北师大版七年级下册数学复习
北师大版七年级(下册)数学知识点总结
北师大版数学七年级下册知识点总结第一章 整式的乘除1、单项式的概念:由数与字母的乘积构成的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。
2、多项式:几个单项式的和叫做多项式。
多项式中每个单项式叫多项式的项,次数最高项的次数叫多项式的次数。
3、整式:单项式和多项式统称整式。
注意:凡分母含有字母代数式都不是整式。
也不是单项式和多项式。
4、同底数幂的乘法法则:n m n m a a a +=•(n m ,都是正整数)同底数幂相乘,底数不变,指数相加。
注意:底数可以是多项式或单项式。
如:532)()()(b a b a b a +=+•+5、幂的乘方法则:mn n m a a =)((n m ,都是正整数)幂的乘方,底数不变,指数相乘。
如:10253)3(=-幂的乘方法则可以逆用:即m n n m mn a a a )()(==如:23326)4()4(4==6、积的乘方法则:n n n b a ab =)((n 是正整数)积的乘方,等于各因数乘方的积。
如:(523)2z y x -=5101555253532)()()2(z y x z y x -=•••-7、同底数幂的除法法则:n m n m a a a -=÷(n m a ,,0≠都是正整数,且)n m同底数幂相除,底数不变,指数相减。
如:3334)()()(b a ab ab ab ==÷8、零指数和负指数;10=a ,(ɑ≠0)即任何不等于零的数的零次方等于1。
p p aa 1=-(p a ,0≠是正整数),即一个不等于零的数的p -次方等于这个数的p 次方的倒数。
9、科学记数法:如:0.00000721=6-1021.7⨯(第一个非零数字前零的个数)10、单项式的乘法法则:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。
北师大七年级数学下册期末复习讲义(机构专用)
11.化简求值: ,其中 .
12.先化简,再求值.
,其中
13.化简与求值: ,其中 , .
14.化简求值: ,其中 .
15.先化简,再求值: .其中 , .
16.先化简,再求值:
,其中 .
17.先化简,再求值. ,其中m,n满足 .
03乘法公式应用专题
1.如图,将边长为m的正方形纸板沿虚线剪成两个小正方形和两个长方形,拿掉边长为n的小正方形纸板后,将剩下的三块拼成新的长方形.
3.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是_____.
4.如图,对一个正方形进行面积分割,下列等式能够正确表示该图形面积关系的是( )
A.(a+b)2=a2+2ab+b2B.(a+b)2=a2+2ab﹣b2
C.(a﹣b)2=a2﹣2ab+b2D.(a+b)(a﹣b)=a2﹣b2
(3)直接写出字母a、b、c之间的数量关.
12.(1)已知4m=a,8n=b,用含a、b的式子表示下列代数式:
①求:22m+3n的值;②求:24m-6n的值;
(2)已知2×8x×16=226,求x的值.
13.观察下面三行单项式:
x, , , , , , ;①
, , , , , , ;②
, , , , , , ;③
8.2002年8月,在北京召开的国际数学家大会会标取材于我国古代数学家赵爽的《勾股圆方图》,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形(如图1),且大正方形的面积是25,小正方形的面积是4,直角三角形的较短直角边为a,较长直角边为b.如果将四个全等的直角三角形按如图2的形式摆放,那么图2中最大的正方形的面积为_______.
北师大版七年级数学下册期末复习练习题(含答案)
北师大版七年级数学下册期末复习练习题(含答案)期末复练题一、选择题1.(-4)的结果是()。
A。
-4B。
-40C。
0D。
42.下列图形中,是轴对称图形的是()。
A。
B。
C。
D。
3.某种秋冬流感病毒的直径约为0.xxxxxxxx3米,该直径用科学记数法表示为()米。
A。
2.03×10^-8B。
2.03×10^-7C。
2.03×10^-6D。
0.203×10^-64.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是()。
A。
30B。
20C。
60D。
405.在一个不透明的布袋中装有红色、白色玻璃球共40个,除颜色外其他完全相同,XXX通过多次摸球试验后发现,其中摸到白色球的频率稳定在85%左右,则口袋中红色球可能有()个。
A。
34B。
30C。
10D。
66.如图,可以判定AB∥CD的条件是()。
A。
∠1=∠2B。
∠3=∠4C。
∠D=∠5D。
∠BAD+∠B=180°7.如图,太阳光线AC和A' C'是平行的,在同一时刻,若两根木杆的影子一样长,则两根木杆高度相等。
这利用了全等图形的性质,其中判断△ABC≌△A' B' C'的依据是()。
A。
SASB。
ASAC。
SSSD。
AAS8.当x=1时,代数式ax^3-bx+4的值是7,则当x=-1时,代数式ax^3-bx+4的值是()。
A。
-7B。
7C。
3D。
19.如图,在△ABC中,已知BC=13,AB的中垂线交BC 于D,AC的中垂线交BC于E,则△ADE的周长等于()。
A。
11B。
13C。
14D。
1510.电话卡上存有4元话费,通话时每分钟话费0.4元,则电话卡上的余额y(元)与通话时间t(分钟)之间的函数图象是图中的()。
A。
B。
C。
D。
11.如图,XXX,CD、BE分别是△XXX的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG=2∠ABF;②BA 平分∠XXX;③∠ABG=∠ACB;④∠CFB=135°。
北师大版七年级数学下册总复习专项测试题 附答案解析(10份)
总复习专项测试题(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,小强利用全等三角形的知识测量池塘两端,的距离,若,则只需测出其长度的线段是( ).A.B.C.D.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定3、如图,已知,,则( ).A.B.C.D.4、已知在正方形网格中的位置如图所示,点、、、均在格点上,则点叫做的()A. 外心B. 内心C. 重心D. 无法确定5、在庆祝抗战胜利周年那一年,某市某楼盘让利于民,决定将原价为元/平方米的商品房价降价销售,降价后的销售价为()A.B.C.D.6、下列说法正确的是()A. 整式就是多项式B. 是单项式C. 是七次二项式D. 是单项式7、的次数和项数分别为()A.B.C.D.8、下列图形中,多边形有()A. 个B. 个C. 个D. 个9、如图,中,,,平分,,则图中等腰三角形的个数()A. 个B. 个C. 个D. 个10、如图,已知直线、被直线所截,那么的同位角是()A.C.D.11、若,则()A.B.C.D.12、下列关于“”的说法中,错误的是()A. 的绝对值是B. 的倒数是C. 的相反数是D. 是最小的正整数13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角14、一个直三棱柱的顶点个数是()A.B.C.15、下列说法中:①棱柱的上、下底面的形状相同;②若,则点为线段的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()A. 个B. 个C. 个D. 个二、填空题(本大题共有5小题,每小题5分,共25分)16、利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示,第二行表示,但它不能全面反映的关系,只能反映其中的一部分.17、多面体中,设面数为,顶点数为,棱数为,则、、间的关系式为__________.18、计算__________.19、如图,,其中,则.20、某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在_______三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.22、如图,在等腰三角形中,已知边的垂直平分线交于点,,,求的周长.23、计算:(1)(2)总复习专项测试题(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、如图,小强利用全等三角形的知识测量池塘两端,的距离,若,则只需测出其长度的线段是( ).A.B.C.D.【答案】B【解析】解:由题意知,,.只需测出线段的长度即可得出池塘两端,的距离.故答案应选:.2、在中,,的垂直平分线交于点,交于点,且,则为().A.B.C.D. 无法确定【答案】B【解析】解:如图所示.,且平分,,是等腰三角形,,,,,而,且,,解得.故正确答案是:.3、如图,已知,,则( ).A.B.C.D.【答案】C【解析】解:,,,.故正确答案是.4、已知在正方形网格中的位置如图所示,点、、、均在格点上,则点叫做的()A. 外心B. 内心C. 重心D. 无法确定【答案】C【解析】解:由网格中图可知,点为的中点,点为的中点,则、的交点是的重心.5、在庆祝抗战胜利周年那一年,某市某楼盘让利于民,决定将原价为元/平方米的商品房价降价销售,降价后的销售价为()A.B.C.D.【答案】C【解析】解:由题意得,降价后的销售价为.6、下列说法正确的是()A. 整式就是多项式B. 是单项式C. 是七次二项式D. 是单项式【答案】B【解析】解:根据整式的概念可知,单项式和多项式统称为整式,故“整式就是多项式”错误;是单项式,故“是单项式”正确;是次二项式,故“是七次二项式”错误;是多项式,故“是单项式”错误.故正确答案是:是单项式7、的次数和项数分别为()A.B.C.D.【答案】A【解析】解:的次数和项数分别为.8、下列图形中,多边形有()A. 个B. 个C. 个D. 个【答案】B【解析】解:由多边形的概念可知第四个、第五个是多边形共个.9、如图,中,,,平分,,则图中等腰三角形的个数()A. 个B. 个C. 个D. 个【答案】A【解析】解:,是等腰三角形,,平分,,,,,在中,,为等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,在中,,是等腰三角形,所以共有个等腰三角形.10、如图,已知直线、被直线所截,那么的同位角是()A.B.C.D.【答案】D【解析】解:根据同位角的定义知,的同位角是.11、若,则()A.B.C.D.【答案】A【解析】解:由题意得解得.12、下列关于“”的说法中,错误的是()A. 的绝对值是B. 的倒数是C. 的相反数是D. 是最小的正整数【答案】C【解析】解:的绝对值是,正确;的倒数是,正确;的相反数是,故“的相反数是”错误;是最小的正整数,正确.13、如图,在中,,点分别在边上,若,则下列结论正确的是()A. 和互为余角B. 和互为余角C. 和互为补角D. 和互为补角【答案】B【解析】解:,,,,和互为余角.14、一个直三棱柱的顶点个数是()A.B.C.D.【答案】D【解析】解:一个直三棱柱由两个三边形的底面和个长方形的侧面组成,根据其特征及欧拉公式可知,它有个顶点.15、下列说法中:①棱柱的上、下底面的形状相同;②若,则点为线段的中点;③相等的两个角一定是对顶角;④不相交的两条直线叫做平行线;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短.正确的有()A. 个B. 个C. 个D. 个【答案】B【解析】解:①棱柱的上、下底面的形状相同,此选项正确;②若,则点为线段的中点,不一定在一条直线上,故此选项错误;③相等的两个角一定是对顶角,交的顶点不一定在一个位置,故此选项错误;④不相交的两条直线叫做平行线,必须在同一平面内,故此选项错误;⑤直线外一点与直线上各点连接的所有线段中,垂线段最短,此选项正确.故正确的为①⑤,共个.二、填空题(本大题共有5小题,每小题5分,共25分)16、利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示,第二行表示,但它不能全面反映的关系,只能反映其中的一部分.【答案】自变量;因变量;两个变量之间【解析】解:利用表格,可以表示因变量随自变量变化而变化的情况,一般地,表格第一行表示自变量,第二行表示因变量,但它不能全面反映两个变量之间的关系,只能反映其中的一部分.正确答案是:自变量;因变量;两个变量之间.17、多面体中,设面数为,顶点数为,棱数为,则、、间的关系式为__________.【答案】【解析】解:由欧拉公式:,可得:.18、计算__________.【答案】【解析】解:19、如图,,其中,则.【答案】127【解析】解:由,得,,所以.20、某学校为了增强学生的国防意识,在八年级进行了一次国防知识测验.为了了解这次测验的成绩状况,从中抽取了50名学生的成绩,将所得数据整理后,画出频数分布直方图如图所示.从图中可知这50名学生的成绩的中位数在_______组.【答案】【解析】解:根据频数分布直方图可知:后面三组的频数分别为、、,因为共有个数,所以这名学生的成绩的中位数是第和个数的平均数.因为第和个数在第三组,从图中可知这名学生的成绩的中位数在组.三、解答题(本大题共有3小题,每小题10分,共30分)21、如图,在中,,是上一点,,过点作的垂线交于点.求证:.【解析】证明:...在和中.,,..,.(三线合一).22、如图,在等腰三角形中,已知边的垂直平分线交于点,,,求的周长.【解析】解:是的垂直平分线,,而,,已知,,又知,的周长为:.正确答案是:.23、计算:(1)【解析】解:(2)【解析】解:总复习专项测试题(二)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、在下图所示的水解环保、绿色食品、节能、绿色环保四个标志中,是轴对称图形的是()A.B.C.D.2、某音乐行出售三种音乐,即古典音乐,流行音乐,民族音乐,为了表示这三种音乐唱片的销售量的百分比,应该用()A. 扇形统计图B. 折线统计图C. 条形统计图D. 以上都可以3、含有 _____的等式叫做方程。
期末复习(压轴题49题)—2023-2024学年七年级数学下学期期末考点(北师大版)(解析版)
z 期末复习(压轴题49题20个考点)一.规律型:数字的变化类(共1小题)1.为了求1+2+22+23+…+22011+22012的值,可令S =1+2+22+23+…+22011+22012,则2S =2+22+23+24+…+22012+22013,因此2S ﹣S =22013﹣1,所以1+22+23+…+22012=22013﹣1.仿照以上方法计算1+5+52+53+…+52012的值是( )A .52013﹣1B .52013+1C .D . 【答案】D【解答】解:令S =1+5+52+53+ (52012)则5S =5+52+53+…+52012+52013,5S ﹣S =﹣1+52013,4S =52013﹣1,则S =.故选:D .二.同底数幂的乘法(共1小题) 2.阅读材料:求1+2+22+23+24+…+22013的值.解:设S =1+2+22+23+24+…+22012+22013,将等式两边同时乘2得:2S =2+22+23+24+25+…+22013+22014 将下式减去上式得2S ﹣S =22014﹣1即S =22014﹣1即1+2+22+23+24+…+22013=22014﹣1请你仿照此法计算:(1)1+2+22+23+24+…+210(2)1+3+32+33+34+…+3n (其中n 为正整数).【答案】见试题解答内容【解答】解:(1)设S =1+2+22+23+24+ (210)将等式两边同时乘2得:2S =2+22+23+24+…+210+211,将下式减去上式得:2S ﹣S =211﹣1,即S =211﹣1,则1+2+22+23+24+…+210=211﹣1;z (2)设S =1+3+32+33+34+…+3n ①,两边同时乘3得:3S =3+32+33+34+…+3n +3n +1②,②﹣①得:3S ﹣S =3n +1﹣1,即S =(3n +1﹣1),则1+3+32+33+34+…+3n =(3n +1﹣1).三.多项式乘多项式(共1小题)3.如图,正方形卡片A 类,B 类和长方形卡片C 类若干张,如果要拼一个长为(a +2b ),宽为(a +b )的大长方形,则需要C 类卡片 张.【答案】见试题解答内容【解答】解:(a +2b )(a +b )=a 2+3ab +2b 2.则需要C 类卡片3张.故答案为:3.四.完全平方公式(共3小题)4.已知a ﹣b =b ﹣c =,a 2+b 2+c 2=1,则ab +bc +ca 的值等于 .【答案】见试题解答内容【解答】解:∵a ﹣b =b ﹣c =,∴(a ﹣b )2=,(b ﹣c )2=,a ﹣c =, ∴a 2+b 2﹣2ab =,b 2+c 2﹣2bc =,a 2+c 2﹣2ac =, ∴2(a 2+b 2+c 2)﹣2(ab +bc +ca )=++=, ∴2﹣2(ab +bc +ca )=, ∴1﹣(ab +bc +ca )=, ∴ab +bc +ca =﹣=﹣. 故答案为:﹣.z 5.请看杨辉三角(1),并观察下列等式(2):根据前面各式的规律,则(a +b )6= .【答案】见试题解答内容【解答】解:(a +b )6=a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 6故本题答案为:a 6+6a 5b +15a 4b 2+20a 3b 3+15a 2b 4+6ab 5+b 66.回答下列问题(1)填空:x 2+=(x +)2﹣ =(x ﹣)2+(2)若a +=5,则a 2+= ;(3)若a 2﹣3a +1=0,求a 2+的值. 