和应用。

通过典型例题的解析,使考生理解比例的意义,掌握比例的基本运算方法,并能运用比例知识解决实际问题。

3、代数代数是数学中的重要分支,本章节导学案从方程、代数式、函数等方面进行了详细讲解。

通过对方程的求解过程、代数式的化简方法以及函数的基本性质和应用进行深入剖析,帮助考生掌握代数的基本知识和解题技巧。

4、几何几何是中考数学的重要组成部分,本章节导学案从平面几何、立体几何等方面进行了全面讲解。

通过对比、类比等方法,使考生理解各种几何图形的性质和面积、体积的计算方法。

同时,我们还提供了大量的几何证明题解题思路解析,旨在培养考生的空间想象能力和逻辑推理能力。

三、复习策略与应试技巧在复习过程中,我们建议考生遵循以下策略:1、夯实基础:考生应重视对基础知识的掌握,确保对概念、性质、运算法则等内容的理解深刻,以便在解题时能够迅速、准确地运用。

2、勤于练习:通过对各类题型进行大量练习,考生能够熟练掌握解题方法,提高解题速度和准确率。

同时,练习还能帮助考生发现并弥补知识漏洞。

3、培养解题思维:在复习过程中,考生应注重培养解题思维,学会从题目中找出关键信息,选择合适的解题方法。

中考数学总复习_全部导学案(教师版)

中考数学总复习_全部导学案(教师版)

第1课时 实数的有关概念【知识梳理】1. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数.2. 数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3. 绝对值:在数轴上表示数a 的点到原点的距离叫数a 的绝对值,记作∣a ∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a 的相反数是-a ,0的相反数是0.5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字. 6. 科学记数法:把一个数写成a×10n 的形式(其中1≤a<10,n 是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5. 7. 大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小.8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂. 9. 平方根:一般地,如果一个数x 的平方等于a,即x 2=a 那么这个数x 就叫做a 的平方根(也叫做二次方根).一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.10. 开平方:求一个数a 的平方根的运算,叫做开平方.11. 算术平方根:一般地,如果一个正数x 的平方等于a,即x 2=a ,那么这个正数x 就叫做a的算术平方根,0的算术平方根是0. 12. 立方根:一般地,如果一个数x 的立方等于a,即x 3=a ,那么这个数x 就叫做a 的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0的立方根是0. 13. 开立方:求一个数a 的立方根的运算叫做开立方. 【思想方法】数形结合,分类讨论 【例题精讲】例1.下列运算正确的是( )A .33--=B .3)31(1-=-C 3=±D 3=-例 )A .BC .2-D .2例3.2的平方根是( )A .4BC .D .例4.《广东省2009年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资726亿元,用科学记数法表示正确的是( ) A .107.2610⨯ 元B .972.610⨯ 元C .110.72610⨯ 元D .117.2610⨯元例5.实数a b ,在数轴上对应点的位置如图所示, 则必有( )A .0a b +>B .0a b -<C .0ab >D .0ab< 例6.(改编题)有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +2, a ⊕(b +1)= n -3现在已知1⊕1 = 4,那么2009⊕2009 = . 【当堂检测】1.计算312⎛⎫- ⎪⎝⎭的结果是( )A .16B .16-C .18D .18-2.2-的倒数是( ) A .12-B .12C .2D .2-3.下列各式中,正确的是( )A .3152<<B .4153<<C .5154<<D .161514<< 4.已知实数a在数轴上的位置如图所示,则化简|1|a -的结果为( ) A .1 B .1- C .12a -D .21a -5.2-的相反数是( ) A .2B .2-C .12D .12-6.-5的相反数是____,-12的绝对值是=_____.7.写出一个有理数和一个无理数,使它们都是小于-1的数 . 8.如果2()13⨯-=,则“”内应填的实数是( )A . 32B .23C .23-D .32-第2课时 实数的运算第4题图0 例5图【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数.2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减; 如果有括号,先算括号里面的. 6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.例4.下列运算正确的是( ) A .523=+B .623=⨯9 0 -4 国际标准时间(时) -5 例2图……例3图C .13)13(2-=- D .353522-=-例5.计算: (1) 911)1(8302+-+--+-π(2)0(tan 45π--+º(3)102)21()13(2-+--;(4)2008011(1)()3π--+-+【当堂检测】1.下列运算正确的是( )A .a 4×a 2=a 6B .22532a b a b -=C .325()a a -= D .2336(3)9ab a b =2.某市2008年第一季度财政收入为76.41亿元,用科学记数法(结果保留两个有效数字)表示为( )A .81041⨯元B .9101.4⨯元C .9102.4⨯元D .8107.41⨯元 3.估计68的立方根的大小在( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间 4.如图,数轴上点P 表示的数可能是( ) AB.C . 3.2- D.5.计算:(1)02200960cos 16)21()1(-+--- (2))1112-⎛⎫- ⎪⎝⎭第3课时 整式与分解因式【知识梳理】1.幂的运算性质:①同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,即第4题图n m n m a a a +=⋅(m 、n 为正整数);②同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即n m n m a a a -=÷(a≠0,m 、n 为正整数,m>n );③幂的乘方法则:幂的乘方,底数不变,指数相乘,即nn n b a ab =)((n 为正整数);④零指数:10=a (a≠0);⑤负整数指数:n n a a 1=-(a≠0,n 为正整数);2.整式的乘除法:(1)几个单项式相乘除,系数与系数相乘除,同底数的幂结合起来相乘除. (2)单项式乘以多项式,用单项式乘以多项式的每一个项.(3)多项式乘以多项式,用一个多_项式的每一项分别乘以另一个多项式的每一项. (4)多项式除以单项式,将多项式的每一项分别除以这个单项式.(5)平方差公式:两个数的和与这两个数的差的积等于这两个数的平方, 即22))((b a b a b a -=-+;(6)完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即2222)(b ab a b a +±=±3.