第三章__多维随机变量及其分布总结

合集下载

第三章相互独立的随机变量(多维随机变量及其分布)

第三章相互独立的随机变量(多维随机变量及其分布)

f X ( x) fY ( y), x, y R,
10:42:20
即 1 , 2 , 1 , 2 ; ), 且已知X与Y
2 2
相互独立, 由于 f ( x , y ),f X ( x ),fY ( y )都是连续函数,
故对于所有的 x , y , f ( x , y ) f X ( x ) fY ( y )成立, 特别地,取 x 1 , y 2 , 则 f ( 1 , 2 ) f X ( 1 ) fY ( 2 ),
求X与 Y的边缘分布函数,并判断X与Y是否相互 独立?
x
y
10:42:20
2
(1 e x )(1 e y ), x 0, y 0, F ( x, y) 解 其它. 0, 1 e x , x 0, F X ( x ) F ( x , ) 其它. 0, 同理 y 1 e , y 0, FY ( y ) F ( , y ) 其它. 0,
则X , Y独立的充分必要条件是 随机向量 ( X ,Y ) 有联合密度 f ( x , y ),且 f ( x , y ) f X ( x ) fY ( y )
在平面上几乎处处成立 .
这里“几乎处处成立”的含义是:在平面上 除去面积为0的集合外,处处成立.
10:42:20
9
下面考察二维正态随机变量的两个分量的 独立性. 由第二节的讨论可知,
10
f ( x, y)
1 2σ1σ 2 1 ρ
2
( X , Y ) ~ N ( 1 , 2 , 1 , 2 ; ),
2 2
1 ( x μ1 ) 2 ( x μ1 )( y μ2 ) ( y μ2 ) 2 exp 2ρ 2 2 2 σ1 σ 2 σ2 2(1 ρ ) σ1

多维随机变量及其概率分布汇总

多维随机变量及其概率分布汇总

第三章 多维随机变量及其概率分布【内容提要】一、二维随机变量及其分布函数【定义】设(),()X X Y Y ωω==是定义于随机试验E 的样本空间Ω上的两个随机变量,则称(,)X Y为二维随机变量,称()(,)(),()F x y P X x Y y ωω=≤≤为其联合分布函数,而称:()1()()F x P X x ω=≤及()2()()F y P Y y ω=≤分别为,X Y 的边缘分布函数。

二维随机变量(,)X Y 的联合分布函数(,)F x y 具有如下性质: ⑴.非负性: ,x y R ∀∈,有0(,)1F x y ≤≤;⑵.规范性: ,x y R ∀∈,有(,)(,)0,(,)1F x F y F -∞=-∞=+∞+∞=; ⑶.单调性: 当()x y 或固定不变时,(,)F x y 是()y x 或的单增函数; ⑷.右连续性: ,x y R ∀∈,有(0,0)(,)F x y F x y ++=;⑸.相容性: ,x y R ∀∈,有12(,)(),(,)()F x F x F y F y +∞=+∞=; ⑹.特殊概率: 若1212,x x y y <<,则121222122111(,)(,)(,)(,)(,)0P x X x y Y y F x y F x y F x y F x y <≤<≤=--+≥。

二、二维离散型随机变量1.二维离散型随机变量及其概率分布律若二维随机变量(,)X Y 的一切可能取值为离散值2(,)i j x y R ∈,其中,1,2,...i j =,且取到这些值的概率(,)(,)0,,1,2,...i j i j p x y P X x Y y i j ===≥=满足1,(,)1i j i j p x y ≤<+∞=∑,则称(,)X Y 为二维离散型随机变量,而称{}(,),1i j p x y i j ≥为其联合概率分布律,记为:(,)(,),,1,2,...i j X Y p x y i j =。

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布

例 已知二维随机变量(X,Y)的分布函数为 (1)求常数A,B,C; (2)求P{0<X<2,0<Y<3} 解: F (∞
, ∞ ) = A[B +
x y F ( x , y ) = A[ B + arctg ( )][ C + arctg ( )] 2 3
π
2
][ C +
π
2
] = 1 ( y )] = 0 3
设(X,Y)的概率密度
c x 2 ≤ y < x f ( x, y ) = others 0
(1)求常数c;(2)求关于X的边缘概率密度. 解:(1)由归一性
1 x
∫ dx ∫ cdy
0 x2
=1 c = 6

(2) f X ( x) =
0 x < 0 or x > 1 = x ∫ 6dy = 6 ( x x 2 ) 0 ≤ x ≤ 1
x2

∫ f ( x, y)dy
§4 相互独立的随机变量
定义 设F(x,y)及FX(x),FY(y)称分别是二维随机变 量(X,Y)的分布函数及边缘分布函数,如果对任意 实数x, y,有 P{X≤x,Y≤y}=P{X≤x}P{Y≤y} 即事件 {X≤x}与事件 {Y≤y}独立,则称随机变量X 与Y相互独立。 显然,上述定义表明随机变量X与Y独立的充分必 要条件是 F(x,y)=FX(x)FY(y)
二维离散型随机变量的分布律也可列表表示如下:
X Y y1 y2 p11 p21 ... pi1 ... p12 p22 ... pi2 ... … ... ... ... yj … P1j ... P2j ... ... Pij ... ...

概率论与数理统计总结之第三章

概率论与数理统计总结之第三章

第三章 多维随机变量及其分布第一节二维随机变量的概念1.二维随机变量定义:设(X,Y)是二维随机变量,记为:(,){()()}=≤⋂≤F x y P X x Y y (,)=≤≤P X x Y y (,)-∞<<∞-∞<<∞x y称(,)F x y 为X 与Y 的分布函数,或称X 与Y 的联合分布函数}}(){{(,lim (,)→+∞=≤=≤≤+∞=X y F x P X x P X x Y F x y}}(){{,lim (,)→+∞=≤=≤+∞≤=Y x F y P Y y P X Y y F x y分布函数(,)F x y 性质:1)(,)F x y 是变量x 和变量y 的不减函数,(分别关于x 和y 有单调不减性) 2)0(,)1≤≤F x y ,任意一边趋于-∞=0.F(∞,∞)=1(用来确定未知参数).3)(,)(0,)(0,0)=+=++F x y F x y F x y ,即(,)F x y 分别关于x 右连续,关于y 也右连续,4)对于任意11221212(,),(,),,,<<x y x y x x y y 下述不等式成立(可用于判定二元函数(,)F x y 是不是某二维随机变量的分布函数):22211112(,)(,)(,)(,)0-+-≥F x y F x y F x y F x y 2.二维离散型随机变量:定义:如果二维随机变量(X,Y)只取有限对或可列无穷多对,则称(X,Y)是二维离散型随机变量其概率{,},,1,2,====i i ij P X x Y y p i j …为二维离散型随机变量(X,Y)的分布律,或随机变量X 和Y 是联合分布律 性质:1.0,(i,j 1.2.....)≥=ij P2.1≤≤=∑∑i i ijx x y yp满足以上两条,即为二维离散型随机变量的分布律. 注;步骤:定取值,求概率,验证1.离散型随机变量X 和Y 的联合分布函数为(,)≤≤=∑∑i i ijx x y yF x y p,其中和式是对一切满足,≤≤i i x x y y 的i,j 来求和的边缘分布定义:对于离散型随机变量(X,Y),分量X 和Y 的分布律(), 1.2...(), 1.2..的边缘分布律:的边缘分布律:••========∑∑i i ij jJ i ij iX p P X x p i Y p P Y y p i ,0,0(, 1.2....)1•••≥≥===∑∑i j jiip p i j pi p联合确定边缘,但一般情况,边缘不能确定的联合,除非相互独立. 比如;有放回的摸球,就是X ,Y 相互独立. 不放回地摸球,是条件分布.3.二维连续型随机变量的概率密度和边缘概率密度. 对比一维的: 概率密度:()()1∞-∞==⎰f x f x dx ,分布律:{}(),≤≤=⎰b aP a x b f x dx 分布函数:()()-∞=⎰xF x f t dt二维:定义:设二维随机变量(X,Y)的分布函数为(,)F x y ,若存在非负可积函数(,)f x y ,使得对于任意实数x,y 有(,)(,)-∞-∞=⎰⎰xyF x y f u v dudv ,则称(X,Y)为二维连续型随机变量,(,)f x y 称为(X,Y)的概率密度,或联合概率密度.概率密度的性质: 1.(,)F x y ≥0 2.(,)1∞∞-∞-∞=⎰⎰f x y dxdy只要具有以下两条性质,必可作为某二维随机变量的概率密度.3.已知(X,Y)的概率密度(,)f x y ,则(X,Y)在平面区域D 内取值的概率为:{(,)}(,)∈=⎰⎰DP X Y D f x y dxdy (作二重积分)(随机点(X,Y)落在平面区域D 上的概率等于以平面区域D 为底,以曲面(,)=z f x y 顶的典顶的体积) 4.若(,)F x y 在点(x,y)连续,则有2(,)(,)∂=∂∂F x y f x y x y(连续就能根据分布律求概率密度)1) 当求()=P X Y 时,它只是一条线,所以:()0==P X Y2) 一个方程有无实根:20++=ax bx c ,即求:22240,40,40,一个实根无实根两个实根+=+<+>b ac b ac b ac均匀分布:定义:设D 为平面上的有界区域,其面积为S ,且0>S ,如果二维随机变量(X,Y)的概率密度为1,(x,y)(,)0,其它⎧∈⎪=⎨⎪⎩Df x y S,则称(X,Y)服从区域D 上的均匀分布(或叫(X,Y)在D 上服从均匀分布,记作(X,Y )D U . 两种特殊情形:1) D 为矩形,,c )≤≤≤≤a x b y d 时,1,()()(,),c )0,其它⎧⎪--=≤≤≤≤⎨⎪⎩b a dc f x y a x b y d2) D 为圆形,如(X,Y)在以原点为圆心,R 为半径的圆域上服从均匀分布,则(X,Y)的概率密度为:22221,(,))0,其它π⎧⎪=+≤⎨⎪⎩f x y x y R R定义:对连续型随机变量(X,Y),分量X,Y 的概率密度称为(X,Y)关于X 或Y 的边缘概率密度,记作(),X f x ().Y f y X 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰xX F x F x f u v dv du (让Y趋于正无穷) Y 的分布函数:()(,)(,)∞-∞-∞⎡⎤=∞=⎢⎥⎣⎦⎰⎰yY F y F y f u v du dv (让X趋于正无穷) X 的概率密度:()(,),()∞-∞=-∞<<∞⎰X f x f x y dy xY 的概率密度:()(,),()∞-∞=-∞<<∞⎰Y f y f x y dx y(二维的边缘概率密度是直接以联合概率密度在负无穷到正无穷对对应元素积分,其间需要对划分区间的作分别积分)(X,Y)的概率密度:(,)(,)[(,)]-∞-∞-∞-∞==⎰⎰⎰⎰x yx yf x y f u v dudv f u v dv du二维正态分布: 二维正态221212(,)(,,,,)σσρX Y N u u 分布函数的性质:1.211()(,)σX N u ,222()(,)σY N u 边缘服从一维正态分布2.0,ρ=⇔xy X Y 独立(相关系数为O,则两个随机变量独立)3.212()()σ++k X k Y N u (线性组合按一维正态处理)4. 1212(),±±k X k Y c X c Y 服从二维正态(如:(,)+-X Y X Y ) 条件分布:设(X,Y)是二维离散型随机变量,对于固定的j ,若{}0=>j P Y y ,则称{=i P X x |{,}},1,2,{}⋅=======i j ij j j jP X x Y y p Y y i P Y y p …为在=j Y y 条件下随机变量X 的条件分布律同样地,若{}0,=>i P X x 则称{=j P Y y |{,}},1,2,{}⋅=======i j ij i i i P X x Y y p X x j P X x p …为=i X x 条件下随机变量Y 的条件分布律 变形,即得求联合分布律的方法.设二维随机变量(X,Y)的概率密度为f(x,y),(X,Y)关于Y 的边缘概率密度为()Y f y .若对于固定的y,()0,>Y f y 则称(,)()Y f x y f y 为在Y=y 的条件下X 的条件概率密度称|(,)(|)()-∞-∞=⎰⎰xxX Y Y f x y f x y dx dx f y 为在Y=y 的条件下,X 的条件分布函数,记为P{X ≤x|Y=y}或|(|)X Y F x y ,即|(,)(|){|}()-∞=≤==⎰x X Y Y f x y F x y P X x Y y dx f y 设F(x,y)及(),()X Y F x F y 分别是二维随机变量(X,Y)的分布函数及边缘分布函数,若对于所有x,y 有P{X ≤x,Y ≤y}=P{X ≤x}P{Y ≤y},即(,)()()=X Y F x y F x F y ,则称随机变量X 和Y 是相互独立的设(X,Y)是连续型随机变量,(,),(),()X Y f x y f x f y 分别为(X,Y)的概率密度和边缘概率密度,则X 和Y 相互独立的条件等价于(,)()()=X Y f x y f x f y 在平面上几乎处处成立(除去面积为0的集合以外,处处成立)第二节随机变量的独立性1. 两个随机变量的独立性 定义:设(,),().()X Y F x y F x F y 分别是二维随机变量(X,Y)的分布函数和两个边缘分布函数,若对任意实数,x y 有(,)().()=X Y F x y F x F y ,则称X 与Y 相互独立.可用于判断独立性(随机变量独立,对任意实数x,y,事件X ,Y ≤≤x y 相互独立) 以上公式等价于:(X ,Y )(X ).()≤≤=≤≤X Y P x y P x P Y y 可类推至多个函数的情况.1)如果X,Y 随机变量独立,().()连续f x g y ,(通过函数作用)则().()f x g y 也独立.(可类推至多个随机变量的情况)例:X,Y 独立,则22,x y 独立.2)如果1212,...,...,YYYm m X X X 相互独立,12m 121()()...()()()....()和,f x f x f x g y g y g y 也相互独立。

