七年级上数学有理数的加减法.教案

合集下载

有理数的加减法教案

有理数的加减法教案

《有理数的加减法》教案一教学目标1.知识与技能 :在有理数加、减法混合运算的教学过程中,掌握计算方法,培养学生的运算能力.2.数学思考:通过观察,比较,归纳等得出有理数加减混合运算的方法。

3.解决问题 :能运用有理数加、减法法则解决混合运算和实际问题。

4.情感与态度 :认识到通过师生合作交流,学生主动叁与探索获得数学知识,从而提高学生学习数学的积极性。

二教学重点:省略加号、括号,得到简单的书写方式,再进行加法运算三教学难点:培养学生良好的思维习惯(先准确判断加减法的类型后计算) 三教学模式:启发式四教学过程设计(一 ) 知识要点回顾1 有理数加法法则2 运算律(1) 加法交换律(2) 加法结合律3 有理数减法法则例1计算下列各式1 )-23+(-12) 2) -16+293)(-2008)+2008 4 ) 0+(-7)例2、某检修小组乘汽车沿公路检修线路,约定前进为正,后退为负.•某天自A地出发到收工时所走路线(单位:千米)为:+10,-3,+4,+2,-8,+13,-2,+12,+8,•+5.(1)问收工时距A地多远?(2)若每千米路程耗油0.2升,问从A地出发到收工共耗油多少升? 课堂练习1抢答(1) 5+(-6)(2) -(-7)+(-2)(3) (-4)+(-5)(4)-4+(-6);(5)15+(-17)(6)-3+3(7) (+9)+(-7)+(+10)+(-3)+(-9)2 计算(1)(+17)+(-32)+(-16)+(+24)+(-1);(2)(+653)+(-532)+(452)+(-131) 例3 计算(1) 3-(-3)=_______; (2) (-11)-2=_______;(3) 0-(-6)=_______; (4) (-7)-(+8)=_______;(5) -12-(-5)=________;例4把下列两个式子写成省略括号的和的形式.把它读出来,并计算出结果.(1)(-5)-(+9.6)+(+7.3)+(-0.7)-(-3.07);(2)4 35-(+213)-(-4.8)+(-323)-(+4.6)课堂练习1.计算:(1)(3.1+4.2)-(4.2-1.9);(2)(-2.4)-0.6-1.8;(3)(-41)-83+169; (4)(-71)-(-72)-173; (5)(-1)-(+331)-(-132); (6)(-9)-(+9)-(-18)-9.三 综合应用1 .如果|a|=7,|b|=5,试求a-b 的值.思路解析:本题中对a 、b 分成四种取值情况进行讨论.解:∵|a|=7,|b|=5,∴a=±7,b=±5.因此,有四种可能:(1)当a=7,b=5时,a-b=2;(2)当a=7,b=-5时,a-b=12;(3)当a=-7,b=5时,a-b=-12;(4)当a=-7,b=-5时,a-b=-2.四作业1 .有一批小麦,标准质量为每袋90千克,现抽取10袋样品进行称重检测,结果如下(单位:千克):97,95,86,96,94,93,87,98,91.这10袋小麦的总质量是多少?总计超过标准质量多少千克或不足标准质量多少千克?3.计算:(1)(-1.5)-(-9.4)-(+3.6)+(-4.3)-(+5.2);(2)0-(+12)-(-13)-(-14)-(+16);(3)0-(-2.75)-(+0.71)-(-4);(4)(-323)-(-234)-(-123)-(+1.75).思路解析:本题是有理数的减法运算,根据有理数减法法则,把减法全部转化为加法再进行计算,同时也可运用加法运算律使计算简便.解:(1)原式=-1.5-3.6-4.3-5.2+9.4=-5.2;(2)原式=-12-16+13+14=-46+712=-112;(3)原式=2.75+4-0.71=6.04;(4)原式=-323+123+234-134=-2+1=-1.4.为体现社会对教师的尊重,教师节这一天上午,出租车司机小王在东西方向的公路上免费接送老师.如果规定向东为正,向西为负,出租车的行程如下:(单位:千米)+15,-4,+13,―10,―12,+3,―13,―17.(1)将最后一名老师送到目的地时,小王距出车地点的距离是多少?(2)若汽车耗油量为0.4升/千米,这天下午汽车共耗油多少升?思路解析:要求出小王距出车地点的距离,就是求所给的数据的代数和;要求出汽车耗油多少升,就要先求出汽车的行程,而汽车的行程是所给数据的绝对值的和解:(1)(+15)+(-4)+(+13)+(―10)+(―12)+(+3)+(―13)+(―17)=-25.所以最后一名老师送到目的地时,小王在出车地点的西方,距离是25千米.(2)|+15|+|-4|+|+13|+|―10|+|―12|+|+3|+|―13|+|―17|=87.0.4× 87 = 34.8.所以这天下午汽车共耗油34.8升.5 .已知a=-12,b=-14,c=13,求下列各式的值.(1)a-b+c;(2)a-b-c.思路解析:用数字去代替代数式中相应的字母时,必须用括号将数字和它前面的性质符号在一起,然后再进行运算.解:(1)a-b+c=(-12)-(-14)+13=-12+14+13=112;(2)a-b-c=(-12)-(-14)-13=-12+14-6 .如下图:(1)A,B两点间的距离是多少?(2)B,C两点间的距离是多少?思路解析:求两点间的距离就是用表示这两点的数相减,由于求的是“距离”,所以结果应是正数,因此,将相减的式子求绝对值即可.解:(1)|AB|=|2-(-113)|=|2+113|=313;(2)|BC|=|-113-(-3)|=|-113+3|=132.季节中的花开花落,都有自己的命运与节奏,岁月如歌的谱曲与纳词,一定是你。

