可燃性混合气体爆炸特性计算

合集下载

爆炸极限计算

爆炸极限计算

爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下:(1)爆炸反应当量浓度。

爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。

实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。

可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成:CαHβOγ+nO2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度某(%),可用下式表示:可燃气体在氧气中的化学当量浓度为某o(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。

其中。

可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。

各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。

爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值。

1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。

爆炸下限公式:(体积)爆炸上限公式:(体积)式中L下——可燃性混合物爆炸下限;L上——可燃性混合物爆炸上限;n——1mol可燃气体完全燃烧所需的氧原子数。

某些有机物爆炸上限和下限估算值与实验值比较如表2:表2石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。

2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。

计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。

例如甲烷爆炸极限的实验值为5%~15%,与计算值非常接近。

可燃气体混合物爆炸极限计算

可燃气体混合物爆炸极限计算

可燃气体混合物爆炸极限计算
可燃气体混合物爆炸极限计算分为上爆极限和下爆极限两种。

上爆极限计算:
上爆极限是指混合气体中可燃气体浓度达到一定值时,引起爆炸的最高界限,也称上限浓度。

当混合气体中可燃气体浓度高于上爆极限时,气体混合物不会发生燃烧反应。

上爆极限的计算公式为:
LFL = (Vg / Vm) * 100%
其中,LFL为可燃气体混合物的下爆极限(Lower Explosion Limit),Vg为混合气体中可燃气体的体积,Vm为混合气体的总体积。

下爆极限计算:
下爆极限是指混合气体中可燃气体浓度达到一定值时,引起爆炸的最低界限,也称下限浓度。

当混合气体中可燃气体浓度低于下爆极限时,气体混合物也不会发生燃烧反应。

下爆极限的计算公式为:
UFL = (Vk / Vm) * 100%
其中,UFL为可燃气体混合物的上爆极限(Upper Explosion Limit),Vk为混合气体中空气的体积,Vm为混合气体的总体积。

在一定的压力、温度和混合气
体成分的情况下,可燃气体混合物的爆炸极限是固定的。

可燃性混合气体爆炸特性计算

可燃性混合气体爆炸特性计算

可燃性混合气体爆炸特性计算摘要对可燃气体(或蒸汽)爆炸特性参数的测定方法进行研究,给出丙烷、丙烯、甲烷三种可燃气体与空气混合物混合爆炸的爆炸极限和最小点火能数据。

为防灾提供相应的数据参考,能更好的把握可燃气体的性质及危险性。

关键词:可燃气体;爆炸;爆炸极限;最小点火能。

1 绪论气体混合物的爆炸是生产生活,特别是化工生产中极为普遍的爆炸现象。

气体混合物有两种情况:一是单一的可燃气体与空气的混合;另有一种是多种可燃气体与空气的混合。

在这两种情况并非在任何情况下都发生爆炸,只有在一定的爆炸浓度范围,还需要一定的能量的点燃,才可能发生爆炸。

由此可知对气体混合物的爆炸的最小点火能和爆炸极限的测定是相当重要了,也对生产生活特别是化工生产有着积极的指导意义。

2 可燃性混合气体爆炸特性计算的相应条件可燃性混合气体爆炸参数影响的因素很多,例如,可燃气体及氧化剂的种类;气体浓度;点火源能量大小;点火位置;爆炸空间的封闭程度,障碍物的大小,数量及现状等。

在文章中其他条件不变的情况下,仅仅对丙烷、丙烯、甲烷三种可燃气体与空气混合物混合爆炸的爆炸极限和最小点火能进行计算和研究。

3 可燃性混合气体爆炸特性计算3.1 最小点火能的计算3.1.1 常用最小点火能的计算可燃气体与空气混合物引燃所必需的能量临界值亦称为最小火花引燃能或者临界点火能①。

引燃源的能量低于这个临界值时,可燃混合系一般不会被点燃。

最小点火能的测定可用电火花法,其放电能量可通过计算求得:(3.1-1)式中 E——放电能量,J;V——导体间的电位差,V;C——导体间等效电容,F。

电火花点燃混合气体时,点火能量过低将影响燃烧极限,使其值缩小。

当混合系温度或压力升高时,所需临界点火能减小。

如:乙炔在燃烧下限附近时需要很大的点火能,在稍大于化学计算浓度7.8%的附近(约9%)则只需最低的点火能(约0.02mJ)。

10%的乙炔只要给足点火能(约100J)就能被点燃。

压力上升时。

混合气体爆炸极限计算应用实例

混合气体爆炸极限计算应用实例

CHEMICALENGINEERINGDESIGN化工设计2021,31(4)混合气体爆炸极限计算应用实例何秀风 上海电气集团国控环球工程有限公司 太原 030024摘要 混合气体在化工设计中多有出现,对于可燃性混合气体,其爆炸极限的计算非常必要。