第三章 多维随机变量及其分布

第三章 多维随机变量及其分布
i 1 n
则称X 1 , X 2 , , X n相互独立。
3.3
多维随机变量函数的分布
一、多维离散随机变量函数的分布 二、最大值与最小值的分布
三、连续场合的卷积公式
四、变量变换法
一、多维离散随机变量函数的分布
泊松分布的可加性
设X P(1 ), Y P(2 ),且X 与Y 独立,则Z X Y P(1 2 ).
二项分布的可加性
设X b(n, p), Y P(m, p),且X 与Y 独立,则Z X Y b(n m, p).
二、最大值和最小值的分布
最大值分布
设X1 , X 2 , , X n是相互独立的n个随机变量,若Y max( X1 , X 2 , , X n ), 则Y的分布称为最大值分布。
y y
0
1
U g1 ( X , Y ) V g2 ( X , Y )
则(U ,V )的联合分布函数为 p( , ) p( x( , ), y( , )) | J |
积的公式
设X 与Y 相互独立,其密度函数分别为p X ( x)和pY ( y )。则 U XY的密度函数为 pU ( )

P( X x , Y y ) P( X x ), i 1, 2,
j 1 i j i
被称为X 的边际分布列,类似地,对i求和所得的分布列
P( X x , Y y ) P(Y y ), j 1, 2,
i别地, 当n 2时( X , Y )为二维随机变量。
其联合分布函数为( F x, y) P (X x, Y y)
若F(x,y)是二维随机变量(X,Y)的分布函数, 则 它表示随机点(X,Y)落在二维区域D内的概率, 其中D 如下图所示:

第三章多维随机变量及其分布

第三章多维随机变量及其分布

第三章多维随机变量及其分布第三章多维随机变量及其分布在许多随机试验中,需要考虑的指标不⽌⼀个。

例如,考查某地区学龄前⼉童发育情况,对这⼀地区的⼉童进⾏抽样检查,需要同时观察他们的⾝⾼和体重,这样,⼉童的发育就要⽤定义在同⼀个样本空间上的两个随机变量来加以描述。

⼜如,考察礼花升空后的爆炸点,此时要⽤三个定义在同⼀个样本空间上的随机变量来描述该爆炸点。

在这⼀章中,我们将引⼊多维随机变量的概念,并讨论多维随机变量的统计规律性。

1.⼆维随机变量及其分布在这⼀节中.我们主要讨论⼆维随机变量及其概率分布,并把它们推⼴到n维随机变量。

1.⼆维随机变量及其分布函数1.⼆维随机变量定义3.1 设Ω ={ω }为样本空间,X=X(ω )和Y=Y(ω )是定义在Ω上的随机变量,则由它们构成的⼀个⼆维向量(X,Y)称为⼆维随机变量或⼆维随机向量.⼆维向量(X,Y)的性质不仅与X及Y有关,⽽且还依赖于这两个随机变量的相互关系。

因此,逐个讨论X和Y的性质是不够的,需把(X,Y)作为⼀个整体来讨论。

随机变量X常称为⼀维随机变量。

2. ⼆维随机变量的联合分布函数与⼀维的随机变量类似,我们也⽤分布函数来讨论⼆维随机变量的概率分布。

定义3.2 设(X,Y)是⼆维随机变量,x,y为任意实数,事件(X≤x)和(Y≤y)的交事件的概率称为⼆维随机变量(X,Y)的联合分布或分布函数,记作F(x,y),即若把⼆维随机变量(X,Y)看成平⾯上随机点的坐标,则分布函数F (X,Y)在(x,y)处的函数值就是随机点(X,Y)落⼊以(x,y)为定点且位于该点左下⽅的⽆穷矩形区域内的概率(见图3-1)。

⽽随机点(X,Y) 落在矩形区域内的概率可⽤分布函数表⽰(见图3-2)分布函数F (x,y)具有以下的基本性质。

(1) 0≤F (x,y)≤1.对于任意固定的x和y,有(2) F (x,y)是变量x或y的单调不减函数,即对任意固定的y,当x2 ≥x1时,;对任意固定的x,当y2 ≥y1时,。

第三章多维随机变量及其分布知识点梳理

第三章多维随机变量及其分布知识点梳理

第三章多维随机变量及其分布知识点梳理1. 联合分布函数与边缘分布函数之间的关系:_______________。

2. 联合分布函数的性质:(1)._______________。

(2)._____________________________________。

(3)._____________________________________。

(4)._____________________________________。

(5).________________________________________________。

3. 二维随机变量的相关性质:4.____________________。

5. 随机变量的分布:(1).和分布:___________________________________________。

当X 与Y 独立时,________________________________。

(2).商分布:___________________________________________。

当X 与Y 独立时,________________________________。

(3).极值分布:M=max{x,y}:________________________________________。

N=min{x,y}:________________________________________。

一个前提:_________________________。

6. 常见的二维分布:(1).二维均匀分布:_______________________________________。

(2).二维正态分布:________________________________________。

7. 分布的可加性:(1).X~B(m,p),Y~B(n,p),且X 与Y 相互独立,则X+Y~___________。

3.3-多维随机变量及其分布

3.3-多维随机变量及其分布

f X|Y ( x | y)
f (x, y) fY ( y)
称为随机变量X 在Y y的条件下的条件密度函数.
fY X y
x
f (x, y)
fX x
称为随机变量Y 在 X x的条件下的条件密度函数.
条件密度函数的性质
性质1 对任意的 x,有 fX Y x y 0
性质 2 fX Y x ydx 1 简言之,fX Y x y是密度函数.
和的分布:Z = X + Y 二、连续型分布的情形
设X和Y的联合密度为 f (x,y),求Z=X+Y的密度
Z=X+Y的分布函数是: FZ(z)=P(Z≤z)=P(X+Y ≤ z)
f (x, y)dxdy
D
这里积分区域D={(x, y): x+y ≤z}
是直线x+y =z 左下方的半平面.
FZ (z) f (x, y)dxdy
(3) F (, y) 0, F ( x,) 0 F (,) 0, F (,) 1
(4)关于x或y右连续
(5)对 x1 x2 , y1 y2 ,有
P(x1 X x2, y1 Y y2 )
F ( x2 , y2 ) F ( x1, y2 ) F ( x1, y1 ) F ( x2 , y1) 0
二维随机变量(X,Y) 离散型
X和Y 的联合概率分布列
P(X xi ,Y yj) pij,
i, j =1,2, …
pij 0, i, j 1,2,
pij 1
ij
一维随机变量X 离散型
X的概率分布列
P(Xxk) pk,
k=1,2, …
pk 0, k=1,2, …
pk1