分解因式:把一个多项式化成几个整式的积的形式,叫做把这个多项式分解因式.4.分解因式的方法:⑴提公团式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法. ⑵运用公式法:公式22()()a b a b a b -=+- ; 2222()a ab b a b ±+=±5.分解因式的步骤:分解因式时,首先考虑是否有公因式,如果有公因式,一定先提取公团式,然后再考虑是否能用公式法分解. 6.分解因式时常见的思维误区:⑴ 提公因式时,其公团式应找字母指数最低的,而不是以首项为准. ⑵ 提取公因式时,若有一项被全部提出,括号内的项“ 1”易漏掉. (3) 分解不彻底,如保留中括号形式,还能继续分解等【例题精讲】 【例1】下列计算正确的是( )A. a +2a=3a 2B. 3a -2a=aC. a 2•a 3=a 6 D.6a 2÷2a 2=3a 2【例2】(2008年茂名)任意给定一个非零数,按下列程序计算,最后输出的结果是( )A .mB .mC .m +1D .m -1【例3】若2320a a --=,则2526a a +-= . 【例4】下列因式分解错误的是( )A .22()()x y x y x y -=+- B .2269(3)x x x ++=+ C .2()x xy x x y +=+D .222()x y x y +=+【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x 2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 .4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中2332a b =-=,.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式.2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中22x =+.3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+xx x x (2)41622222-=-+-+-x x x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C. D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x有意义;当x 时,该式的值为0.3.计算22()ab ab的结果为 .4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2)x 2)3(x 22x x -=--;(3) 11322xx x -=--- (4)11-x 1x 1x 22=+--第5课时 二次根式【知识梳理】 1.二次根式:(1)定义:____________________________________叫做二次根式.2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式. (2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1)a b=ab a 0b 0⋅≥≥(,)(2)a a=a 0b 0b b≥(,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式.【思想方法】 非负性的应用【例题精讲】 【例1】要使式子1x x+有意义,x 的取值范围是( ) A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且【例2】估计132202⨯+的运算结果应在( ). A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间【例3】 若实数x y ,满足22(3)0x y ++-=,则xy 的值是 .【例4】如图,A ,B ,C ,D 四张卡片上分别写有523π7-,,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)101(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1)01232tan 60(12)+--+-+. (2)cos45°·(-21)-2-(22-3)0+|-32|+121- (3)026312()cos 304sin 6022++-+.2.如图,实数a 、b 在数轴上的位置,化简222()a b a b -第6课时 一元一次方程及二元一次方程(组)【知识梳理】1.方程、一元一次方程、二元一次方程(组)和方程(组)的解、解方程(组)的概念及解法,利用方程解决生活中的实际问题. 2.等式的基本性质及用等式的性质解方程:等式的基本性质是解方程的依据,在使用时要注意使性质成立的条件 .3.灵活运用代入法、加减法解二元一次方程组.4.用方程解决实际问题:关键是找到“等量关系”,在寻找等量关系时有时可以借助图表等,在得到方程的解后,要检验它是否符合实际意义. 【思想方法】方程思想和转化思想【例题精讲】 例1. (1)解方程.x x+--=21152156(2)解二元一次方程组 ⎩⎨⎧=+=+27271523y x y x 解:例2.已知x =-2是关于x 的方程()x m x m -=-284的解,求m 的值. 方法1 方法2例3.下列方程组中,是二元一次方程组的是( )A. B. C. D. 例4.在 中,用x 的代数式表示y ,则y=______________.例5.已知a 、b 、c 满足⎩⎨⎧=+-=-+02052c b a c b a ,则a :b :c= .例6 .某电厂规定该厂家属区的每户居民如果一个月的用电量不超过 A 度,那么这个月这户只需交 10 元用电费,如果超过 A 度,则这个月除了仍要交 10 元用电费外,超过部分还要按每度 0.5 元交费.①该厂某户居民 2 月份用电 90 度,超过了规定的A 度,则超过部分应该交电费多少元(用 A 表示)? .②右表是这户居民 3 月、4 月的用电情况和交费情况:根据右表数据,求电厂规定A 度为 .【当堂检测】1.方程x -=52的解是___ ___.2.一种书包经两次降价10%,现在售价a 元,则原售价为_______元. 3.若关于x 的方程x k =-153的解是x =-3,则k =_________.⎪⎩⎪⎨⎧=+=+65115y x y x ⎩⎨⎧-=+=+2102y x y x ⎩⎨⎧==+158xy y x ⎩⎨⎧=+=31y x x 032=-+y x4.若⎩⎨⎧-==11y x ,⎩⎨⎧==22y x ,⎩⎨⎧==c y x 3都是方程ax+by+2=0的解,则c=____.5.解下列方程(组):(1)()x x -=--3252; (2)....x x +=-0713715023; (3)⎩⎨⎧=+=+832152y x y x ; (4)x x-+=-2114135;6.当x =-2时,代数式x bx +-22的值是12,求当x =2时,这个代数式的值.7.应用方程解下列问题:初一(4)班课外乒乓球组买了两副乒乓球板,若每人付9元,则多了5元,后来组长收了每人8元,自己多付了2元,问两副乒乓球板价值多少?8.甲、乙两人同时解方程组8(1)5 (2)mx ny mx ny +=-⎧⎨-=⎩由于甲看错了方程①中的m ,得到的解是42x y =⎧⎨=⎩,乙看错了方程中②的n ,得到的解是25x y =⎧⎨=⎩,试求正确,m n 的值.第7课时 一元二次方程【知识梳理】1. 一元二次方程的概念及一般形式:ax 2+bx +c =0 (a ≠0)2. 