本文举例说明混合气体爆炸极限的计算过程,仅供设计人员在计算混合气体爆炸极限时参考。

关键词 混合气体 爆炸极限何秀风:高级工程师。

2009年毕业于太原理工大学获硕士学位。

从事化工工艺研究及设计工作。

联系电话:13546419650,E-mail:553701284@qq com。

在化工设计中,对可燃气体,首先需要判别其火灾危险性类别,只有对物料和装置准确定性后,才能合理开展后续设计工作。

在《石油化工企业设计防火标准》中,对可燃气体的火灾危险性分类规定如下,见表1。

表1 可燃气体的火灾危险性分类[1]类别可燃气体与空气混合物的爆炸下限甲<10%(V)乙≥10%(V) 根据物质的理化性质检索,只能知道纯物质的火灾危险性。

而在化工生产过程中,多数情况下可燃气体以混合物状态存在,因此计算混合气体的爆炸极限显得非常重要。

1 爆炸极限计算方法理论上确定混合气体爆炸极限的方法很多,涉及的理论也较为丰富,其中Lechteilier法则是计算混合气体爆炸极限的一种较切合工程实际的方法[2],其基本公式为:L=100∑ViLi%(1)式中,L为可燃气体混合物的爆炸极限(上限/下限);Vi为可燃气体混合物各组分的含量,%(V);Li为可燃气体混合物各组分的爆炸极限(上限/下限)。

对于混合气体又可分为三种状况:①第一类气体:不含氧气和惰性气体的可燃气体混合物;②第二类气体:不含氧气,但含惰性气体的可燃气体混合物;③第三类气体:含氧气且含惰性气体的可燃气体混合物。

对于第一类气体,可直接利用公式(1)进行计算。

对于第二类气体,其计算步骤为:①将惰性气体和可燃气体分配组合,视为一种可燃介质组分;②计算出各组合气体的含量和比例,几种常用的惰性气和可燃气混合物的爆炸极限如图1~图2所示;③从图1~图2(惰性气体/可燃气爆炸极限图)中查出各组合气体的爆炸极限;④按公式(1)计算混合气爆炸极限。

混合气体的爆炸极限及计算公式

混合气体的爆炸极限及计算公式

混合气体的爆炸极限及计算公式燃烧技术是当下处理VOCs的主流技术,其中包含催化燃烧、热力燃烧、蓄热催化燃烧、蓄热热力燃烧、浓缩催化燃烧等。

燃烧技术的基理是VOCs在高温下发生氧化反应,氧化反应的本质就是燃烧反应,是一种放热反应,VOCs在燃烧过程的放热量与VOCs的种类和浓度有关。

因而,从安全方面考虑,VOCs燃烧的安全使用浓度显得尤为重要。

了解VOCs燃烧过程的温升和可燃气体爆炸下限,有利于提高RTO、RCO设备技术的安全性能。

1、VOCs的爆炸下限是什么?可燃气体在空气中遇明火火种爆炸的最低浓度,称之为爆炸下限,亦称燃烧下限,英文名称Lower Explosion Limited,即%LEL。

空气中可燃气体浓度达到其爆炸下限值时,这个场所可燃气环境爆炸危险度就达到了百分之百,即100%LEL;如果可燃气体含量只达到其爆炸下限的百分之十,那这个场所此时的可燃气环境爆炸危险度为10%LEL。

下表是常见VOCs在标准状态下爆炸下限值。

为了确保VOCs处理设备的安全运行,VOCs废气的浓度必须控制在对应有机物爆炸极限的25%以下。

为什么要控制在25%LEL以下呢?首先,可燃气体的爆炸下限浓度与可燃气体的初始温度有关:以正己烷为例,下图是温度对于正己烷爆炸下限浓度的影响(姚洁等,工业安全与环保,2012,38(2):48),可见当可燃气体初始温度提高,相应爆炸下限浓度下降。

当气体温度达到600K(327°C)时,爆炸下限浓度达到室温的75%,所以提高温度会导致爆炸下限浓度明显下降。

而且实际工况中大多数是混合VOCs,混合VOCs的爆炸下限浓度具有不确定性。

所以,实际操作中要控制在LEL浓度的25%内。

2、VOCs燃烧过程中的绝热温升什么是绝热温升?绝热温升指放热反应物完全转化时所放出的热量可以使物料升高的温度。

其表达式为:式中分子为反应热(J/mol)与物料摩尔浓度(mol/L)的乘积;分母为物料平均密度(kg/L)与物料平均比热容(J/kg*K)的乘积。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。