【答案】见试题解答内容【解答】解:(1)2、2.(2)23. (3)∵a =0时方程不成立,∴a ≠0,∵a 2﹣3a +1=0两边同除a 得:a ﹣3+=0,移项得:a +=3,∴a 2+=(a +)2﹣2=7. 五.平方差公式的几何背景(共1小题)7.如图,边长为m +4的正方形纸片剪出一个边长为m 的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.z【答案】见试题解答内容【解答】解:设拼成的矩形的另一边长为x ,则4x =(m +4)2﹣m 2=(m +4+m )(m +4﹣m ),解得x =2m +4.故答案为:2m +4.六.整式的混合运算(共1小题)8.7张如图1的长为a ,宽为b (a >b )的小长方形纸片,按图2的方式不重叠地放在矩形ABCD 内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S ,当BC 的长度变化时,按照同样的放置方式,S 始终保持不变,则a ,b 满足( )A .a =bB .a =3bC .a =bD .a =4b 【答案】B 【解答】解:左上角阴影部分的长为AE ,宽为AF =3b ,右下角阴影部分的长为PC ,宽为a ,∵AD =BC ,即AE +ED =AE +a ,BC =BP +PC =4b +PC ,∴AE +a =4b +PC ,即AE ﹣PC =4b ﹣a ,∴阴影部分面积之差S =AE •AF ﹣PC •CG =3bAE ﹣aPC =3b (PC +4b ﹣a )﹣aPC =(3b ﹣a )PC +12b 2﹣3ab ,则3b ﹣a =0,即a =3b .解法二:既然BC 是变化的,当点P 与点C 重合开始,然后BC 向右伸展,设向右伸展长度为X ,左上阴影增加的是3bX ,右下阴影增加的是aX ,因为S 不变,∴增加的面积相等,z ∴3bX =aX ,∴a =3b .故选:B .七.函数的图象(共4小题)9.如图,某电信公司提供了A ,B 两种方案的移动通讯费用y (元)与通话时间x (分)之间的关系,则下列结论中正确的有( )(1)若通话时间少于120分,则A 方案比B 方案便宜20元;(2)若通话时间超过200分,则B 方案比A 方案便宜12元;(3)若通讯费用为60元,则B 方案比A 方案的通话时间多;(4)若两种方案通讯费用相差10元,则通话时间是145分或185分.A .1个B .2个C .3个D .4个【答案】C【解答】解:依题意得A :(1)当0≤x ≤120,y A =30, (2)当x >120,y A =30+(x ﹣120)×[(50﹣30)÷(170﹣120)]=0.4x ﹣18;B :(1)当0≤x <200,y B =50,当x >200,y B =50+[(70﹣50)÷(250﹣200)](x ﹣200)=0.4x ﹣30,所以当x ≤120时,A 方案比B 方案便宜20元,故(1)正确;当x ≥200时,B 方案比A 方案便宜12元,故(2)正确;z 当y =60时,A :60=0.4x ﹣18,∴x =195,B :60=0.4x ﹣30,∴x =225,故(3)正确;当B 方案为50元,A 方案是40元或者60元时,两种方案通讯费用相差10元,将y A =40或60代入,得x =145分或195分,故(4)错误;故选:C .10.在物理实验课上,小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧秤的读数y (单位N )与铁块被提起的高度x (单位cm )之间的函数关系的大致图象是( )A .B .C .D . 【答案】C 【解答】解:因为小明用弹簧秤将铁块A 悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y 不变,出水面后y 逐渐增大,离开水面后y 不变.故选:C .11.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x 表示乌龟从起点出发所行的时间,y 1表示乌龟所行的路程,y 2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;z ④兔子在途中750米处追上乌龟.其中正确的说法是 .(把你认为正确说法的序号都填上)【答案】见试题解答内容【解答】解:根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30﹣﹣40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y 1=20x ﹣200(40≤x ≤60),y 2=100x ﹣4000(40≤x ≤50),当y 1=y 2时,兔子追上乌龟,此时20x ﹣200=100x ﹣4000,解得:x =47.5,y 1=y 2=750米,即兔子在途中750米处追上乌龟,故④正确.综上可得①③④正确.故答案为:①③④.12.小高从家门口骑车去单位上班,先走平路到达点A ,再走上坡路到达点B ,最后走下坡路到达工作单位,所用的时间与路程的关系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上班时一致,那么他从单位到家门口需要的时间是 分钟.【答案】见试题解答内容【解答】解:先算出平路、上坡路和下坡路的速度分别为、和(千米/分),z 所以他从单位到家门口需要的时间是(分钟).故答案为:15.八.二次函数的图象(共1小题) 13.如图,正方形ABCD 的边长为4,点P 、Q 分别是CD 、AD 的中点,动点E 从点A 向点B 运动,到点B 时停止运动;同时,动点F 从点P 出发,沿P →D →Q 运动,点E 、F 的运动速度相同.设点E 的运动路程为x ,△AEF 的面积为y ,能大致刻画y 与x 的函数关系的图象是( )A .B .C .D .【答案】A 【解答】解:当F 在PD 上运动时,△AEF 的面积为y =AE •AD =2x (0≤x ≤2),当F 在AD 上运动时,△AEF 的面积为y =AE •AF =x (6﹣x )=﹣x 2+3x (2<x ≤4),图象为:故选:A .z 九.平行线的性质(共2小题)14.如图,将长方形ABCD 沿线段EF 折叠到EB 'C 'F 的位置,若∠EFC '=100°,则∠DFC '的度数为( )A .20°B .30°C .40°D .50°【答案】A【解答】解:由翻折知,∠EFC =∠EFC '=100°,∴∠EFC +∠EFC '=200°,∴∠DFC '=∠EFC +∠EFC '﹣180°=200°﹣180°=20°,故选:A .15.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC =120°,∠BCD =80°,则∠CDE = 度. 【答案】见试题解答内容【解答】解:过点C 作CF ∥AB ,已知珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,∴AB ∥DE ,∴CF ∥DE ,∴∠BCF +∠ABC =180°,∴∠BCF =60°,∴∠DCF =20°,∴∠CDE =∠DCF =20°.故答案为:20.z十.三角形的面积(共4小题)16.在如图的方格纸中,每个小方格都是边长为1的正方形,点A 、B 是方格纸中的两个格点(即正方形的顶点),在这个5×5的方格纸中,找出格点C 使△ABC 的面积为2个平方单位,则满足条件的格点C 的个数是( )A .5B .4C .3D .2【答案】A【解答】解:满足条件的C 点有5个,如图平行于AB 的直线上,与网格的所有交点就是.故选:A . 17.如图,△ABC 三边的中线AD 、BE 、CF 的公共点为G ,若S △ABC =12,则图中阴影部分的面积是 .【答案】见试题解答内容【解答】方法1解:∵△ABC 的三条中线AD 、BE ,CF 交于点G ,∴S △CGE =S △AGE =S △ACF ,S △BGF =S △BGD =S △BCF ,∵S △ACF =S △BCF =S△ABC=×12=6,z ∴S △CGE =S △ACF =×6=2,S △BGF =S △BCF =×6=2,∴S 阴影=S △CGE +S △BGF =4.故答案为4.方法2设△AFG ,△BFG ,△BDG ,△CDG ,△CEG ,△AEG 的面积分别为S 1,S 2,S 3,S 4,S 5,S 6,根据中线平分三角形面积可得:S 1=S 2,S 3=S 4,S 5=S 6,S 1+S 2+S 3=S 4+S 5+S 6①,S 2+S 3+S 4=S 1+S 5+S 6② 由①﹣②可得S 1=S 4,所以S 1=S 2=S 3=S 4=S 5=S 6=2,故阴影部分的面积为4.故答案为:4.18.如图,A 、B 、C 分别是线段A 1B ,B 1C ,C 1A 的中点,若△ABC 的面积是1,那么△A 1B 1C 1的面积 .【答案】见试题解答内容【解答】解:如图,连接AB 1,BC 1,CA 1,∵A 、B 分别是线段A 1B ,B 1C 的中点,∴S △ABB 1=S △ABC =1,S △A 1AB 1=S △ABB 1=1,∴S △A 1BB 1=S △A 1AB 1+S △ABB 1=1+1=2,同理:S △B 1CC 1=2,S △A 1AC 1=2,∴△A 1B 1C 1的面积=S △A 1BB 1+S △B 1CC 1+S △A 1AC 1+S △ABC =2+2+2+1=7.故答案为:7.z 19.如图,对面积为s 的△ABC 逐次进行以下操作:第一次操作,分别延长AB 、BC 、CA 至点A 1、B 1、C 1,使得A 1B =2AB ,B 1C =2BC ,C 1A =2CA ,顺次连接A 1、B 1、C 1,得到△A 1B 1C 1,记其面积为S 1;第二次操作,分别延长A 1B 1、B 1C 1、C 1A 1至点A 2、B 2、C 2,使得A 2B 1=2A 1B 1,B 2C 1=2B 1C 1,C 2A 1=2C 1A 1顺次连接A 2、B 2、C 2,得到△A 2B 2C 2,记其面积为S 2;…;按此规律继续下去,可得到△A n B n ∁n ,则其面积S n = .【答案】见试题解答内容【解答】解:连接A 1C ;S △AA 1C =3S △ABC =3S ,S △AA 1C 1=2S △AA 1C =6S ,所以S △A 1B 1C 1=6S ×3+1S =19S ;同理得S △A 2B 2C 2=19S ×19=361S ; S △A 3B 3C 3=361S ×19=6859S ,S △A 4B 4C 4=6859S ×19=130321S , S △A 5B 5C 5=130321S ×19=2476099S ,从中可以得出一个规律,延长各边后得到的三角形是原三角形的19倍,所以延长第n 次后,得到△A n B n ∁n , 则其面积Sn =19n •S .十一.三角形内角和定理(共3小题)20.已知△ABC,(1)如图1,若P点是∠ABC和∠ACB的角平分线的交点,则∠P=90°+∠A;(2)如图2,若P点是∠ABC和外角∠ACE的角平分线的交点,则∠P=90°﹣∠A;(3)如图3,若P点是外角∠CBF和∠BCE的角平分线的交点,则∠P=90°﹣∠A.上述说法正确的个数是( )A.0个B.1个C.2个D.3个【答案】C【解答】解:(1)若P点是∠ABC和∠ACB的角平分线的交点,则∠PBC=∠ABC,∠PCB=∠ACB则∠PBC+∠PCB=(∠ABC+∠ACB)=(180°﹣∠A)z在△BCP中利用内角和定理得到:∠P=180﹣(∠PBC+∠PCB)=180﹣(180°﹣∠A)=90°+∠A,故成立;(2)当△ABC是等腰直角三角形,∠A=90°时,结论不成立;(3)若P点是外角∠CBF和∠BCE的角平分线的交点,则∠PBC=∠FBC=(180°﹣∠ABC)=90°﹣∠ABC,∠BCP=∠BCE=90°﹣∠ACB∴∠PBC+∠BCP=180°﹣(∠ABC+∠ACB)又∵∠ABC+∠ACB=180°﹣∠Az 在△BCP 中利用内角和定理得到:∠P =180﹣(∠PBC +∠PCB )=180﹣(180°+∠A )=90°﹣∠A ,故成立.∴说法正确的个数是2个.故选:C .21.已知△ABC 中,∠A =α.在图(1)中∠B 、∠C 的角平分线交于点O 1,则可计算得∠BO 1C =90°+;在图(2)中,设∠B 、∠C 的两条三等分角线分别对应交于O 1、O 2,则∠BO 2C = ;请你猜想,当∠B 、∠C 同时n 等分时,(n ﹣1)条等分角线分别对应交于O 1、O 2,…,O n ﹣1,如图(3),则∠BO n ﹣1C = (用含n 和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O 2B 和O 2C 分别是∠B 、∠C 的三等分线,∴∠O 2BC +∠O 2CB =(∠ABC +∠ACB )=(180°﹣α)=120°﹣α;∴∠BO 2C =180°﹣(∠O 2BC +∠O 2CB )=180°﹣(120°﹣α)=60°+α;在△ABC 中,∵∠A =α,∴∠ABC +∠ACB =180°﹣α,∵O n ﹣1B 和O n ﹣1C 分别是∠B 、∠C 的n 等分线,∴∠O n ﹣1BC +∠O n ﹣1CB =(∠ABC +∠ACB )=(180°﹣α)=﹣. ∴∠BO n ﹣1C =180°﹣(∠O n ﹣1BC +∠O n ﹣1CB )=180°﹣(﹣)=+.z 故答案为:60°+α;+.22.如图,在△ABC 中,∠A =m °,∠ABC 和∠ACD 的平分线交于点A 1,得∠A 1;∠A 1BC 和∠A 1CD 的平分线交于点A 2,得∠A 2;…∠A 2012BC 和∠A 2012CD 的平分线交于点A 2013,则∠A 2013= 度.【答案】见试题解答内容【解答】解:∵A 1B 平分∠ABC ,A 1C 平分∠ACD ,∴∠A 1BC =∠ABC ,∠A 1CA =∠ACD ,∵∠A 1CD =∠A 1+∠A 1BC ,即∠ACD =∠A 1+∠ABC ,∴∠A 1=(∠ACD ﹣∠ABC ),∵∠A +∠ABC =∠ACD ,∴∠A =∠ACD ﹣∠ABC ,∴∠A 1=∠A ,∴∠A 1=m °,∵∠A 1=∠A ,∠A 2=∠A 1=∠A , …以此类推∠A 2013=∠A =°. 故答案为:.十二.全等图形(共1小题)23.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A.150°B.180°C.210°D.225°【答案】B【解答】解:在△ABC与△EDC中,,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.z十三.全等三角形的判定(共3小题)24.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( )A.1对B.2对C.3对D.4对【答案】D【解答】解:∵AB=AC,D为BC中点,在△ABD和△ACD中,,∴△ABD≌△ACD;(SSS)∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE(SSS;在△BOD和△COD中,,∴△BOD≌△COD(SAS);在△AOC和△AOB中,,∴△AOC≌△AOB(SSS);故选:D.25.如图EB交AC于M,交FC于D,AB交FC于N,∠E=∠F=90°,∠B=∠C,AE=AF.给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN.其中正确的结论有 ①②③(填序z号).【答案】见试题解答内容【解答】解:∵∠B+∠BAE=90°,∠C+∠CAF=90°,∠B=∠C∴∠1=∠2(①正确)∵∠E=∠F=90°,∠B=∠C,AE=AF∴△ABE≌△ACF(ASA)∴AB=AC,BE=CF(②正确)z ∴△ACN ≌△ABM (ASA )(③正确)∴CN =BM (④不正确).所以正确结论有①②③.故填①②③.26.如图所示,在△ABC 中,D 、E 分别是AB 、AC 上的点,DE ∥BC ,如图①,然后将△ADE 绕A 点顺时针旋转一定角度,得到图②,然后将BD 、CE 分别延长至M 、N ,使DM =BD ,EN =CE ,得到图③,请解答下列问题:(1)若AB =AC ,请探究下列数量关系:①在图②中,BD 与CE 的数量关系是 ;②在图③中,猜想AM 与AN 的数量关系、∠MAN 与∠BAC 的数量关系,并证明你的猜想; 【答案】见试题解答内容【解答】解:(1)①BD =CE ;②AM =AN ,∠MAN =∠BAC ,∵∠DAE =∠BAC ,∴∠CAE =∠BAD ,在△BAD 和△CAE 中∵∴△CAE ≌△BAD (SAS ),∴∠ACE =∠ABD ,z ∵DM =BD ,EN =CE ,∴BM =CN ,在△ABM 和△ACN 中,∵∴△ABM ≌△ACN (SAS ),∴AM =AN ,∴∠BAM =∠CAN ,即∠MAN =∠BAC ;十四.全等三角形的判定与性质(共12小题) 27.如图,AE ⊥AB 且AE =AB ,BC ⊥CD 且BC =CD ,请按照图中所标注的数据,计算图中实线所围成的图形的面积S 是( )A .50B .62C .65D .68 【答案】A【解答】解:∵AE ⊥AB 且AE =AB ,EF ⊥FH ,BG ⊥FH ,∴∠EAB =∠EF A =∠BGA =90°,∵∠EAF +∠BAG =90°,∠ABG+∠BAG=90°,z ∴∠EAF =∠ABG ,在△EF A 和△AGB 中,,∴△EF A ≌△AGB (AAS ),∴AF =BG ,AG =EF .同理证得△BGC ≌△CHD 得GC =DH ,CH =BG .故FH =F A +AG +GC +CH =3+6+4+3=16故S =(6+4)×16﹣3×4﹣6×3=50.