一元二次方程的解法:①直接开平方法②配方法③公式法④因式分解法 3.求根公式:当b 2-4ac≥0时,一元二次方程ax 2+bx +c =0 (a ≠0)的两根为ac b b 42-±-4.根的判别式: 当b 2-4ac >0时,方程有 实数根.当b 2-4ac=0时, 方程有 实数根. 当b 2-4ac <0时,方程 实数根.【思想方法】1. 常用解题方法——换元法2. 常用思想方法——转化思想,从特殊到一般的思想,分类讨论的思想 【例题精讲】 例1.选用合适的方法解下列方程:(1) (x-15)2-225=0; (2) 3x 2-4x -1=0(用公式法);(3) 4x 2-8x +1=0(用配方法); (4)x 2+22x=0例2 .已知一元二次方程0437122=-+++-m m mx x m )(有一个根为零,求m 的值.例3.用22cm 长的铁丝,折成一个面积是30㎝2的矩形,求这个矩形的长和宽.又问:能否折成面积是32㎝2的矩形呢?为什么?例4.已知关于x 的方程x 2―(2k+1)x+4(k -0.5)=0(1) 求证:不论k 取什么实数值,这个方程总有实数根; (2) 若等腰三角形ABC 的一边长为a=4,另两边的长b .c 恰好是这个方程的两个根,求△ABC 的周长.【当堂检测】 一、填空1.下列是关于x 的一元二次方程的有_______ ①02x 3x12=-+ ②01x 2=+③)3x 4)(1x ()1x 2(2--=- ④06x 5x k 22=++ ⑤021x x 2432=--⑥0x 22x 32=-+2.一元二次方程3x 2=2x 的解是 .3.一元二次方程(m-2)x 2+3x+m 2-4=0有一解为0,则m 的值是 . 4.已知m 是方程x 2-x-2=0的一个根,那么代数式m 2-m = .5.一元二次方程ax2+bx+c=0有一根-2,则b ca4 的值为.6.关于x的一元二次方程kx2+2x-1=0有两个不相等的实数根, 则k的取值范围是__________.7.如果关于的一元二次方程的两根分别为3和4,那么这个一元二次方程可以是.二、选择题:8.对于任意的实数x,代数式x2-5x+10的值是一个( )A.非负数B.正数C.整数D.不能确定的数9.已知(1-m2-n2)(m2+n2)=-6,则m2+n2的值是()A.3B.3或-2C.2或-3D. 210.下列关于x的一元二次方程中,有两个不相等的实数根的方程是()(A)x2+4=0 (B)4x2-4x+1=0(C)x2+x+3=0(D)x2+2x-1=011.下面是李刚同学在测验中解答的填空题,其中答对的是()A.若x2=4,则x=2 B.方程x(2x-1)=2x-1的解为x=1C.方程x2+2x+2=0实数根为0个D.方程x2-2x-1=0有两个相等的实数根12.若等腰三角形底边长为8,腰长是方程x2-9x+20=0的一个根,则这个三角形的周长是()A.16B.18C.16或18D.21三、解下方程:(1)(x+5)(x-5)=7 (2)x(x-1)=3-3x (3)x2-4x-4=0(4)x2+x-1=0 (6)(2y-1)2 -2(2y-1)-3=0第8课时方程的应用(一)【知识梳理】1. 方程(组)的应用;2. 列方程(组)解应用题的一般步骤;3. 实际问题中对根的检验非常重要.【注意点】分式方程的检验,实际意义的检验.【例题精讲】例1. 足球比赛的计分规则为:胜一场得3分,平一场得1分,负一场得0分.某队打了14场,负5场,共得19分,那么这个队胜了()A .4场B .5场C .6场D .13场例2. 某班共有学生49人.一天,该班某男生因事请假,当天的男生人数恰为女生人数的一半.若设该班男生人数为x ,女生人数为y ,则下列方程组中,能正确计算出x 、y 的是( )A .⎩⎨⎧x –y= 49y=2(x+1)B .⎩⎨⎧x+y= 49y=2(x+1)C .⎩⎨⎧x –y= 49y=2(x –1)D .⎩⎨⎧x+y= 49y=2(x –1)例3. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x 千米,依题意得到的方程是( )1515115151..12121515115151..1212A B x x x x C D x x x x -=-=++-=-=--例4.学校总务处和教务处各领了同样数量的信封和信笺,总务处每发一封信都只用一张信笺,教务处每发出一封信都用3张信笺,结果,总务处用掉了所有的信封,•但余下50张信笺,而教务处用掉所有的信笺但余下50个信封,则两处各领的信笺数为x 张,•信封个数分别为y 个,则可列方程组 .100人.若分别购票,两团共计应付门票费1392元,若合在一起作为一个团体购票,总计应付门票费1080元. (1)请你判断乙团的人数是否也少于50人. (2)求甲、乙两旅行团各有多少人?【当堂检测】1. 某市处理污水,需要铺设一条长为1000m 的管道,为了尽量减少施工对交通所造成的影响,实际施工时,每天比原计划多铺设10米,结果提前5天完成任务.设原计划每天铺设管道xm ,则可得方程 .2. “鸡兔同笼”是我国民间流传的诗歌形式的数学题, “鸡兔同笼不知数,三十六头笼中露,看来脚有100只,几多鸡儿几多兔?”解决此问题,设鸡为x 只,兔为y 只,所列方程组正确的是( ) ⎩⎨⎧=+=+100236.y x y x A 3636..2410022100x y x y B C x y x y +=+=⎧⎧⎨⎨+=+=⎩⎩⎩⎨⎧=+=+1002436..y x y x D 3.为满足用水量不断增长的需求,某市最近新建甲、乙、•丙三个水厂,这三个水厂的日供水量共计11.8万m 3,•其中乙水厂的日供水量是甲水厂日供水量的3倍,丙水厂的日供水量比甲水厂日供水量的一半还多1万m 3.(1)求这三个水厂的日供水量各是多少万立方米?(2)在修建甲水厂的输水管道的工程中要运走600t 土石,运输公司派出A 型,B•型两种载重汽车,A 型汽车6辆,B 型汽车4辆,分别运5次,可把土石运完;或者A 型汽车3辆,B 型汽车6辆,分别运5次,也可把土石运完,那么每辆A 型汽车,每辆B 型汽车每次运土石各多少吨?(每辆汽车运土石都以准载重量满载)4. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km 远的郊区进行抢修.维修工骑摩托车先走,15min 后,抢修车装载所需材料出发,结果两车同时到达抢修点.已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度.5. 某体育彩票经售商计划用45000•元从省体彩中心购进彩票20扎,每扎1000张,已知体彩中心有A 、B 、C 三种不同价格的彩费,进价分别是A•种彩票每张1.5元,B 种彩票每张2元,C 种彩票每张2.5元.(1)若经销商同时购进两种不同型号的彩票20扎,用去45000元,请你设计进票方案; (2)若销售A 型彩票一张获手续费0.2元,B 型彩票一张获手续费0.3元,C 型彩票一张获手续费0.5元.在购进两种彩票的方案中,为使销售完时获得手续费最多,你选择哪种进票方案?(3)若经销商准备用45000元同时购进A 、B 、C 三种彩票20扎,请你设计进票方案.第9课时 方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( )A .16B .25C .34D .61例2. 如图,在宽为20米、长为30米的矩形地面上修 建两条同样宽的道路,余下部分作为耕地.若耕地面积 需要551米2,则修建的路宽应为( ) A .1米 B .1.5米 C .2米 D .2.5米 例3. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x = B.22500(1)3600x +=C.22500(1%)3600x += D.22500(1)2500(1)3600x x +++=例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友. 