第三章__多维随机变量及其分布总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 多维随机变量及其分布

第一节 二维随机变量

一、二维随机变量的分布函数

设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量.

一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究.

首先引入(X , Y )的分布函数的概念.

定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数

F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y }

称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数.

分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率..

由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为

P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1)

(1)

与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质:

1︒ F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2︒ 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3︒ F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ).

4︒ 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0.

注: 二元分布函数具有性质1︒~ 4︒, 其逆也成立(2︒中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1︒~ 4︒, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4︒是必不可少的, 即它不能由1︒~ 3︒推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量

如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量.

设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0;

111

=∑∑∞=∞

=i j ij

p

.

我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为

=

),(y x F ∑∑≤≤==x x y

y j

i

i j y Y x X P },{=∑∑≤≤x x y

y ij

i j p

这里

∑∑

≤≤x x y

y i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和.

例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数..

解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}=

3

12231=⋅.

同理, 有 P {X = 2, Y = 1}=31 , P {X = 2, Y = 2}=3

1. 即(X , Y )的分布律如右表所示.

当x < 1, 或y < 1时, F {x , y } = 0; 当1 ≤ x < 2, 1 ≤ y <2时, F {x , y } = 0;

当1 ≤ x < 2, y ≥ 2时, F {x , y } = =+1211p p 31; 当x ≥ 2, 1 ≤ y <2时, F {x , y } ==+2111p p 3

1; 当x ≥ 2, y ≥ 2时, F {x , y } = 1.

所以, (X , Y )的分布函数为⎪⎪⎪

⎪⎪

⎨⎧>>⎩⎨⎧<≤≥⎩⎨⎧≥<≤⎩⎨⎧<≤<≤<<=.2,2,

1,21,

22,21,31,21,

2111,0),(y x y x y x y x y x y x F 或或或

三、二维连续型随机变量

设二维随机变量(X , Y )的分布函数为F {x , y }, 若存在非负函数f (x , y ), 使对任意的x 、y 有

⎰⎰

-∞

-=

y x dudv v u f y x F ),(),(,

则称(X , Y )为连续型的二维随机变量, f (x , y )称为二维连续型随机变量(X , Y )的概率密度, 或称随机变量X 、Y 的联合概率密度.

概率密度f (x , y )具有以下性质: 1︒ f (x , y ) ≥ 0; 2︒

1),(),(=+∞+∞=⎰⎰

∞+∞

-∞+∞

-F dxdy y x f

3︒ 若f (x , y )在点(x , y )处连续, 则有

),()

,(2y x f y

x y x F =∂∂∂ 4︒ 设G 是xOy 平面上的一个区域, 则点(X , Y )落在G 内的概率为⎰⎰=

∈G

dxdy y x f G Y X P ),(}),{( (2)

例2 设二维连续型随机变量(X , Y )的概率密度为⎩

⎨⎧>>=+-.,0,

0,0,2),()(其它y x Ae y x f y x

求: (1) 系数A ; (2) 分布函数F (x , y ); (3) 概率P {(X , Y )∈D }, 其中D : x ≥ 0, y ≥ 0, x + y ≤ 1.

解: (1) 由

1),(=⎰⎰

∞+∞

-∞+∞

-dxdy y x f , 得2

1

=

A . (2) ⎰⎰

-∞

-+-=

y

x

y x dxdy e y x F )

(),(=⎪⎩⎪⎨⎧>>⎰⎰

+-,

,0,0,0,00

)(其它y x dxdy e y

x

y x =⎩⎨⎧>>----.,0,

0,0),1)(1(其它y x e e y

x (3) e

dxdy e e dx

dxdy y x f Y X P x

y x D

2

1),()},{(10

10

-

==

=

⎰⎰⎰

---. 例3 设二维连续型随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=,,

0,

20,10,3

),(2其它y x xy x y x f , 求P {Y ≥ X }.

相关文档
最新文档