故选:A .28.如图,点E 在正方形ABCD 的对角线AC 上,且EC =2AE ,直角三角形FEG 的两直角边EF 、EG 分别交BC 、DC 于点M 、N .若正方形ABCD 的边长为a ,则重叠部分四边形EMCN 的面积为( )A .a 2B .a 2C .a 2D .a 2【答案】D【解答】解:过E 作EP ⊥BC 于点P ,EQ⊥CD 于点Q ,∵四边形ABCD是正方形,∴∠BCD=90°,又∵∠EPM=∠EQN=90°,∴∠PEQ=90°,∴∠PEM+∠MEQ=90°,∵三角形FEG是直角三角形,∴∠NEF=∠NEQ+∠MEQ=90°,∴∠PEM=∠NEQ,∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,∴EP=EQ,四边形PCQE是正方形,在△EPM和△EQN中,,∴△EPM≌△EQN(ASA)∴S△EQN=S△EPM,∴四边形EMCN的面积等于正方形PCQE的面积,∵正方形ABCD的边长为a,∴AC=a,z∵EC=2AE,∴EC=a,∴EP=PC=a,∴正方形PCQE的面积=a×a=a2,∴四边形EMCN的面积=a2,故选:D.29.如图,点A,B,C在一条直线上,△ABD,△BCE均为等边三角形,连接AE和CD,AE分别交CD,BD于点M,P,CD交BE于点Q,连接PQ,BM,下面结论:①△ABE≌△DBC;②∠DMA=60°;③△BPQ为等边三角形;④MB 平分∠AMC ,其中结论正确的有( )zA .1个B .2个C .3个D .4个 【答案】D【解答】解:∵△ABD 、△BCE 为等边三角形,∴AB =DB ,∠ABD =∠CBE =60°,BE =BC ,∴∠ABE =∠DBC ,∠PBQ =60°,在△ABE 和△DBC 中,, ∴△ABE ≌△DBC (SAS ),∴①正确;∵△ABE ≌△DBC ,∴∠BAE =∠BDC ,∵∠BDC +∠BCD =180°﹣60°﹣60°=60°,∴∠DMA =∠BAE +∠BCD =∠BDC +∠BCD =60°,∴②正确;在△ABP 和△DBQ 中,, ∴△ABP ≌△DBQ (ASA ),∴BP =BQ ,∴△BPQ 为等边三角形,∴③正确;∵∠DMA =60°,∴∠AMC =120°,∴∠AMC +∠PBQ =180°,∴P 、B 、Q 、M 四点共圆,z ∵BP =BQ ,∴,∴∠BMP =∠BMQ ,即MB 平分∠AMC ;∴④正确;综上所述:正确的结论有4个;故选:D .30.如图,在正方形ABCD 中,如果AF =BE ,那么∠AOD 的度数是 .【答案】见试题解答内容【解答】解:由ABCD 是正方形,得AD =AB ,∠DAB =∠B =90°.在△ABE 和△DAF 中,, ∴△ABE ≌△DAF (SAS ),∴∠BAE =∠ADF .∵∠BAE +∠EAD =90°,∴∠OAD +∠ADO =90°,∴∠AOD =90°,故答案为:90°.31.如图,△ABC 和△EBD 中,∠ABC =∠DBE =90°,AB =CB ,BE =BD ,连接AE ,CD ,AE 与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE =CD ;(2)求证:AE ⊥CD ;(3)连接BM ,有以下两个结论:①BM 平分∠CBE ;②MB 平分∠AMD .其中正确的有 ② (请写序号,少选、错选均不得分).z【答案】见试题解答内容【解答】(1)证明:∵∠ABC =∠DBE ,∴∠ABC +∠CBE =∠DBE +∠CBE ,即∠ABE =∠CBD ,在△ABE 和△CBD 中,,∴△ABE ≌△CBD ,∴AE =CD .(2)∵△ABE ≌△CBD ,∴∠BAE =∠BCD , ∵∠NMC =180°﹣∠BCD ﹣∠CNM ,∠ABC =180°﹣∠BAE ﹣∠ANB ,又∠CNM =∠ANB ,∵∠ABC =90°,∴∠NMC =90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .z∵△ABE ≌△CBD ,∴AE =CD ,S △ABE =S △CDB ,∴•AE •BK =•CD •BJ ,∴BK =BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△CBM ≌△EBM ,则AB =BD ,显然不可能,故①错误.故答案为②.32.(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠D =90°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD .求证:EF =BE +FD ;(2)如图2,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立? (3)如图3,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =∠BAD ,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【答案】见试题解答内容【解答】证明:(1)延长EB 到G ,使BG =DF ,连接AG .z∵∠ABG =∠ABC =∠D =90°,AB =AD ,∴△ABG ≌△ADF .∴AG =AF ,∠1=∠2.∴∠1+∠3=∠2+∠3=∠EAF =∠BAD .∴∠GAE =∠EAF .又∵AE =AE ,∴△AEG ≌△AEF .∴EG =EF .∵EG =BE +BG .∴EF =BE +FD(2)(1)中的结论EF =BE +FD 仍然成立.(3)结论EF =BE +FD 不成立,应当是EF =BE ﹣FD . 证明:在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵AB =AD ,∴△ABG≌△ADF.∴∠BAG=∠DAF,AG=AF.∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=∠BAD.∴∠GAE=∠EAF.∵AE=AE,∴△AEG≌△AEF.∴EG=EF∵EG=BE﹣BG∴EF=BE﹣FD.33.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.【答案】见试题解答内容【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC ,∴△DAB≌△F AC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠F AC,又∵AB=AC,∴△DAB≌△F AC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠F AC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.z34.(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.) 在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD ﹣BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】见试题解答内容【解答】证明:(1)①∵∠ADC =∠ACB =∠BEC =90°,∴∠CAD +∠ACD =90°,∠BCE +∠CBE =90°,∠ACD +∠BCE =90°. ∴∠CAD =∠BCE .∵AC =BC ,∴△ADC ≌△CEB (AAS ).②∵△ADC ≌△CEB ,∴CE =AD ,CD =BE .∴DE =CE +CD =AD +BE .解:(2)∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE.又∵AC =BC ,∴△ACD ≌△CBE (AAS ).∴CE =AD ,CD =BE .∴DE =CE ﹣CD =AD ﹣BE .(3)当MN 旋转到图3的位置时,AD 、DE 、BE 所满足的等量关系是DE =BE ﹣AD (或AD =BE ﹣DE ,BE =AD +DE 等).∵∠ADC =∠CEB =∠ACB =90°,∴∠ACD =∠CBE ,又∵AC =BC ,∴△ACD ≌△CBE (AAS ),∴AD =CE ,CD =BE ,∴DE =CD ﹣CE =BE ﹣AD .35.(1)如图1,已知:在△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .证明:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC =α,其中α为任意锐角或钝角.请问结论DE =BD +CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图3,D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE ,若∠BDA =∠AEC =∠BAC ,试判断△DEF 的形状.【答案】见试题解答内容【解答】证明:(1)∵BD ⊥直线m ,CE ⊥直线m ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)成立.∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°﹣α,∴∠CAE=∠ABD,∵在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,z∴DE=AE+AD=BD+CE;(3)△DEF是等边三角形.由(2)知,△ADB≌△CEA,BD=AE,∠DBA=∠CAE,∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=60°,∴∠DBA+∠ABF=∠CAE+∠CAF,∴∠DBF=∠F AE,∵BF=AF在△DBF和△EAF中,,∴△DBF≌△EAF(SAS),∴DF=EF,∠BFD=∠AFE,∴∠DFE=∠DF A+∠AFE=∠DF A+∠BFD=60°,∴△DEF为等边三角形.36.在课外小组活动时,小慧拿来一道题(原问题)和小东、小明交流.原问题:如图1,已知△ABC,∠ACB=90°,∠ABC=45°,分别以AB、BC为边向外作△ABD与△BCE,且DA=DB,EB=EC,∠ADB=∠BEC=90°,连接DE交AB于点F.探究线段DF与EF的数量关系.小慧同学的思路是:过点D作DG⊥AB于G,构造全等三角形,通过推理使问题得解.小东同学说:我做过一道类似的题目,不同的是∠ABC=30°,∠ADB=∠BEC=60°.小明同学经过合情推理,提出一个猜想,我们可以把问题推广到一般情况.请你参考小慧同学的思路,探究并解决这三位同学提出的问题:(1)写出原问题中DF与EF的数量关系;(2)如图2,若∠ABC=30°,∠ADB=∠BEC=60°,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明;(3)如图3,若∠ADB=∠BEC=2∠ABC,原问题中的其他条件不变,你在(1)中得到的结论是否发生变化?请写出你的猜想并加以证明.【答案】见试题解答内容【解答】解:(1)DF=EF.(2)猜想:DF=FE.证明:过点D作DG⊥AB于G,则∠DGB=90°.∵DA=DB,∠ADB=60°.∴AG=BG,△DBA是等边三角形.z ∴DB =BA .∵∠ACB =90°,∠ABC =30°,∴AC =AB =BG .在Rt △DBG 和Rt △BAC 中,∴Rt △DBG ≌Rt △BAC (HL ).∴DG =BC .∵BE =EC ,∠BEC =60°,∴△EBC 是等边三角形.∴BC =BE ,∠CBE =60°.∴DG =BE ,∠ABE =∠ABC +∠CBE =90°.∵∠DFG =∠EFB ,∠DGF =∠EBF ,在△DFG 和△EFB 中,∴△DFG ≌△EFB (AAS ).∴DF =EF .(3)猜想:DF =FE .过点D 作DH ⊥AB 于H ,连接HC ,HE ,HE 交CB 于K ,则∠DHB =90°.∵DA =DB , ∴AH =BH ,∠1=∠HDB .∵∠ACB =90°,∴HC =HB .在△HBE 和△HCE 中,∴△HBE ≌△HCE (SSS ).∴∠2=∠3,∠4=∠BEH .∴HK ⊥BC .∴∠BKE =90°.∵∠ADB =∠BEC =2∠ABC ,z ∴∠HDB =∠BEH =∠ABC .∴∠DBC =∠DBH +∠ABC =∠DBH +∠HDB =90°,∠EBH =∠EBK +∠ABC =∠EBK +∠BEK =90°.∴DB ∥HE ,DH ∥BE .∴四边形DHEB 是平行四边形.∴DF =EF .37.(1)操作发现:如图①,D 是等边△ABC 边BA 上一动点(点D 与点B 不重合),连接DC ,以DC 为边在BC 上方作等边△DCF ,连接AF .你能发现线段AF 与BD 之间的数量关系吗?并证明你发现的结论.(2)类比猜想:如图②,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,猜想AF 与BD 在(1)中的结论是否仍然成立?(3)深入探究:Ⅰ.如图③,当动点D 在等边△ABC 边BA 上运动时(点D 与点B 不重合)连接DC ,以DC 为边在BC上方、下方分别作等边△DCF 和等边△DCF ′,连接AF 、BF ′,探究AF 、BF ′与AB 有何数量关系?并证明你探究的结论.Ⅱ.如图④,当动点D 在等边△ABC 边BA 的延长线上运动时,其他作法与图③相同,Ⅰ中的结论是否成立?若不成立,是否有新的结论?并证明你得出的结论.【答案】见试题解答内容z 【解答】解:(1)AF =BD ;证明如下:∵△ABC 是等边三角形(已知),∴BC =AC ,∠BCA =60°(等边三角形的性质);同理知,DC =CF ,∠DCF =60°;∴∠BCA ﹣∠DCA =∠DCF ﹣∠DCA ,即∠BCD =∠ACF ;在△BCD 和△ACF 中,, ∴△BCD ≌△ACF (SAS ),∴BD =AF (全等三角形的对应边相等);(2)证明过程同(1),证得△BCD ≌△ACF (SAS ),则AF =BD (全等三角形的对应边相等),所以,当动点D 运动至等边△ABC 边BA 的延长线上时,其他作法与(1)相同,AF =BD 仍然成立;(3)Ⅰ.AF +BF ′=AB ;证明如下:由(1)知,△BCD ≌△ACF (SAS ),则BD =AF ;同理△BCF ′≌△ACD (SAS ),则BF ′=AD ,∴AF +BF ′=BD +AD =AB ;Ⅱ.Ⅰ中的结论不成立.新的结论是AF =AB +BF ′;证明如下:在△BCF ′和△ACD 中,,∴△BCF ′≌△ACD (SAS ), ∴BF ′=AD (全等三角形的对应边相等);又由(2)知,AF =BD ;∴AF =BD =AB +AD =AB +BF ′,即AF =AB+BF ′.z 38.操作:如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:线段BM 、MN 、NC 之间的关系,并加以证明.说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.注意:选取①完成证明得10分;选取②完成证明得5分.AN =NC (如图②);②DM ∥AC (如图③).附加题:若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.【答案】见试题解答内容【解答】解:(1)BM +CN =MN证明:如图,延长AC 至M 1,使CM 1=BM ,连接DM 1由已知条件知:∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠ABD =∠ACD =90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∴∠MDM 1=(120°﹣∠MDB )+∠M 1DC =120°.又∵∠MDN =60°,∴∠M 1DN =∠MDN =60°.∴△MDN ≌△M 1DN .∴MN =NM 1=NC+CM 1=NC +MB .z (2)附加题:CN ﹣BM =MN证明:如图,在CN 上截取CM 1,使CM 1=BM ,连接MN ,DM 1∵∠ABC =∠ACB =60°,∠DBC =∠DCB =30°,∴∠DBM =∠DCM 1=90°.∵BD =CD ,∴Rt △BDM ≌Rt △CDM 1,∴∠MDB =∠M 1DC ,DM =DM 1∵∠BDM +∠BDN =60°,∴∠CDM 1+∠BDN =60°.∴∠NDM 1=∠BDC ﹣(∠M 1DC +∠BDN )=120°﹣60°=60°.∴∠M 1DN =∠MDN . ∵ND =ND ,∴△MDN ≌△M 1DN . ∴MN =NM 1=NC ﹣CM 1=NC ﹣BM,即MN =NC ﹣BM .z 十五.角平分线的性质(共1小题)39.如图,△ABC 的三边AB 、BC 、CA 长分别为40、50、60.其三条角平分线交于点O ,则S △ABO :S △BCO :S △CAO = .【答案】见试题解答内容【解答】解:过点O 作OD ⊥AB 于点D ,作OE ⊥AC 于点E ,作OF ⊥BC 于点F ,∵OA ,OB ,OC 是△ABC 的三条角平分线,∴OD =OE =OF ,∵△ABC 的三边AB 、BC 、CA 长分别为40、50、60,∴S △ABO :S △BCO :S △CAO =(AB •OD ):(BC •OF ):(AC •OE )=AB :BC :AC =40:50:60=4:5:6.故答案为:4:5:6.十六.