【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月的增长率是多少?2. 少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2班每天各植树多少棵?3. A 、B 、C 、D 为矩形的四个顶点,AB=16cm ,AD=6cm ,动点P 、Q 分别从点发,点P 以3 cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm/s ⑴ P 、Q 两点从出发开始到几秒时四边形PBCQ 的面积为33 cm 2?⑵ P 、Q 两点从出发开始到几秒时,点P 和点Q 的距离是10 cm?4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg (第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg . (1)乙班比甲班少付出多少元?第10课时 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法. 【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C 误的是( ) A. 0b a >-B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( )A.12x >- B.2x >- C.2x <-D.12x <-例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( B A O C)c a (b >-A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( ) A. 49kg B. 50kg C. 24kg D. 25kg 例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于() A .0 B .1 C .2D .3例7.解不等式组:(1)21113x xx +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x【当堂检测】1.苹果的进价是每千克3.8元,销售中估计有5%应该至少定为每千克 元.2. 解不等式723<-x ,将解集在数轴上表示出来,并写出它的正整数解.3. 解不等式组⎪⎩⎪⎨⎧-<+--+≥+224313322x x x x ,并把它的解集在数轴上表示出来.43214. 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以下问题:(1y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.第11课时 平面直角坐标系、函数及其图像【知识梳理】一、平面直角坐标系1. 坐标平面上的点与有序实数对构成一一对应;2. 各象限点的坐标的符号;3. 坐标轴上的点的坐标特征.4. 点P (a ,b )关于⎪⎩⎪⎨⎧原点轴轴y x 对称点的坐标⎪⎩⎪⎨⎧----),(),(),(b a b a b a5.两点之间的距离6.线段AB 的中点C ,若),(),,(),,(002211y x C y x B y x A 则2,2210210y y y x x x +=+=二、函数的概念1.概念:在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 对应,那么就说x 是自变量,y 是x 的函数.2.自变量的取值范围: (1)使解析式有意义 (2)实际问题具有实际意义3.函数的表示方法; (1)解析法 (2)列表法 (3)图象法 【思想方法】21212211P P )0()0()2(yy y P y P -=, ,,,21212211P P )0()0()1(x x x P x P -=, , ,, 数形结合 【例题精讲】例1.函数2y =中自变量x 的取值范围是 ; 函数y =x 的取值范围是 . 例2.已知点(13)A m -,与点(21)B n +,关于x 轴对称,则m = ,n = .例3.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为 (8,0),点C 、D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形. 求点C 的坐标.例4.阅读以下材料:对于三个数a,b,c 用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:{}123412333M -++-==,,; min{-1,2,3}=-1;{}(1)min 121(1).a a a a -⎧-=⎨->-⎩≤;,, 解决下列问题: (1)填空:min{sin30o ,sin45o ,tan30o }= ;(2)①如果M{2,x+1,2x}=min{2,x+1,2x},求x ;②根据①,你发现了结论“如果min{a,b,c},那么 (填a,b,c 的大小关系)”.③运用②的结论,填空:M{2x+y+2,x+2y,2x-y}=min{2x+y+2,x+2y,2x-y}若, 则x + y= .(3)在同一直角坐标系中作出函数y=x+1,y=(x-1)2,y=2-x 的图象(不需 列表描点).通过观察图象,填空:min{x+1, (x-1)2,2-x}的最大值为 .【当堂检测】1.点P 在第二象限内,P 到x 轴的距离是4,到y 轴的距离是3,那么点P A .(-4,3) B .(-3,-4) C .(-3,4) D .(3,-4)2.已知点P(x,y)位于第二象限,并且y≤x+4 , x,y 为整数,写出一个.. .3.点P(2m-1,3)在第二象限,则m 的取值范围是( ) A .m>0.5 B .m≥0.5 C .m<0.5 D .m≤0.54.如图,在平面直角坐标系中,直线l 是第一、三象限的角平分线. ⑴由图观察易知A (0,2)关于直线l 的对称点A '的坐标为(2,0),例3图xC (-2,5) 关于直线l 的对称点B '、C '的位置,并写出他们的坐标: B ' 、C ' ;⑵结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点P (a ,b )关于第一、三象限的角平分线l 的对称点P '的坐标为 (不必证明);⑶已知两点D (1,-3)、E (-1,-4),试在直线l 上确定一点Q ,使点Q 到D 、E 两点的距离之和最小,并求出Q 点坐标.第12课时 一次函数图象和性质【知识梳理】1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(kb-,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质【思想方法】数形结合【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积.k 、b 的符号 k >0,b >0k >0,b <0k <0,b >0k <0,b <0图像的大致位置经过象限 第 象限 第 象限 第 象限 第 象限 性质y 随x 的增大 而y 随x 的增大而而y 随x 的增大 而y 随x 的增大 而123456-1-2-3-4-5-6-1-2-3-4-5-61234567O xylA BA'D 'E'C(第22题图)第4题图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2课时 实数的运算【知识梳理】1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同0相加,仍得这个数. 