概率论与数理统计多维随机变量及其分布

概率论与数理统计多维随机变量及其分布

第三章 多维随机变量及其分布在实际应用中, 有些随机现象需要同时用两个或两个以上的随机变量来描述. 例如, 研究某地区学龄前儿童的发育情况时, 就要同时抽查儿童的身高H 、体重W , 这里, H 和W 是定义在同一个样本空间==}{e S {某地区的全部学龄前儿童}上的两个随机变量. 又如, 考察某次射击中弹着点的位置时,就要同时考察弹着点的横坐标X 和纵坐标Y . 在这种情况下,我们不但要研究多个随机变量各自的统计规律,而且还要研究它们之间的统计相依关系,因而还需考察它们的联合取值的统计规律,即多为随机变量的分布. 由于从二维推广到多维一般无实质性的困难, 故我们重点讨论二维随机变量.第一节 多维随机变量的分布内容分布图示★ 二维随机变量★ 二维随机变量的分布函数 ★ 例1 ★ 二维离散型随机变量及其概率分布★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 例6★ 二维连续型随机变量及其概率密度★ 例7 ★ 例8 ★ 例9★ 二维均匀分布 ★ 例10 ★ 二维正态分布 ★ 例11★ 内容小结 ★ 课堂练习 ★ 习题3-1 ★ 返回内容要点:一、 二维随机变量定义1 设随机试验的样本空间为}{e S =, S e ∈为样本点,而)(),(e Y Y e X X ==是定义在S 上的两个随机变量, 称),(Y X 为定义在S 上的二维随机变量或二维随机向量.二、 二维随机变量的分布函数定义2 设),(Y X 是二维随机变量, 对任意实数y x ,, 二元函数},{)}{()}{(),(y Y x X P y Y P x X P y x F ≤≤≤≤=记为称为二维随机变量),(Y X 的分布函数或称为随机变量X 和Y 的联合分布函数.联合分布函数的性质: (1) ,1),(0≤≤y x F 且对任意固定的,y ,0),(=-∞y F 对任意固定的,0),(,=-∞x F x ;1),(,0),(=+∞+∞=-∞-∞F F(2) ),(y x F 关于x 和y 均为单调非减函数, 即对任意固定的,y 当),,(),(,1212y x F y x F x x ≥> 对任意固定的,x 当);,(),(,1212y x F y x F y y ≥>(3) ),(y x F 关于x 和y 均为右连续, 即 ).0,(),(),,0(),(+=+=y x F y x F y x F y x F三、 二维离散型随机变量及其概率分布定义 3 若二维随机变量),(Y X 只取有限个或可数个值, 则称),(Y X 为二维离散型随机变量.结论:),(Y X 为二维离散型随机变量当且仅当Y X ,均为离散型随机变量.若二维离散型随机变量),(Y X 所有可能的取值为),(j i y x ,,2,1, =j i 则称),2,1,(},{ ====j i p y Y x X P ijj i为二维离散型随机变量),(Y X 的概率分布(分布律), 或Y X 与的联合概率分布(分布律). 与一维情形类似,有时也将联合概率分布用表格形式来表示, 并称为联合概率分布表: 注:对离散型随机变量而言, 联合概率分布不仅比联合分布函数更加直观, 而且能够更加方便地确定),(Y X 取值于任何区域D 上的概率,即∑∈=∈Dy x ijj i pD Y X P ),(}),{(,特别地, 由联合概率分布可以确定联合分布函数:.},{),(,∑≤≤=≤≤=yy x x ij j i py Y x X P y x F四、二维连续型随机变量及其概率密度定义 设),(Y X 为二维随机变量,),(y x F 为其分布函数, 若存在一个非负可积的二元函数),(y x f , 使对任意实数),(y x , 有,),(),(⎰⎰∞-∞-=xydsdt t s f y x F则称),(Y X 为二维连续型随机变量, 并称),(y x f 为),(Y X 的概率密度(密度函数), 或Y X ,的联合概率密度(联合密度函数).概率密度函数),(y x f 的性质:;0),()1(≥y x f ;1),(),()2(=+∞+∞=⎰⎰∞∞-∞∞-F dxdy y x f(3) 设D 是xOy 平面上的区域,点),(Y X 落入D 内的概率为⎰⎰=∈Ddxdy y x f D y x P ),(}),{(特别地, 边缘分布函数},{}{)(+∞<≤=≤=Y x X P x X P x F X ,),(),(⎰⎰⎰⎰∞-+∞∞-∞-+∞∞-⎥⎦⎤⎢⎣⎡==x x ds dt t s f dsdt t s f上式表明: X 是连续型随机变量, 且其密度函数为:,),()(⎰+∞∞-=dy y x f x f X同理, Y 是连续型随机变量, 且其密度函数为:⎰+∞∞-=dx y x f y f Y ),()(,分别称)(x f X 和)(y f Y 为),(Y X 关于X 和Y 的边缘密度函数.(4) 若),(y x f 在点),(y x 连续, 则有).,(),(2y x f yx y x F =∂∂∂ 进一步, 根据偏导数的定义, 可推得:当y x ∆∆,很小时, 有,),(},{y x y x f y y Y y x x X x P ∆∆≈∆+≤<∆+≤< 即, ),(Y X 落在区间],(],(y y y x x x ∆+⨯∆+上的概率近似等于.),(y x y x f ∆∆五、二维均匀分布设G 是平面上的有界区域,其面积为A .若二维随机变量),(Y X 具有概率密度函数⎪⎩⎪⎨⎧∈=其它,0),(,1),(Gy x Ay x f 则称),(Y X 在G 上服从均匀分布.六、二维正态分布若二维随机变量),(Y X 具有概率密度⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛----=222221121122)1(21221121),(σμσμσμρσμρρσπσy y x x ey x f其中ρσσμμ,,,,2121均为常数,且1||,0,021<>>ρσσ,则称),(Y X 服从参数为ρσσμμ,,,,2121的二维正态分布.注:二维正态随机变量的两个边缘分布都是一维正态分布,且都不依赖于参数ρ,亦即对给定的2121,,,σσμμ,不同的ρ对应不同的二维正态分布,但它们的边缘分布都是相同的,因此仅由关于X 和关于Y 的边缘分布,一般来说是不能确定二维随机变量),(Y X 的联合分布的.例题选讲:二维随机变量的分布函数例1 (讲义例1) 设二维随机变量),(y x 的分布函数为+∞<<∞-+∞<<∞-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+=y x y C x B A y x F ,,3arctan 2arctan ),((1) 试确定常数.,,C B A(2) 求事件}30,2{≤<+∞<<Y X 的概率.二维离散型随机变量及其概率分布例2 (讲义例2) 设随机变量X 在1, 2, 3, 4四个整数中等可能地取一个值,另一个随机变量Y 在1~X 中等可能地取一整数值,试求),(y x 的分布律.例3 (讲义例3) 把一枚均匀硬币抛掷三次, 设X 为三次抛掷中正面出现的次数, 而Y 为正面出现次数与反面出现次数之差的绝对值, 求),(Y X 的概率分布及),(Y X 关于Y X ,的边缘分布.例4 设二维随机变量的联合概率分布为求}0,1{≥≤Y X P 及).0,0(F二维连续型随机变量及其概率密度例5 (讲义例4) ),(Y X 的概率分布由表3—1B 给出,求}0,0{},0,0{≤≤=≠Y X P Y X P |}.||{|},{},0{y X P Y X P XY P ===例6 一整数N 等可能地在10,,3,2,1 十值中取一个值. 设=D )(N D 是能整除N 的正整数的个数,)(N F F =是能整除N 的素数的个数(注意1不是素数). 试写出D 和F 的联合分布律.并求分布律.例7 (讲义例5) 具有概率密度设二维随机变量),(Y X⎪⎩⎪⎨⎧>>=+-.,0,0,0,2),()2(其它y x ey x f y x(1) 求分布函数);,(y x F (2) 求概率}.{X Y P ≤例8 (讲义例6) 设),(Y X 的概率密度是⎩⎨⎧≤≤≤≤-=其它,00,10),2(),(xy x x cy y x f求 (1) c 的值; (2) 两个边缘密度.二维均匀分布例9 设随机变量X 和Y 具有联合概率密度⎩⎨⎧≤≤=其它,0,6),(2xy x y x f求边缘概率密度),(x f X )(y f Y .例10 (讲义例7) 设),(Y X 服从单位圆域122≤+y x 上的均匀分布, 求X 和Y 的边缘概率密度.二维正态分布例11 (讲义例8) 设二维随机变量),(Y X 的概率密度 )sin sin 1(21),()(2122y x e y x f y x +=+-π试求关于Y X ,的边缘概率密度函数.课堂练习1.将两封信随意地投入3个邮筒, 设X ,Y 分别表示投入第1, 2号邮筒中信的数目, 求X 和Y 的联合概率分布及边缘概率分布.2.设向量),(Y X 的密度函数),(y x f 的密度函数为 ⎩⎨⎧≤≤≤≤=其它,010,10,),(y x kxy y x f求 (1) 参数k 的值;(2)),(Y X 的边缘密度.第二节 条件分布与随机变量的独立性内容分布图示★ 条件分布的概念 ★ 例1 ★ 随机变量的独立性★ 离散型随机变量的条件分布与独立性★ 例2 ★ 例3★ 例4★ 连续型随机变量的条件分布与独立性★ 例5 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 例11★ 内容小结 ★ 课堂练习 ★ 习题3-2 ★ 返回内容要点:一、 条件分布的概念设X 是一个随机变量, 其分布函数为,},{)(+∞<<-∞≤=x x X P x F X若另外有一事件A 已经发生, 并且A 的发生可能会对事件}{x X ≤发生的概率产生影响, 则对任一给定的实数x , 记,},|{)|(+∞<<-∞≤=x A x X P A x F并称)|(A x F 为在A 发生的条件下, X 的条件分布函数.二、 随机变量的独立性设A 是随机变量Y 所生成的事件: }{y Y A ≤=, 且0}{>≤y Y P , 则有)(),(}{},{)|(y F y x F y Y P y Y x X P y Y x F Y =≤≤≤=≤.一般地, 由于随机变量Y X ,之间存在相互联系,因而一个随机变量的取值可能会影响另一个随机变量的取值统计规律性. 在何种情况下, 随机变量Y X ,之间没有上述影响, 而具有所谓的“独立性”, 我们引入如下定义.定义 设随机变量),(Y X 的联合分布函数为),(y x F , 边缘分布函数为)(x F X ,)(y F Y , 若对任意实数y x ,,有},{}{},{y Y P x X P y Y x X P ≤≤=≤≤即 ),()(),(y F x F y x F Y X =则称随机变量X 和Y 相互独立.关于随机变量的独立性, 有下列两个定理.定理1 随机变量X 与Y 相互独立的充要条件是X 所生成的任何事件与Y 生成的任何事件独立, 即, 对任意实数集B A ,, 有},{}{},{B Y P A X P B Y A X P ∈∈=∈∈定理2 如果随机变量X 与Y 相互独立, 则对任意函数 ),(1x g )(2y g 均有)(),(21Y g X g 相互独立.三、离散型随机变量的条件分布与独立性设),(Y X 是二维离散型随机变量, 其概率分布为,2,1,,},{====j i p y Y x X P ij j i则由条件概率公式, 当0}{>=j y Y P , 有,2,1,}{},{}|{========⋅i p p y Y P y Y x X P y Y x X P jij j j i j i称其为在j y Y =条件下随机变量X 的条件概率分布.对离散型随机变量),(Y X , 其独立性的定义等价于:若对),(Y X 的所有可能取值),,(j i x x 有}{}{},{j i j i y Y P x X P y Y x X P =====即 ,2,1,,==⋅⋅j i p p p j i ij则称X 和Y 相互独立.四、 连续型随机变量的条件密度与独立性定义 设二维连续型随机变量),(Y X 的概率密度为),(y x f ,边缘概率密度为)(),(y f x f Y X , 则对一切使0)(>x f X 的x , 定义在x X =的条件下Y 的条件概率密度为)(),()|(|x f y x f x y f X X Y =. 类似地, 对一切使0)(>y f Y 的y , 定义在y Y =的条件下X 的条件密度函数为)(),()|(|y f y x f y x f Y Y X =. 注: 关于定义表达式内涵的解释. 以)(),()|(|y f y x f y x f Y Y X =为例. 在上式左边乘以dx , 右边乘以dy dxdy /)(即得}{},{)(),()|(|dy y Y y P dy y Y y dx x X x P dy y f dxdy y x f dx y x f Y Y X +≤≤+≤≤+<≤≈=}.|{dy y Y y dx x X x P +<≤+≤≤=换句话说, 对很小的dx 和dy ,dx y x f Y X )|(|表示已知Y 取值于y 和dy y +之间的条件下,X 取值于x 和dx x +之间的条件概率.对二维连续型随机变量),(Y X , 其独立性的定义等价于: 若对任意的y x ,, 有)()(),(y f x f y x f Y X =几乎处处成立, 则称Y X ,相互独立.注: 这里“几乎处处成立”的含义是:在平面上除去面积为0的集合外,处处成立.例题选讲:条件分布的概念例1 (讲义例1) 设X 服从]1,0[上的均匀分布, 求在已知21>X 的条件下X 的条件分布函数.随机变量的独立性例2 (讲义例2) 设X 与Y 的联合概率分布为(1) 求0=Y 时, X 的条件概率分布以及0=X 时, Y 的条件概率分布; (2)判断X 与Y 是否相互独立?例3 (讲义例3) 设随机变量X 与Y 相互独立, 下表列出了二维随机变量),(Y X 联合分布律及关于X 和关于Y 的边缘分布律中的部分数值, 试将其余数值填入表中的空白处.例4 (讲义例4) 一射手进行射击,击中目标的概率为)10(,<<p p , 射击进行到击中目标两次为止. 以X 表示首次击中目标所进行射击次数, 以Y 表示总共进行的射击次数. 试求X 和Y 的联合分布及条件分布.连续型随机变量的条件密度与独立性例5 (讲义例5)设),(Y X 的概率密度为⎪⎩⎪⎨⎧>>=+-其它,00,0,),()(y x xey x f y x ; 问X 和Y 是否独立?例6 设),(Y X 服从单位圆上的均匀分布,概率密度为⎩⎨⎧≤+=.,01,/1),(22其它,y x y x f π 求).|(|x y f X Y例7 (讲义例7)设),;,;,(~),(212221ρσσμμN Y X(1) 求)|(|y x f Y X 和 )|(|x y f X Y .(2) 证明X 与Y 相互独立的充要条件是0=ρ.例8 (讲义例6)甲乙两人约定中午12时30分在某地会面. 如果甲来到的时间在12:15到12:45之间是均匀分布. 乙独立地到达, 而且到达时间在12:00到13:00之间是均匀分布. 试求先到的人等待另一人到达的时间不超过5分钟的概率. 又甲先到的概率是多少?例9 设数X 在区间)1,0(均匀分布,当观察到)10(<<=x x X 时,数Y 在区间)1,(x 上等可能随机地取值.求Y 的概率密度.例10 设店主在每日开门营业时,放在柜台上的货物量为Y ,当日销售量为X 假定一天中不再上柜台上补充货物,于是Y X ≤. 根据历史资料,),(Y X 的概率密度函数为⎩⎨⎧≤≤≤≤=.,0200,0,200/1),(其它时,当y y x y x f即),(Y X 服从直角三角形区域OAB 上的均匀分布, 见图3—2A. 求(1) 给定y Y =条件下,X 的条件分布.(2)假定某日开门时,10=Y 件,求这天顾客买走5≤X 件的概率. 如果20=Y 件呢? 例11 (讲义例8)设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<=-.,0;0,),(其它y x e y x f y (1) 求X 与Y 的边际概率密度, 并判断X 与Y 是否相互独立; (2) 求在y Y =的条件下, X 的条件概率密度;(3) 求概率{}{}.4|21|2/10},12{=≥≤≤≤≤+Y X P Y X P Y X P课堂练习1. 设),(Y X 的分布律如下问βα,为何值时, X 与Y2. 设),(Y X 的概率密度是⎪⎩⎪⎨⎧+∞<<+∞<<=--其它,00,0,),(/y x ye e y xf yy x 求}.|1{y Y X P =>3.设⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f ,试判断X 与Y 是否相互独立.第三节 多维随机变量函数的分布在实际应用中,有些随机变量往往是两个或两个以上随机变量的函数. 例如,考虑全国年龄在40岁以上的人群,用X 和Y 分别表示一个人的年龄和体重,Z 表示这个人的血压,并且已知Z 与X ,Y 的函数关系式),(Y X g Z =,现希望通过),(Y X 的分布来确定Z 的分布. 此类问题就是我们将要讨论的两个随机向量函数的分布问题.在本节中,我们重点讨论两种特殊的函数关系: (i) Y X Z +=;(ii) },m ax{Y X Z =和},m in{Y X Z =,其中X 与Y 相互独立.注:应指出的是,将两个随机变量函数的分布问题推广到n 个随机变量函数的分布问题只是表述和计算的繁杂程度的提高,并没有本质性的差异.内容分布图示★ 引言★ 离散型随机向量的函数的分布★ 例1 ★ 例2★ 例3 ★ 连续型随机向量的函数的分布 ★ 例4 ★ 连续型随机向量函数的联合概率密度 ★ 例5 ★ 和的分布 ★ 例6 ★ 例7 ★ 正态随机变量的线性组合★ 例8 ★ 例9 ★ 例10 ★ 商的分布 ★ 例11 ★ 积的分布 ★ 例12 ★ 最大、最小分布 ★ 例13 ★ 例14★ 内容小结 ★ 课堂练习 ★ 习题3-3 ★ 返回内容要点:一、 离散型随机变量的函数的分布设),(Y X 是二维离散型随机变量, ),(y x g 是一个二元函数, 则),(Y X g 作为),(Y X 的函数是一个随机变量, 如果),(Y X 的概率分布为),2,1,(},{ ====j i p y Y x X P ijj i设),(Y X g Z =的所有可能取值为 ,2,1,=k z k , 则Z 的概率分布为,},{}),({}{),(∑=======kj i z y x g jik k y Y x X P z Y X g P z Z P ,,2,1 =k二、 连续型随机变量的函数的分布设),(Y X 是二维连续型随机向量, 其概率密度函数为),(y x f , 令),(y x g 为一个二元函数, 则),(Y X g 是),(Y X 的函数.可用类似于求一元随机变量函数分布的方法来求),(Y X g Z =的分布.a) 求分布函数),(z F Z.),(}),{(}),({}{)(⎰⎰=∈=≤=≤=ZD Z Z dxdy y x f D Y X P z Y X g P z Z P z F其中, }.),(|),{(z y x g y x D Z ≤=b) 求其概率密度函数)(z f Z , 对几乎所有的z , 有).()(z F z f ZZ '= 定理1 设),(21X X 是具有密度函数),(21x x f 的连续型随机向量.(1) 设),(),,(21222111x x g y x x g y ==是2R 到自身的一一映射, 即存在定义在该变换的值域上的逆变换:);,(),,(21222111y y h x y y h x ==(2) 假设变换和它的逆都是连续的;(3) 假设偏导数)2,1,2,1(==∂∂j i y hi i 存在且连续;(4) 假设逆变换的雅可比行列式0),(2212211121≠∂∂∂∂∂∂∂∂=y h y h y h yh y y J , 即),(21y y J 对于在变换的值域中的),(21y y 是不为0的. 则21,Y Y 具有联合密度)).,(),,((||),(21221121y y h y y h f J y y w =定理2 设Y X ,相互独立,且),,(~211σμN X ).,(~222σμN Y 则Y X Z +=仍然服从正态分布,且).,(~222121σσμμ++N Z更一般地,可以证明:有限个相互独立的正态随机变量的线性组合仍然服从正态分布,即有定理3 若),,,2,1)(,(~2n i N X i i i =σμ且它们相互独立,则对任意不全为零的常数n a a a ,,,21 ,有⎪⎪⎭⎫ ⎝⎛∑∑∑===n i i i n i i i ni i i a a N X a 1211,~σμ.三、 ),m ax(Y X M =及),m in(Y X N =的分布设随机变量Y X ,相互独立,其分布函数分别为)(x F X 和)(y F Y , 由于),m ax(Y X M =不大于z 等价于X 和Y 都不大于z , 故有);()(}{}{},{}{)(z F z F z Y P z X P z Y z X P z M P z F Y X M =≤≤=≤≤=≤=类似地, 可得),m in(Y X N =的分布函数)].(1)][(1[1}{}{1},{1}{1}{)(z F z F z Y P z X P z Y z X P z N P z N P z F Y X N ---=>>-=>>-=>-=≤=例题选讲:离散型随机变量的函数的分布例1 (讲义例1) 设随机变量),(Y X 的概率分布如下表例2 (讲义例2) 设X 和Y 相互独立, ,),(~),,(~21p n b Y p n b X 求Y X Z +=的分布. 例 3 (讲义例3) 若X 和Y 相互独立, 它们分别服从参数为21,λλ的泊松分布, 证明Y X Z +=服从参数为21λλ+的泊松分布.连续型随机变量的函数的分布例 4 (讲义例4) 设随机变量X 与Y 相互独立, 且同服从]1,0[上的均匀分布, 试求||Y X Z -=的分布函数与密度函数.例5 (讲义例5) 设),(21X X 的密度函数为).,(21x x f 令212211,X X Y X X Y -=+=试用f 表示1Y 和2Y 的联合密度函数.和的分布:设X 和Y 的联合密度为),(y x f , 求Y X Z +=的密度.卷积公式: 当X 和Y 独立时, 设),(Y X 关于Y X ,的边缘密度分别为),(),(y f x f Y X 则上述两式化为⎰⎰∞∞-∞∞--=-=dxx z f x f z f dyy f y z f z f Y X Z Y X Z )()()()()()(以上两个公式称为卷积公式.例6 (讲义例6)设X 和Y 是两个相互独立的随机变量. 它们都服从)1,0(N 分布, 其概率密度为.,21)(,,21)(2/2/22∞<<∞-=∞<<∞-=--y e y f x e x f y Y x X ππ .的概率密度求Y X Z +=例7 (讲义例7) 设某种商品一周的需要量是一个随机变量, 其概率密度函数为⎪⎩⎪⎨⎧>=-.,0,0,)(其它时当x xe x f x 如果各周的需要量相互独立, 求两周需要量的概率密度函数.例8 设X 与Y 相互独立, 且均在区间]1,0[上服从均匀分布, 求Y X Z +=的密度函数.例9 (讲义例8) 设21,X X 相互独立且分别服从参数为βαβα,;,21的Γ分布(分别记成212211,),,(~),,(~X X X X βαβαΓΓ的概率密度分别为⎪⎩⎪⎨⎧>=--Γ其它,00,1)(/1)(1111x e xx f x X βαααβ⎪⎩⎪⎨⎧>Γ=--其它,00,)(1)(/12222y e y y f y X βαααβ试证明21X X +服从参数为βαα,21+的Γ分布.商的分布:设二维随机向量),(Y X 的密度函数为),(y x f , 求YXZ =的密度函数.例10 在一简单电路中, 两电阻1R 和2R 串联连接, 设21,R R 相互独立,它们的概率密度均为⎪⎩⎪⎨⎧≤≤-=.,0100,5010)(其它x x x f求总电阻21R R R +=的概率密度.例11 (讲义例9) 设X 与Y 相互独立, 它们都服从参数为λ的指数分布. 求YXZ =的密度函数.积的分布: 设),(21X X 具有密度函数),(21x x f , 则21X X Y =的概率密度为.||1,)(⎰∞∞-⎪⎭⎫ ⎝⎛=dz z z y z f y f Y 例12 (讲义例10) 设二维随机向量),(Y X 在矩形}10,20|),{(≤≤≤≤=y x y x G 上服从均匀分布, 试求边长为X 和Y 的矩形面积S 的密度函数)(s f .例13 (讲义例11) 设随机变量21,X X 相互独立, 并且有相同的几何分布:2,1,,2,1,}{1====-i k pq k X P k i ,p q -=1求),m ax(21X X Y =的分布.例14 (讲义例12)设系统L 由两个相互独立的子系统21,L L 联接而成,联接方式分别为串联、并联、备用(当系统1L 损坏时,系统2L 开始工作),如图3—3—6所示. 设21,L L 的寿命分别为Y X ,, 已知它们的概率密度分别为⎩⎨⎧≤>=-,0,0,0,)(x x e x f x X αα ⎩⎨⎧≤>=-,0,0,0,)(y y e y f y Y ββ 其中0,0>>βα且.βα≠ 试分别就以上三种联接方式写出L 寿命Z 的概率密度.课堂练习1. 已知),(Y X 的分布律为求: (1)Z = (2);XY Z = (3)();2sin ⎪⎭⎫⎝⎛+=Y X Z π(4)},m ax{Y X Z =的分布律.2. 若X 和Y 独立, 具有共同的概率密度⎩⎨⎧≤≤=其它,010,1)(x x f 求Y X Z +=的概率密度.。