《有理数的加减法》教学设计

《有理数的加减法》教学设计

有理数的加减法》教学设计有理数的加减法》教学设计范文《有理数的加减法》教学设计1教学目标1、理解有理数加法的意义,掌握有理数加法法则中的符号法则和绝对值运算法则;2、能根据有理数加法法则熟练地进行有理数加法运算,弄清有理数加法与非负数加法的区别;3、三个或三个以上有理数相加时,能正确应用加法交换律和结合律简化运算过程;4、通过有理数加法法则及运算律在加法运算中的运用,培养学生的运算能力;5、本节课通过行程问题说明有理数的加法法则的合理性,然后又通过实例说明如何运用法则和运算律,让学生感知到数学知识来源于生活,并应用于生活。

教学建议(一)重点、难点分析本节教学的重点是依据有理数的加法法则熟练进行有理数的加法运算。

难点是有理数的加法法则的理解。

(1)加法法则本身是一种规定,教材通过行程问题让学生了解法则的合理性。

(2)具体运算时,应先判别题目属于运算法则中的哪个类型,是同号相加、异号相加、还是与0相加。

(3)如果是同号相加,取相同的符号,并把绝对值相加。

如果是异号两数相加,应先判别绝对值的大小关系,如果绝对值相等,则和为0;如果绝对值不相等,则和的符号取绝对值较大的加数的符号,和的绝对值就是较大的绝对值与较小的绝对值的差。

一个数与0相加,仍得这个数。

二)知识结构三)教法建议1、对于基础比较差的同学,在学习新课以前可以适当复习小学中算术运算以及正负数、相反数、绝对值等知识。

2、有理数的加法法则是规定的,而教材开始部分的行程问题是为了说明加法法则的合理性。

3、应强调加法交换律“a+b=b+a”中字母a、b的任意性。

4、计算三个或三个以上的加法算式,应建议学生养成良好的运算习惯。

不要盲目动手,应该先仔细观察式子的特点,深刻认识加数间的相互关系,找到合理的运算步骤,再适当运用加法交换律和结合律可以使加法运算更为简化。

5、可以给出一些类似“两数之和必大于任何一个加数”的判断题,以明确由于负数参与加法运算,一些算术加法中的正确结论在有理数加法运算中未必也成立。

有理数的加减混合运算_七年级数学教案

有理数的加减混合运算_七年级数学教案

有理数的加减混合运算_七年级数学教案篇一:七年级数学上册有理数加减混合运算一、教学目的1、掌握有理数混合运算的法那么,并能纯熟的按有理数运算顺序进展有理数加、减、乘、除、乘方、的混合运算。