2.有理数减法法则:减去一个数,等于加上这个数的相反数.3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘; 任何数与0相乘,积仍为0.4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0除以任何非0的数都得0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减; 如果有括号,先算括号里面的. 6.有理数的运算律:加法交换律:a+b=b+a(a b 、为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数)【思想方法】数形结合,分类讨论【例题精讲】例1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午4 点至5点,初二年级240名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的3倍,参加音乐活动人数是参加美术活动人数的2倍,那么参加美术活动的同学其有____________名.例2.下表是5个城市的国际标准时间(单位:时)那么北京时间2006年6月17日上午9时应是( )A .伦敦时间2006年6月17日凌晨1时.B .纽约时间2006年6月17日晚上22时.C .多伦多时间2006年6月16日晚上20时 .D .汉城时间2006年6月17日上午8时.例3.如图,由等圆组成的一组图中,第1个图由1个圆组成,第2个图由7个圆组成,第3个图由19个圆组成,……,按照这样的规律排列下去,则第9个图形由__________个圆组成.北京 汉城 8 9 0 伦敦 -4 多伦多纽约 国际标准时间(时) -5 例2图……例3图【例5】如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________【例6】给出三个多项式:21212x x +-,21412x x ++,2122x x -.请选择你最喜欢的两个多项式进行加法运算,并把结果因式分解.【当堂检测】1.分解因式:39a a -= , _____________223=---x x x 2.对于任意两个实数对(a ,b )和(c ,d ),规定:当且仅当a =c 且b =d 时, (a ,b )=(c ,d ).定义运算“⊗”:(a ,b )⊗(c ,d )=(ac -bd ,ad +bc ).若(1,2)⊗(p ,q )=(5,0),则p = ,q = . 3. 已知a=1.6⨯109,b=4⨯103,则a 2÷2b=( )A. 2⨯107B. 4⨯1014C.3.2⨯105D. 3.2⨯1014 . 4.先化简,再求值:22()()(2)3a b a b a b a ++-+-,其中2332a b =--=-,.5.先化简,再求值:22()()()2a b a b a b a +-++-,其中133a b ==-,.第4课时 分式与分式方程【知识梳理】1. 分式概念:若A 、B 表示两个整式,且B 中含有字母,则代数式BA叫做分式. 2.分式的基本性质:(1)基本性质:(2)约分:(3)通分: 3.分式运算4.分式方程的意义,会把分式方程转化为一元一次方程.5.了解分式方程产生增根的原因,会判断所求得的根是否是分式方程的增根. 【思想方法】1.类比(分式类比分数)、转化(分式化为整式)2.检验【例题精讲】1.化简:2222111x x x x x x-+-÷-+2.先化简,再求值: 22224242x x x x x x --⎛⎫÷-- ⎪-+⎝⎭,其中22x =+.3.先化简11112-÷-+x xx )(,然后请你给x 选取一个合适值,再求此时原式的值.4.解下列方程(1)013522=--+x x x x (2)41622222-=-+-+-xx x x x5.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意所列方程正确的是( )A. B.C.D.【当堂检测】1.当99a =时,分式211a a --的值是.2.当x 时,分式112--x x有意义;当x 时,该式的值为0.3.计算22()ab ab 的结果为.4. .若分式方程xxk x --=+-2321有增根,则k 为( ) A. 2 B.1 C. 3 D.-25.若分式32-x 有意义,则x 满足的条件是:( ) A .0≠x B .3≥x C .3≠x D .3≤x6.已知x =2008,y =2009,求x yx 4y 5x y x 4xy5x y 2xy x 2222-+-+÷-++的值7.先化简,再求值:4xx 16x )44x x 1x 2x x 2x (2222+-÷+----+,其中22+=x8.解分式方程. (1)22011xx x -=+- (2)x 2)3(x 22x x -=--;(3) 11322xx x -=--- (4)11-x 1x 1x 22=+--第5课时 二次根式【知识梳理】 1.二次根式:(1)定义:____________________________________叫做二次根式. 2.二次根式的化简:3.最简二次根式应满足的条件:(1)被开方数中不含有能开得尽的因数或因式. (2)根号内不含分母 (3)分母上没有根号4.同类二次根式:几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式. 5.二次根式的乘法、除法公式:(1)a b=ab a 0b 0⋅≥≥(,)(2)a a=a 0b 0b b≥(,)6..二次根式运算注意事项:(1)二次根式相加减,先把各根式化为最简二次根式,再合并同类二次根式,防止:①该化简的没化简;②不该合并的合并;③化简不正确;④合并出错.(2)二次根式的乘法除法常用乘法公式或除法公式来简化计算,运算结果一定写成最简二次根式或整式. 【思想方法】 非负性的应用【例题精讲】 【例1】要使式子1x x+有意义,x 的取值范围是( ) A .1x ≠B .0x ≠C .10x x >-≠且D .10x x ≠≥-且【例2】估计132202⨯+的运算结果应在( ). A .6到7之间 B .7到8之间 C .8到9之间D .9到10之间【例3】 若实数x y ,满足22(3)0x y ++-=,则xy 的值是 .【例4】如图,A ,B ,C ,D 四张卡片上分别写有523π7-,,,四个实数,从中任取两张卡片.A B C D(1)请列举出所有可能的结果(用字母A ,B ,C ,D 表示); (2)求取到的两个数都是无理数的概率.【例5】计算:(1)103130tan 3)14.3(27-+︒---)(π(2)101(1)527232-⎛⎫π-+-+-- ⎪⎝⎭.【例6】先化简,再求值:)1()1112(2-⨯+--a a a ,其中33-=a .【当堂检测】1.计算:(1)01232tan 60(12)+--+-+. (2)cos45°·(-21)-2-(22-3)0+|-32|+121- (3)026312()cos 304sin 6022-++-+.2.如图,实数a 、b 在数轴上的位置,化简222()a b a b ---思考与收获第9课时 方程的应用(二)【知识梳理】1.一元二次方程的应用;2. 列方程解应用题的一般步骤;3. 问题中方程的解要符合实际情况.【例题精讲】 例1. 一个两位数的十位数字与个位数字和是7,把这个两位数加上45后,•结果恰好成为数字对调后组成的两位数,则这个两位数是( ) A .16 B .25 C .34 D .61例2. 如图,在宽为20米、长为30米的矩形地面上修 建两条同样宽的道路,余下部分作为耕地.若耕地面积 需要551米2,则修建的路宽应为( ) A .1米 B .1.5米 C .2米 D .2.5米 例3. 