线段垂直平分线的性质(共1小题) 40.如图,△ABC 中,AB =AC ,∠BAC =54°,点D 为AB 中点,且OD ⊥AB ,∠BAC 的平分线与AB 的垂直平分线交于点O ,将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,则∠OEC 为度.【答案】见试题解答内容z 【解答】解:法一:如图,连接OB 、OC ,∵∠BAC =54°,AO 为∠BAC 的平分线,∴∠BAO =∠BAC =×54°=27°,又∵AB =AC ,∴∠ABC =(180°﹣∠BAC )=(180°﹣54°)=63°,∵DO 是AB 的垂直平分线,∴OA =OB ,∴∠ABO =∠BAO =27°,∴∠OBC =∠ABC ﹣∠ABO =63°﹣27°=36°,∵AO 为∠BAC 的平分线,AB =AC ,∴△AOB ≌△AOC (SAS ),∴OB =OC ,∴点O 在BC 的垂直平分线上,又∵DO 是AB 的垂直平分线,∴点O 是△ABC 的外心,∴∠OCB =∠OBC =36°,∵将∠C 沿EF (E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE =CE , ∴∠COE =∠OCB =36°, 在△OCE 中,∠OEC =180°﹣∠COE ﹣∠OCB =180°﹣36°﹣36°=108°.法二:证明点O 是△ABC 的外心,推出∠BOC =108°,根据OB =OC ,推出∠OCE =36°可得结论.故答案为:108.z 十七.等腰三角形的性质(共4小题)41.如图,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动,其中一个动点到达端点时,另一个动点也随之停止运动,当△APQ 是以PQ 为底的等腰三角形时,运动的时间是( )A .2.5秒B .3秒C .3.5秒D .4秒 【答案】D【解答】解:设运动的时间为x cm ,在△ABC 中,AB =20cm ,AC =12cm ,点P 从点B 出发以每秒3cm 的速度向点A 运动,点Q 从点A 同时出发以每秒2cm 的速度向点C 运动, 当△APQ 是等腰三角形时,AP =AQ ,AP =20﹣3x ,AQ =2x即20﹣3x =2x ,解得x =4(cm ).故选:D .42.如图,∠BOC =9°,点A 在OB 上,且OA =1,按下列要求画图: 以A 为圆心,1为半径向右画弧交OC 于点A 1,得第1条线段AA 1; 再以A 1为圆心,1为半径向右画弧交OB 于点A 2,得第2条线段A 1A 2;再以A 2为圆心,1为半径向右画弧交OC 于点A 3,得第3条线段A 2A 3;…这样画下去,直到得第n 条线段,之后就不能再画出符合要求的线段了,则n = 9 .【答案】见试题解答内容【解答】解:由题意可知:AO =A 1A ,A 1A =A 2A 1,…,则∠AOA 1=∠OA 1A ,∠A 1AA 2=∠A 1A 2A,…,∵∠BOC =9°,z ∴∠A 1AB =18°,∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,…,∴9°n <90°,解得n <10.由于n 为整数,故n =9.故答案为:9.43.如图所示,AOB 是一钢架,且∠AOB =10°,为了使钢架更加坚固,需在其内部添加一些钢管EF ,FG ,GH …,添加的钢管长度都与OE 相等,则最多能添加这样的钢管 根.【答案】见试题解答内容【解答】解:∵添加的钢管长度都与OE 相等,∠AOB =10°,∴∠GEF =∠FGE =20°,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10°,第二个是20°,第三个是30°,四个是40°,五个是50°,六个是60°,七个是70°,八个是80°,九个是90°就不存在了.所以一共有8个.故答案为:8.44.如图,△ABC 中AB =AC ,BC =6,点P 从点B 出发沿射线BA 移动,同时,点Q 从点C 出发沿线段AC 的延长线移动,已知点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D .(1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线垂足为E ,当点P 、Q 在移动的过程中,线段BE 、DE 、CD 中是否存在长度保持不变的线段?请说明理由.【答案】见试题解答内容【解答】解:(1)如图,过P 点作PF ∥AC 交BC 于F ,∵点P 和点Q 同时出发,且速度相同,∴BP =CQ ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴证得△PFD≌△QCD,∴DF=CD=CF,又因P是AB的中点,PF∥AQ,∴F是BC的中点,即FC=BC=3,∴CD=CF=;(2)分两种情况讨论,得ED为定值,是不变的线段,如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,z∵△PBF为等腰三角形,∴PB=PF,BE=EF,∴PF=CQ,∴FD=DC,∴ED=EF+FD=BE+DC=BC=3,∴ED为定值,同理,如图,若P 在BA的延长线上,z作PM ∥AC 的延长线于M ,∴∠PMC =∠ACB ,又∵AB =AC ,∴∠B =∠ACB ,∴∠B =∠PMC ,∴PM =PB ,根据三线合一得BE =EM ,同理可得△PMD ≌△QCD ,所以CD =DM ,∵BE =EM ,CD =DM ,∴ED =EM ﹣DM =﹣DM =+﹣DM =3+DM ﹣DM =3, 综上所述,线段ED 的长度保持不变.十八.等边三角形的性质(共1小题)45.图①是一块边长为1,周长记为P 1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪掉如图正三角形纸板边长的)后,得图③,④,…,记第n (n ≥3)块纸板的周长为P n ,则P n﹣P n ﹣1的值为( )zA .B .C .D . 【答案】C【解答】解:P 1=1+1+1=3,P 2=1+1+=,P 3=1+++×3=,P 4=1+++×2+×3=, …∴P 3﹣P 2=﹣==, P 4﹣P 3=﹣==,则Pn ﹣Pn ﹣1==.故选:C .十九.轴对称-最短路线问题(共3小题)46.如图,点P 是∠AOB 内任意一点,OP =5cm ,点M 和点N 分别是射线OA 和射线OB 上的动点,△PMN 周长的最小值是5cm ,则∠AOB 的度数是( )。
七年级下册数学北师大版知识点总结
七年级下册数学北师大版知识点总结
一、数与式
1、按数轴给出区间,在区间内求有限个数的等差数列和等比数列和中项;
2、利用已知条件解动态系统;
3、两倍求和公式——全部求和公式,并应用;
4、等比数列求和公式的应用;
5、能够把多项式的标准根式换成指数表达式,指数表达式换成标准根式;
6、求多项式根;
二、几何
1、三角形的等份,三角形两边和夹角关系;
2、求J类锐角三角形的角平分线,斜边中点到另两边的距离;
3、极点、极角、极径的概念,求给出三角形的极点和极角;
4、旋转:比喻法、直线点式、方程式;
5、点是否在椭圆内,求椭圆外一点到椭圆上的切线;
6、判断两圆的关系;
7、求给定的圆的切线方程,由两点式求第三点的坐标;
三、弧与面
1、求三角形的外接圆;
2、求圆弧上一点的切线与覆盖圆内一点的切线;
3、球面、圆台面、球磨比较;
4、求圆锥、圆柱的体积;
四、统计
1、求分类数据的众数、比例;
2、求统计量:最大值、最小值、中位数、平均数;
3、应用统计量求特定分类数据及误差;
4、直方图及其应用;
5、图表中图例的意义;
五、概率
1、区间的概念;
2、十架统一概念;
3、概率的概念,求统一概念的概率;
4、随机变量的概念;
5、概率分布的概念及特点;
6、正态分布的概念和应用;。
北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]
北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]研究目标】1.增进对身边轴对称图形的认识和欣赏,提高对数学的兴趣。
2.了解轴对称的概念,探索轴对称图形的基本性质和应用。
3.探究线段垂直平分线、角平分线和等腰三角形的性质及判定方法。
4.能够按照要求画出一些轴对称图形。
要点梳理】要点一、轴对称1.轴对称图形和轴对称1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
要点诠释:成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上。
3)轴对称图形与轴对称的区别和联系要点诠释:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的。
联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。
2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一。
同时也给出了引辅助线的方法,即遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。
三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。
北师大版七年级数学下册知识点梳理
北师大版七年级数学下册知识点梳理七年级数学(下)重要知识点总结第一章:整式的运算一、概念1.代数式是由数字、字母及其乘积、和、差、积、商等符号组成的式子。
2.单项式是由数字与字母的乘积组成的代数式,不含加减运算,分母中不含字母。
3.多项式是由几个单项式相加(减)组成的代数式,含加减运算。
4.整式是单项式和多项式的统称。
二、公式、法则:1.同底数幂的乘法法则:a的m次方乘以a的n次方等于a的m+n次方。
逆用:a的m+n次方等于a的m次方乘以a的n次方。
2.同底数幂的除法法则:a的m次方除以a的n次方等于a的m-n次方(a≠0)。
逆用:a的m-n次方等于a的m次方除以a的n次方(a≠0)。
3.幂的乘方法则:a的m次方的n次方等于a的mn次方。
逆用:a的mn次方等于a的m次方的n次方。
4.积的乘方法则:ab的n次方等于a的n次方乘以b的n次方。
逆用:a的n次方乘以b的n次方等于ab的n次方(当ab=1或-1时常逆用)。
5.零指数幂:任何数的0次方等于1(注意考虑底数范围,底数a≠0)。
6.负指数幂:任何数的负整数次幂等于该数的倒数的正整数次幂(底数a≠0)。
7.单项式与多项式相乘:单项式m乘以多项式(a+b+c)等于ma+mb+mc。
8.多项式与多项式相乘:多项式(m+n)乘以多项式(a+b)等于ma+mb+na+nb。
9.平方差公式:(a+b)乘以(a-b)等于a的平方减去b的平方。
推广:有一项完全相同,另一项只有符号不同,结果等于相同。
连用变化。
10.完全平方公式:a+b)的平方等于a的平方加上2ab加上b的平方。
a-b)的平方等于a的平方减去2ab加上b的平方。
逆用:a的平方加上2ab加上b的平方等于(a+b)的平方。
a的平方减去2ab加上b的平方等于(a-b)的平方。
完全平方公式变形:a的平方加上b的平方等于(a-b)的平方加上2ab。
2a的平方加上b的平方等于(a+b)的平方减去2ab等于(a-b)的平方加上2ab等于1.完全平方和公式中间项等于完全平方差公式中间项的相反数,等于完全平方公式中间项的一半。
北师大版七年级下册数学各章知识点总结复习整理
北师大版《数学》(七年级下册)知识点总结第一章整式的运算单项式整式多项式同底数幂的乘法幂的乘方积的乘方幂运算 同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法 多项式与多项式相乘 整式运算 平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式只含有数字与字母的积的代数式叫做单项式。
单独的一个数或一个字母也是单项式。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
二、多项式1、多项式、多项式的次数、项几个单项式的和叫做多项式。
其中每个单项式叫做这个多项式的项。
多项式中不含字母的项叫做常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
三、整式:单项式和多项式统称为整式。
四、整式的加减法:整式加减法的一般步骤:(1)去括号;(2)合并同类项。
五、幂的运算性质:1、同底数幂的乘法:a m ﹒a n =a m+n (m,n 都是正整数);2、幂的乘方:(a m )n =a mn (m,n 都是正整数);3、积的乘方:(ab )n =a n b n (n 都是正整数);4、同底数幂的除法:a m ÷a n =a m-n (m,n 都是正整数,a ≠0) ;六、零指数幂和负整数指数幂:1、零指数幂:a 0=1(a ≠0);2、负整数指数幂:p 是正整数。
七、整式的乘除法:1(0)p p a a a -=≠法则:单项式与单项式相乘,把它们的系数、p是正整数相同字母的幂分别相乘,其余的字母连同它的指数不变,作为积的因式。
2、单项式乘以多项式:法则:单项式与多项式相乘,就是根据分配律用单项式去乘多项式的每一项,再把所得的积相加。
3、多项式乘以多项式:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
4、单项式除以单项式:单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同它的指数一起作为商的一个因式。
2022-2023学年北师大版七年级下学期期末数学复习题2(含答案)
2022-2023学年北师大版七年级下学期期末数学复习题2一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)如图,直线b、c被直线a所截,则∠1与∠2是( )A.同位角B.内错角C.同旁内角D.对顶角2.(3分)某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是( )A.0.12B.0.38C.0.32D.323.(3分)如图,E为BC上一点,AB∥DE,∠1=∠2,则AE与DC的位置关系是( )A.相交B.平行C.垂直D.不能确定4.(3分)有下列说法:①任何无理数都是无限小数;②实数与数轴上的点一一对应;③在数轴上,原点两旁的两个点所表示的数都是互为相反数;④π5是分数,它是有理数;⑤81的算术平方根是9.其中正确的个数是( )A.1B.2C.3D.45.(3分)如图,直线a∥b,∠1=30°,∠2=40°,且∠ADC=∠ACD,则∠3是( )A.70°B.40°C.45°D.35°6.(3分)对任意实数x,点P(x,x2﹣2x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限7.(3分)如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为( )A.6B.8C.10D.128.(3分)返校后,老师给同学们分发防疫口罩,如果该班每个学生分5个还差3个,如果每个学生分4个则多出3个,设这批口罩共有y个,该班共有x名学生,列出方程组为( )A.5x+3=y4x―3=y B.5x+3=y 4x+3=yC.5x―y=34x―y=3D.5x―y=3 y―4x=39.(3分)数轴上A、B两点表示的数分别为﹣2和2,数轴上点C在点A的左侧,到点A 的距离等于点B到点A的距离,则点C所表示的数为( )A.﹣3+2B.﹣3―2C.﹣4+2D.﹣4―210.(3分)已知AB∥CD,∠EAF=13∠EAB,∠ECF=13∠ECD,若∠E=66°,则∠F为( )A.23°B.33°C.44°D.46°二、填空题(每小题3分,共15分)11.(3分)若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k= .12.(3分)已知a为整数,且340<a+2<18,则a的值为 .13.(3分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元.14.(3分)已知图为矩形,根据图中数据,则阴影部分的面积为 .15.(3分)直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…,按这样的运动规律,动点第2021次运动到的点的坐标为 .三、解答题(本大题共8个小题,满分75分)16.(9分)计算:16+(―12)×3―27+(―2)3.17.(9分)为了掌握防疫期间学生们的线上学习情况,返校后,特选取了一个水平相当的七年级班级进行跟踪调研,将同学们的考试成绩进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率147.5~59.520.05259.5~71.540.10371.5~83.5a0.20483.5~95.5100.25595.5~107.5b c6107.5~12060.15合计40 1.00根据表中提供的信息解答下列问题:(1)表格中a= ,b= ,c= ;(2)补充完整频数分布直方图;(3)若全市七年级共有120个班(平均每班40人),用这份试卷检测,规定108分及以上为优秀,预计全市优秀人数为 ;72分及以上为及格,及格的百分比为 .18.(9分)在边长为1的正方形网格中,A(2,4)、B(4,1)、C(﹣3,4).(1)平移线段AB到线段CD,使点A与点C重合,写出点D的坐标;(2)直接写出线段AB平移至线段CD处所扫过的面积;(3)平移线段AB,使其两端点都在坐标轴上,则平移后点B的坐标为 .19.