2、在运算过程中合理的使用简化运算,培养良好的运算才能。

3、通过玩“24点”游戏开拓思维,更好掌握有理数的混合运算。

二、重点、难点1、重点:纯熟进展有理数的混合运算。

2、难点:在运算中灵敏使用运算律同时能准确掌握符号征询题。

三、教学过程1、(幂),a是底数,n是指数,??叫做幂,他表示n个a相乘。

在前面几节课我们一共学习了5种运算,分别是那些运算呢?(学生答复:加法、减法、乘法、除法、乘方),留意乘方也是一种运算,我们学习了这五种运算所总结归纳出的法那么再有理数的范围内都是适用的。

下面我们来检测一下大家,本人在练习23+ 我们一起检验一下本人做的对不对。

首先看第一题:这一题是那种运算(学生答:加法)。

那么前面我们学习的有理数加法的法那么是?学生答:同号两数相加,取一样的符号,并把绝对值相加:异号两数相加,绝对值相等时和为0,绝对值不等时取绝对值较大的数的符号,并用较大的绝对值减去较2、讲授新知通过练习我们复习了前面学过的有理数的加法、减法、乘法、除法、乘方这五种运323那么,明白了如何分别进展这些法那么的运用,今天我们就来学习有理数的混合运算。

大家来看一下这个算式:考虑该如何处理这个征询题,3+2??×(-??)=?提示:在学习了乘方之后,我们说乘方是更高一级的运算在有乘方的算式中先算乘我们一起来处理这个征询题:首先我们先来推断一下这个式子包含了哪几种运算?(加法、乘方、乘法),??=4 那么这个式子我们可以把它变成。

3+4×(-??)=?如此的话同学们是不是就见过了呢?接下来应该算乘法最后再算加法。

例1、3+2×(?) 215解:原式=3+4×(?)=3+(?=154)511 5现在我们本人总结一下有理数加减混合运算的顺序:先算乘方,再算乘除,最后算加减,假设有括号先算括号的话,先算括里面的。