为执行“两免一补”政策,某地区2006年投入教育经费2500万元,预计2008年投入3600万元.设这两年投入教育经费的年平均增长百分率为x ,则下列方程正确的是( )A.225003600x = B.22500(1)3600x +=C.22500(1%)3600x += D.22500(1)2500(1)3600x x +++= 例4. 某地出租车的收费标准是:起步价为7元,超过3千米以后,每增加1千米,•加收2.4元.某人乘这种出租车从甲地到乙地共付车费19元,•设此人从甲地到乙地经过的路程为x 千米,那么x 的最大值是( )A .11B .8C .7D .5例5. 已知某工厂计划经过两年的时间,•把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是________.按此年平均增长率,预计第4年该工厂的年产量应为_____万台.例6. 某商场将进货价为30元的台灯以40元售出,平均每月能售出600个.调查表明:这种台灯的售价每上涨1元,其销售量就将减少10个.为了实现平均每月10000•元的销售利润,这种台灯的售价应定为多少?这时应进台灯多少个?例7. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件.•如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友.【当堂检测】1. 某印刷厂1•月份印刷了书籍60•万册,•第一季度共印刷了200万册,问2、3月份平均每月的增长率是多少?2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程,创建国家城市绿化一体化城市.某校甲,乙两班师生前往郊区参加植树活动.已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?3. A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3 cm/s的速度向点B移动,一直到达B为止,点Q以2 cm/s 的速度向D移动.⑴ P、Q两点从出发开始到几秒时四边形PBCQ的面积为33 cm2?⑵ P、Q两点从出发开始到几秒时,点P和点Q的距离是10 cm?4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示.甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg.(1)乙班比甲班少付出多少元?(2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30kg 30kg以下但不超过50kg50kg以上每千克价格3元 2.5元2元第10课时 一元一次不等式(组)【知识梳理】1.一元一次不等式(组)的概念;2.不等式的基本性质;3.不等式(组)的解集和解法. 【思想方法】1.不等式的解和解集是两个不同的概念;2.解集在数轴上的表示方法.【例题精讲】 例1.如图所示,O 是原点,实数a 、b 、c 在数轴上对应的点分别为A 、B 、C ,则下列结论错误的是( ) A. 0b a >-B. 0ab <C. 0b a <+D. 例2. 不等式112x ->的解集是( )A.12x >- B.2x >- C.2x <-D.12x <-例3. 把不等式组21123x x +>-⎧⎨+⎩≤的解集表示在数轴上,下列选项正确的是( )A .B .C .D .例4. 不等式组221x x -⎧⎨-<⎩≤的整数解共有( )A .3个B .4个C .5个D .6个例5. 小明和爸爸妈妈三人玩跷跷板,三人的体重一共为150kg ,爸爸坐在跷跷板的一端,小明体重只有妈妈一半,小明和妈妈一同坐在跷跷板的另一端,这时爸爸那端仍然着地,那么小明的体重应小于( ) A. 49kg B. 50kg C. 24kg D. 25kg 例6.若关于x 的不等式x -m ≥-1的解集如图所示,则m 等于( ) A .0 B .1 C .2D .3例7.解不等式组:(1)21113x xx +<⎧⎪⎨-≥⎪⎩ (2)⎪⎩⎪⎨⎧+<+->+)6(3)4(4,5351x x x x4321B A O C)c a (b >-1 01- 10 1- 1 0 1- 1 0 1-第12课时 一次函数图象和性质【知识梳理】1.正比例函数的一般形式是y=kx(k≠0),一次函数的一般形式是y=kx+b(k≠0). 2. 一次函数y kx b =+的图象是经过(kb-,0)和(0,b )两点的一条直线. 3. 一次函数y kx b =+的图象与性质【思想方法】数形结合【例题精讲】 例1. 已知一次函数物图象经过A(-2,-3),B(1,3)两点.(1)求这个一次函数的解析式;(2)试判断点P(-1,1)是否在这个一次函数的图象上; (3)求此函数与x 轴、y 轴围成的三角形的面积.例2. 已知一次函数y=(3a+2)x -(4-b),求字母a 、b 为何值时: (1)y 随x 的增大而增大; (2)图象不经过第一象限;(3)图象经过原点; (4)图象平行于直线y=-4x+3; (5)图象与y 轴交点在x 轴下方.例3. 如图,直线l 1 、l 2相交于点A ,l 1与x 轴的交点坐标为(-1,0),l 2与y 轴的交点坐标为(0,-2),结合图象解答下列问题: (1)求出直线l 2表示的一次函数表达式;(2)当x 为何值时,l 1 、l 2表示的两个一次函数的函数值都大于0?k 、b 的符号k >0,b >0k >0,b <0k <0,b >0k <0,b <0图像的大致位置经过象限 第 象限 第 象限第 象限第 象限 性质y 随x 的增大 而y 随x 的增大而而y 随x 的增大 而y 随x 的增大 而xy O32y x a =+1y kx b =+yxO BA 例4.如图,反比例函数xy 2=的图像与一次函数b kx y +=的图像交于点A(m,2),点B(-2, n ),一次函数图像与y 轴的交点为C. (1)求一次函数解析式; (2)求C 点的坐标; (3)求△AOC 的面积.【当堂检测】1.直线y =2x +8与x 轴和y 轴的交点的坐标分别是_______、_______;2.一次函数1y kx b =+与2y x a =+的图象如图,则下列 结论:①0k <;②0a >;③当3x <时,12y y <中, 正确的个数是( )A .0B .1C .2D .33.一次函数(1)5y m x =++,y 值随x 增大而减小,则m 的取值范围是( ) A .1m >-B . 1m <-C .1m =-D .1m <4.一次函数23y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 5.已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是( )6.已知整数x 满足-5≤x≤5,y 1=x+1,y 2=-2x+4对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是( ) A.1 B.2 C.24 D.-97.如图,点A 的坐标为(-1,0),点B 在直线y =x 上运动,当线段AB 最短时,点B 的坐标为 ( ) A.(0,0) B.(22,22-) C.(-21,-21) D.(-22,-22)第2题图 第5题图 第7题图第13课时 一次函数的应用【例题精讲】例题1.某地区的电力资源丰富,并且得到了较好的开发.该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费.月用电量x (度)与相应电费y (元)之间的函数图像如图所示.⑴月用电量为100度时,应交电费 元; ⑵ 当x≥100时,求y 与x 之间的函数关系式; ⑶ 月用电量为260度时,应交电费多少元?例题2. 