2.2 理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已
知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369。

爆炸极限计算

爆炸极限计算

爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下:(1)爆炸反应当量浓度。

爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。

实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。

可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成:CαHβOγ+nO2→生成气体按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示:可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示:也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。

其中。

可燃气体(蒸气)在空气中和氧气中的化学当量浓度(2)爆炸下限和爆炸上限。

各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。

爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影.响,但仍不失去参考价值。

1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。

爆炸下限公式:(体积)爆炸上限公式:(体积)式中L下——可燃性混合物爆炸下限;L上——可燃性混合物爆炸上限;n——1mol可燃气体完全燃烧所需的氧原子数。

某些有机物爆炸上限和下限估算值与实验值比较如表2:表2石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较从表中所列数值可以看出,实验所得与计算的值有一定差别,但采用安全系数后,在实际生产工作中仍可供参考。

2)根据化学当量浓度计算爆炸极限和爆炸性混合气完全燃烧时的化学当量浓度,可以估算有机物的爆炸下限和上限。

计算公式如下:此计算公式用于链烷烃类,其计算值与实验值比较,误差不超过10%。

例如甲烷爆炸极限的实验值为5%~15%,与计算值非常接近。

混合气体的爆炸极限怎么计算

混合气体的爆炸极限怎么计算

混合气体的爆炸极限怎么计算编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(混合气体的爆炸极限怎么计算)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为混合气体的爆炸极限怎么计算的全部内容。

爆炸极限L=1/(Y1/L1 + Y2/L2 + Y3/L3)其中:Y1、Y2、Y3代表混合物中组成L1、L2、L3代有混合气体各组份相应的爆炸极限求混合物爆炸下限(或上限)时,L1、L2、L3分别为各纯组份的爆炸下限(或下限);爆炸极限的计算1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中0。

55——常数;c0——爆炸气体完全燃烧时化学理论体积分数。

若空气中氧体积分数按20。

9%计,c0可用下式确定c0=20。

9/(0。

209 n0) 式中n0--可燃气体完全燃烧时所需氧分子数.如甲烷燃烧时,其反应式为CH4 2O2→CO2 2H2O此时n0=2则L下=0.55×20。

9/(0.209 2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。

2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:2.1 莱?夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限.用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3) (V%)混合可燃气爆炸上限:UEL=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%)此定律一直被证明是有效的。

多组分可燃气体混合物爆炸极限的计算

多组分可燃气体混合物爆炸极限的计算

多组分可燃气体混合物爆炸极限的计算多组分可燃气体混合物爆炸极限的计算一、引言在工业生产和实验室中,常常需要处理和使用各种可燃气体混合物。

了解和掌握这些混合物的爆炸极限对于安全生产和实验室操作至关重要。

本文将从理论计算的角度出发,探讨多组分可燃气体混合物爆炸极限的计算方法,帮助读者更深入地理解这一重要概念。

二、多组分可燃气体混合物爆炸极限的定义爆炸极限是指气体或蒸气在与空气混合时所具有的最低和最高浓度的范围,处于这一范围内的气体混合物是可燃的,可以发生燃烧或爆炸。

对于单一组分气体混合物的爆炸极限计算比较简单,但对于多组分混合物,由于存在成分的相互影响和反应特性的复杂性,计算较为复杂。

三、多组分可燃气体混合物爆炸极限的计算方法1. 理论计算方法我们可以利用化学反应平衡原理,建立多组分混合物的反应方程,然后根据不同成分的量比和燃料氧化剂当量比进行计算,得出混合物的爆炸极限。