有理数加减教案初中数学

有理数加减教案初中数学

有理数加减教案初中数学教学目标:1. 理解有理数的加减法的概念和规则。

2. 能够熟练地进行有理数的加减法运算。

3. 能够解决实际问题,运用有理数的加减法进行计算和分析。

教学重点:1. 有理数的加减法的概念和规则。

2. 有理数的加减法运算的技巧和方法。

教学准备:1. 教学课件或黑板。

2. 练习题和答案。

教学过程:一、导入(5分钟)1. 引入有理数的加减法,解释有理数的加减法的概念和意义。

2. 通过举例说明有理数的加减法的实际应用。

二、讲解(20分钟)1. 讲解有理数的加法规则,包括同号相加、异号相加和零的加法。

2. 讲解有理数的减法规则,包括减去一个数等于加上它的相反数。

3. 通过示例和练习,让学生理解和掌握有理数的加减法的规则。

三、练习(15分钟)1. 分组练习题,让学生进行有理数的加减法运算。

2. 提供一些实际问题,让学生运用有理数的加减法进行计算和分析。

四、总结(5分钟)1. 对本节课的内容进行总结,强调有理数的加减法的概念和规则。

2. 提醒学生注意运算的符号和顺序。

五、作业布置(5分钟)1. 布置一些有关有理数的加减法的练习题,让学生巩固所学知识。

2. 鼓励学生进行自主学习,查找有关有理数的加减法的更多信息。

教学反思:本节课通过引入实际问题和示例,让学生理解和掌握有理数的加减法的概念和规则。

通过练习和总结,让学生巩固所学知识,并能够运用有理数的加减法进行计算和分析。

在教学过程中,要注意引导学生掌握运算的符号和顺序,避免出现错误。

同时,也要鼓励学生进行自主学习,提高他们的学习兴趣和能力。

初一有理数加减法教案

初一有理数加减法教案

初一有理数加减法教案【篇一:有理数加减法教案】有理数的加减法(一)[本节课内容] 1.有理数的加法2.有理数的加法的运算律[本节课学习目标]1、理解有理数的加法法则.2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.3、掌握异号两数的加法运算的规律.4、理解有理数的加法的运算律.5、能够应用有理数的加法的运算律进行计算.[知识讲解]一、有理数加法:正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).这里用到正数和负数的加法.下面借助数轴来讨论有理数的加法.看下面的问题:一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动 5m记作 5m,向左运动 5m记作? 5m;如果物体先向右移动5m,再向右移动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右移动了 8m,写成算式就是:5+3 = 8如果物体先向左运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向左运动了 8m,写成算式就是(?5)+(?3) = ?81如果物体先向右运动 5m,再向左运动 3m,那么两次运动后总的结果是什么?两次运动后物体从起点向右运动了 2m,写成算式就是5+(?3) = 2探究这三种情况运动结果的算式如下:3+(—5)=—2;5+(—5)= 0;(—5)+5= 0.如果物体第1秒向可(或向左)走 5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了 5m.写成算式就是5+0=5 或(—5)+0=—5.你能从以上7个算式中发现有理数加法的运算法则吗?有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.例题例1、计算(-3)+(-9); (2)(-4.7)+3.9.2例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2) = +(4—2)=2;黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)= ( );蓝队共进( )球,失( )球,净胜球数为()=( ).二、有理数加法的运算律通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.例题例1 计算:16 +(-25)+ 24 +(-35).若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.解: 16 +(-25)+ 24 +(-35)= (16 + 24)+ [(-25)+(-35)]= 40 +(-60)3=-20.例2 每袋小麦的标准重量为 90千克,10袋小麦称重记录如下:91 91 91.5 89 91.2 91.3 88.7 88.8 91.8 91.1答:总计超过 5千克,10袋水泥的总质量是 505千克.三、小结:有理数加法法则:①同号的两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.③一个数同0相加,仍得这个数.有理数加法运算律:①加法交换律:a+ b = b + a②加法结合律:(a+ b)+ c = a+( b +c)有理数的加减法(二)学习目标1、会将有理数的减法运算转化为有理数的加法运算.2、会将有理数的加减混合运算转化为有理数的加法运算.重点、难点4会进行有理数的减法运算,会进行有理数的加减混合运算.教学过程一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法.