【学习】第三章多维随机变量

【学习】第三章多维随机变量

fX(x)f(x,y)dy,
fY(y)f(x,y)dx
结 束
19
例1: 设 (X, Y) 的分布函数为:
F (x ,y ) a ( b arx ) c c (a ta ry n ) c,( t a x ,y n ) ,
2
2
试求 (1) a 、 b、c , (2) (X, Y ) 的概率密度.
x2 … xi … p21 … pi 1 … ┇…┇…
yj p1 j p2 j … pi j … ┇ ┇ ┇ …┇ …
( X, Y ) 的分布律的性质: (1) 非负性 pi j 0,
(2) 归一性 pi j 1
ij
结 束
10
( X, Y ) 的分布律
P {X x i,Y yj} p ij,i,j 1 ,2 ,
第三章 多维随机变量及其分布
结 束
1
到现在为止,我们只讨论了一维随机变量及其分布. 但有些随机现象用一个随机变量来描述还不够,而 需要用几个随机变量来描述.
如: 在打靶时, 命中点的位置是由 一对随机变量(两个坐标)来确定的.
飞机的重心在空中的位置是由 三个随机变量(三个坐标)来确定 的等等.
因而需进一步讨论由多个随机变量构成的随机向量. 其处理思路及方法与一维情形相同, 但形式较一维 复杂; 学习时应注意与一维情形的对照.
D的可能取值 为1, 2, 3, 4; F 的可能取值 为0, 1, 2 ;
再确定取值的概率,如: P{D1,F0}P{N1} 1/ 6,
P{D2,F1} P ( { N 2 }{ N 3 }{ N 5 } 3 / 6
等等.
可得D 和 F 的 联合分布律及 边缘分布律为:
FD 1 2 0 1/6 0 1 0 3/6

第三章第一节多维随机变量及其联合分布

第三章第一节多维随机变量及其联合分布
P{ X x1 ,Y y2 }P{ X x1,Y y1} 0,
故 F ( x2 , y2 ) F ( x2 , y1 ) F ( x1, y2 ) F ( x1, y1) 0.
P135例3.1.1举出因不满足性质4而不为分布函数的 例子.
二、多维随机变量及其联合分布函数
1.多维随机变量
证 由概率的性质可知0 F( x, y) 1.又因为对任意的
正整数n,
n
lim X x lim X m ,
x
n m 1
n
lim X x lim X m ,
x
n m 1
由概率的连续性得
F (, y) 0,
对.
F (, ) 0, F (, ) 1.
2o 有界性 对任意的x和y,有0 F ( x, y) 1, 且有
对于任意固定的 y, F (, y) lim F ( x, y) 0, x
对于任意固定的 x, F( x,) lim F( x, y) 0, y F (,) lim F ( x, y) 0, x y F (,) lim F ( x, y) 1. x y
y
2(1,2)
1 (1,1)
o1
(2,2)
(2,1)
2
x
(4)当x 2,1 y 2时, F ( x, y) p11 p21 1 3; (5)当x 2, y 2时, F ( x, y) p11 p21 p12 p22 1.
所以( X ,Y ) 的分布函数为
0, x 1 或 y 1,

(1) 因为
f ( x, y)d x d y 1,
所以
2 4 k (6 x y)d y d x 1, 02 k 1; 8
(2) P{X 1,Y 3}

考研概率统计--多维随机变量及其分布笔记

考研概率统计--多维随机变量及其分布笔记
Note:若G为非非矩形,推nothing
若G为矩形,服从均匀;推:X服从均匀,Y服从均匀,X,Y独立立
2)二二维正态分布(the special one)
1.定义;
Note:1.淡化公式,强调性质
2.规律律:e的-x2,e的-y2,e的-xy
2.性质:
(1)联合可以推边缘;边缘不不能推联合
(2)(aX+bY,cX+dY)服从二二维正态分布(利利用用卷积公式证明)(只要求 5个参数即可)(联合的线性仍然正态)
(3)aX+bY服从正态(只要求2个参数)(二二维推一一维线性依然是正态的)
(4)X和Y相互独立立互推p=0(独立立性仅有数字特征决定)
四 二二维随机变量量函数的分布
1.二二维离散型:已知联合概率分布律律,求Z=g(X,Y)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 ห้องสมุดไป่ตู้二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
2.二二维随机变量量的联合分布函数
1)X,Y取积;
2)在离散型上的体现(1.出现0,一一定不不独立立;2.行行行或列列成比比例例)
三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
方方法:枚举,合并(相同量量合并)
Note:当然还有二二维