在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ; (2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少? (3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出t 的取值范围.例题3.某加油站五月份营销一种油品的销售利润y (万元)与销售量x (万升)之间函数关系的图象如图中折线所示,该加油站截止到13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元.(销售利润=(售价-成本价)×销售量)请你根据图象及加油站五月份该油品的所有销售记录提供的信息,解答下列问题: (1)求销售量x 为多少时,销售利润为4万元; (2)分别求出线段AB 与BC 所对应的函数关系式;(3)我们把销售每升油所获得的利润称为利润率,那么,在O A 、AB 、BC 三段所表示的销售信息中,哪一段的利润率最大?(直接写出答案)2·4·6· 8· S(km) 2 0 t(h) A B1日:有库存6万升,成本价4元/升,售价5元/升. 13日:售价调整为5.5元/升.15日:进油4万升,成本价4.5元/升.31日:本月共销售10万升.图(1) 2 O 5 x A B C P D 图(2)第1题图 例题4.奥林玩具厂安排甲、乙两车间分别加工1000只同一型号的奥运会吉祥物,每名工人每天加工的吉祥物个数相等且保持不变,由于生产需要,其中一个车间推迟两天开始加工.开始时,甲车间有10名工人,乙车间有12名工人,图中线段OB 和折线段ACB 分别表示两车间的加工情况.依据图中提供信息,完成下列各题:(1)图中线段OB 反映的是________车间加工情况;(2)甲车间加工多少天后,两车间加工的吉祥物数相同? (3)根据折线段ACB 反映的加工情况, 请你提出一个问题,并给出解答.【当堂检测】 1.如图(1),在直角梯形ABCD 中,动点P 从点B 出发,沿BC ,CD 运动至点D 停止.设点P 运动的路程为x ,△ABP 的面积为y ,如果y 关于x 的函数图象如图(2)所示,则△BCD 的面积是( )A .3B .4C .5D .6 2.如图,在中学生耐力测试比赛中,甲、乙两学生测试的路程s (米)与时间t (秒)之间的函数关系的图象分别为折线OABC 和线段OD ,下列说法正确的是( ) A .乙比甲先到终点B .乙测试的速度随时间增加而增大C .比赛到29.4秒时,两人出发后第一次相遇D .比赛全程甲测试速度始终比乙测试速度快 3.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是( ) A .12分钟 B .15分钟C .25分钟D .27分钟4.在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x (h)时,汽车与甲地的距离为y (km),y 与x 的函数关系如图所示.根据图像信息,解答下列问题: (1)这辆汽车的往、返速度是否相同?请说明理由;(2)求返程中y 与x 之间的函数表达式; (3)求这辆汽车从甲地出发4h 时与甲地的距离.2 B x (天) AC18 20 O 960 1000 y (只) 第2题图 第3题图 第4题图第14课时 反比例函数图象和性质【知识梳理】1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y = 或 (k 为常数,k≠0)的形式,那么称y 是x 的反比例函数. 2. 反比例函数的图象和性质3.k 的几何含义:反比例函数y =kx(k≠0)中比例系数k 的几何意义,即过双曲线y =kx(k≠0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 . 【思想方法】 数形结合【例题精讲】例1 某汽车的功率P 为一定值,汽车行驶时的速度v (米/秒)与它所受的牵引力F (牛)之间的函数关系如右图所示:(1)这辆汽车的功率是多少?请写出这一函数的表达式;(2)当它所受牵引力为1200牛时,汽车的速度为多少千米/时? (3)如果限定汽车的速度不超过30米/秒,则F 在什么范围内?例2如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点. (1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积;(3)x 为何值时,一次函数值大于反比例函数值. k 的符号k >0 k <0 图像的大致位置经过象限 第 象限 第 象限 性质在每一象限内,y 随x 的增大而在每一象限内,y 随x 的增大而oy xy xoOyxBA【当堂检测】1. (2008年河南)已知反比例函数的图象经过点(m ,2)和(-2,3),则m 的值为 .2.(2008年宜宾)若正方形AOBC 的边OA 、OB 在坐标轴上,顶点C 在第一象限且在反比例函数y =x1的图像上,则点C 的坐标是 . 3.在反比例函数3k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( )A .k >3B .k >0C .k <3D . k <0 4. (2008年广东)如图,反比例函数图象过点P,则它的解析式为( )A.y =1x (x>0) B.y =-1x (x>0) C.y =1x (x<0) D.y =-1x(x<0)5.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .不小于54m 3B .小于54m 3C .不小于45m 3D .小于45m 36.(2008巴中)如图,若点A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k = . 7.对于反比例函数2y x=,下列说法不正确...的是( ) A .点(21)--,在它图象上B .图象在第一、三象限C .当0x >时,y 随x 的增大而增大D .当0x <时,y 随x 的增大而减小 8.(2008年乌鲁木齐)反比例函数6y x=-的图象位于( ) A .第一、三象限 B .第二、四象限 C .第二、三象限 D .第一、二象限 9.某空调厂装配车间原计划用2个月时间(每月以30天计算),每天组装150台空调.(1)从组装空调开始,每天组装的台数m (单位:台/天)与生产的时间t (单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?第5题图1-1yOxP第4题图第6题图y xO OyxBA第15课时 二次函数图象和性质【知识梳理】1. 二次函数2()y a x h k =-+的图像和性质a >0a <0图 象 开 口 对 称 轴 顶点坐标最 值当x = 时,y 有最 值当x = 时,y 有最 值 增减性 在对称轴左侧 y 随x 的增大而y 随x 的增大而 在对称轴右侧 y 随x 的增大而y 随x 的增大而2. 二次函数c bx ax y ++=2用配方法可化成()k h x a y +-=2的形式,其中h = , k = .3. 二次函数2()y a x h k =-+的图像和2ax y =图像的关系. 4. 二次函数c bx ax y ++=2中c b a ,,的符号的确定.【思想方法】 数形结合【例题精讲】 例1.已知二次函数24y x x =+,(1) 用配方法把该函数化为2()y a x h k =-+ (其中a 、h 、k 都是常数且a≠0)形式,并画 出这个函数的图像,根据图象指出函数的对称 轴和顶点坐标.(2) 求函数的图象与x 轴的交点坐标.例2. (2008年大连)如图,直线m x y +=和抛物线c bx x y ++=2都经过点A(1,0),B(3,2).⑴ 求m 的值和抛物线的解析式;⑵ 求不等式m x c bx x +>++2的解集.