例如:长春某天的气温是―3~4oc,这一天的温差是多少呢?(温差是最高气温减最地气温,单位:oc).显然,这天的温差是4―(―3).这里就用到了有理数的减法.我们知道,减法是与加法相反的运算,计算4―(―3),就是要求一个数,使之与(―3)的和得4,因为与―3相加得4,所以这个数应该是7,即4―(―3) = 7. (1)另一方面,我们知道4+(+3) = 7 (2)由(1),(2)有4―(―3) = 4+(+3) (3)从(3)式能看出减―3相当于加哪个数吗?用上面的方法考虑:0―(―3) =___,0+(+3) =___;1―(―3) =___,1+(+3)=____;―5―(―3) =___,―5+(+3) =___.这些数减?3的结果与它们加+3的结果相同吗?计算: 9-8=___, 9+(- 8)=____; 15-7=___, 15+(-7)=____.上述式子表明:减去一个数,等于加上这个数的相反数.于是,得到有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a?b = a+(?b)例题5【篇二:有理数的加法的教案】1.3.1 有理数的加法教案(第二课时)教学目标1.知识与技能①能运用加法运算律简化加法运算.②理解加法运算律在加法运算中的作用,适当进行推理训练.2.过程与方法①培养学生的观察能力和思维能力.②经历对有理数的运算,领悟解决问题应选择适当的方法.3.情感、态度与价值观在数学学习中获得成功的体验.教学重点难点重点:如何运用加法运算律简化运算.难点:灵活运用加法运算律.教与学互动设计(一)情境创设,导入新课思考在小学里,我们学过的加法运算有哪些运算律?它们的内容是什么?能否举一两个例子来?那这些加法运算律还适于有理数范围吗?今天,我们一起来探究这个问题.(二)合作交流,解读探究体验 1.自己任举两个数(至少有一种是负数 ,并比较它们的运算结果,你发现了什么?发现:对任选择的数,即小学里学过的加法交换律在有理数范围内仍是成立的.体验 2.任选三个有理数(至少有一个是负数),并比较它们的运算结果.发现都有些什么?这就是说,小学的加法结合律,在有理数范围内都是成立的.小结有理数的加法仍满足交换律和结合律.加法交换律:两个数相加,交换加数的位置,和不变.用式子表示成a+b=a+b.加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,用式子表示成(a+b)+c=a+(b+c)(三)应用过移,巩固提高例1 说出下列每一步运算的依据(-0.125)+(+5)+(-7)+(+)+(+2)=(-0.125)+(+)+(+5)+(+2)+(-7)(加法交换律)=[(-0.125)+(+)]+[(+5)+(+2)]+(-7)(加法结合律)=0+(+7)+(-7)(有理数的加法法则)=0(有理数的加法法则)例2 利用有理数的加法运算律计算,使运算简便.(1)(+9)+(-7)+(+10)+(-3)+(-9)(2)(+0.36)+(-7.4)+(+0.03)+(-0.6)+(+0.64)(3)(+1)+(-2)+(+3)+(-4)+…+(+2003)+(-2004)【答案】(1)0 (2)-6.7 (3)-1002例3 某出租司机某天下午营运全是在东西走向的人民大道进行的,?如果规定向东为正,向西为负,他这天下午行车里程如下(单位:千米)+15,+14,-3,-11,+10,-12,+4,-15,+16,-18(1)他将最后一名乘客送到目的地,该司机距下午出发点的距离是多少千米?(2)若汽车耗油量为a公升/千米,这天下午汽车共耗油多少公升?解:(1)+15+(+14)+(-3)+(-11)+(+10)+(-12)+4+(-15)+16+(-18) =[15+(-15)]+(14+10+4+16)+[(-3)+(-11)+(-12)+(-18)]=0=118a【答案】(1)将最后一名乘客送到目的地,该司机仍在其出发点.(2)共耗油118a公升.例4 若│2x-3│与│y+3│互为相反数,求x+y的相反数.【提示】两个非负数互为相反数,只有都为0.解:根据题意,有2x-3=0,y+3=0 则x=,y=-3x+y= +(-3)=-.所以x+y的相反数是备选例题.小王上周在股市以收盘价/(收市时的价格)每股25?元买进某公司股票1000股,在接下来的一周交易日内,小王记下该股票每日收盘价格相比前一天的涨跌情况:(单位:元)星期每股涨跌(元)根据上表回答问题:(1)星期二收盘时,该股票每股多少元?(2)周内该股票收盘时的最高价、最低价分别是多少?(3)已知买入股票与卖出股票均需支付成交金额的千分之五的交易费.?若小王在本周五以收盘价将全部股票卖出,他的收益情况如何?【答案】(1)星期二收盘价为25+2-0.5=26.5(元/股)(2)收盘最高价为25+2-0.5+1.5=28(元/股)收盘最低价为25+2-0.5+1.5-1.8=26.2(元/股)∴小王的本次收益为1740元.(五)总结有理数的加法仍满足交换律和结合律.加法交换律:两个数相加,交换加数的位置,和不变.用式子表示成a+b=a+b.一 +2 二 -0.5 三 +1.5 四 -1.8 五 +0.8【篇三:人教版七年级上册第一章有理数的加法教学设计】人教版七年级上册第一章《有理数》第三节有理数的加减法第一课时1.3.1有理数的加法一、教学目标(一)知识与技能:通过实例,了解有理数加法的意义,会根据有理数加法法则进行运算;(二)过程与方法:经历有理数加法法则的探究过程,深刻感受分类讨论、数形结合的思想,由具体到抽象、由特殊到一般的规律;(三)情感态度与价值观:通过师生活动,学会自我探究,让学生充分参与到数学学习的过程中来。