最新第三章--多维随机变量及其分布总结

最新第三章--多维随机变量及其分布总结

精品文档第三章 多维随机变量及其分布第一节 二维随机变量一、二维随机变量的分布函数设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量.一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究.首先引入(X , Y )的分布函数的概念.定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y }称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数.分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率..由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1)(1)与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质:1︒ F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2︒ 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3︒ F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ).4︒ 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0.注: 二元分布函数具有性质1︒~ 4︒, 其逆也成立(2︒中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1︒~ 4︒, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4︒是必不可少的, 即它不能由1︒~ 3︒推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量.设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0;111=∑∑∞=∞=i j ijp.我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为=),(y x F ∑∑≤≤==x x yy jii j y Y x X P },{=∑∑≤≤x x yy iji j p这里∑∑≤≤x x yy i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和.例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时,精品文档各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数..解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}=312231=⋅. 同理, 有 P {X = 2, Y = 1}=31 , P {X = 2, Y = 2}=31. 即(X , Y )的分布律如右表所示.当x < 1, 或y < 1时, F {x , y } = 0; 当1 ≤ x < 2, 1 ≤ y <2时, F {x , y } = 0;当1 ≤ x < 2, y ≥ 2时, F {x , y } = =+1211p p 31; 当x ≥ 2, 1 ≤ y <2时, F {x , y } ==+2111p p 31; 当x ≥ 2, y ≥ 2时, F {x , y } = 1.所以, (X , Y )的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⎩⎨⎧<≤≥⎩⎨⎧≥<≤⎩⎨⎧<≤<≤<<=.2,2,1,21,22,21,31,21,2111,0),(y x y x y x y x y x y x F 或或或三、二维连续型随机变量设二维随机变量(X , Y )的分布函数为F {x , y }, 若存在非负函数f (x , y ), 使对任意的x 、y 有⎰⎰∞-∞-=y x dudv v u f y x F ),(),(,则称(X , Y )为连续型的二维随机变量, f (x , y )称为二维连续型随机变量(X , Y )的概率密度, 或称随机变量X 、Y 的联合概率密度.概率密度f (x , y )具有以下性质: 1︒ f (x , y ) ≥ 0; 2︒1),(),(=+∞+∞=⎰⎰∞+∞-∞+∞-F dxdy y x f3︒ 若f (x , y )在点(x , y )处连续, 则有),(),(2y x f yx y x F =∂∂∂ 4︒ 设G 是xOy 平面上的一个区域, 则点(X , Y )落在G 内的概率为⎰⎰=∈Gdxdy y x f G Y X P ),(}),{( (2)例2 设二维连续型随机变量(X , Y )的概率密度为⎩⎨⎧>>=+-.,0,0,0,2),()(其它y x Ae y x f y x求: (1) 系数A ; (2) 分布函数F (x , y ); (3) 概率P {(X , Y )∈D }, 其中D : x ≥ 0, y ≥ 0, x + y ≤ 1.解: (1) 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得21=A .精品文档(2) ⎰⎰∞-∞-+-=yxy x dxdy e y x F )(),(=⎪⎩⎪⎨⎧>>⎰⎰+-,,0,0,0,00)(其它y x dxdy e yxy x =⎩⎨⎧>>----.,0,0,0),1)(1(其它y x e e yx (3) edxdy e e dxdxdy y x f Y X P xy x D21),()},{(101-===⎰⎰⎰⎰---. 例3 设二维连续型随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=,,0,20,10,3),(2其它y x xy x y x f , 求P {Y ≥ X }. 解: P {Y ≥ X }=2417)3(),(221=+=⎰⎰⎰⎰≤xxy dy xy x dxdxdy y x f . 以上关于二维随机变量的讨论, 不难推广到n (n > 2)维随机变量的情形. 一般地, 设E 是一个随机试验,它的样本空间为S , 设X 1、X 2、…、X n 是定义在S 上的随机变量, 则由它们构成的一个n 维向量(X 1, X 2, …, X n )称为n 维随机向量或n 维随机变量.对任意n 个实数x 1、x 2、…、x n , n 元函数F (x 1, x 2, …, x n ) = P {X 1 ≤ x 1, X 2 ≤ x 2, …, X n ≤ x n }称为n 维随机变量(X 1, X 2, …, X n )的分布函数或随机变量(X 1, X 2, …, X n )的联合分布函数, 它具有与二元分布函数类似的性质.第二节 边 缘 分 布设(X , Y )是二维随机变量, 其分布函数为F (x , y ), 事件{X ≤ x }即为{ X ≤ x , Y < +∞}, 从而由(X , Y )的分布函数可定出X 的分布函数, 记为F X (x ).F X (x ) = P {X ≤ x } = P { X ≤ x , Y < +∞} = F (x , +∞)=),(lim y x F y +∞→.我们称F X (x )为关于X 的边缘分布函数. 类似的可定义关于Y 的边缘分布函数为F Y (y ) = P {Y ≤ y } = P {X < +∞, Y ≤ y }= F (+∞, y ) = ),(lim y x F x +∞→.一、离散型设(X , Y )为二维离散型随机变量, 其分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …), 则∑∑≤∞==+∞=x x j ijX i px F x F 1),()(, ∑∑≤∞==+∞=y y i ijY i py F y F 1),()(.从而X 与Y 的分布律分别为 ∑∞===1}{j iji px X P , i = 1, 2, …; ∑∞===1}{i ijj py Y P , j = 1, 2, …;记=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….分别称p i ⋅和p ⋅ j 为(X , Y )关于X 与Y 的边缘分布律.注: 1︒ 边缘分布律具有一维分布律的一般性质. 2︒ 联合分布律唯一决定边缘分布律, 反之不然. 二、连续型设二维连续型随机变量(X , Y )的概率密度为f (x , y ), 由精品文档⎰⎰∞-∞+∞-=+∞=xX dx dy y x f x F x F ]),([),()(;⎰⎰∞-∞+∞-=+∞=yY dy dx y x f y F y F ]),([),()(.知X 与Y 都是连续型随机变量. 它们的概率密度分别为⎰∞+∞-=dy y x f x f X ),()(;⎰∞+∞-=dx y x f y f Y ),()(.称f X (x )与f Y (y )分别为(X , Y )关于X 与Y 的边缘概率密度.例2 设D 是平面上的有界区域, 其面积为A , 若二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧∈=,,0,),(,1),(其它D y x Ay x f 则称(X , Y )在D 上服从均匀分布.现(X , Y )在以原点为中心、1为半径的圆域上服从均匀分布, 求边缘概率密度. 解: 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得A = π.当|x | < 1时, ⎰∞+∞-=dy y x f x f X ),()(21112122x dy x x-==⎰---ππ; 当|x | ≥ 1时, f X (x ) = 0, 即⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2x x x x f X π同理可得, ⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2y y y y f Y π例3 设二维随机变量(X , Y )的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 其中μ1、μ2、σ1、σ2、ρ 都是常数, 且σ1 > 0, σ2 > 0, -1 < ρ < 1. 我们称(X , Y )为服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布, 试求二维正态随机变量的边缘概率密度.解: 令m = ⎥⎦⎤⎢⎣⎡-+----222221212121)())((2)(σμσσμμρσμy y x x2121212122121221212222)()()())((2)(σμσμρσμρσσμμρσμ-+---+----=x x x y x y2121221122)()1(σμρσμρσμ--+⎥⎦⎤⎢⎣⎡---=x x y . 所以, ⎰∞+∞-=dy y x f x f X ),()(=⎰∞+∞----dy e m )1(22212121ρρσπσ精品文档⎰∞+∞-⎥⎦⎤⎢⎣⎡--------=dy e ex y x 2112222121)1(212)(221121σμρσμρσμρσπσ.令⎪⎪⎭⎫ ⎝⎛----=1122211σμρσμρx y t , 则dt dy 221σρ⋅-=, 从而, 22222)1(211212211222ρσπσρσμρσμρ-=⋅-=⎰⎰∞+∞--∞+∞-⎥⎦⎤⎢⎣⎡-----dt edy e t x y . 所以, 21212)(121)(σμσπ--=x X ex f (+∞<<-∞x ). 同理可得, 22222)(221)(σμσπ--=y Y e y f (+∞<<-∞y ).表明, ),(~211σμN X , ),(~222σμN Y . 此例说明, 二维正态随机变量(X , Y )中的X 、Y 都服从正态分布, 并且与参数ρ 无关. 所以对于确定的μ1、μ2、σ1、σ2而取不同的ρ, 对应了不同的二维正态分布, 但是其中每个随机变量都分别服从相同的正态分布. 因此, 仅由关于X 和Y 的边缘概率密度(分布), 一般不能确定X 和Y 的联合概率密度(分布).第四节 相互独立的随机变量我们知道, 两事件A 、B 相互独立的充要条件是 P (AB ) = P (A )P (B )由此我们引进随机变量相互独立的定义.定义 设F (x , y )及F X (x )、F Y (y )分别是二维随机变量(X , Y )的分布函数及边缘分布函数, 若对于所有的x 、y , 有 P {X ≤ x , Y ≤ y } = P {X ≤ x } P {Y ≤ y }, 即F (x , y ) = F X (x )F Y (y ) (1) 则称随机变量X 和Y 是相互独立的.可见, 在随机变量X 和Y 相互独立的情况下, 由关于X 和Y 的边缘分布函数就唯一地确定(X , Y )的联合分布函数, 而且还可推得}{},{}/{x X P x X y Y P x X y Y P ==≤==≤}{},{lim0x x X x P x x X x y Y P x ∆+≤≤∆+≤≤≤=→∆),(),(),(),(lim0+∞-+∞∆+-∆+=→∆x F x x F y x F y x x F x)()()()()()()()(lim0+∞-+∞∆+-∆+=→∆Y X Y X Y X Y X x F x F F x x F y F x F y F x x F )()()()]()([lim 0x F x x F y F x F x x F XX Y X X x -∆+-∆+=→∆= F Y (y ) =P {Y ≤ y }.这就是说在X 和Y 相互独立的情况下条件分布与边缘分布相同, 即条件分布化成了无条件分布. 一、离散型设二维离散型随机变量(X , Y )的联合分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …),(X , Y )关于X 和关于Y 的边缘分布律分别为精品文档=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….则X 和Y 相互独立的充要条件是P {X = x i , Y = y j } = P {X = x i } P {Y = y j }, 即p ij =⋅i p j p ⋅(2)二、连续型设二维连续型随机变量(X , Y )的联合概率密度为f (x , y ), 关于X 和Y 的边缘概率密度为f X (x )和f Y (y ), 则X 和Y 相互独立的充要条件是等式 f (x , y ) = f X (x ) f Y (y ) (3) 几乎处处成立.例3 设(X , Y )服从二维正态分布, 即其联合概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 证明: X 和Y 相互独立的充要条件是ρ = 0.例4 若(X , Y )的联合概率密度为⎩⎨⎧≥≥=+-,,0,0,0,),()(其它y x e y x f y x 则X 和Y 相互独立.证: 显然⎩⎨⎧≥=-,,0,0,)(其它x e x f x X ⎩⎨⎧≥=-,,0,0,)(其它y e y f y Y 故有f (x , y ) = f X (x ) f Y (y ). 从而X 和Y 相互独立.例5 设X 与Y 是两个相互独立的随机变量, X 在[0, 0.2]上服从均匀分布, Y 的概率密度为⎩⎨⎧≥=-,,0,0,5)(5其它y e x f y Y试求: (1) X 与Y 的联合概率密度;(2) P {Y ≤ X }.解: (1) 由已知条件, 得⎩⎨⎧≤≤=,,0,2.00,5)(其它x x f X 从而得X 与Y 的联合概率密度为⎩⎨⎧≥≤≤=-.,00,2.00,25),(5其它y x e y x f y(2) P {Y ≤ X }= P {Y - X }⎰⎰≥-=),(y x dxdy y x f ,积分区域如图, 化成二次积分后得⎰⎰≈=⎥⎦⎤⎢⎣⎡=≤-2.00103679.0),(}{e dx dy y x f X Y P x .以上关于二维随机变量的一些概念, 很容易推广到n 维随机变量的情形.设n 维随机变量(X 1, X 2, …, X n )的联合分布函数为F (x 1, x 2, …, x n ), 若存在非负函数f (x 1, x 2, …, x n ), 使得对于任意实数x 1、x 2、…、x n , 有精品文档F (x 1, x 2, …, x n ) =⎰⎰⎰∞-∞-∞--n n x x x n n dx dx dx x x x f 112121),,,(,则称f (x 1, x 2, …, x n )为n 维随机变量(X 1, X 2, …, X n )的联合概率密度.称),,,()(111+∞+∞= x F x F X , ),,,,(),(2121,21+∞+∞= x x F x x F X X , …为关于X 1, (X 1, X 2), …的边缘分布函数, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X dx dx dx x x x f x f32211),,,()(1, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X X dx dx dx x x x f x x f432121,),,,(),(21, …为关于X 1, (X 1, X 2), …的边缘概率密度.若对于所有的x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ))()()(2121n X X X x F x F x F n =, 则称X 1, X 2, …, X n 是相互独立的, 对离散型即连续型随机变量, 也有类似的结论. 若对于所有的x 1、x 2、…、x m ; y 1、y 2、…、y n , 有F (x 1, x 2, …, x m ; y 1, y 2, …, y n ) = F 1 (x 1, x 2, …, x m ) F 2 (y 1, y 2, …, y n )其中F 1、F 2和F 依次为(X 1, X 2, …, X m )、(Y 1, Y 2, …, Y n )和(X 1, X 2, …, X m ; Y 1, Y 2, …, Y n )的分布函数, 则称随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )是相互独立的.定理 设随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )相互独立, 则X i (i = 1, 2, …, m )与Y j (j = 1, 2, …, n )相互独立. 又若h 、g 是连续函数, 则h (X 1, X 2, …, X m )和g (Y 1, Y 2, …, Y n )也相互独立.第三节、条件分布离散型:在已知X=x i 的条件下,Y 取值的条件分布为;∙===i ij i j p p x X y Y P )|(在已知Y=y j 的条件下,X 取值的条件分布为,)|(jij j i p p y Y x X P ∙===连续型:在已知Y=y 的条件下,X 的条件分布密度为)(),()|(y f y x f y x f Y =; 在已知X=x 的条件下,Y 的条件分布密度为)(),()|(x f y x f x y f X =例3.9: 设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布,其中},1||,1|:|),{(≤-≤+=y x y x y x D 求X 的边缘密度()X f x 和X 的边缘密度()Y f y精品文档解:1,(,)20,.Df x y ⎧⎪=⎨⎪⎩其他111111,10;21()(,)1,01;20,.x x x X x dy x x f x f x y dy dy x x +--+∞+-∞-⎧=+-<<⎪⎪⎪===-<<⎨⎪⎪⎪⎩⎰⎰⎰-其他例3.10 设在一段时间内进入某一商店的顾客人数X 服从泊松分布()P λ,每个顾客购买某种商品的概率为p ,并且每个顾客是否购买某种商品相互独立,求进入商店的顾客购买该种商品的人数Y 的分布列。

第三章 多维随机变量及概率分布

第三章  多维随机变量及概率分布

第三章多维随机变量及概率分布3.1二维随机变量的概念3.1.1二维随机变量及其分布函数到现在为止,我们只讨论了一维随机变量及其他布,但有些随机现象用一个随机变量来描述还不够,而需要用几个随机变量来描述。

例如,在打靶时,以靶心为原点建立直角坐标系,命中点的位置是由一对随机变量(X,Y)(两个坐标)来确定的。

又如考察某地区的气候,通常要考察气温X,风力Y,这两个随机变量,记写(X,Y)。

定义3.12个随机变量X,Y组成的整体Z=(X,Y)叫二维随机变量或二维随机向量。

定义3.2(1)二元函数F(x,y)=P(X≤x,Y≤y)叫二维随机变量(X,Y)的联合分布函数,简称分布函数。

记作(X,Y)~F(x,y)。

(2)二维随机变量(X,Y)中,各分量X,Y的分布函数叫二维随机变量(X,Y)的边缘分布函数。

因为X<+∞,Y<+∞即-∞<X<+∞,-∞<Y<+∞,分别表示必然事件,所以有X~F x(x)=P(X≤x)=P(X≤x,Y<+∞)=F(x,+∞)Y~F Y(y)=P(Y≤y)=P(x<+∞,Y≤y)=F(+∞,y)公式可见X,Y的边缘分布可由联合分布函数求得。