(9分)已知y>x―6+12―2x+x,且|y2―49|+2x―y―z=0,求3x―y+3z 的值.20.(9分)如图,EF∥AD,EF∥BC,CE平分∠BCF,∠DAC=120°.(1)求∠ACB的度数;(2)若∠ACF=20°,求∠FEC的度数.21.(9分)若关于x的不等式组x>m+2―2x―1≥4m+1无解,且关于x的一元一次方程x+m﹣2=2﹣x有非负整数解,求所有满足条件的整数m的和.22.(9分)为了创建平安校园,某学校计划增加15台监控设备,现有甲、乙两种型号的设备,其中每台价格、有效监控半径如下表所示.经调查,购买一台甲型设备比购买一台乙型设备少150元,购买3台甲型设备比购买2台乙型设备多150元.甲型设备乙型设备价格(元/台)a b有效半径(米/台)100150(1)求a、b的值;(2)若购买该批设备的资金不超过7200元,且两种型号的设备均要至少买一台,则学校有哪几种购买方案?(3)在(2)的条件下,要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.23.(12分)在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:|2a﹣b﹣2|+a+2b―11=0.(1)直接写出A、B两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(﹣3,m),如图(1)所示.若S△ABC=16,求点D的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.求证:∠BCD=3(∠CEP﹣∠OPE).2019-2020学年河南省焦作市沁阳市七年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的. 1.(3分)如图,直线b、c被直线a所截,则∠1与∠2是( )A.同位角B.内错角C.同旁内角D.对顶角【解答】解:如图所示:直线b,c被直线a所截,∠1与∠2在直线a的同侧,则∠1与∠2是同位角.故选:A.2.(3分)某单位有职工100名,按他们的年龄分成8组,在40~42(岁)组内有职工32名,那么这个小组的频率是( )A.0.12B.0.38C.0.32D.32【解答】解:∵总人数为100人,在40~42(岁)组内有职工32名,∴这个小组的频率为32÷100=0.32.故选:C.3.(3分)如图,E为BC上一点,AB∥DE,∠1=∠2,则AE与DC的位置关系是( )A.相交B.平行C.垂直D.不能确定【解答】解:AE∥DC;∵AB∥DE,∴∠1=∠AED,∵∠1=∠2,∴∠AED=∠2,∴AE∥DC,故选:B.4.(3分)有下列说法:①任何无理数都是无限小数;②实数与数轴上的点一一对应;③在数轴上,原点两旁的两个点所表示的数都是互为相反数;④π5是分数,它是有理数;⑤81的算术平方根是9.其中正确的个数是( )A.1B.2C.3D.4【解答】解:①任何无理数都是无限小数,故①正确;②实数与数轴上的点一一对应,故②正确;③在数轴上,在原点两旁,且到原点的距离相等的两个点所表示的数都是互为相反数,故③不正确;④π5是无理数,不是分数,故④不正确;⑤81的算术平方根是3,故⑤不正确;所以,上列说法中,其中正确的个数是2,故选:B.5.(3分)如图,直线a∥b,∠1=30°,∠2=40°,且∠ADC=∠ACD,则∠3是( )A.70°B.40°C.45°D.35°【解答】解:∵∠ADC=∠1+∠2=30°+40°=70°,∵∠ADC=∠ACD,∴∠DAC=180°﹣2∠ADC=40°,∵直线a∥b,∴∠3=∠DAC=40°,故选:B.6.(3分)对任意实数x,点P(x,x2﹣2x)一定不在( )A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:(1)当0<x<2时,x>0,x2﹣2x=x(x﹣2)<0,故点P在第四象限;(2)当x>2时,x>0,x2﹣2x=x(x﹣2)>0,故点P在第一象限;(3)当x<0时,x2﹣2x>0,点P在第二象限.故选:C.7.(3分)如图,△ABC的面积为2,将△ABC沿AC方向平移至△DFE,且AC=CD,则四边形AEFB的面积为( )A.6B.8C.10D.12【解答】解:∵将△ABC沿AC方向平移至△DFE,且AC=CD,∴A点移动的距离是2AC,则BF=AD,连接FC,则S△BFC=2S△ABC,S△ABC=S△FDC=S△FDE=2,∴四边形AEFB的面积为:10.故选:C.8.(3分)返校后,老师给同学们分发防疫口罩,如果该班每个学生分5个还差3个,如果每个学生分4个则多出3个,设这批口罩共有y个,该班共有x名学生,列出方程组为( )A.5x+3=y4x―3=y B.5x+3=y 4x+3=yC.5x―y=34x―y=3D.5x―y=3 y―4x=3【解答】解:∵如果该班每个学生分5个还差3个,∴5x﹣y=3;∵如果每个学生分4个则多出3个,∴y﹣4x=3.∴根据题意可列出方程组5x―y=3 y―4x=3.故选:D.9.(3分)数轴上A、B两点表示的数分别为﹣2和2,数轴上点C在点A的左侧,到点A 的距离等于点B到点A的距离,则点C所表示的数为( )A.﹣3+2B.﹣3―2C.﹣4+2D.﹣4―2【解答】解:设点C所表示的数为x,则x<﹣2.∵AC=AB,∴﹣2﹣x=2―(﹣2),解得x=﹣4―2.故选:D.10.(3分)已知AB∥CD,∠EAF=13∠EAB,∠ECF=13∠ECD,若∠E=66°,则∠F为( )A.23°B.33°C.44°D.46°【解答】解:连接AC,设∠EAF=x°,∠ECF=y°,则∠EAB=3x°,∠ECD=3y°,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x°+∠ACE+3y°=180°,∴∠CAE+∠ACE=180°﹣(3x°+3y°),∠FAC+∠FCA=180°﹣(2x°+2y°),∴∠E=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(3x°+3y°)]=3x°+3y°=3(x°+y°),∠F=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(2x°+2y°)]=2x°+2y°=2(x°+y°),∴∠F=23∠E,∵∠E=66°,∴∠F=44°,故选:C.二、填空题(每小题3分,共15分)11.(3分)若关于x的方程(k﹣2)x|k|﹣1+3y=6是二元一次方程,则k= ﹣2 .【解答】解:根据题意得:k―2≠0|k|―1=1,解得:k=﹣2.故答案为:﹣2.12.(3分)已知a为整数,且340<a+2<18,则a的值为 2 .【解答】解:∵3<340<4,4<18<5,∴a+2=4,∴a=2,故答案为:2.13.(3分)某企业今年第一季度各月份产值占这个季度总产值的百分比如图所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 80 万元.【解答】解:第一季度的总产值是72÷(1﹣45%﹣25%)=240(万元),则该企业第一季度月产值的平均值是13×240=80(万元).故答案是:80.14.(3分)已知图为矩形,根据图中数据,则阴影部分的面积为 8 .【解答】解:由图可知,阴影部分的面积=(3﹣1)×(5﹣1)=8,故答案为8.15.(3分)直角坐标系内,一动点按图中箭头所示方向依次运动,第1次从点(﹣1,0)运动到点(0,1),第2次运动到点(1,0),第3次运动到点(2,﹣2),…,按这样的运动规律,动点第2021次运动到的点的坐标为 (2020,1) .【解答】解:点P的运动规律是每运动四次向右平移四个单位,∵2021=505×4+1,∴动点P第2021次运动时向右505×4+1=2021个单位,∴点P此时坐标为(2020,1),故答案为:(2020,1).三、解答题(本大题共8个小题,满分75分)16.(9分)计算:16+(―12)×3―27+(―2)3.【解答】解:原式=4+(―12)×(﹣3)﹣8=4+32―8=―5 2.17.(9分)为了掌握防疫期间学生们的线上学习情况,返校后,特选取了一个水平相当的七年级班级进行跟踪调研,将同学们的考试成绩进行处理分析,制成频数分布表如下(成绩得分均为整数):组别成绩分组频数频率147.5~59.520.05259.5~71.540.10371.5~83.5a0.20483.5~95.5100.25595.5~107.5b c6107.5~12060.15合计40 1.00根据表中提供的信息解答下列问题:(1)表格中a= 8 ,b= 10 ,c= 0.25 ;(2)补充完整频数分布直方图;(3)若全市七年级共有120个班(平均每班40人),用这份试卷检测,规定108分及以上为优秀,预计全市优秀人数为 720人 ;72分及以上为及格,及格的百分比为 85% .【解答】解:(1)a=40×0.2=8,b=40﹣(2+4+8+10+6)=10,c=10÷40=0.25,故答案为:8、10、0.25;(2)补全直方图如下:(3)预计全市优秀人数为120×40×0.15=720(人),及格的百分比为0.2+0.25+0.25+0.15=0.85=85%,故答案为:720人,85%.18.(9分)在边长为1的正方形网格中,A(2,4)、B(4,1)、C(﹣3,4).(1)平移线段AB到线段CD,使点A与点C重合,写出点D的坐标;(2)直接写出线段AB平移至线段CD处所扫过的面积;(3)平移线段AB,使其两端点都在坐标轴上,则平移后点B的坐标为 (2,0)或(0,﹣3) .【解答】解:(1)∵平移线段AB到线段CD,使点A与点C重合,A(2,4),C(﹣3,4),∴坐标变化规律是:横坐标减去5,纵坐标不变,∵B(4,1),∴点D的坐标为(﹣1,1);(2)∵平移线段AB到线段CD,∴AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴线段AB平移至线段CD处所扫过的面积为:5×3=15;(3)分两种情况:①如果平移后A的对应点在y轴上,B的对应点在x轴上,那么坐标变化规律是:横坐标减去2,纵坐标减去1,∵B(4,1),∴平移后点B的坐标为(2,0);②如果平移后A的对应点在x轴上,B的对应点在y轴上,那么坐标变化规律是:横坐标减去4,纵坐标减去4,∵A(4,1),∴平移后点B的坐标为(0,﹣3);故答案为:(2,0)或(0,﹣3).19.(9分)已知y>x―6+12―2x+x,且|y2―49|+2x―y―z=0,求3x―y+3z 的值.【解答】解:要使x―6+12―2x+x有意义,必须x―6≥0 12―2x≥0,解得:x=6,∵y>x―6+12―2x+x,∴y>6,∵|y2―49|+2x―y―z=0,∴y 2―49=02x―y―z=0,解得:y=7,z=5,∴3x―y+3z=36―7+35=―1+35.20.(9分)如图,EF∥AD,EF∥BC,CE平分∠BCF,∠DAC=120°.(1)求∠ACB的度数;(2)若∠ACF=20°,求∠FEC的度数.【解答】解:(1)∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,(2)∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.21.(9分)若关于x的不等式组x>m+2―2x―1≥4m+1无解,且关于x的一元一次方程x+m﹣2=2﹣x有非负整数解,求所有满足条件的整数m的和.【解答】解:x>m+2―2x―1≥4m+1,不等式组整理得:x>m+2x≤―2m―1,由不等式组无解,得到m+2≥﹣2m﹣1,解得:m≥﹣1,∵x+m﹣2=2﹣x有非负整数解,∴x=2―m 2,∴2―m2≥0,∴m≤4,∴﹣1≤m≤4,把m=﹣1代入x+m﹣2=2﹣x得:x=52,不符合题意;把m=0代入得:x=2,符合题意;把m=1代入得:x=32,不符合题意;把m=2代入得:x=1,符合题意,把m=3代入得:x=―12,不符合题意,把m=4代入得:x=0,符合题意,则所有满足条件的整数m的和为0+2+4=6.22.(9分)为了创建平安校园,某学校计划增加15台监控设备,现有甲、乙两种型号的设备,其中每台价格、有效监控半径如下表所示.经调查,购买一台甲型设备比购买一台乙型设备少150元,购买3台甲型设备比购买2台乙型设备多150元.甲型设备乙型设备价格(元/台)a b有效半径(米/台)100150(1)求a、b的值;(2)若购买该批设备的资金不超过7200元,且两种型号的设备均要至少买一台,则学校有哪几种购买方案?(3)在(2)的条件下,要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.【解答】解:(1)依题意,得:b―a=1503a―2b=150,解得:a=450 b=600.(2)设购买甲型设备x台,则购买乙型设备(15﹣x)台,依题意,得:15―x≥1450x+600(15―x)≤7200,解得:12≤x≤14.∵x为整数,∴x=12,13,14.答:学校有三种购买方案,方案1:购进甲型设备12台,乙型设备3台;方案2:购进甲型设备13台,乙型设备2台;方案3:购进甲型设备14台,乙型设备1台.(3)依题意,得:100x+150(15﹣x)≥1600,解得:x≤13,∴12≤x≤13,∴x=12或13.当x=12时,所需资金为:450×12+600×3=7200(元),当x=13时,所需资金为:450×13+600×2=7050(元).∵7200>7050,∴方案2省钱.答:最省钱的购买方案为购买甲型设备13台,乙型设备2台.23.(12分)在平面直角坐标系中,点A、B在坐标轴上,其中A(0,a)、B(b,0)满足:|2a﹣b﹣2|+a+2b―11=0.(1)直接写出A、B两点的坐标;(2)将线段AB平移到CD,点A的对应点为C(﹣3,m),如图(1)所示.若S△ABC=16,求点D的坐标;(3)平移线段AB到CD,若点C、D也在坐标轴上,如图(2)所示,P为线段AB上一动点(不与A、B重合),连接OP,PE平分∠OPB,交x轴于点M,且满足∠BCE=2∠ECD.求证:∠BCD=3(∠CEP﹣∠OPE).【解答】(1)解:∵|2a﹣b﹣2|+a+2b―11=0,∴2a ―b ―2=0a +2b ―11=0,解得:a =3b =4,∴A (0,3),B (4,0);(2)解:如图1,过点A 作FG ∥x 轴,过点B 作GH ∥y 轴,交FG 于G ,过点C 作CH ∥x 轴,交GH 于H ,过点C 作CF ∥y 轴,交FG 于F ,则四边形CFGH 为矩形,∵A (0,3),B (4,0),C (﹣3,m ),∴AF =3,CF =3﹣m ,AG =4,BG =3,BH =﹣m ,CH =7,∵S △ABC =S 矩形CFGH ﹣S △AFC ﹣S △AGB ﹣S △BHC =CF •CH ―12AF •CF ―12AG •BG ―12BH •CH =(3﹣m )×7―12×3×(3﹣m )―12×4×3―12×(﹣m )×7=212―2m ,∴212―2m =16,解得:m =―114,∴将线段AB 向左平移了3个单位,向下平移了234个单位,得到CD ,∴点D 的横坐标为4﹣3=1,点D 的纵坐标为0―234=―234,∴D (1,―234);(3)证明:延长AB 交CE 的延长线于N ,如图2所示:∵AN ∥CD ,∴∠DCN =∠N ,∵∠BCE =2∠ECD ,∴∠BCD =3∠DCN =3∠N ,∵PE 平分∠OPB ,∴∠NPE =∠OPE ,∵∠N =∠CEP ﹣∠NPE ,∴∠N =∠CEP ﹣∠OPE ,∴∠BCD =3(∠CEP ﹣∠OPE ).。
北师大版七年级数学下册期末易错题复习详解
北师大版七年级数学下册期末易错题复习详解七(下)数学期末复易错题以下是第一、三、六章的易错题:1.下列事件是必然事件的是()A。
抛掷一枚均匀的骰子,出现6点向上B。
两直线被第三条直线所截,同位角相等C。
366人中至少有2人生日相同D。
实数的绝对值是非负数2.下列事件中,必然事件有:④通常情况下,将水加热到100℃时,水会沸腾。
3.从4名女生和6名男生中选5名学生参加竞赛,规定男生选n名,当n=0时,4名女生中的XXX当选是必然事件;当n=6时,女生XXX当选是不可能的事件;当n=2时,女生XXX当选是随机事件。
4.已知1纳米=0.000 000 001米,则2.04纳米用科学记数法表示为2.04×10^-9米。
5.下列计算正确的是()B。
-a^5C。
(-a-3)(-a+3)=9-a^2D。
(a-b)(a+b)=a^2-b^26.已知x-y=4,xy=-3,则x^2+y^2=25.7.已知A=2x,B是多项式,在计算B+A时,XXX同学把XXX看成了B÷A,结果得到x^2+2x,则XXX。
8.若9a^2+mab+4b^2是一个完全平方式,则m=±12ab。
9.式子4+(a-b)的最小值是4,4-(a-b)的最大值是4,当a=b时取到。
10.代数式5-a^2+2ab-b^2的最大值是4,当a=b=1时取到,此时以a,b为边的三角形是等边三角形。
11.梯形上底长为4,下底长为x,高为2,则梯形面积y与下底x之间的关系式是y=3x-6.12.如图(1)在长方形ABCD中,动点P从B出发,沿BC、CD、DA匀速运动到A停止。
设P运动的路程为x,△ABP的面积为y,y关于x的图像如图(2),则△ABC的面积为()C。
18.13.某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资,(调进调出物资的速度均保持不变)。
该仓库库存物资W(吨)与时间t(小时)之间的关系如图所示,则这批物资从开始调进到全部调出所需的时间是()D。
北师大版七年级下数学期末总复习