这种方法适用于对混合物成分和反应规律有一定了解的情况。

2. 实验测定法实验测定法是在实验室利用爆炸腔或爆炸管进行混合物爆炸极限的测定。

通过在一定条件下对不同混合比的气体进行点火或放电,观察混合物的燃烧情况,得出爆炸极限。

这种方法由于操作简单直观,得到的结果比较可靠。

3. 计算机模拟法随着计算机技术的发展,利用计算机进行多组分可燃气体混合物爆炸极限的模拟计算成为一种常用方法。

通过建立混合物的数学模型,利用计算机软件进行模拟计算,可以得出相对准确的结果。

这种方法优点是能够考虑到复杂的反应规律和大量的变量,得出全面的结论。

四、多组分可燃气体混合物爆炸极限的应用与意义多组分可燃气体混合物的爆炸极限是工业生产和实验室操作中必须要考虑的重要参数。

只有了解混合物的爆炸极限,才能更有效地进行防爆措施的制定和实施。

对于具有复杂成分的气体混合物,了解其爆炸极限还能够为工艺设计和改进提供科学依据。

五、结论与展望本文从理论计算方法、实验测定法和计算机模拟法三个方面探讨了多组分可燃气体混合物爆炸极限的计算方法,并讨论了其应用与意义。

多组分可燃气体混合物爆炸极限的计算

多组分可燃气体混合物爆炸极限的计算

多组分可燃气体混合物爆炸极限的计算一、多组分可燃气体混合物爆炸极限的概念在工业生产和日常生活中,可燃气体的使用是非常常见的。

然而,当可燃气体与空气混合在一定的比例范围内时,就会形成可燃混合物。

当这些混合物遭受热源或火焰时,就可能发生爆炸。

了解可燃气体混合物的爆炸极限是非常重要的,这有助于预防火灾和爆炸事故的发生。

爆炸极限是指可燃气体混合物的最小和最大浓度范围,在这个范围内混合物会发生燃烧或爆炸。

计算多组分可燃气体混合物的爆炸极限是非常重要的。

二、多组分可燃气体混合物爆炸极限的计算方法1. 利用Le Chatelier定律进行计算Le Chatelier定律是用来描述化学平衡条件下当外界条件发生变化时,系统会偏离平衡态的方向。

当涉及到可燃气体混合物的爆炸极限计算时,Le Chatelier定律可以用来计算混合物的最小和最大浓度。

通过改变混合物中各组分的浓度,可以计算出可燃气体混合物的爆炸极限范围。

2. 利用燃烧热值进行计算燃烧热值是指单位质量燃料完全燃烧时放出的热量。

通过叠加各组分的燃烧热值,可以得到混合物的总燃烧热值。

然后通过计算混合物在不同浓度下的热值,可以确定混合物的爆炸极限范围。

3. 利用爆炸极限公式进行计算爆炸极限通常通过爆炸极限公式进行计算,而对于多组分可燃气体混合物,可以采用扩展的Le Chatelier公式或其他相应的公式进行计算。

通过测定各组分在混合物中的体积比例、燃烧特性等参数,可以得到混合物的爆炸极限范围。

三、多组分可燃气体混合物爆炸极限的影响因素在计算多组分可燃气体混合物的爆炸极限时,有一些因素需要考虑:1. 各组分的浓度:不同组分的浓度对混合物的爆炸极限有很大影响。

2. 温度和压力:温度和压力的变化会影响混合物的爆炸极限范围。

3. 反应速率:混合物反应速率的快慢也会影响爆炸极限的计算。

四、对多组分可燃气体混合物爆炸极限计算的个人观点和理解在进行多组分可燃气体混合物爆炸极限计算时,我认为需要充分考虑混合物中各组分的性质和浓度,以及温度、压力等环境因素的影响。

混合气体的爆炸极限怎么计算

混合气体的爆炸极限怎么计算

混合气体的爆炸极限怎么计算混合气体的爆炸极限怎么计算爆炸极限L=1/(Y1/L1 Y2/L2 Y3/L3)其中:Y1、Y2、Y3代表混合物中组成、L2、L3代有混合气体各组份相应的爆炸极限求混合物爆炸下限(或上限)时,L1、L2、L3分别为各纯组份的爆炸下限(或下限);爆炸极限的计算根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:下≈0.55c0式中 0.55——常数;——爆炸气体完全燃烧时化学理论体积分数。

若空气中氧体积分数按20.9%计,c0可用下式确定=20.9/(0.209 n0)式中 n0——可燃气体完全燃烧时所需氧分子数。

如甲烷燃烧时,其反应式为2O2→CO2 2H2O此时n0=2则L下=0.55×20.9/(0.209 2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。

对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:.1 莱?夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%)混合可燃气爆炸上限:=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%)此定律一直被证明是有效的。

.2 理?查特里公式理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

=100/(V1/L1 V2/L2 …… Vn/Ln):x式中Lm——混合气体爆炸极限,%;、L2、L3——混合气体中各组分的爆炸极限,%;、V2、V3——各组分在混合气体中的体积分数,%。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:莱·夏特尔定律????对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)?(V%)?此定律一直被证明是有效的。

2.2?理·查特里公式????理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)????式中Lm——混合气体爆炸极限,%;????L1、L2、L3——混合气体中各组分的爆炸极限,%;????V1、V2、V3——各组分在混合气体中的体积分数,%。

????例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

????Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算:废气风量:19000Nm3/h废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178Nm3/h体积分数=2.178/19000=0.012%甲醛体积分数=25.39Nm3/h体积分数=25.39/19000=0.134%混合气体中可燃气体的总体积分数=0.146%由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)?(V%)得:混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57%结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!。