3.1.2二维离散型随机变量定义3-3若二维随机变量(X,Y)只取有限多对或可列无穷多对(x i,y j),(i,j=1,2,…),则称(X,Y)为二维离散型随机变量。

设二维随机变量(X,Y)的所有可能取值为(x i,y j)(i,j=1,2,…),(X,Y)在各个可能取值的概率为:P{X=x i,Y=y j}=P ij(i,j=1,2,…),称P{X=x i,Y=y j}=P ij(i,j=1,2,…)为(X,Y)的分布律。

(X,Y)的分布律还可以写成如下列表形式:(X,Y)的分布律具有下列性质:(1)p ij≥0(i,j=1,2,…);(2)反之,若数集{P ij}(i,j=1,2,…)具有以上两条性质,则它必可作为某二维离散型随机变量的分布律。

最新第三章--多维随机变量及其分布总结

最新第三章--多维随机变量及其分布总结

精品文档第三章 多维随机变量及其分布第一节 二维随机变量一、二维随机变量的分布函数设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量.一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究.首先引入(X , Y )的分布函数的概念.定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y }称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数.分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率..由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1)(1)与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质:1︒ F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2︒ 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3︒ F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ).4︒ 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0.注: 二元分布函数具有性质1︒~ 4︒, 其逆也成立(2︒中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1︒~ 4︒, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4︒是必不可少的, 即它不能由1︒~ 3︒推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量.设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0;111=∑∑∞=∞=i j ijp.我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为=),(y x F ∑∑≤≤==x x yy jii j y Y x X P },{=∑∑≤≤x x yy iji j p这里∑∑≤≤x x yy i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和.例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时,精品文档各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数..解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}=312231=⋅. 同理, 有 P {X = 2, Y = 1}=31 , P {X = 2, Y = 2}=31. 即(X , Y )的分布律如右表所示.当x < 1, 或y < 1时, F {x , y } = 0; 当1 ≤ x < 2, 1 ≤ y <2时, F {x , y } = 0;当1 ≤ x < 2, y ≥ 2时, F {x , y } = =+1211p p 31; 当x ≥ 2, 1 ≤ y <2时, F {x , y } ==+2111p p 31; 当x ≥ 2, y ≥ 2时, F {x , y } = 1.所以, (X , Y )的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⎩⎨⎧<≤≥⎩⎨⎧≥<≤⎩⎨⎧<≤<≤<<=.2,2,1,21,22,21,31,21,2111,0),(y x y x y x y x y x y x F 或或或三、二维连续型随机变量设二维随机变量(X , Y )的分布函数为F {x , y }, 若存在非负函数f (x , y ), 使对任意的x 、y 有⎰⎰∞-∞-=y x dudv v u f y x F ),(),(,则称(X , Y )为连续型的二维随机变量, f (x , y )称为二维连续型随机变量(X , Y )的概率密度, 或称随机变量X 、Y 的联合概率密度.概率密度f (x , y )具有以下性质: 1︒ f (x , y ) ≥ 0; 2︒1),(),(=+∞+∞=⎰⎰∞+∞-∞+∞-F dxdy y x f3︒ 若f (x , y )在点(x , y )处连续, 则有),(),(2y x f yx y x F =∂∂∂ 4︒ 设G 是xOy 平面上的一个区域, 则点(X , Y )落在G 内的概率为⎰⎰=∈Gdxdy y x f G Y X P ),(}),{( (2)例2 设二维连续型随机变量(X , Y )的概率密度为⎩⎨⎧>>=+-.,0,0,0,2),()(其它y x Ae y x f y x求: (1) 系数A ; (2) 分布函数F (x , y ); (3) 概率P {(X , Y )∈D }, 其中D : x ≥ 0, y ≥ 0, x + y ≤ 1.解: (1) 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得21=A .精品文档(2) ⎰⎰∞-∞-+-=yxy x dxdy e y x F )(),(=⎪⎩⎪⎨⎧>>⎰⎰+-,,0,0,0,00)(其它y x dxdy e yxy x =⎩⎨⎧>>----.,0,0,0),1)(1(其它y x e e yx (3) edxdy e e dxdxdy y x f Y X P xy x D21),()},{(101-===⎰⎰⎰⎰---. 例3 设二维连续型随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=,,0,20,10,3),(2其它y x xy x y x f , 求P {Y ≥ X }. 解: P {Y ≥ X }=2417)3(),(221=+=⎰⎰⎰⎰≤xxy dy xy x dxdxdy y x f . 以上关于二维随机变量的讨论, 不难推广到n (n > 2)维随机变量的情形. 一般地, 设E 是一个随机试验,它的样本空间为S , 设X 1、X 2、…、X n 是定义在S 上的随机变量, 则由它们构成的一个n 维向量(X 1, X 2, …, X n )称为n 维随机向量或n 维随机变量.对任意n 个实数x 1、x 2、…、x n , n 元函数F (x 1, x 2, …, x n ) = P {X 1 ≤ x 1, X 2 ≤ x 2, …, X n ≤ x n }称为n 维随机变量(X 1, X 2, …, X n )的分布函数或随机变量(X 1, X 2, …, X n )的联合分布函数, 它具有与二元分布函数类似的性质.第二节 边 缘 分 布设(X , Y )是二维随机变量, 其分布函数为F (x , y ), 事件{X ≤ x }即为{ X ≤ x , Y < +∞}, 从而由(X , Y )的分布函数可定出X 的分布函数, 记为F X (x ).F X (x ) = P {X ≤ x } = P { X ≤ x , Y < +∞} = F (x , +∞)=),(lim y x F y +∞→.我们称F X (x )为关于X 的边缘分布函数. 类似的可定义关于Y 的边缘分布函数为F Y (y ) = P {Y ≤ y } = P {X < +∞, Y ≤ y }= F (+∞, y ) = ),(lim y x F x +∞→.一、离散型设(X , Y )为二维离散型随机变量, 其分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …), 则∑∑≤∞==+∞=x x j ijX i px F x F 1),()(, ∑∑≤∞==+∞=y y i ijY i py F y F 1),()(.从而X 与Y 的分布律分别为 ∑∞===1}{j iji px X P , i = 1, 2, …; ∑∞===1}{i ijj py Y P , j = 1, 2, …;记=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….分别称p i ⋅和p ⋅ j 为(X , Y )关于X 与Y 的边缘分布律.注: 1︒ 边缘分布律具有一维分布律的一般性质. 2︒ 联合分布律唯一决定边缘分布律, 反之不然. 二、连续型设二维连续型随机变量(X , Y )的概率密度为f (x , y ), 由精品文档⎰⎰∞-∞+∞-=+∞=xX dx dy y x f x F x F ]),([),()(;⎰⎰∞-∞+∞-=+∞=yY dy dx y x f y F y F ]),([),()(.知X 与Y 都是连续型随机变量. 它们的概率密度分别为⎰∞+∞-=dy y x f x f X ),()(;⎰∞+∞-=dx y x f y f Y ),()(.称f X (x )与f Y (y )分别为(X , Y )关于X 与Y 的边缘概率密度.例2 设D 是平面上的有界区域, 其面积为A , 若二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧∈=,,0,),(,1),(其它D y x Ay x f 则称(X , Y )在D 上服从均匀分布.现(X , Y )在以原点为中心、1为半径的圆域上服从均匀分布, 求边缘概率密度. 解: 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得A = π.当|x | < 1时, ⎰∞+∞-=dy y x f x f X ),()(21112122x dy x x-==⎰---ππ; 当|x | ≥ 1时, f X (x ) = 0, 即⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2x x x x f X π同理可得, ⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2y y y y f Y π例3 设二维随机变量(X , Y )的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 其中μ1、μ2、σ1、σ2、ρ 都是常数, 且σ1 > 0, σ2 > 0, -1 < ρ < 1. 我们称(X , Y )为服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布, 试求二维正态随机变量的边缘概率密度.解: 令m = ⎥⎦⎤⎢⎣⎡-+----222221212121)())((2)(σμσσμμρσμy y x x2121212122121221212222)()()())((2)(σμσμρσμρσσμμρσμ-+---+----=x x x y x y2121221122)()1(σμρσμρσμ--+⎥⎦⎤⎢⎣⎡---=x x y . 所以, ⎰∞+∞-=dy y x f x f X ),()(=⎰∞+∞----dy e m )1(22212121ρρσπσ精品文档⎰∞+∞-⎥⎦⎤⎢⎣⎡--------=dy e ex y x 2112222121)1(212)(221121σμρσμρσμρσπσ.令⎪⎪⎭⎫ ⎝⎛----=1122211σμρσμρx y t , 则dt dy 221σρ⋅-=, 从而, 22222)1(211212211222ρσπσρσμρσμρ-=⋅-=⎰⎰∞+∞--∞+∞-⎥⎦⎤⎢⎣⎡-----dt edy e t x y . 所以, 21212)(121)(σμσπ--=x X ex f (+∞<<-∞x ). 同理可得, 22222)(221)(σμσπ--=y Y e y f (+∞<<-∞y ).表明, ),(~211σμN X , ),(~222σμN Y . 此例说明, 二维正态随机变量(X , Y )中的X 、Y 都服从正态分布, 并且与参数ρ 无关. 所以对于确定的μ1、μ2、σ1、σ2而取不同的ρ, 对应了不同的二维正态分布, 但是其中每个随机变量都分别服从相同的正态分布. 因此, 仅由关于X 和Y 的边缘概率密度(分布), 一般不能确定X 和Y 的联合概率密度(分布).第四节 相互独立的随机变量我们知道, 两事件A 、B 相互独立的充要条件是 P (AB ) = P (A )P (B )由此我们引进随机变量相互独立的定义.定义 设F (x , y )及F X (x )、F Y (y )分别是二维随机变量(X , Y )的分布函数及边缘分布函数, 若对于所有的x 、y , 有 P {X ≤ x , Y ≤ y } = P {X ≤ x } P {Y ≤ y }, 即F (x , y ) = F X (x )F Y (y ) (1) 则称随机变量X 和Y 是相互独立的.可见, 在随机变量X 和Y 相互独立的情况下, 由关于X 和Y 的边缘分布函数就唯一地确定(X , Y )的联合分布函数, 而且还可推得}{},{}/{x X P x X y Y P x X y Y P ==≤==≤}{},{lim0x x X x P x x X x y Y P x ∆+≤≤∆+≤≤≤=→∆),(),(),(),(lim0+∞-+∞∆+-∆+=→∆x F x x F y x F y x x F x)()()()()()()()(lim0+∞-+∞∆+-∆+=→∆Y X Y X Y X Y X x F x F F x x F y F x F y F x x F )()()()]()([lim 0x F x x F y F x F x x F XX Y X X x -∆+-∆+=→∆= F Y (y ) =P {Y ≤ y }.这就是说在X 和Y 相互独立的情况下条件分布与边缘分布相同, 即条件分布化成了无条件分布. 一、离散型设二维离散型随机变量(X , Y )的联合分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …),(X , Y )关于X 和关于Y 的边缘分布律分别为精品文档=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….则X 和Y 相互独立的充要条件是P {X = x i , Y = y j } = P {X = x i } P {Y = y j }, 即p ij =⋅i p j p ⋅(2)二、连续型设二维连续型随机变量(X , Y )的联合概率密度为f (x , y ), 关于X 和Y 的边缘概率密度为f X (x )和f Y (y ), 则X 和Y 相互独立的充要条件是等式 f (x , y ) = f X (x ) f Y (y ) (3) 几乎处处成立.例3 设(X , Y )服从二维正态分布, 即其联合概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 证明: X 和Y 相互独立的充要条件是ρ = 0.例4 若(X , Y )的联合概率密度为⎩⎨⎧≥≥=+-,,0,0,0,),()(其它y x e y x f y x 则X 和Y 相互独立.证: 显然⎩⎨⎧≥=-,,0,0,)(其它x e x f x X ⎩⎨⎧≥=-,,0,0,)(其它y e y f y Y 故有f (x , y ) = f X (x ) f Y (y ). 从而X 和Y 相互独立.例5 设X 与Y 是两个相互独立的随机变量, X 在[0, 0.2]上服从均匀分布, Y 的概率密度为⎩⎨⎧≥=-,,0,0,5)(5其它y e x f y Y试求: (1) X 与Y 的联合概率密度;(2) P {Y ≤ X }.解: (1) 由已知条件, 得⎩⎨⎧≤≤=,,0,2.00,5)(其它x x f X 从而得X 与Y 的联合概率密度为⎩⎨⎧≥≤≤=-.,00,2.00,25),(5其它y x e y x f y(2) P {Y ≤ X }= P {Y - X }⎰⎰≥-=),(y x dxdy y x f ,积分区域如图, 化成二次积分后得⎰⎰≈=⎥⎦⎤⎢⎣⎡=≤-2.00103679.0),(}{e dx dy y x f X Y P x .以上关于二维随机变量的一些概念, 很容易推广到n 维随机变量的情形.设n 维随机变量(X 1, X 2, …, X n )的联合分布函数为F (x 1, x 2, …, x n ), 若存在非负函数f (x 1, x 2, …, x n ), 使得对于任意实数x 1、x 2、…、x n , 有精品文档F (x 1, x 2, …, x n ) =⎰⎰⎰∞-∞-∞--n n x x x n n dx dx dx x x x f 112121),,,(,则称f (x 1, x 2, …, x n )为n 维随机变量(X 1, X 2, …, X n )的联合概率密度.称),,,()(111+∞+∞= x F x F X , ),,,,(),(2121,21+∞+∞= x x F x x F X X , …为关于X 1, (X 1, X 2), …的边缘分布函数, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X dx dx dx x x x f x f32211),,,()(1, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X X dx dx dx x x x f x x f432121,),,,(),(21, …为关于X 1, (X 1, X 2), …的边缘概率密度.若对于所有的x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ))()()(2121n X X X x F x F x F n =, 则称X 1, X 2, …, X n 是相互独立的, 对离散型即连续型随机变量, 也有类似的结论. 若对于所有的x 1、x 2、…、x m ; y 1、y 2、…、y n , 有F (x 1, x 2, …, x m ; y 1, y 2, …, y n ) = F 1 (x 1, x 2, …, x m ) F 2 (y 1, y 2, …, y n )其中F 1、F 2和F 依次为(X 1, X 2, …, X m )、(Y 1, Y 2, …, Y n )和(X 1, X 2, …, X m ; Y 1, Y 2, …, Y n )的分布函数, 则称随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )是相互独立的.定理 设随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )相互独立, 则X i (i = 1, 2, …, m )与Y j (j = 1, 2, …, n )相互独立. 又若h 、g 是连续函数, 则h (X 1, X 2, …, X m )和g (Y 1, Y 2, …, Y n )也相互独立.第三节、条件分布离散型:在已知X=x i 的条件下,Y 取值的条件分布为;∙===i ij i j p p x X y Y P )|(在已知Y=y j 的条件下,X 取值的条件分布为,)|(jij j i p p y Y x X P ∙===连续型:在已知Y=y 的条件下,X 的条件分布密度为)(),()|(y f y x f y x f Y =; 在已知X=x 的条件下,Y 的条件分布密度为)(),()|(x f y x f x y f X =例3.9: 设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布,其中},1||,1|:|),{(≤-≤+=y x y x y x D 求X 的边缘密度()X f x 和X 的边缘密度()Y f y精品文档解:1,(,)20,.Df x y ⎧⎪=⎨⎪⎩其他111111,10;21()(,)1,01;20,.x x x X x dy x x f x f x y dy dy x x +--+∞+-∞-⎧=+-<<⎪⎪⎪===-<<⎨⎪⎪⎪⎩⎰⎰⎰-其他例3.10 设在一段时间内进入某一商店的顾客人数X 服从泊松分布()P λ,每个顾客购买某种商品的概率为p ,并且每个顾客是否购买某种商品相互独立,求进入商店的顾客购买该种商品的人数Y 的分布列。