(直接写出答案)【当堂检测】1. 抛物线()22-=x y 的顶点坐标是 .2.将抛物线23y x =-向上平移一个单位后,得到的抛物线解析式是 . 3. 如图所示的抛物线是二次函数2231y ax x a =-+- 的图象,那么a 的值是 .4.二次函数2(1)2y x =-+的最小值是( )A.-2B.2C.-1D.15. 请写出一个开口向上,对称轴为直线x =2,且与y 轴的交点坐标为(0,3)的抛物线的解析式 .6.已知二次函数22y x x m =-++的部分图象如右图所示,则关于x 的一元二次方程220x x m -++=的解为 .7.已知函数y=x 2-2x-2的图象如图所示,根据其中提供的信息,可求得使y≥1成立的x 的取值范围是( )A .-1≤x≤3B .-3≤x≤1C .x≥-3D .x≤-1或x≥3 8. 二次函数c bx ax y ++=2(0≠a )的图象如图所示,则下列结论: ①a >0; ②c >0; ③ b 2-4a c >0,其中正确的个数是( ) A. 0个 B. 1个 C. 2个 D. 3个第7题图 第8题图9. 已知二次函数243y ax x =-+的图象经过点(-1,8).(1)求此二次函数的解析式;(2)根据(1)填写下表.在直角坐标系中描点,并画出函数的图象;x 0 1 2 3 4 y(3)根据图象回答:当函数值y<0时,x 的取值范围是什么?第3题图第6题图第16课时 二次函数应用【知识梳理】1. 二次函数的解析式:(1)一般式: ;(2)顶点式:2. 顶点式的几种特殊形式.⑴ , ⑵ , ⑶ ,(4) .3.二次函数c bx ax y ++=2通过配方可得224()24b ac b y a x a a-=++,其抛物线关于直线x = 对称,顶点坐标为( , ).⑴ 当0a >时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 ;⑵ 当0a <时,抛物线开口向 ,有最 (填“高”或“低”)点, 当x = 时,y 有最 (“大”或“小”)值是 .【思想方法】 数形结合【例题精讲】例1. 橘子洲头要建造一个圆形的喷水池,并在水池中央垂直安装一个柱子OP ,柱子顶端P 处装上喷头,由P 处向外喷出的水流(在各个方向上)沿形状相同的抛物线路径落下(如图所示).若已知OP =3米,喷出的水流的最高点A 距水平面的高度是4米,离柱子OP 的距离为1米. (1)求这条抛物线的解析式;(2)若不计其它因素,水池的半径至少要多少米, 才能使喷出的水流不至于落在池外?例2.随着绿城南宁近几年城市建设的快速发展,对花木的需求量逐年提高.某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润1y 与投资量x 成正比例关系,如图(1)所示;种植花卉的利润2y 与投资量x 成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元) ⑴ 分别求出利润1y 与2y 关于投资量x 的函数关系式; ⑵ 如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?(1) (2)【当堂检测】1. 有一个抛物线形桥拱,其最大高度为16米,跨度为40米,现在它的示意图放在平面直角坐标系中如图,则此抛物线的解析式为 .2. 某公司的生产利润原来是a 元,经过连续两年的增长达到了y 万元,如果每年增长的百分数都是x ,那么y 与x 的函数关系是( ) A .y =x 2+a B .y = a (x -1)2 C .y =a (1-x )2 D .y =a (l +x )2 3.如图,用长为18 m 的篱笆(虚线部分),两面靠墙围成矩形的苗圃.⑴ 设矩形的一边为()m x 面积为y (m 2),求y 关于x 的函数关系式,并写出自变量x 的取值范围;⑵ 当x 为何值时,所围苗圃的面积最大,最大面积是多少?4.体育测试时,初三一名高个学生推铅球,已知铅球所经过的路线为抛物线35321212++-=x x y 的一部分,根据关系式回答:⑴ 该同学的出手最大高度是多少?⑵ 铅球在运行过程中离地面的最大高度是多少? ⑶ 该同学的成绩是多少?5.某企业信息部进行市场调研发现:信息一:如果单独投资A 种产品,则所获利润A y (万元)与投资金额x (万元)之间存在正比例函数关系:A y kx =,并且当投资5万元时,可获利润2万元; 信息二:如果单独投资B 种产品,则所获利润B y (万元)与投资金额x (万元)之间存在二次函数关系:2B y ax bx =+,并且当投资2万元时,可获利润2.4万元;当投资4万元,可获利润3.2万元.(1) 请分别求出上述的正比例函数表达式与二次函数表达式;(2) 如果企业同时对A 、B 两种产品共投资10万元,请你设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少.第1题图第17课时 数据的描述、分析(一)【知识梳理】1.掌握总体、个体、样本、样本容量四个基本概念;2.理解样本平均数、极差、方差、 标准差、中位数、众数. 【思想方法】1. 会运用样本估计总体的思想【例题精讲】 例1.某校高一新生参加军训,一学生进行五次实弹射击的成绩(单位:环) 如下:8,6,10,7,9,则这五次射击的平均成绩是 环,中位数 环,极差是 环,方差是 环2.例2.已知样本x 1、x 2、x 3、x 4的平均数是2,则x 1+3、x 2+3、x 3+3、x 4+3的平均 数为 ; .已知样本x 1,x 2,x 3,…,x n 的方差是1,那么样本2x 1+3, 2x 2+3,2x 3+3,…,2x n +3的方差是 , 标准差是 .例3.小明上学期六门科目的期末考试成绩(单位:分)分别是:120,115,x ,60,85,80.若平均分是93分,则x=_________,一组数据2,4,x ,2, 3,4的众数是2,则x = .例4.为了了解我市九年级学生中考数学成绩,从所有考生的试卷中抽取1000 份试卷进行统计分析,在这个问题中,样本是被抽取的1000名学生,则总体 是 ,个体是 , 样本是 ,样本容量是 .例5.某校九年级(1)班积极响应校团委的号召, 每位同学都向“希望工程” 捐献图书,全班40名同学共捐图书320册.特别值得一提的是李扬、王州两 位同学在父母的支持下各捐献了50册图书. 班长统计了全班捐书情况如下 表(被粗心的马小虎用墨水污染了一部分):⑴ 分别求出该班级捐献7册图书和8册图书的人数;⑵ 请算出捐书册数的平均数、中位数和众数, 并判断其中哪些统计量不能 反映该班同学捐书册数的一般状况,说明理由.册数 4 5 6 7 850 人数 6 8 15 2第18课时数据的描述、分析(二)【知识梳理】1. 明确扇形图、条形图、折线统计图的区别与联系.【思想方法】1. 基本图形的识别.【例题精讲】例1.下面是两户居民家庭全年各项支出的统计图.根据统计图,下列对两户教育支出占全年总支出的百分比作出的判断中,正确的是()A.甲户比乙户大 B.乙户比甲户大C.甲、乙两户一样大 D.无法确定哪一户大例1图例2.在“不闯红灯,珍惜生命”活动中,文明中学的关欣和李好两位同学某天来到城区中心的十字路口,观察、统计上午7:00~12:00中闯红灯的人次.制作了如下的两个数据统计图.(1)求图(一)提供的五个数据(各时段闯红灯人次)的众数和平均数.(2)估计一个月(按30天计算)上午7:00~12:00在该十字路口闯红灯的未成年人约有________人次.(3)请你根据统计图提供的信息向交通管理部门提出一条合理化建议.例2图例3.数学课上,年轻的刘老师在讲授“轴对称”时,设计了如下四种教学方法:①教师讲,学生听;②教师让学生自己做;③教师引导学生画图,发现规律;④教师让学生对折纸,观察发现规律,然后画图.数学教研组长将上述教学方法作为调研内容发到全年级8个班420名同学手中,。

相关文档
最新文档