混合气体的爆炸极限怎么计算

混合气体的爆炸极限怎么计算

爆炸极限L=1/(Y1/L1+Y2/L2+Y3/L3)其中:Y1、Y2、Y3代表混合物中组成L1、L2、L3代有混合气体各组份相应的爆炸极限求混合物爆炸下限(或上限)时,L1、L2、L3分别为各纯组份的爆炸下限(或下限);爆炸极限的计算1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中0.55——常数;c0——爆炸气体完全燃烧时化学理论体积分数。

若空气中氧体积分数按20.9%计,c0可用下式确定c0=20.9/(0.209 n0)式中n0——可燃气体完全燃烧时所需氧分子数。

如甲烷燃烧时,其反应式为CH4 2O2→CO2 2H2O此时n0=2则L下=0.55×20.9/(0.209 2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。

2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:2.1 莱?夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%)此定律一直被证明是有效的。

2.2 理?查特里公式理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1 V2/L2 …… Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L 下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式
The final revision was on November 23, 2020
爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律?对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)
混合可燃气爆炸上限:
UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)
此定律一直被证明是有效的。

理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极
限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=%)、乙烷15%(L下=%)、丙烷4%(L下=%)、丁烷1%(L下=%)求爆炸下限。

Lm=100/(80/5+15/+4/+1/)=。

防火防爆课程设计--可燃性混合气体爆炸特性计算

防火防爆课程设计--可燃性混合气体爆炸特性计算

可燃性混合气体爆炸特性计算1 绪论可燃性混合气体的爆炸是生产生活,特别是化工生产中极为普遍的爆炸现象。

气体混合物有两种:一种是单一的可燃性气体与空气混合;另一种是多种可燃性气体与空气混合。

这两种气体混合物并非在任何情况下都能发生爆炸,只有在一定的爆炸浓度范围,并需要一定的能量点燃,才可能发生爆炸。

由此可知,对气体混合物爆炸的爆炸极限和最小点火能的测定相当重要,对生产生活特别是化工生产也有着积极的指导意义。

可燃气体的燃烧、爆炸是最严重的灾害性事故。

最近几年,我国城市天然气及煤矿瓦斯爆炸重特大事故频频发生,给国家和人民财产造成了巨大损失,直接影响着我国经济、社会的可持续发展。

为了掌握防火防爆技术,了解可燃性混合气体的爆炸特性,掌握可燃性混合气体爆炸极限、最小发火能量的计算方法,以及进一步了解并掌握其危险特性,特做此课程设计。

通过对爆炸极限的研究可以了解爆炸与燃烧与可燃物浓度的关系,以及最小发火能对其危险性的影响。

燃烧与爆炸是非常激烈的化学反应,特别是爆炸,其反应速度非常快,反应的过程很难控制,如果不是按照人的意愿进行,只要其一发生,就会造成严重的后果。

故只有认识其本质,才能从根本上解决它们产生的危害。

2 爆炸极限2.1 爆炸极限理论可燃物质(可燃气体、蒸气、粉尘或纤维)与空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火或一定的引爆能量便立即发生爆炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。

形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。

可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。

实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。

若浓度减小或增加,火焰蔓延速率则降低。

当浓度低于或高于某个极限值,火焰便不再蔓延。

可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的爆炸下限;反之,能使火焰蔓延的最高浓度则称为爆炸上限。

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式

爆炸极限计算方法:比较认可的计算方法有两种:
莱·夏特尔定律
对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限;用Pn表示一种可燃气在混合物中的体积分数,则:
LEL=P1+P2+P3/P1/LEL1+P2/LEL2+P3/LEL3 V%
混合可燃气爆炸上限:
UEL=P1+P2+P3/P1/UEL1+P2/UEL2+P3/UEL3 V%
此定律一直被证明是有效的;
理·查特里公式
理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之;该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物;Lm=100/V1/L1+V2/L2+……+Vn/Ln
式中Lm——混合气体爆炸极限,%;
L1、L2、L3——混合气体中各组分的爆炸极限,%;
V1、V2、V3——各组分在混合气体中的体积分数,%;
例如:一天然气组成如下:甲烷80%L下=%、乙烷15%L下=%、丙烷4%L 下=%、丁烷1%L下=%求爆炸下限;
Lm=100/80/5+15/+4/+1/=。

混合气体的爆炸极限怎么计算

混合气体的爆炸极限怎么计算

爆炸极限L=1/(Y1/L1 + Y2/L2 + Y3/L3)其中:Y1、Y2、Y3代表混合物中组成L1、L2、L3代有混合气体各组份相应的爆炸极限求混合物爆炸下限(或上限)时,L1、L2、L3分别为各纯组份的爆炸下限(或下限);爆炸极限的计算1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中 0.55——常数;c0——爆炸气体完全燃烧时化学理论体积分数。