概率论与数理统计讲义第三章 多维随机变量及其分布

概率论与数理统计讲义第三章 多维随机变量及其分布

第三章多维随机变量及其分布随机向量的定义:随机试验的样本空间为S={ω},若随机变量X1(ω),X2(ω),…,X n(ω)定义在S上,则称(X1(ω),X2(ω),…,X n(ω))为n维随机变量(向量)。

简记为(X1,X2,…,X n)。

二维随机向量(X,Y),它可看作平面上的随机点。

对(X,Y)研究的问题:1.(X,Y)视为平面上的随机点。

研究其概率分布——联合分布率、联合分布函数、联合概率密度;Joint2.分别研究各个分量X,Y的概率分布——边缘(际)分布律、边缘分布函数、边缘概率密度;marginal3.X与Y的相互关系;4.(X,Y)函数的分布。

§ 3.1 二维随机变量的分布一.离散型随机变量1.联合分布律定义3.1 若二维随机变量(X,Y)可能取的值(向量)是有限多个或可列无穷多个,则称(X,Y) 为二维离散型随机变量。

设二维离散型随机变量(X,Y)可能取的值(x i,y j), i,j=1,2…,取这些值的概率为p ij=P{(X,Y)=(x i,y i)}=p{X=x i,Y=y i}i, j=1,2,…——(3.1)称 (3.1)式为(X,Y)的联合分布律。

(X,Y)的联合分布律可以用表格的形式表示如下:性质:(1) p ij ≥ 0,i, j=1,2,… (2) ∑ji ij p ,=12.边缘分布律设二维离散型随机变量(X,Y) 的联合分布律为p ij = P{X=x i ,Y=y i } i, j=1,2,…分量X 和Y 的分布律分别为 p i.=P{X=x i } i=1,2,… 满足①p i.≥0②∑ p i.=1p .j = p{Y=y i }j=1,2,… ①p .j ≥0②∑ p .j =1我们称p i.和p .j 分别为(X,Y)关于X 和Y 的边缘分布律,简称为(X,Y)的边缘分布律。

二维离散型随机变量(X,Y) 的联合分布律与边缘分布率有如下关系: p i.=P{X=x i }=P{X=x i , S}=P{X=x i ,∑(Y=y j )}=j∑P{X=x i ,Y=y j }=j∑p ij (3.4) 同理可得 p .j =i∑p ij(3.5)例1:一整数X 随机地在1,2,3三个整数中任取一值,另一个整数Y随机地在1到X中取一值。