北师大版七年级下数学期末总复习(培优)一.填空题(共32小题)1.已知m=,n=,那么2016m﹣n=.2.在学习整式乘法的时候,我们发现一个有趣的问题:将上述等号右边的式子的各项系数排成下表,如图:(a+b)0=1(a+b)1=a+b(a+b)2=a2+2ab+b2(a+b)3=a3+3a2b+3ab2+b3这个图叫做“杨辉三角”,请观察这些系数的规律,直接写出(a+b)5=,并说出第7排的第三个数是.3.已知x4﹣5x3+ax2+bx+c能被(x﹣1)2整除,则(a+b+c)2=.4.我们知道,同底数幂的乘法法则为:a m•a n=a m+n(其中a≠0,m,n为正整数),类似地我们规定关于任意正整数m,n的一种新运算:h(m+n)=h(m)•h(n),请根据这种新运算填空:(1)若h(1)=,则h(2)=;(2)若h(1)=k(k≠0),那么h(n)•h(2017)=(用含n和k的代数式表示,其中n为正整数)5.已知(a﹣2017)2+(2018﹣a)2=5,则(a﹣2017)(a﹣2018)=6.若一个正整数能表示为两个正整数的平方差,则称这个正整数为“智慧数”(如3=22﹣12,5=32﹣22,7=42﹣32,8=32﹣12,12=42﹣22,16=52﹣32,15=42﹣12,21=52﹣22,27=62﹣32……)从上面的例子中可以看到所有大于3的奇数都是智慧数,则2021是第个“智慧数”;第2021个“智慧数”是.7.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,三角形与正方形重叠部分的面积为y,在下面的平面直角坐标系中,线段AB表示的是三角形在正方形内部移动的面积图象,C点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是.8.如图,△ABC的外角平分线CP和内角平分线BP相交于点P,若∠BPC=80°,则∠CAP=.9.如图,在△ABC中,点D,E,F分别在三边上,E是AC的中点,AD,BE,CF交于一点G,BC=3DC,S△GEC=3,S△GBD=8,则△ABC的面积是.10.如图,BP是△ABC的内角∠ABC的角平分线,交外角∠ACD的角平分线CP于点P,已知∠A=70°,则∠P的度数为.11.如图,在五边形ABCDE中,已知∠BAE=120°,∠B=∠E=90°,AB=BC=2,AE=DE=4,在BC、DE上分别找一点M、N,则△AMN的最小周长为.12.如图,在△ABC中,AB=6cm,AC=4cm,BD平分∠ABC,CD平分∠ACB,EF过点D且EF∥BC,则△AEF的周长是cm.13.已知(2021﹣a)2+(a﹣2019)2=7,则代数式(2021﹣a)(a﹣2019)的值为.14.计算:(﹣3)2013•(﹣)2011=.15.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.16.若m为正实数,且m﹣=3,则m2﹣=.17.已知a+=3,则a2+的值是.18.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是.19.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).20.在代数式a,π,ab,a﹣b,,x2+x+1,5,2a,中,整式有个;单项式有个,次数为2的单项式是;系数为1的单项式是.21.如图.在正方形ABCD的边长为3,以A为圆心,2为半径作圆弧.以D为圆心,3为半径作圆弧.若图中阴影部分的面积分为S1、S2.则S1﹣S2=.22.计算:2(1+)(1+)(1+)(1+)+=.23.多项式(mx+8)(2﹣3x)展开后不含x一次项,则m=.24.如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.25.如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=.26.如图,OP∥QR∥ST,若∠2=100°,∠3=120°,则∠1=.27.如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形纸片的两条直角边相交成∠1、∠2,则∠2﹣∠1=.28.如图,将一张长方形纸片ABCD折叠成如图所示的形状,∠EGC=26°,则∠DFG=.29.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.30.如图,把一个长方形纸片沿EF折叠后,点D,C分别落在D′,C′的位置,若∠EFB=65°,则∠AED′等于°.31.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是.32.如图①是长方形纸带,∠DEF=α,将纸带沿EF折叠成图②,再沿BF折叠成图③,则图③中的∠CFE 的度数是.二.解答题(共23小题)33.阅读下列材料:一般地,n个相同的因数a相乘记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为log a b(即log a b=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=,log216=,log264=.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?log a M+log a N=;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.34.已知5m=2,5n=4,求52m﹣n和25m+n的值.35.已知(x3+mx+n)(x2﹣3x+1)展开后的结果中不含x3和x2项.(1)求m、n的值;(2)求(m+n)(m2﹣mn+n2)的值.36.阅读下列解答过程:已知:x≠0,且满足x2﹣3x=1.求:的值.解:∵x2﹣3x=1,∴x2﹣3x﹣1=0∴,即.∴==32+2=11.请通过阅读以上内容,解答下列问题:已知a≠0,且满足(2a+1)(1﹣2a)﹣(3﹣2a)2+9a2=14a﹣7,求:(1)的值;(2)的值.37.某城市对用户的自来水收费实行阶梯水价,收费标准如下表所示:月用水量不超过12吨的部分超过12吨不超过18超过18吨的部分吨的部分收费标准(元/吨) 2.00 2.50 3.00(1)某用户5月份缴水费45元,则该用户5月份的用水量是多少?(2)某用户想月所缴水费控制在20元至30元之间,则该用户的月用水量应该如何控制?(3)若某用户的月用水量为m吨,请用含m的代数式表示该用户月所缴水费.38.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格.距离地面高度(千米)012345温度(℃)201482﹣4﹣10根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你能猜出距离地面6千米的高空温度是多少吗?39.宁安市与哈尔滨市两地相距360千米.甲车在宁安市,乙车在哈尔滨市,两车同时出发,相向而行,在A地相遇.为节约费用(两车相遇并换货后,均需按原路返回出发地),两车换货后,甲车立即按原路返回宁安市.设每车在行驶过程中速度保持不变,两车间的距离y(千米)与时间x(小时)的函数关系如图所示.根据所提供的信息,回答下列问题:(1)求甲、乙两车的速度;(2)说明从两车开始出发到5小时这段时间乙车的运动状态.40.如图,AC、BD相交于O,BE、CE分别平分∠ABD、∠ACD,且相交于点E.求证:∠E=(∠A+∠D).41.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE =BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.42.已知△ABC,点D、F分别为线段AC、AB上两点,连接BD、CF交于点E.(1)若BD⊥AC,CF⊥AB,如图1所示,试说明∠BAC+∠BEC=180°;(2)若BD平分∠ABC,CF平分∠ACB,如图2所示,试说明此时∠BAC与∠BEC的数量关系;(3)在(2)的条件下,若∠BAC=60°,试说明:EF=ED.43.在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:△EBC是等边三角形;(2)点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM的下方作∠BMG=60°,MG交DE延长线于点G.请你在图2中画出完整图形,并直接写出MD,DG与AD之间的数量关系;(3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°,NG交DE延长线于点G.试探究ND,DG与AD数量之间的关系,并说明理由.44.如图,AB=50km,AB到沪渝高速公路直线X的距离分别为10km和40km,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(AP与直线X 垂直,垂足为P),P到A、的距离之和S1=P A+PB,图(2)是方案二的示意图(点A关于直线X的对称点是A′,连接B′A′交直线X于点P),P到A、B的距离之和S2=P A+PB.(1)求S1、S2,并比较它们的大小;(2)请你说明S2=P A+PB的值为最小;(3)假设另外一条高速公路Y与沪渝高速公路垂直,如图(3),B到直线Y的距离为30km,请你在X 旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.45.如图(1),A、B两单位分别位于一条封闭街道的两旁(直线L1、L2是街道两边沿),现准备合作修建一座过街人行天桥.(1)天桥应建在何处才能使由A经过天桥走到B的路程最短?在图(2)中作出此时桥PQ的位置,简要叙述作法并保留作图痕迹.(注:桥的宽度忽略不计,桥必须与街道垂直).(2)根据图(1)中提供的数据计算由A经过天桥走到B的最短路线的长.(单位:米)46.把两个全等的直角三角板的斜边重合,组成一个四边形ACBD以D为顶点作∠MDN,交边AC、BC于M、N.(1)若∠ACD=30°,∠MDN=60°,当∠MDN绕点D旋转时,AM、MN、BN三条线段之间有何种数量关系?证明你的结论;(2)当∠ACD+∠MDN=90°时,AM、MN、BN三条线段之间有何数量关系?证明你的结论;(3)如图③,在(2)的条件下,若将M、N改在CA、BC的延长线上,完成图3,其余条件不变,则AM、MN、BN之间有何数量关系(直接写出结论,不必证明)47.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A 点运动.①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?48.在等边△ABC的两边AB、AC所在直线上分别有两点M、N,D为△ABC外一点,且∠MDN=60°,∠BDC=120°,BD=DC.探究:当M、N分别在直线AB、AC上移动时,BM、NC、MN之间的数量关系及△AMN的周长Q与等边△ABC的周长L的关系.(1)如图1,当点M、N边AB、AC上,且DM=DN时,BM、NC、MN之间的数量关系是;此时=;(2)如图2,点M、N在边AB、AC上,且当DM≠DN时,猜想(I)问的两个结论还成立吗?若成立请直接写出你的结论;若不成立请说明理由.(3)如图3,当M、N分别在边AB、CA的延长线上时,探索BM、NC、MN之间的数量关系如何?并给出证明.49.如图,在等腰△ABC中,AB=AC=3cm,∠B=30°,点D在BC边上由C向B匀速运动(D不与B、C重合),匀速运动速度为1cm/s,连接AD,作∠ADE=30°,DE交线段AC于点E.(1)在此运动过程中,∠BDA逐渐变(填“大”或“小”);D点运动到图1位置时,∠BDA=75°,则∠BAD=.(2)点D运动3s后到达图2位置,则CD=.此时△ABD和△DCE是否全等,请说明理由;(3)在点D运动过程中,△ADE的形状也在变化,判断当△ADE是等腰三角形时,∠BDA等于多少度(请直接写出结果)50.如图,AC平分钝角∠BAE交过B点的直线于点C,BD平分∠ABC交AC于点D,且∠BAD+∠ABD=90°.(1)求证:AE∥BC;(2)点F是射线BC上一动点(点F不与点B,C重合),连接AF,与射线BD相交于点P.(ⅰ)如图1,若∠ABC=45°,AF⊥AB,试探究线段BF与CF之间满足的数量关系;(ⅱ)如图2,若AB=10,S△ABC=30,∠CAF=∠ABD,求线段BP的长.51.如图1,在△ABC中,BO⊥AC于点O,AO=BO=3,OC=1,过点A作AH⊥BC于点H,交BO于点P.(1)求线段OP的长度;(2)连接OH,求证:∠OHP=45°;(3)如图2,若点D为AB的中点,点M为线段BO延长线上一动点,连接MD,过点D作DN⊥DM 交线段OA延长线于N点,则S△BDM﹣S△ADN的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.52.已知点C是∠MAN平分线上一点,∠BCD的两边CB、CD分别与射线AM、AN相交于B,D两点,且∠ABC+∠ADC=180°.过点C作CE⊥AB,垂足为E.(1)如图1,当点E在线段AB上时,求证:BC=DC;(2)如图2,当点E在线段AB的延长线上时,探究线段AB、AD与BE之间的等量关系;(3)如图3,在(2)的条件下,若∠MAN=60°,连接BD,作∠ABD的平分线BF交AD于点F,交AC于点O,连接DO并延长交AB于点G.若BG=1,DF=2,求线段DB的长.53.【问题】如图1,在Rt△ABC中,∠ACB=90°,AC=BC,过点C作直线l平行于AB.∠EDF=90°,点D在直线L上移动,角的一边DE始终经过点B,另一边DF与AC交于点P,研究DP和DB的数量关系.【探究发现】(1)如图2,某数学兴趣小组运用从特殊到一般的数学思想,发现当点D移动到使点P与点C重合时,通过推理就可以得到DP=DB,请写出证明过程;【数学思考】(2)如图3,若点P是AC上的任意一点(不含端点A、C),受(1)的启发,这个小组过点D作DG⊥CD交BC于点G,就可以证明DP=DB,请完成证明过程.54.如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.(1)如图1,当点E在边BC上时,求证DE=EB;(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.55.快车与慢车分别从甲乙两地同时相向出发,匀速而行,快车到达乙地后停留1h,然后按原路原速返回,快车比慢车晚1h到达甲地,快慢两车距各自出发地的路程y(km)与所用的时x(h)的关系如图所示.(1)甲乙两地之间的路程为km;快车的速度为km/h;慢车的速度为km/h;(2)出发h,快慢两车距各自出发地的路程相等;(3)快慢两车出发h相距150km.参考答案一.填空题(共32小题)1.1;2.a5+5a4b+10a3b2+10a2b3+5ab4+b5;15;3.16;4.;k n+2017;5.2;6.1514;2697;7.乙;8.10°;9.30;10.35°;11.4;12.10;13.﹣;14.9;15.﹣;16.3;17.7;18.6;19.ab;20.8;5;ab;a;21.﹣9;22.4;23.12;24.15°;25.82°;26.40°;27.90°;28.77°;29.80;30.50;31.55°;32.180°﹣3α;。
北师大版七年级数学下册知识点总结
北师大版七年级数学下册知识点总结一、整式的乘除。
1. 同底数幂的乘法。
- 法则:同底数幂相乘,底数不变,指数相加。
即a^m· a^n = a^m + n(m、n 为正整数)。
- 例如:2^3×2^4=2^3 + 4=2^7。
2. 幂的乘方。
- 法则:幂的乘方,底数不变,指数相乘。
即(a^m)^n=a^mn(m、n为正整数)。
- 例如:(3^2)^3 = 3^2×3=3^6。
3. 积的乘方。
- 法则:积的乘方等于乘方的积。
即(ab)^n=a^n b^n(n为正整数)。
- 例如:(2×3)^2=2^2×3^2 = 4×9 = 36。
4. 同底数幂的除法。
- 法则:同底数幂相除,底数不变,指数相减。
即a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。
- 例如:5^5÷5^3 = 5^5 - 3=5^2。
5. 零指数幂。
- 规定:a^0 = 1(a≠0)。
6. 负整数指数幂。
- 规定:a^-p=(1)/(a^p)(a≠0,p为正整数)。
- 例如:2^-3=(1)/(2^3)=(1)/(8)。
7. 整式的乘法。
- 单项式乘以单项式:系数相乘,同底数幂相乘。
例如:3x^2·2x^3=(3×2)(x^2+3) = 6x^5。
- 单项式乘以多项式:用单项式去乘多项式的每一项,再把所得的积相加。
例如:2x(x + 3)=2x^2+6x。
- 多项式乘以多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
例如:(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x+6。
8. 整式的除法。
- 单项式除以单项式:系数相除,同底数幂相除。
例如:6x^5÷2x^3=(6÷2)(x^5 - 3)=3x^2。
- 多项式除以单项式:先把多项式的每一项除以这个单项式,再把所得的商相加。
2022-2023学年北师大版七年级下学期期末数学复习题5(含答案)