若空气中氧体积分数按20.9%计,c0可用下式确定c0=20.9/(0.209 n0)式中 n0——可燃气体完全燃烧时所需氧分子数。

如甲烷燃烧时,其反应式为CH4 2O2→CO2 2H2O此时n0=2则L下=0.55×20.9/(0.209 2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。

2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:2.1 莱?夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%)此定律一直被证明是有效的。

2.2 理?查特里公式理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1 V2/L2 …… Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。

爆炸极限的计算方法

爆炸极限的计算方法

爆炸极限的计算方法1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中 0.55——常数;c0——爆炸气体完全燃烧时化学理论体积分数。

若空气中氧体积分数按20.9%计,c0可用下式确定c0=20.9/(0.209+n0)式中 n0——可燃气体完全燃烧时所需氧分子数。

如甲烷燃烧时,其反应式为CH4+2O2→CO2+2H2O此时n0=2则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。

2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:2.1 莱•夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱•夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)此定律一直被证明是有效的。

2.2 理•查特里公式理•查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.3693 可燃粉尘许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。

混合气体的爆炸极限怎么计算

混合气体的爆炸极限怎么计算

爆炸极限L=1/(Y1/L1+Y2/L2+Y3/L3)其中:Y1、Y2、Y3代表混合物中组成L1、L2、L3代有混合气体各组份相应的爆炸极限求混合物爆炸下限(或上限)时,L1、L2、L3分别为各纯组份的爆炸下限(或下限);爆炸极限的计算1 根据化学理论体积分数近似计算爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下:L下≈0.55c0式中0.55——常数;c0——爆炸气体完全燃烧时化学理论体积分数。

若空气中氧体积分数按20.9%计,c0可用下式确定c0=20.9/(0.209 n0)式中n0——可燃气体完全燃烧时所需氧分子数。

如甲烷燃烧时,其反应式为CH4 2O2→CO2 2H2O此时n0=2则L下=0.55×20.9/(0.209 2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。

2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算目前,比较认可的计算方法有两种:2.1 莱?夏特尔定律对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。

用Pn表示一种可燃气在混合物中的体积分数,则:LEL=(P1 P2 P3)/(P1/LEL1 P2/LEL2 P3/LEL3)(V%)混合可燃气爆炸上限:UEL=(P1 P2 P3)/(P1/UEL1 P2/UEL2 P3/UEL3)(V%)此定律一直被证明是有效的。

2.2 理?查特里公式理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。

该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。

Lm=100/(V1/L1 V2/L2 …… Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。

例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L 下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可燃性混合气体爆炸特性计算1 绪论可燃性混合气体的爆炸是生产生活,特别是化工生产中极为普遍的爆炸现象。

气体混合物有两种:一种是单一的可燃性气体与空气混合;另一种是多种可燃性气体与空气混合。

这两种气体混合物并非在任何情况下都能发生爆炸,只有在一定的爆炸浓度范围,并需要一定的能量点燃,才可能发生爆炸。

由此可知,对气体混合物爆炸的爆炸极限和最小点火能的测定相当重要,对生产生活特别是化工生产也有着积极的指导意义。

可燃气体的燃烧、爆炸是最严重的灾害性事故。

最近几年,我国城市天然气及煤矿瓦斯爆炸重特大事故频频发生,给国家和人民财产造成了巨大损失,直接影响着我国经济、社会的可持续发展。

为了掌握防火防爆技术,了解可燃性混合气体的爆炸特性,掌握可燃性混合气体爆炸极限、最小发火能量的计算方法,以及进一步了解并掌握其危险特性,特做此课程设计。

通过对爆炸极限的研究可以了解爆炸与燃烧与可燃物浓度的关系,以及最小发火能对其危险性的影响。

燃烧与爆炸是非常激烈的化学反应,特别是爆炸,其反应速度非常快,反应的过程很难控制,如果不是按照人的意愿进行,只要其一发生,就会造成严重的后果。

故只有认识其本质,才能从根本上解决它们产生的危害。

2 爆炸极限2.1 爆炸极限理论可燃物质(可燃气体、蒸气、粉尘或纤维)与空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火或一定的引爆能量便立即发生爆炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。

形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。

可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。

实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。

若浓度减小或增加,火焰蔓延速率则降低。

当浓度低于或高于某个极限值,火焰便不再蔓延。

可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的爆炸下限;反之,能使火焰蔓延的最高浓度则称为爆炸上限。