第3章 多维随机变量及其分布

第3章   多维随机变量及其分布
§3.4 两个随机变量的函数的分布
例1 已知的联合密度为,求的密度函数。 解 先求的分布函数:由分布函数的定义知对任意有,由于事件等价 于事件,于是,所以(由图2—6)
图2-6 在积分中,和是固定的,令,则得 由概率密度的定义 , 由于的对称性,也有 。 上两式为的密度函数的一般公式。
特别当相互独立时,由于对一切都有,此时的密度函数的公式为: 或。
例1[二维均匀分布] 设为二维随机变量,是平面上的一个有界区 域,其面积为,又设,可验证满足概率密度的基本性质,我们称由这个 密度函数确定的分布为二维均匀分布。
例2[二维正态分布]设
() 其中都是常数,且。
可以证明满足概率密度的两条基本性质,因此确定了一个二维随机 变量的分布,我们称由这个密度函数所确定的分布为二维正态分布,记 为。
图2-4 解 (1)
=,所以; (2); (3)关于的边缘分布密度函数为 当时,=0. 当时, 故有
=; 同理可求得关于的边缘分布密度函数为
=. 因为对任意的实数,都有 ,所以相互独立。
例 2.16 设服从域(如图2—5)上的均匀分布,求关于和关于的边 缘分布,并判断是否相互独立。
解 由均匀分布的定义,的联合分布密度函数为
定义 2.5 :设为随机试验的样本空间,,是定义在上的随机变量,则 称有序数组为二维随机变量或称为二维随机向量。
定义 2.6:设是二维随机变量,对于任意实数,称二元函数为二维随 机变量的联合分布函数。
如果把二维随机变量看作平面上具有随机坐标的点,那末分布函数 在()处的函数值就是随机点落在以点()为顶点而位于该点左下方的 无穷矩形域内的概率。
2.二维随机变量联合分布函数的性质: (1) ; (2) 是变量的单调不减函数,即:对于任意固定的,当时有 ;对于任意
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 多维随机变量及其分布第一节 二维随机变量一、二维随机变量的分布函数设E 是一个随机试验, 它的样本空间是S . 设X 、Y 是定义在S 上的随机变量, 则由它们构成的一个向量(X , Y )称为二维随机向量或二维随机变量.一般地, (X , Y )的性质不仅与X 有关, 与Y 有关, 而且还依赖于X 、Y 的相互关系, 因此必须把(X , Y )作为一个整体来研究.首先引入(X , Y )的分布函数的概念.定义 设(X , Y )为二维随机变量, 对于任意实数x 、y , 二元函数F (x , y ) = P {(X ≤ x )∩(Y ≤ y )}= P {X ≤ x , Y ≤ y }称为二维随机变量(X , Y )的分布函数, 或称为随机变量X 和y 的联合分布函数.分布函数F (x , y )表示事件(X ≤ x )与事件(Y ≤ y )同时发生的概率. 如果把(X , Y )看成平面上具有随机坐标(X , Y )的点, 则分布函数F (x , y )在(x , y )处的函数值就是随机点(X , Y )落在平面上的以(x , y )为顶点而位于该点左下方的无限矩形内的概率..由上面的几何解释, 容易得到随机点(X , Y )落在矩形区域{x 1 < X ≤ x 2, y 1 < Y ≤ y 2}的概率为P {x 1 < X ≤ x 2, y 1 < Y ≤ y 2} = F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1)(1)与二元函数类似, 二元分布函数F (x , y )也具有如下一些性质:1︒ F (x , y )是变量x 和y 的单调不减函数, 即当x 1 < x 2时, F (x 1, y ) ≤ F (x 2, y ); 当y 1 < y 2时, F (x , y 1) ≤ F (x , y 2). 2︒ 0 ≤ F (x , y ) ≤ 1, 且F (-∞, y ) = 0, F (x , -∞) = 0, F (-∞,-∞) = 0, F (+∞,+∞) = 1.(凡含-∞的概率分布为0) 3︒ F (x , y )关于x 和y 都是右连续的, 即F (x + 0, y ) = F (x , y ), F (x , y + 0) = F (x , y ).4︒ 对任意的(x 1, y 1)、(x 2, y 2), x 1 < x 2, y 1 < y 2, 有F (x 2, y 2) - F (x 2, y 1) - F (x 1, y 2) + F (x 1, y 1) ≥ 0.注: 二元分布函数具有性质1︒~ 4︒, 其逆也成立(2︒中0 ≤ F (x , y ) ≤ 1可去), 即若二元实值函数F (x , y )(x ∈ R , y ∈ R )满足1︒~ 4︒, 则F (x , y )必是某二维随机变量的(X , Y )的分布函数. 其中4︒是必不可少的, 即它不能由1︒~ 3︒推出(除去0 ≤ F (x , y ) ≤ 1). 二、二维离散型随机变量如果二维随机变量(X , Y )的所有可能取的值是有限对或可列无限多对, 则称(X , Y )是二维离散型随机变量.设二维离散型随机变量(X , Y )所有可能取的值为(x i , y j ) (i , j = 1, 2, 3, …). 记P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)则由概率定义有 p ij ≥ 0;111=∑∑∞=∞=i j ijp.我们称P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …)为二维离散型随机变量(X , Y )的分布律(概率分布)或随机变量X 和Y 的联合分布律, (X , Y )的分布律也可用表格表示. 其分布函数为=),(y x F ∑∑≤≤==x x yy jii j y Y x X P },{=∑∑≤≤x x yy iji j p这里∑∑≤≤x x yy i j 表示对一切x i ≤ x , y j ≤ y 的那些指标i 、j 求和.例1 一个口袋中有三个球, 依次标有1、2、2, 从中任取一个, 不放回袋中, 再任取一个. 设每次取球时, 各球被取到的可能性相等, 以X 、Y 分别记第一次和第二次取到的球上标有的数字, 求X 、Y 的联合分布律与分布函数..解: (X , Y )的可能取值为(1, 2)、(2, 1)、(2, 2). P {X = 1, Y = 2}= P {X = 1}P {Y = 2 / X = 1}=312231=⋅.同理, 有 P {X = 2, Y = 1}=31 , P {X = 2, Y = 2}=31. 即(X , Y )的分布律如右表所示.当x < 1, 或y < 1时, F {x , y } = 0; 当1 ≤ x < 2, 1 ≤ y <2时, F {x , y } = 0;当1 ≤ x < 2, y ≥ 2时, F {x , y } = =+1211p p 31; 当x ≥ 2, 1 ≤ y <2时, F {x , y } ==+2111p p 31; 当x ≥ 2, y ≥ 2时, F {x , y } = 1.所以, (X , Y )的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>>⎩⎨⎧<≤≥⎩⎨⎧≥<≤⎩⎨⎧<≤<≤<<=.2,2,1,21,22,21,31,21,2111,0),(y x y x y x y x y x y x F 或或或三、二维连续型随机变量设二维随机变量(X , Y )的分布函数为F {x , y }, 若存在非负函数f (x , y ), 使对任意的x 、y 有⎰⎰∞-∞-=y x dudv v u f y x F ),(),(,则称(X , Y )为连续型的二维随机变量, f (x , y )称为二维连续型随机变量(X , Y )的概率密度, 或称随机变量X 、Y 的联合概率密度.概率密度f (x , y )具有以下性质: 1︒ f (x , y ) ≥ 0; 2︒1),(),(=+∞+∞=⎰⎰∞+∞-∞+∞-F dxdy y x f3︒ 若f (x , y )在点(x , y )处连续, 则有),(),(2y x f yx y x F =∂∂∂ 4︒ 设G 是xOy 平面上的一个区域, 则点(X , Y )落在G 内的概率为⎰⎰=∈Gdxdy y x f G Y X P ),(}),{( (2)例2 设二维连续型随机变量(X , Y )的概率密度为⎩⎨⎧>>=+-.,0,0,0,2),()(其它y x Ae y x f y x求: (1) 系数A ; (2) 分布函数F (x , y ); (3) 概率P {(X , Y )∈D }, 其中D : x ≥ 0, y ≥ 0, x + y ≤ 1.解: (1) 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得21=A . (2) ⎰⎰∞-∞-+-=yxy x dxdy e y x F )(),(=⎪⎩⎪⎨⎧>>⎰⎰+-,,0,0,0,00)(其它y x dxdy e yxy x =⎩⎨⎧>>----.,0,0,0),1)(1(其它y x e e yx (3) edxdy e e dxdxdy y x f Y X P xy x D21),()},{(1010-===⎰⎰⎰⎰---. 例3 设二维连续型随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧≤≤≤≤+=,,0,20,10,3),(2其它y x xy x y x f , 求P {Y ≥ X }.解: P {Y ≥ X }=2417)3(),(221=+=⎰⎰⎰⎰≤xxy dy xy x dxdxdy y x f . 以上关于二维随机变量的讨论, 不难推广到n (n > 2)维随机变量的情形. 一般地, 设E 是一个随机试验,它的样本空间为S , 设X 1、X 2、…、X n 是定义在S 上的随机变量, 则由它们构成的一个n 维向量(X 1, X 2, …, X n )称为n 维随机向量或n 维随机变量.对任意n 个实数x 1、x 2、…、x n , n 元函数F (x 1, x 2, …, x n ) = P {X 1 ≤ x 1, X 2 ≤ x 2, …, X n ≤ x n }称为n 维随机变量(X 1, X 2, …, X n )的分布函数或随机变量(X 1, X 2, …, X n )的联合分布函数, 它具有与二元分布函数类似的性质.第二节 边 缘 分 布设(X , Y )是二维随机变量, 其分布函数为F (x , y ), 事件{X ≤ x }即为{ X ≤ x , Y < +∞}, 从而由(X , Y )的分布函数可定出X 的分布函数, 记为F X (x ).F X (x ) = P {X ≤ x } = P { X ≤ x , Y < +∞} = F (x , +∞)=),(lim y x F y +∞→.我们称F X (x )为关于X 的边缘分布函数. 类似的可定义关于Y 的边缘分布函数为F Y (y ) = P {Y ≤ y } = P {X < +∞, Y ≤ y }= F (+∞, y ) = ),(lim y x F x +∞→.一、离散型设(X , Y )为二维离散型随机变量, 其分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …), 则∑∑≤∞==+∞=x x j ijX i px F x F 1),()(, ∑∑≤∞==+∞=y y i ijY i py F y F 1),()(.从而X 与Y 的分布律分别为 ∑∞===1}{j iji px X P , i = 1, 2, …; ∑∞===1}{i ijj py Y P , j = 1, 2, …;记=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….分别称p i ⋅和p ⋅ j 为(X , Y )关于X 与Y 的边缘分布律.注: 1︒ 边缘分布律具有一维分布律的一般性质. 2︒ 联合分布律唯一决定边缘分布律, 反之不然. 二、连续型设二维连续型随机变量(X , Y )的概率密度为f (x , y ), 由⎰⎰∞-∞+∞-=+∞=xX dx dy y x f x F x F ]),([),()(;⎰⎰∞-∞+∞-=+∞=yY dy dx y x f y F y F ]),([),()(.知X 与Y 都是连续型随机变量. 它们的概率密度分别为⎰∞+∞-=dy y x f x f X ),()(;⎰∞+∞-=dx y x f y f Y ),()(.称f X (x )与f Y (y )分别为(X , Y )关于X 与Y 的边缘概率密度.例2 设D 是平面上的有界区域, 其面积为A , 若二维随机变量(X , Y )的概率密度为⎪⎩⎪⎨⎧∈=,,0,),(,1),(其它D y x Ay x f 则称(X , Y )在D 上服从均匀分布.现(X , Y )在以原点为中心、1为半径的圆域上服从均匀分布, 求边缘概率密度.解: 由1),(=⎰⎰∞+∞-∞+∞-dxdy y x f , 得A = π.当|x | < 1时, ⎰∞+∞-=dy y x f x f X ),()(21112122x dy x x -==⎰---ππ; 当|x | ≥ 1时, f X (x ) = 0, 即⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2x x x x f X π同理可得, ⎪⎩⎪⎨⎧≥<-=.1,0,1,12)(2y y y y f Y π例3 设二维随机变量(X , Y )的概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 其中μ1、μ2、σ1、σ2、ρ 都是常数, 且σ1 > 0, σ2 > 0, -1 < ρ < 1. 我们称(X , Y )为服从参数为μ1、μ2、σ1、σ2、ρ的二维正态分布, 试求二维正态随机变量的边缘概率密度.解: 令m = ⎥⎦⎤⎢⎣⎡-+----222221212121)())((2)(σμσσμμρσμy y x x2121212122121221212222)()()())((2)(σμσμρσμρσσμμρσμ-+---+----=x x x y x y2121221122)()1(σμρσμρσμ--+⎥⎦⎤⎢⎣⎡---=x x y . 所以, ⎰∞+∞-=dy y x f x f X ),()(=⎰∞+∞----dy e m )1(22212121ρρσπσ⎰∞+∞-⎥⎦⎤⎢⎣⎡--------=dy eex y x 2112222121)1(212)(221121σμρσμρσμρσπσ.令⎪⎪⎭⎫⎝⎛----=1122211σμρσμρx y t , 则dt dy 221σρ⋅-=, 从而, 22222)1(211212211222ρσπσρσμρσμρ-=⋅-=⎰⎰∞+∞--∞+∞-⎥⎦⎤⎢⎣⎡-----dt edy et x y . 所以, 21212)(121)(σμσπ--=x X ex f (+∞<<-∞x ). 同理可得, 22222)(221)(σμσπ--=y Y e y f (+∞<<-∞y ).表明, ),(~211σμN X , ),(~222σμN Y . 此例说明, 二维正态随机变量(X , Y )中的X 、Y 都服从正态分布, 并且与参数ρ 无关. 所以对于确定的μ1、μ2、σ1、σ2而取不同的ρ, 对应了不同的二维正态分布, 但是其中每个随机变量都分别服从相同的正态分布. 因此, 仅由关于X 和Y 的边缘概率密度(分布), 一般不能确定X 和Y 的联合概率密度(分布).第四节 相互独立的随机变量我们知道, 两事件A 、B 相互独立的充要条件是 P (AB ) = P (A )P (B )由此我们引进随机变量相互独立的定义.定义 设F (x , y )及F X (x )、F Y (y )分别是二维随机变量(X , Y )的分布函数及边缘分布函数, 若对于所有的x 、y , 有 P {X ≤ x , Y ≤ y } = P {X ≤ x } P {Y ≤ y }, 即F (x , y ) = F X (x )F Y (y ) (1) 则称随机变量X 和Y 是相互独立的.可见, 在随机变量X 和Y 相互独立的情况下, 由关于X 和Y 的边缘分布函数就唯一地确定(X , Y )的联合分布函数, 而且还可推得}{},{}/{x X P x X y Y P x X y Y P ==≤==≤}{},{lim 0x x X x P x x X x y Y P x ∆+≤≤∆+≤≤≤=→∆),(),(),(),(lim0+∞-+∞∆+-∆+=→∆x F x x F y x F y x x F x )()()()()()()()(lim0+∞-+∞∆+-∆+=→∆YX Y X Y X Y X x F x F F x x F y F x F y F x x F )()()()]()([lim 0x F x x F y F x F x x F X X Y X Xx -∆+-∆+=→∆= F Y (y ) = P {Y ≤ y }. 这就是说在X 和Y 相互独立的情况下条件分布与边缘分布相同, 即条件分布化成了无条件分布. 一、离散型设二维离散型随机变量(X , Y )的联合分布律为P {X = x i , Y = y j } = p ij (i , j = 1, 2, 3, …),(X , Y )关于X 和关于Y 的边缘分布律分别为=⋅i p ∑∞===1}{j iji px X P , i = 1, 2, …;=⋅j p ∑∞===1}{i ijj py Y P , j = 1, 2, ….则X 和Y 相互独立的充要条件是P {X = x i , Y = y j } = P {X = x i } P {Y = y j }, 即p ij =⋅i p j p ⋅(2)二、连续型设二维连续型随机变量(X , Y )的联合概率密度为f (x , y ), 关于X 和Y 的边缘概率密度为f X (x )和f Y (y ), 则X和Y 相互独立的充要条件是等式 f (x , y ) = f X (x ) f Y (y ) (3) 几乎处处成立.例3 设(X , Y )服从二维正态分布, 即其联合概率密度为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎦⎤⎢⎢⎣⎡-+------⋅-=2222212121212221)())((2)()1(21exp 121),(σμσσμμρσμρρσπσy y x x y x f ⎪⎪⎭⎫ ⎝⎛+∞<<∞-+∞<<∞-y x . 证明: X 和Y 相互独立的充要条件是ρ = 0.例4 若(X , Y )的联合概率密度为⎩⎨⎧≥≥=+-,,0,0,0,),()(其它y x e y x f y x 则X 和Y 相互独立.证: 显然⎩⎨⎧≥=-,,0,0,)(其它x e x f x X ⎩⎨⎧≥=-,,0,0,)(其它y e y f y Y 故有f (x , y ) = f X (x ) f Y (y ). 从而X 和Y 相互独立.例5 设X 与Y 是两个相互独立的随机变量, X 在[0, 0.2]上服从均匀分布, Y 的概率密度为⎩⎨⎧≥=-,,0,0,5)(5其它y e x f y Y试求: (1) X 与Y 的联合概率密度; (2) P {Y ≤ X }.解: (1) 由已知条件, 得⎩⎨⎧≤≤=,,0,2.00,5)(其它x x f X 从而得X 与Y 的联合概率密度为⎩⎨⎧≥≤≤=-.,00,2.00,25),(5其它y x e y x f y(2) P {Y ≤ X }= P {Y - X }⎰⎰≥-=),(y x dxdy y x f ,积分区域如图, 化成二次积分后得⎰⎰≈=⎥⎦⎤⎢⎣⎡=≤-2.00103679.0),(}{e dx dy y x f X Y P x .以上关于二维随机变量的一些概念, 很容易推广到n 维随机变量的情形.设n 维随机变量(X 1, X 2, …, X n )的联合分布函数为F (x 1, x 2, …, x n ), 若存在非负函数f (x 1, x 2, …, x n ), 使得对于任意实数x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ) =⎰⎰⎰∞-∞-∞--n n x x x n n dx dx dx x x x f 112121),,,(,则称f (x 1, x 2, …, x n )为n 维随机变量(X 1, X 2, …, X n )的联合概率密度.称),,,()(111+∞+∞= x F x F X , ),,,,(),(2121,21+∞+∞= x x F x x F X X , …为关于X 1, (X 1, X 2), …的边缘分布函数, ⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X dx dx dx x x x f x f32211),,,()(1,⎰⎰⎰∞+∞-∞+∞-∞+∞-=n n X X dx dx dx x x x f x x f432121,),,,(),(21, …为关于X 1, (X 1, X 2), …的边缘概率密度.若对于所有的x 1、x 2、…、x n , 有F (x 1, x 2, …, x n ))()()(2121n X X X x F x F x F n =, 则称X 1, X 2, …, X n 是相互独立的, 对离散型即连续型随机变量, 也有类似的结论. 若对于所有的x 1、x 2、…、x m ; y 1、y 2、…、y n , 有F (x 1, x 2, …, x m ; y 1, y 2, …, y n ) = F 1 (x 1, x 2, …, x m ) F 2 (y 1, y 2, …, y n )其中F 1、F 2和F 依次为(X 1, X 2, …, X m )、(Y 1, Y 2, …, Y n )和(X 1, X 2, …, X m ; Y 1, Y 2, …, Y n )的分布函数, 则称随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )是相互独立的.定理 设随机变量(X 1, X 2, …, X m )和(Y 1, Y 2, …, Y n )相互独立, 则X i (i = 1, 2, …, m )与Y j (j = 1, 2, …, n )相互独立. 又若h 、g 是连续函数, 则h (X 1, X 2, …, X m )和g (Y 1, Y 2, …, Y n )也相互独立.第三节、条件分布离散型:在已知X=x i 的条件下,Y 取值的条件分布为;•===i ij i j p p x X y Y P )|( 在已知Y=y j 的条件下,X 取值的条件分布为,)|(jij j i p p y Y x X P •===连续型:在已知Y=y 的条件下,X 的条件分布密度为)(),()|(y f y x f y x f Y =; 在已知X=x 的条件下,Y 的条件分布密度为)(),()|(x f y x f x y f X =例3.9: 设二维连续型随机变量(X ,Y )在区域D 上服从均匀分布,其中},1||,1|:|),{(≤-≤+=y x y x y x D 求X 的边缘密度()X f x 和X 的边缘密度()Y f y解:1,(,)20,.Df x y ⎧⎪=⎨⎪⎩其他111111,10;21()(,)1,01;20,.x x x X x dy x x f x f x y dy dy x x +--+∞+-∞-⎧=+-<<⎪⎪⎪===-<<⎨⎪⎪⎪⎩⎰⎰⎰-其他例3.10 设在一段时间内进入某一商店的顾客人数X 服从泊松分布()P λ,每个顾客购买某种商品的概率为p ,并且每个顾客是否购买某种商品相互独立,求进入商店的顾客购买该种商品的人数Y 的分布列。

相关文档
最新文档