2022-2023学年北师大版七年级下学期期末数学复习题5一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.2.(3分)下列计算正确的是( )A.x2•x5=x10B.(﹣bc)4÷(﹣bc)2=﹣b2c2C.﹣m(m﹣2n+1)=﹣m2+2mn﹣1D.(a n+b)(a n﹣b)=a2n﹣b23.(3分)科学家发现,大部分病毒的直径在50纳米和100纳米之间,新冠病毒是病毒家族中的“大个子”,它的直径为100纳米,1纳米=0.000 000 001m,新冠病毒的直径用科学记数法可以表示为( )m.A.1×10﹣9B.1×10﹣8C.1×10﹣7D.1×10﹣64.(3分)下列事件中,随机事件是( )A.两直线平行,同位角相等B.掷一枚硬币,国徽的一面朝上C.任意掷一枚质地均匀的骰子,掷出的点数是7D.早上的太阳从西方升起5.(3分)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )A.∠A=∠C B.AD∥BC C.DF∥BE D.DF=BE6.(3分)分析给出的汽车行驶速度(千米/分)与时间(分)的关系图,下列说法不正确的为( )A.汽车行驶时间为40分钟B.AB表示汽车匀速行驶C.第40分钟时,汽车停下了D.在第30分钟时,汽车行驶的路程为80千米7.(3分)如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为( )A.30°B.36°C.45°D.70°8.(3分)如图,在边长为2a的正方形中央剪去一边长为a+2的小正方形(a>2),将剩余部分剪开拼成一个平行四边形,则该平行四边形的面积为( )A.3a2﹣4a﹣4B.4a2﹣a﹣2C.a2+2D.2a2+4a9.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若∠CAB=2∠B,△ACD 的面积为3,则Rt△ABC的面积为( )A.6B.9C.12D.1510.(3分)如图,在边长为1个单位长度的正方形网格中,在格点中找一点C,使△ABC是直角三角形,这样的点C有( )个.A.2B.4C.5D.6二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)已知2m•2m•8=211,则m= .12.(3分)一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于 .13.(2分)如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB= .14.(3分)若a+b=﹣2,ab=﹣1,则(2a﹣1)(2b﹣1)的值为 .15.(3分)如图,在一个等边三角形纸片中取三边中点M、N、P,以虚线为折痕折叠纸片,一只小蜜蜂飞来,停在纸片上,它停留在阴影部分的概率是 .16.(3分)等腰三角形的三边长分别为x+1,9,2x+3,则该三角形的周长为 .17.(3分)如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,若AE=6cm,则△ABD的周长为 .18.(3分)如图,在△ABC 中,AB =AC ,AD ⊥BC 于D ,AD =8,CE 平分∠ACB ,交AD 于E ,AE =3ED ,M 是AB 边上的动点,则EM 的最小值是 .三、解答题.(本大题共7小题,共66分)19.(20分)计算:(1)(﹣a 2b )2÷(―12ab 2);(2)(﹣x )3•x 2n ﹣1+x 2n •(﹣x )2;(3)(﹣2x +y )2﹣4(x ﹣y )(x +2y );(4)利用乘法公式计算202×198+0.25100×(﹣4)100.20.(8分)完成下面推理过程,在括号内的横线上填空或填上推理依据.如图,已知AB ∥CD ,MC ⊥CN ,∠1+∠2=90°;求证:AB ∥EF .证明:∵AB ∥CD ,∴∠2= ( )∵MC ⊥CN ,∴∠MCN = ,即:∠3+∠4=90°,∴ +∠4=90°,∵∠1+∠2=90°,∴∠1= ,∴CD ∥ ( ),∴AB ∥EF .21.(6分)请用你所学的知识解决下列问题:小区A,小区B位于街道m同侧,在街道m上设立一个快递投送站Q,使得快递投送站Q与两个小区的距离相等,请在图中作出点Q的位置.22.(8分)如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠3,∠E=∠C,AE=AC.请判断△ABD的形状,并说明理由.23.(7分)小亮和小芳都想参加学校社团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:将一个转盘分成9个面积相等的扇形,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新转动转盘,你认为这个游戏公平吗?请说明理由.24.(8分)如图,AB=3,P是线段AB上的一点,分别以AP,BP为边做正方形.(1)设AP=x,求出两个正方形的面积之和S与x之间的函数关系式,并写出自变量x 的取值范围.(2)当x=32时,求S的值.25.(10分)如图所示,AD∥BC,BE平分∠ABC,交CD于E,AE平分∠BAD,交BC的延长线于点F.(1)试判断BE与AF的位置关系,并说明理由.(2)试判断AD,AB,BC之间的数量关系,并说明理由.2019-2020学年陕西省宝鸡市金台区七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)下面四个手机应用图标中是轴对称图形的是( )A.B.C.D.【解答】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B.2.(3分)下列计算正确的是( )A.x2•x5=x10B.(﹣bc)4÷(﹣bc)2=﹣b2c2C.﹣m(m﹣2n+1)=﹣m2+2mn﹣1D.(a n+b)(a n﹣b)=a2n﹣b2【解答】解:A、原式=x7,故A不符合题意.B、原式=(﹣bc)2=b2c2,故B不符合题意.C、原式=﹣m2+2mn﹣m,故C不符合题意.D、原式=a2n﹣b2,故D符合题意.故选:D.3.(3分)科学家发现,大部分病毒的直径在50纳米和100纳米之间,新冠病毒是病毒家族中的“大个子”,它的直径为100纳米,1纳米=0.000 000 001m,新冠病毒的直径用科学记数法可以表示为( )m.A.1×10﹣9B.1×10﹣8C.1×10﹣7D.1×10﹣6【解答】解:100纳米=0.0000001m=1×10﹣7m.故选:C.4.(3分)下列事件中,随机事件是( )A.两直线平行,同位角相等B.掷一枚硬币,国徽的一面朝上C.任意掷一枚质地均匀的骰子,掷出的点数是7D.早上的太阳从西方升起【解答】解:A、两直线平行,同位角相等,是必然事件,不符合题意;B、掷一枚硬币,国徽的一面朝上,是随机事件,符合题意;C、任意掷一枚质地均匀的骰子,掷出的点数是7,是不可能事件,不符合题意;D、早上的太阳从西方升起,是不可能事件,不符合题意;故选:B.5.(3分)如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是( )A.∠A=∠C B.AD∥BC C.DF∥BE D.DF=BE【解答】解:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,A、在△ADF和△CBE中,∠A=∠C,AF=CE,∠AFD=∠CEB,∴△ADF≌△CBE(ASA),故A不符合题意;B、∵AD∥BC,∴∠A=∠C,∴△ADF≌△CBE(ASA),故B不符合题意;C、∵DF∥BE,∴∠AFD=∠CEB,在△ADF和△CBE中,AF=CE,∠AFD=∠CEB,∴△ADF与△CBE不一定全等,故C符合题意;D、在△ADF和△CBE中,AF=CE,∠AFD=∠CEB,DF=BE,∴△ADF≌△CBE(SAS),故D不符合题意.故选:C.6.(3分)分析给出的汽车行驶速度(千米/分)与时间(分)的关系图,下列说法不正确的为( )A.汽车行驶时间为40分钟B.AB表示汽车匀速行驶C.第40分钟时,汽车停下了D.在第30分钟时,汽车行驶的路程为80千米【解答】解:读图可得,汽车行驶时间为40分钟,故A正确,不符合题意;AB段,汽车行驶的速度相等,故速度不变,汽车匀速行驶,故B正确,不符合题意;在时间为40时,速度为0,故C正确,不符合题意;在第30分钟时,汽车的速度是80千米/时,故D不正确,符合题意.故选:D.7.(3分)如图,△ABC中,AB=AC,点D在AC边上,且BD=BC=AD,则∠A的度数为( )A.30°B.36°C.45°D.70°【解答】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=180°―x2,可得2x=180°―x2,解得:x=36°,则∠A=36°,故选:B.8.(3分)如图,在边长为2a的正方形中央剪去一边长为a+2的小正方形(a>2),将剩余部分剪开拼成一个平行四边形,则该平行四边形的面积为( )A.3a2﹣4a﹣4B.4a2﹣a﹣2C.a2+2D.2a2+4a【解答】解:方法一:平行四边形的面积=大正方形的面积﹣小正方形的面积=(2a)2﹣(a+2)2=(2a+a+2)(2a﹣a﹣2)=(3a+2)(a﹣2)=3a2﹣4a﹣4.方法二:平行四边形的底边=2a+(a+2)=3a+2,底边上的高=2a﹣(a+2)=2a﹣a﹣2=a﹣2,∴平行四边形的面积=(3a+2)(a﹣2)=3a2﹣4a﹣4.故选:A.9.(3分)如图,在Rt△ABC中,∠ACB=90°,AD平分∠CAB,若∠CAB=2∠B,△ACD 的面积为3,则Rt△ABC的面积为( )A.6B.9C.12D.15【解答】解:过D点作DE⊥AB于E,如图,∵AD平分∠CAB,DC⊥AC,DE⊥AB,∴DC=DE,∵∠ACB=90°,∠CAB=2∠B,∴∠B=30°,∴AB=2AC,∴S△ABD=2S△ACD=2×3=6,∴S△ABC=3+6=9.故选:B.10.(3分)如图,在边长为1个单位长度的正方形网格中,在格点中找一点C,使△ABC 是直角三角形,这样的点C有( )个.A.2B.4C.5D.6【解答】解:如图所示:AC1=2,BC1=2,AB=22+22=22,A C21=4,B C21=4,AB2=8,A C21+B C21=AB2,∴△ABC1为直角三角形,同理可证:△ABC2,△ABC3,△ABC4,△ABC5均为直角三角形,∴这样的点C有5个.故选:C.二、填空题(本大题共8小题,每小题3分,共24分)11.(3分)已知2m•2m•8=211,则m= 4 .【解答】解:2m•2m•8,=2m•2m•23,=2m+m+3,∵2m•2m•8=211,∴m+m+3=11,解得m=4.12.(3分)一次数学活动课上.小聪将一副三角板按图中方式叠放,则∠α等于 75° .【解答】解:如图,∠1=30°,所以,∠α=∠1+45°=30°+45°=75°.故答案为:75°.13.(2分)如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE=20米,则AB= 20米 .【解答】解:∵点C是AD的中点,也是BE的中点,∴AC=DC,BC=EC,∵在△ACB和△DCE中,AC=DC∠ACB=∠DCEBC=EC,∴△ACB≌△DCE(SAS),∴DE=AB,∵DE=20米,∴AB=20米,故答案为:20米.14.(3分)若a+b=﹣2,ab=﹣1,则(2a﹣1)(2b﹣1)的值为 1 .【解答】解:原式=4ab﹣2a﹣2b+1=4ab﹣2(a+b)+1,∵a+b=﹣2,ab=﹣1,∴原式=﹣4﹣2×(﹣2)+1=1.故答案为:1.15.(3分)如图,在一个等边三角形纸片中取三边中点M、N、P,以虚线为折痕折叠纸片,一只小蜜蜂飞来,停在纸片上,它停留在阴影部分的概率是 38 .【解答】解:由对称性可得:阴影部分的面积=四边形OECF的面积,∵D、E、F为△ACB三边的中点,∴DE∥CB,∴△ADE∽△ABC,∴S△ADE=14S△ACB,设S△ADE=a,则S△ACB=4a,∴阴影面积=四边形OECF面积=12(4a﹣a)=32a,∴阴影部分的面积是整个图形面积的:32a4a=38,∴它停留在阴影部分的概率是3 8.故答案为:3 8.16.(3分)等腰三角形的三边长分别为x+1,9,2x+3,则该三角形的周长为 22 .【解答】解:①当x+1=2x+3时,解得x=﹣2(不合题意,舍去);②当x+1=9时,解得x=8,则等腰三角形的三边为:9、19、9,因为9+9=18<19,不能构成三角形,故舍去;③当2x+3=9时,解得x=3,则等腰三角形的三边为:4、9、9,能构成三角形.所以等腰三角形的周长为:4+9+9=22.故答案为:22.17.(3分)如图,△ABC的周长为30cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,若AE=6cm,则△ABD的周长为 18cm .【解答】解:∵把△ABC的边AC对折,使顶点C和点A重合,AE=6cm,∴AE=EC=6cm,AD=CD,∴AC=AE+EC=6+6=12(cm),∵△ABC的周长为30cm,∴AB+BC=30﹣12=18(cm),∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=18cm,故答案为:18cm.18.(3分)如图,在△ABC中,AB=AC,AD⊥BC于D,AD=8,CE平分∠ACB,交AD于E,AE=3ED,M是AB边上的动点,则EM的最小值是 2 .【解答】解:如图,作EN⊥AC于点N,∵AD=8,AE=3ED,∴ED=14AD=2,∵CE平分∠ACB,ED⊥BC,∴EN=ED=2,∵AB=AC,AD⊥BC,∴AD平分∠CAB,∵当EM⊥AB时EM最小,∴EM=EN=2,∴EM的最小值是2.故答案为:2.三、解答题.(本大题共7小题,共66分)19.(20分)计算:(1)(﹣a2b)2÷(―12ab2);(2)(﹣x)3•x2n﹣1+x2n•(﹣x)2;(3)(﹣2x+y)2﹣4(x﹣y)(x+2y);(4)利用乘法公式计算202×198+0.25100×(﹣4)100.【解答】解:(1)原式=a4b2÷(―12ab2)=﹣2a3.(2)原式=﹣x3•x2n﹣1+x2n•x2;=﹣x2n+2+x2n+2=0.(3)原式=4x2﹣4xy+y2﹣4(x2+xy﹣2y2)=4x2﹣4xy+y2﹣4x2﹣4xy+8y2=﹣8xy+9y2.(4)原式=(200+2)×(200﹣2)+(14)100×(﹣4)100=2002﹣4+(―14×4)100=40000﹣4+1=39997.20.(8分)完成下面推理过程,在括号内的横线上填空或填上推理依据.如图,已知AB∥CD,MC⊥CN,∠1+∠2=90°;求证:AB∥EF.证明:∵AB∥CD,∴∠2= ∠3 ( 两直线平行,内错角相等 )∵MC⊥CN,∴∠MCN= 90° ,即:∠3+∠4=90°,∴ ∠2 +∠4=90°,∵∠1+∠2=90°,∴∠1= ∠4 ,∴CD∥ EF ( 内错角相等,两直线平行 ),∴AB∥EF.【解答】证明:∵AB∥CD,∴∠2=∠3(两直线平行,内错角相等),∵MC⊥CN,∴∠MCN=90°,即:∠3+∠4=90°,∴∠2+∠4=90°,∵∠1+∠2=90°,∴∠1=∠4,∴CD∥EF(内错角相等,两直线平行),∴AB∥EF.故答案为:∠3;两直线平行,内错角相等;90°;∠2;∠4;EF;内错角相等,两直线平行.21.(6分)请用你所学的知识解决下列问题:小区A,小区B位于街道m同侧,在街道m上设立一个快递投送站Q,使得快递投送站Q与两个小区的距离相等,请在图中作出点Q的位置.【解答】解:如图,点Q即为所求.22.(8分)如图所示,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠3,∠E=∠C,AE=AC.请判断△ABD的形状,并说明理由.【解答】解:△ABD 为等腰三角形.理由如下:在△ABD 中,∠1+∠ABD =∠ADC =∠ADE +∠3,∵∠1=∠3,∴∠ABD =∠ADE ,在△ABC 和△ADE 中,∠ABC =∠ADE∠C =∠E AC =AE,∴△ABC ≌△ADE △(AAS ),∴AB =AD ,∴△ABD 为等腰三角形.23.(7分)小亮和小芳都想参加学校社团组织的暑假实践活动,但只有一个名额,小亮提议用如下的办法决定谁去参加活动:将一个转盘分成9个面积相等的扇形,分别标上1至9九个号码,随意转动转盘,若转到2的倍数,小亮去参加活动;转到3的倍数,小芳去参加活动;转到其它号码则重新转动转盘,你认为这个游戏公平吗?请说明理由.【解答】解:游戏不公平,理由如下:共有9种等可能的结果,其中3的倍数有3、6、9共3种可能,2的倍数有2,4,6,8共4种可能,∴小亮去参加活动的概率为49,小芳去参加活动的概率为39=13,∵49>13,∴游戏不公平.24.(8分)如图,AB=3,P是线段AB上的一点,分别以AP,BP为边做正方形.(1)设AP=x,求出两个正方形的面积之和S与x之间的函数关系式,并写出自变量x 的取值范围.(2)当x=32时,求S的值.【解答】解:(1)∵AP=x,AB=3,∴BP=AB﹣AP=3﹣x,∴S=x2+(3﹣x)2=x2+9﹣6x+x2=2x2﹣6x+9,∴S=2x2﹣6x+9(0<x<3);(2)当x=32时,原式=2×(32)2﹣6×32+9=2×94―9+9=9 2.25.(10分)如图所示,AD∥BC,BE平分∠ABC,交CD于E,AE平分∠BAD,交BC的延长线于点F.(1)试判断BE与AF的位置关系,并说明理由.(2)试判断AD,AB,BC之间的数量关系,并说明理由.【解答】解:(1)BE⊥AF,理由如下:∵AD∥BC,∴∠DAE=∠CFE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠CFE,∴BA=BF,∵BE平分∠ABC.∴BE⊥AF;(2)BC+AD=AB,理由如下:∵BA=BF,BE⊥AF,∴AE=EF,在△ADE与△FCE中,∠DAE=∠CFEAE=EF,∠AED=∠FEC∴△ADE≌△FCE(ASA),∴AD=FC,∴BA=BF=BC+CF=BC+AD,∴BC+AD=AB,。