可燃气体或蒸气与空气的混合物,若其浓度在爆炸下限以下或爆炸上限以上,便不会发生燃烧或爆炸。

爆炸极限一般用可燃气体或蒸气在混合气体中的体积百分数表示,有时也用单位体积可燃气体的质量表示。

混合气体浓度在爆炸下限以下时含有过量空气,由于空气的冷却作用,活化中心的消失数大于产生数,阻止了火焰的蔓延。

若浓度在爆炸上限以上时,含有过量的可燃气体,助燃气体不足,火焰也不能蔓延。

但此时若补充空气,仍有着火和爆炸的危险。

所以浓度在爆炸上限以上的混合气体不能认为其是安全的。

2.2 爆炸极限计算方法当混合气体燃烧时,燃烧波面上的化学反应可表示为A+B→C+D+Q式中A、B为反应物;C、D为产物;Q为燃烧热。

A、B、C、D不一定是稳定分子,也可以是原子或自由基。

化学反应前后的能量变化可用图(1)表示。

初始状态Ⅰ的反应物(A+B)吸收活化能正达到活化状态Ⅱ,即可进行反应生成终止状态Ⅲ的产物(C+D),并释放出能量W,W=Q+E。

能量IIEI WQIII时间图(2-1)假定反应系统在受能源激发后,燃烧波的基本反应浓度,即反应系统单位体积的反应数为n,则单位体积放出的能量为nW。

如果燃烧波连续不断,放出的能量将成为新反应的活化能。

设活化概率为α(α≤1),则第二批单位体积内得到活化的基本反应数为anW/E ,放出的能量为αn W 2/E 。

后批分子与前批分子反应时放出的能量比β定义为燃烧波传播系数,则)1(/2E Q E W nW EnW +===αααβ (2.1)现在讨论β的数值。

当β<1时,表示反应系统受能源激发后,放出的热量越来越少,因而引起反应的分子数也越来越少,最后反应会终止,不能形成燃烧或爆炸。

当β=1时,表示反应系统受能源激发后均衡放热,有一定数量的分子持续反应。

这是决定爆炸极限的条件(严格说卢值略微超过1时才能形成爆炸)。

当β>1时,表示放出的热量越来越多,引起反应的分子数也越来越多,从而形成爆炸。

在爆炸极限时,β=1,即1)1(=+E Q α (2.2)假设爆炸下限L 下(体积分数)与活化概率α成正比,则有α=KL 下,其中K为比例常数。

因此)1(K 1E Q L +=下 (2.3)当Q 与E 相比很大时,上式可以近似写成E Q K 1=下L (2.4)上式近似地表示出爆炸下限L 下与燃烧热Q 和活化能正之间的关系。

如果各可燃气体的活化能接近于某一常数,则可大体得出L 下Q =常数 (2.5)这说明爆炸下限与燃烧热近于成反比,即是说可燃气体分子燃烧热越大,其爆炸下限就越低。

各同系物的L 下Q 都近于一个常数表明上述结论是正确的。

利用爆炸下限与燃烧热的乘积成常数的关系,可以推算同系物的爆炸下限。

但此法不适用于氢、乙炔、二硫化碳等少数可燃气体爆炸下限的推算。

式(2.5)中的L 是体积分数,文献数据大都为20℃的测定数据;Q 则为摩尔燃烧热。

对于烃类化合物,单位质量(每克)的燃烧热q 大致相同。

如果以mg ·L —1为单位表示爆炸下限,则记为L ˋ下,有L 下=100L ˋ下2732027310004.22+⨯⨯M ,于是M ’下下2.4L L = (2.6)式中 M 为可燃气体的相对分子质量。

把式(2.6)代人式(2.5),并考虑到Q =Mq ,则可得到2.4qL ˋ下=常数 (2.7)可见对于烃类化合物,其L ˋ下近于相同。

2.3 根据化学计量浓度近似计算下限爆炸性气体完全燃烧时的化学计量浓度可以用来确定链烷烃的爆炸下限,计算公式为L 下=0.55C 0 (2.8)式中 C 0为爆炸性气体完全燃烧时的化学计量浓度;0.55为常数。

如果空气中氧的含量按照20.9%计算,C 0的计算式则为000209.09.20100209.011n n C +=⨯+= (2.9) 式中 n 0为1分子可燃气体完全燃烧时所需的氧分子数。

如甲烷完全燃烧时的反应式为CH 4+2O 2→CO 2+2H 2O ,这里n 0=2,代入式(2.9),并应用式(2.8),可得L 下=5.2,即甲烷爆炸下限的计算值为5.2%,与实验值5.0%相差不超过10%。

此法除用于链烷烃以外,也可用来估算其他有机可燃气体的爆炸下限,但当应用于氢、乙炔,以及含有氮、氯、硫等的有机气体时,偏差较大,不宜应用。

2.4 由爆炸下限估算爆炸上限常压下25℃的链烷烃在空气中的爆炸上、下限有如下关系0.567.1L 下上=L (2.10) 如果在爆炸上限附近不伴有冷火焰,上式可简化为下上L 6.5L = (2.11) 把上式代入式(2.9),可得0C 8.4=上L (2.12)以上是单一可燃气体的爆炸极限的计算,当多种气体混合时,其爆炸极限由理。