人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计

人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计

人教版数学七年级上册1.3《有理数的加减法》(有理数的加减混合运算)教学设计一. 教材分析《有理数的加减法》是人教版数学七年级上册的教学内容,本节课主要介绍了有理数的加减混合运算。

学生在学习了有理数的基础知识后,进一步学习有理数的加减法运算,这对于培养学生解决实际问题的能力具有重要意义。

教材通过例题和练习题,使学生掌握有理数加减法运算的规则和方法,并能灵活运用到实际问题中。

二. 学情分析七年级的学生已经掌握了有理数的基本概念,对数的大小比较也有了一定的了解。

但学生在进行有理数的加减法运算时,可能会对符号的判断和运算顺序产生困惑。

因此,在教学过程中,教师需要关注学生的学习需求,引导学生正确判断符号,掌握运算顺序,提高运算能力。

三. 教学目标1.知识与技能:使学生掌握有理数的加减法运算方法,能正确进行有理数的加减混合运算。

2.过程与方法:通过实例演示、小组讨论等方法,培养学生合作学习、解决问题的能力。

3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自信心,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:有理数的加减法运算方法。

2.难点:符号的判断和运算顺序。

五. 教学方法1.实例演示法:通过具体的例子,让学生直观地理解有理数的加减法运算。

2.引导发现法:教师引导学生发现运算规律,培养学生的探究能力。

3.小组讨论法:学生分组讨论,共同解决问题,提高合作能力。

4.练习法:通过大量练习,巩固所学知识。

六. 教学准备1.教学课件:制作课件,展示例题和练习题。

2.教学素材:准备一些实际问题,用于引导学生运用有理数加减法解决实际问题。

3.练习题:设计一些有梯度的练习题,用于巩固所学知识。

七. 教学过程1.导入(5分钟)教师通过一个实际问题,引导学生思考如何运用有理数加减法解决问题。

例如:小明买了3本书,每本书5元,又卖掉2本书,每本书3元,请问小明最后赚了多少钱?2.呈现(10分钟)教师展示教材中的例题,引导学生观察和分析,让学生发现有理数加减法运算的规律。

《有理数的加减法》教学设计

《有理数的加减法》教学设计

《有理数的加减法》教学设计《有理数的加减法》教学设计有理数的加法与小学的加法大有不同,小学的加法不涉及到符号的问题,下面给大家分享《有理数的加减法》教学设计,一起来看看吧!《有理数的加减法》教学设计1教学目标:1、会将有理数的减法运算转化为有理数的加法运算。

2、会将有理数的加减混合运算转化为有理数的加法运算。

教学重点、难点:会进行有理数的减法运算,会进行有理数的加减混合运算。

课前复习:1、有理数加法法则是什么?2、有理数加法运算律是什么?教学过程:一、有理数的减法法则实际生活中有很多时候要涉及到有理数的减法。

例如:某地某天的气温是―2至5C,这一天的温差是多少呢?(温差是最高气温减最低气温,单位:C)。

显然,这天的温差是5―(―2)。

这里就用到了有理数的减法。

我们知道,减法是与加法相反的运算,计算5―(―2),就是要求一个数,使之与(―2)的和得4,因为与―3相加得4,所以这个数应该是7,即:5―(―2)=7。

(1)另一方面,我们知道5+(+2)=7(2)由(1),(2)有5―(―2)=5+(+2)(3)从(3)式能看出减―2相当于加哪个数吗?用上面的方法考虑:0―(―2)=___, 0+(+2)=___;1―(―2)=___, 1+(+2)=____;―5―(―2)=___,―5+(+2)=___。