北师大版七年级数学下册全部知识点归纳
北师大版七年级数学下册全部知识点归纳如下:一、比例与比例关系1.比例的概念及表示方法2.比例的性质:比例恒定、比例的交叉相等、比例中项的乘积等于其他项的乘积3.比例的应用:物体的相似性、航空地图的比例尺等二、利用比例解决问题1.比例数值法:已知两个比例相等,求其中一个比例的值2.比例线段法:利用线段的比例关系解决问题3.比例面积法:利用面积的比例关系解决问题三、数的四则运算1.加法与减法2.乘法与除法3.括号的运算顺序4.分数的加法与减法四、图形的认识与变换1.平面图形的基本要素:点、线、线段、射线、角、平行线、垂直线、四边形等2.平面图形的分类及特点:三角形、四边形、正方形、矩形、平行四边形、菱形、梯形等3.图形的移动:平移、旋转、翻转4.图形的轴对称与中心对称五、数与式1.代数表达式的定义与基本运算:合并同类项、提取公因式、乘法公式、分配律等2.正数、负数与零的概念与表示方法3.数轴的概念与使用方法4.方程的概念与解的方法六、面积与体积1.平面图形的面积:矩形、三角形、平行四边形、正方形等2.立体图形的体积:长方体、正方体、棱柱、棱锥等3.圆的面积与周长七、统计与概率1.数据的整理与分析:频数表、直方图、折线图等2.概率的基本概念与计算方法:可能性、事件、概率的计算公式等3.点阵图与统计问题的探究八、函数与方程1.函数的概念与表示方法:自变量、因变量、函数值等2.函数的图象与性质3.一次函数与一元一次方程九、三角形与三角函数1.三角形的面积与三角形的性质:直角三角形、等腰三角形、等边三角形等2.三角函数的引入与基本概念:正弦、余弦、正切等3.利用三角函数解决实际问题以上是北师大版七年级数学下册的全部知识点。
不同章节的知识点内容可能会有所不同,如有遗漏请谅解。
希望以上内容对您有所帮助!。
2024年北师大版七年级数学下册知识点总结(二篇)
2024年北师大版七年级数学下册知识点总结第一章:方程与不等式1.方程的概念:包含未知数的等式称为方程。
方程的解是使得方程成立的数。
2.解方程:通过变量的运算和移项,求出方程的解。
3.解一元一次方程:如ax+b=0,解得x=-b/a。
4.方程的证明:通过逆向思维,将给定的解代入方程,验证等式是否成立。
5.不等式的概念:含有不等于号的等式称为不等式,如ax>b。
6.解不等式:通过移项,求出不等式的解的范围。
7.不等式的证明:将给定的解代入不等式,验证不等式是否成立。
第二章:数据的收集和整理1.数据的表示:通过表格、图表和线段、折线图等图示进行数据的表示,便于观察和分析。
2.数据的整理:对收集到的数据进行整理,包括分类、排序、求最大值、最小值、众数、中位数等。
3.统计的总体与样本:通过抽取一部分数据作为样本,对总体数据进行概括和判断。
第三章:图形的认识1.点、线、面的概念:几何图形由点、线、面组成。
2.平行线与垂直线:平行线的特点是永不相交,垂直线的特点是相交成直角。
3.多边形:具有多个边的几何图形称为多边形,如三角形、四边形、五边形等。
4.正多边形:具有相等边长和相等内角的多边形。
5.对称图形:具有对称性的图形,可以通过某一条线进行折叠重合。
6.图形的相似性:具有相等比例关系的图形称为相似图形。
7.平移、旋转和翻折:运用平移、旋转和翻折等操作,使得图形位置和形态发生变化。
第四章:四边形1.四边形的概念:具有四个边的图形称为四边形,包括梯形、平行四边形、矩形、菱形、正方形等。
2.梯形:有两个底边,两个腰。
3.平行四边形:具有相对边平行的四边形。
4.矩形:具有四个直角的四边形,对角线相等。
5.菱形:具有四个相等边的四边形,对角线互相垂直。
6.正方形:具有四个相等边且具有对称性的四边形。
第五章:比例与相似1.比例的概念:比例是指两个或多个量之间的比值关系。
比值相等时称为成比例。
2.比例的性质:比例的性质包括交换律、放大和缩小、分配律等。
北师大版七年级下册数学复习提纲(完美版面)
北师大版七年级下册数学复习提纲(完美版面)第一章有理数- 1.1 有理数的概念- 1.1.1 整数的概念和分类- 1.1.2 有理数的概念和表示方法- 1.2 有理数的运算- 1.2.1 加法运算- 1.2.2 减法运算- 1.2.3 乘法运算- 1.2.4 除法运算- 1.3 有理数的比较- 1.3.1 正数和负数的比较- 1.3.2 有理数的大小比较第二章平方根- 2.1 平方根的概念- 2.1.1 平方根的定义和性质- 2.2 平方根的计算- 2.2.1 平方根的估算- 2.2.2 平方根的精确计算- 2.2.3 平方根的应用- 2.3 平方根的运算- 2.3.1 平方根的加法与减法- 2.3.2 平方根的乘法与除法第三章初步认识代数- 3.1 代数的基本概念- 3.1.1 代数的定义和发展- 3.1.2 代数中的字母和数字- 3.2 数学语言及运算法则- 3.2.1 代数式的表示- 3.2.2 代数运算法则- 3.3 字母的应用- 3.3.1 字母的应用问题- 3.3.2 代数式的化简与展开第四章分式与整式- 4.1 分式的概念- 4.1.1 分式的定义和性质- 4.2 分式的运算- 4.2.1 分式的加法与减法- 4.2.2 分式的乘法与除法- 4.3 整式的基本概念- 4.3.1 整式的定义和分类- 4.3.2 整式的加法与减法- 4.3.3 整式的乘法与除法第五章算式的根式表示- 5.1 平方根表达式与算式- 5.1.1 平方根表达式的转化- 5.1.2 平方根表达式的计算- 5.2 立方根表达式与算式- 5.2.1 立方根表达式的转化- 5.2.2 立方根表达式的计算- 5.3 算式的根式表示的应用- 5.3.1 算式的根式表示的实际应用- 5.3.2 表达式化简与问题解答。
北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)
第一章 整式的运算第一节 整式1.整式的有关概念:(1)单项式的定义:像1.5V ,28n π,h r 231π等,都是数与字母的乘积,这样的代数式叫做单项式.(2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(3)多项式的概念:几个单项式的和叫做多项式.(4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数.(5)整式的概念:单项式和多项式统称为整式.2.定义的补充: (1)单项式的系数:单项式中的数字因数叫做单项式的系数.(2)多项式的项数:多项式中单项式的个数叫做多项式的项数.(3)区别是否是整式:关键:分母中是否含有字母?分母有字母的为分式,如a 分之3是分式。
3.例题讲解:例1:下列代数式中,哪些是整式?单项式?多项式?并指出它们的系数和次数? (!)ab +c (2)ax 2+bx +c (3)-5(4)π.2y x - (5)12-x x 例2:求多项式363222+--b ab a 的各项系数之和?第二节 整式的加减一、 知识点复习:1、填空:整式包括单项式和多项式.2、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.3、所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
4、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
二、练习: 例1:下列各式,是同类项的一组是( ) (A )y x 222与231yx (B )n m 22与22m n 例2、计算:(1))134()73(22+-++k k k k (2))2()2123(22x xy x x xy x +---+例3:先化简,再求值:()[],673235222x x x x x x +++--其中x=21 例4、已知:A=x 3-x 2-1,B=x 2-2,计算:(1)B -A (2)A -3B第三节 同底数幂的乘法一、复习提问2.指出下列各式的底数与指数:(1)34;(2)a 3;(3)(a+b)2;(4)(-2)3;(5)-23.3、同底数幂的乘法法则: m n m n a a a += (,m n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 m n p m n p a a a a++=(其中m 、n 、p 均为正数);⑤公式还可以逆用: m n m n aa a +=(m 、n 均为正整数)二、巩固练习(1)107×104; (2)x 2·x 5;(3)10·102·104;(4)-a ·(-a)3;(5)(-a)2·(-a)3三、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a 的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a 2的底数a ,不是-a .计算-a 2·a 2的结果是-(a 2·a 2)=-a 4,而不是(-a)2+2=a 4.5.若底数是多项式时,要把底数看成一个整体进行计算第四节 幂的乘方与积的乘方一、知识点复习:1. 幂的乘方法则:()m n mn a a =(,m n 都是正整数)幂的乘方,底数不变,指数相乘。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级数学下册复习提纲
第一章 整式的运算
一、整式
1、单项式:表示数与字母的积的代数式。
另外规定单独的一个数或字母也是单项式。
单项式中的数字因数叫做单项式的系数。
注意系数包括前面的符号,系数是1时通常省略,π是系数,72xyz -的系数是7
2-,单项式的次数是指所有字母的指数的和。
2、多项式:几个单项式的和叫做多项式。
(几次几项式)
每一个单项式叫做多项式的项,注意项包括前面的符号。
多项式的次数:多项式中次数最高的项的次数。
项的次数是几就叫做几次项,其中不含字母的项叫做常数项。
3、整式;单项式与多项式统称为整式。
(最明显的特征:分母中不含字母)
4、排列多项式:①按某一个字母降幂排列:某一个字母的指数由大到小排列; ②按某一个字母升幂排列:某一个字母的指数由小到大排列。
二、整式的加减:①先去括号; ②再合并同类项。
(系数相加,字母与字母指数不变)
三、幂的运算性质
1、同底数幂相乘:底数不变,指数相加。
m n m n a a a +=•
2、幂的乘方:底数不变,指数相乘。
nm m n a a =)(
3、积的乘方:把积中的每一个因式分别乘方,再把所得的幂相乘。
n n n b a ab =)( 4、零指数幂:任何一个不等于0的数的0次幂等于1。
10=a (0≠a ) 注意00没
有意义。
5、负整数指数幂: p p a a 1
=- (p 正整数,0≠a )
6、同底数幂相除:底数不变,指数相减。
m n m n a a a -=÷
注意:以上公式的正反两方面的应用。
四、单项式乘以单项式:系数相乘,相同的字母相乘,只在一个因式中出现的字母则连同它的指数作为积的一个因式。
五、单项式乘以多项式:运用乘法的分配率,把这个单项式乘以多项式的每一项。
六、多项式乘以多项式:连同各项的符号把其中一个多项式的各项乘另一个多项式的每一项。
七、平方差公式
两数的和乘以这两数的差,等于这两数的平方差。
()()22b a b a b a -=-+
即:一项符号相同,另一项符号相反,等于符号相同的平方减去符号相反的平方。
八、完全平方公式
两数的和(或差)的平方,等于这两数的平方和再加上(或减去)两数积的2倍。
九、单项除以单项式:把单项式的系数相除,相同的字母相除,只在被除式中出现的字母则连同它的指数作为商的一个因式。
十、多项式除以单项式:连同各项的符号,把多项式的各项都除以单项式。
十一、百万分之一有多小、近似数与精确数
近似数:通过测量、估算、统计得到的数; 精确数:真实的数值
十二、科学记数法:
1、绝对值大于10的数:n
a 10⨯ (1≤a 〈10 ,n 是原数的整数位数减1〉
2、绝对值小于1的数:n a -⨯10 (1≤a 〈10,n 是有效数字前0的个数) 十三、有效数字:从左边第一个不是0的数字起,到精确到的数位止,所有的数字都叫做这个数的有效数字。
注:①用科学记数法表示的数有效数字看a 的有效数字。
如41035.2⨯的有效数字是2、3、5
②几万或几亿的有效数字看万或亿前面的数。
如2.56万的有效数字是2、5、6
十四、精确度的两种表示方法:
①保留几个有效数字: ②精确到哪一位:
注意:怎样确定一个近似数的精确度?看这个近似数的最右边的数字在数位表中的位置,如果是用科学记数法表示或是几万几亿的数先求出原数
十五、用四舍五入法取近似数时,如果去掉了原数的整数位数则要转化成科学记数法表示。
第二章平行线与相交线
一、互余、互补、对顶角
1、相加等于90°的两个角称这两个角互余。
性质:同角(或等角)的余角相等。
2、相加等于180°的两个角称这两个角互补。
性质:同角(或等角)的补角相等。
3、两条直线相交,有公共顶点但没有公共边的两个角叫做对顶角;或者一个角的反相延长线与这个角是对顶角。
对顶角的性质:对顶角相等。
4、两条直线相交,有公共顶点且有一条公共边的两个角互为邻补角。
(相邻且互补)
二、三线八角:两直线被第三条直线所截
①在两直线的相同位置上,在第三条直线的同侧(旁)的两个角叫做同位角。
②在两直线之间(内部),在第三条直线的两侧(旁)的两个角叫做内错角。
③在两直线之间(内部),在第三条直线的同侧(旁)的两个角叫做同旁内角。
三、平行线的判定
①同位角相等,两直线平行②内错角相等,两直线平行③同旁内角互补,两直线平行
四、平行线的性质
①两直线平行,同位角相等。
②两直线平行,内错角相等。
③两直线平行,同旁内角互补。
第三章变量之间的关系
一、变量、自变量与因变量
①两个变量x与y,y随x的改变而改变,那么x是自变量(先变的量),y是因变量(后变的量)。
二、变量之间的表示方法:
①列表法,自变量在上,因变量在下。
②关系式法:能精确地反映自变量与因变量之间数值的对应关系。
因变量在前,自变量在后。
③图象法:用水平方向的数轴(横轴)表示自变量,用坚直方向的数轴(纵轴)表示因变量。
第四章三角形
一、认识三角形
1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、三角形三边的关系:两边之和大于第三边;两边之差小于第三边。
(已知三条线段确定能否组成三角形,已知两边求第三边的取值范围)
3、三角形的内角和是180°;直角三角形的两锐角互余。
锐角三角形(三个角都是锐角)
4、三角形按角分类直角三角形(有一个角是直角)
钝角三角形(有一个角是钝角)
5、三角形的特殊线段:
a)三角形的中线:连结顶点与对边中点的线段。
(分成的两个三角形面积相
等)
b)三角形的角平分线:内角平分线与对边的交点到内角所在的顶点的线段。
c)三角形的高:顶点到对边的垂线段。
(每一种三角形的作图)
二、全等三角形:
1、全等三角形:能够重合的两个三角形。
2、全等三角形的性质:全等三角形的对应边、对应角相等。
3、全等三角形的判定:
判定方法内容简称
边边边三边对应相等的两个三角形全等SSS
边角边两边与这两边的夹角对应相等的两个三角形全等SAS
角边角两角与这两角的夹边对应相等的两个三角形全等ASA
角角边两角与其中一个角的对边对应相等的两个三角形全等AAS 斜边直角边斜边与一条直角边对应相等的两个直角三角形全等HL
注意:三个角对应相等的两个三角形不能判定两个三角形形全等;AAA 两条边与其中一条边的对角对应相等的两个三角形不能判定两个三角三角形全等。
SSA
4、全等三角形的证明思路:
条件下一步的思路运用的判定方法已经两边对应相等
找它们的夹角SAS
找第三边SSS 已经两角对应相等
找它们的夹边ASA
找其中一个角的对边AAS
已经一角一边找另一个角ASA或AAS 找另一边SAS
5、三角形具有稳定性,
三、作三角形
1、已知三边作三角形
2、已知两边与它们的夹角作三角形
3、已知两角与它们的夹边作三角形(已经两角与其中一角的对边转化成这种情况)
4、已知斜边与一条直角边作直角三角形
第五章生活中的轴对称
一、轴对称图形与轴对称
①一个图形沿某一条直线对折,直线两旁的部分能完成重合的图形叫做轴对称图形。
这条直线叫做对称轴。
②两个图形沿某一条直线折叠,这两个图形能完全重合,就说这两个图形关于这条直线成轴对称。
这条直线叫做对称轴。
③常见的轴对称图形:线段(两条对称轴),角,长方形,正方形,等腰三角形,等边三角形,等腰梯形,圆,扇形
二、角平分线的性质:角平分线上的点到角两边的距离相等。
∵∠1=∠2 , PB⊥OB , PA⊥OA.
∴ PB=PA
三、线段垂直平分线:
①概念:垂直且平分线段的直线叫做这条线段的垂直平分线。
②性质:线段垂直平分线上的点到线段两个端点的距离相等。
∵ OA=OB CD⊥AB
∴ PA=PB
四、等腰三角形性质: (有两条边相等的三角形叫做等腰三角形)
①等腰三角形是轴对称图形; (一条对称轴)
②等腰三角形底边上中线,底边上的高,顶角的平分线重合; (三线合一) ③等腰三角形的两个底角相等。
(简称:等边对等角)
五、在一个三角形中,如果有两个角相等,那么它所对的两条边也相等。
简称:等角对等边
六、等边三角形的性质:等边三角形是特殊的等腰三角形,它具有等腰三角形的所有性质。
① 等边三角形的三条边相等,三个角都等于60; ②等边三角形有三条对称轴。
七、轴对称的性质:
① 关于某条直线对称的两个图形是全等形; ②对应线段、对应角相等; ② 对应点的连线被对称轴垂直且平分; ④对应线段如果相交,那么交点在对称轴上。
八、镜子改变了什么:物与像关于镜面成轴对称;(分清左右对称与上下对称)
第六章 概 率
一、 概率:反映事件发生可能性大小的数。
事件P 的概率=所有出现的结果的总数出现的结果数事件P 二、事件的分类
三、游戏是否公平:双方事件发生的概率是否相等。