查特里法则计算,即 n nm L V L V L V L +++= 2211100由其推导过程可以看出,理。

查特里法则适用于活化能E ,摩尔燃烧热Q和反应比例常数k 相接近的可燃气体或蒸汽混合物的爆炸极限计算。

2.5 混合气体的爆炸极限对于可燃气体和惰性气体混合物的计算可将惰性气体和可燃性气体混合物分成若干组,每一组都由一种可燃气体和一种惰性气体组成,分别计算各自的爆炸极限,然后在利用公式B B L B B L L f f m -⨯+⨯-+⨯=1100100)11( (2.13) 计算其总的爆炸极限。

此外对于特殊的还可以根据混合气的爆炸极限与混合气各成分的体积浓度之间具有非线性关系的特点,采用神经网络非线性方法来计算含有H2,CH4和CO 的多元混合气体的爆炸极限。

在模型中,H2,CH4和CO 的体积浓度作为输入,爆炸上限和下限作为输出。

计算结果表明,该非线性模型预测混合气爆炸下限和上限的最大相对误差为3.90﹪,3.57﹪,而模型预测值与计算值的相关系数分别为0.971,0.981。

非线性模型的预测结果要好于偏最小二乘回归的预测结果。

当H2,CO ,CH4在混合气中的体积浓度给定时,非线性模型能够准确预测混合气的爆炸极限。

2.6 影响爆炸极限的因素 爆炸极限通常是在常温常压等标准条件下测定出来的数据,它不是固定的物理常数。

同一种可燃气体、蒸气的爆炸极限也不是固定不变的,它随温度、压力、含氧量、惰性气体含量、火源强度等因素的变化而变化。

其主要影响因数有:1.初始温度爆炸性混合物的初始温度越高,混合物分子内能增大,燃烧反应更容易进行,则爆炸极限范围就越宽。

混合气着火前的初温升高,会使分子的反应活性增加,导致爆炸范围扩大,即爆炸下限降低,上限提高,从而增加了混合物的爆炸危险性。

所以,温度升高使爆炸性混合物的危险性增加。

图(2-2) 温度对爆炸极限的影响2.初始压力增加混合气体的初始压力,通常会使上限显著提高,爆炸范围扩大。

增加压力还能降低混合气的自燃点,这样使得混合气在较低的着火温度下能够发生燃烧。

原因在于,处在高压下的气体分子比较密集,浓度较大,这样分子间传热和发生化学反应比较容易,反应速度加快,而散热损失却显著减少。

压力对甲烷爆炸极限的影响。

在已知的气体中,只有CO 的爆炸范围是随压力增加而变窄的。

混合气在减压的情况下,爆炸范围会随之减小。

压力降到某一数值,上限与下限重合,这一压力称为临界压力。

低于临界压力,混合气则无燃烧爆炸的危险。

在一些化工生产中,对爆炸危险性大的物料的生产、贮运往往采用在临界压力以下的条件进行,如环氧乙烷的生产和贮运。

403020200 2 4 6 8 10 12 14爆范范围甲烷%图(2-3)甲烷-空气混合物爆炸极限 图(2-4)甲烷-空气混物爆炸极限 (大气压以上) (大气压以下)3.含氧量混合气中增加氧含量,一般情况下对下限影响不大,因为可燃气在下限浓度时氧是过量的。

由于可燃气在上限浓度时含氧量不足,所以增加氧含量使上限显著增高,爆炸范围扩大,增加了发生火灾爆炸的危险性。

若减少氧含量,则会起到相反的效果。

例如甲烷在空气中的爆炸范围为5.3%~14%,而在纯氧中的爆炸范围则放大到5.0%~61%。

甲烷的极限氧含量为12%,若低于极限氧含量,可燃气就不能燃烧爆炸了。

4.惰性气体含量爆炸性混合物中惰性气体含量增加,其爆炸极限范围缩小。

当惰性气体含量增加到某一值时,混合物不再发生爆炸。

不同的惰性气体对爆炸极限的影响亦不相同。

如氮、氧、水蒸气、二氧化碳、四氯化碳等,可以使可燃气分子和氧分子隔离,在它们之间形成一层不燃烧的屏障。

这层屏障可以吸收能量,使游离基消失,链锁反应中断,阻止火焰蔓延到其他可燃气分子上去,抑制燃烧进行,起到防火和灭火的作用。

相关文档
最新文档