这些数减3的结果与它们加+2的结果相同吗?从(3)式能看出减―2相当于加哪个数吗?把5换成0,1,—5,用上面的方法考虑,并看它们的结果相同吗?计算:10-8=___,10+(-8)=____;13-7=___,13+(-7)=____。

上述式子表明:减去一个数,等于加上这个数的相反数。

于是,得到有理数减法法则:减去一个数,等于加这个数的相反数。

用式子可以表示成ab=a+(b)例题解析:计算:(1)(-4)―(―5);(2)0-6;(3)7.1―(―4.9);解:(1)(-4)―(―5)=(-4)+5=1;(2))0-6=0+(-6)=-6;(3)7.1―(―4.9)=7.1+4.9=12;二、有理数加减混合运算有理数的.加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式。

数学人教七年级上册有理数的加减法优秀教案

数学人教七年级上册有理数的加减法优秀教案

1.3.1 有理数的加法(1)(终极版)教学目标:1.利用数形结合的思想使学生理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算。

通过有理数加法的教学,体现化归的意识、数形结合和分类的思想方法,培养学生观察、比较和概括的思维能力。

2.使学生理解有理数加法的法则,能熟练地进行有理数加法运算。

教法主要采用启发式教学和必要的讲解3.在传授知识、培养能力的同时,注意培养学生勇于探索的精神。

教学重点:有理数加法法则。

教学难点:异号两数相加的法则。

教学准备:多媒体教学过程:一、复习引入:1.如果把向西走20米记作—20米,那么向东走30米应该记作()米,—10米表示向()走()米,+50米表示向()走()米。

0米表示()。

我们把数的范围扩大到有理数以后,我们知道除0以外任何一个有理数都由()和()两部分组成。

2.在小学里,已经学过了正整数、正分数(包括正小数)及数0的四则运算。

现在引入了负数,数的范围扩充到了有理数。

那么,如何进行有理数的运算呢?3.问题:一位同学沿着一条东西向的跑道,先走了20米,又走了30米,能否确定他现在位于原来位置的哪个方向,相距多少米?我们知道,求两次运动的总结果,可以用加法来解答。

可是上述问题不能得到确定答案,因为问题中并未指出行走方向。

二、讲授新课:1.发现、总结:我们必须把问题说得明确些,并规定向东为正,向西为负。

(1)若两次都是向东走,很明显,一共向东走了50米,写成算式就是:(+20)+(+30)=+50,即这位同学位于原来位置的东方50米处。

这一运算在数轴上表示如图:(2)若两次都是向西走,则他现在位于原来位置的西方50米处,写成算式就是:(―20)+(―30)=―50。

(3)若第一次向东走20米,第二次向西走30米,我们先在数轴上表示如图:写成算式是(+20)+(―30)=―10,即这位同学位于原来位置的西方10米处。

(4)若第一次向西走20米,第二次向东走30米,写成算式是:(―20)+(+30)=( )。

有理数的加减混合运算教案(优秀4篇)

有理数的加减混合运算教案(优秀4篇)

有理数的加减混合运算教案(优秀4篇)有理数的加减混合运算教案篇一教学目标让学生熟练地进行有理数加减混合运算,并利用运算律简化运算。

教学重点和难点重点:加减运算法则和加法运算律。

难点:省略加号与括号的代数和的计算。

课堂教学过程一、从学生原有认知结构提出问题什么叫代数和?说出-6+9-8-7+3两种读法。

二、讲授新课1.计算下列各题:2.计算:(1)-12+11-8+39;(2)+45-9-91+5;(3)-5-5-3-3;(7)-6-8-2+3.54-4.72+16.46-5.28;3.当a=一三,b=-12.1,c=-10.6,d=25.1时,求下列代数式的值:(1)a-(b+c);(2)a-b-c;(3)a-(b+c+d);(4)a-b-c-d;(5)a-(b-d);(6)a-b+d;(7)(a+b)-(c+d);(8)a+b-c-d;(9)(a-c)-(b-d);(10)a-c-b+d.请同学们观察一下计算结果,可以发现什么规律?a-(b+c)=a-b-c;a-(b+c+d)=a-b-c-d;a-(b-d)=a-b+d;(a+b)-(c+d)=a+b-c-d;(a-c)-(b-d)=a-c-b+d.括号前是“-”号,去括号后括号里各项都改变了符号;括号前是“+”号(没标符号当然也是省略了“+”号)去括号后各项都不变。

4.用较简便方法计算:(4)-16+25+16-壹五+4-10.三、课堂练习1.判断题:在下列各题中,正确的在括号中打“√”号,不正确的在括号中打“×”号:(1)两个数相加,和一定大于任一个加数.()(2)两个数相加,和小于任一个加数,那么这两个数一定都是负数.()(3)两数和大于一个加数而小于另一个加数,那么这两→←数一定是异号.()(4)当两个数的符号相反时,它们差的绝对值等于这两个数绝对值的和.()(5)两数差一定小于被减数.()(6)零减去一个数,仍得这个数.()(7)两个相反数相减得0.()(8)两个数和是正数,那么这两个数一定是正数.()2.填空题:(1)一个数的绝对值等于它本身,这个数一定是______;一个数的倒数等于它本身,这个数一定是______;一个数的相反数等于它本身,这个数是______。

七年级数学上册《有理数加减混合运算》教案、教学设计

七年级数学上册《有理数加减混合运算》教案、教学设计
4.通过数学学习,培养学生的逻辑思维能力和严谨的学习态度,为他们的终身学习奠定基础。
二、学情分析
七年级的学生在数学学习上已具备一定的运算基础和逻辑思维能力,但对于有理数加减混合运算这一部分内容,他们在理解上可能还存在一定的困难。在之前的学习中,学生已经接触过正整数、零和负整数的概念,并掌握了它们的加减运算。因此,在此基础上,教师需要引导学生进一步拓展对有理数的认识,帮助他们建立完整的有理数加减混合运算体系。
6.课后作业,拓展延伸
布置适量的课后作业,包括基础题和提高题,巩固所学知识。同时,鼓励学生进行拓展学习,如研究有理数乘除运算等。
7.关注学生情感,营造良好氛围
在教学过程中,关注学生的情感态度,鼓励他们积极参与,勇于提问。对学生的每一次进步给予肯定和表扬,增强他们的自信心。
8.评价与反馈
采用多元化评价方式,关注学生的过程表现,及时给予反馈。通过评价,激发学生的学习积极性,提高他们的学习效果。
三、教学重难点和教学设想
(一)教学重点
1.有理数的概念及其分类;
2.有理数的加减法则及其运用;
3.数轴在有理数加减混合运算中的应用;
4.解决实际问题中涉及的有理数加减混合运算。
(二)教学难点
1.有理数加减法则的理解与记忆;
2.正确运用数轴辅助有理数加减混合运算;
3.将实际问题抽象为有理数加减混合运算模型。
3.深入讲解,突破难点
针对学生难以理解的有理数加减法则,教师通过数轴演示、具体实例分析等方法,帮助学生加深理解,突破难点。
4.巩固练习,提高能力
设计不同难度的练习题,让学生独立完成。在解题过程中,教师巡回指导,针对学生的问题进行个别辅导,提高他们的运算能力。
5.课堂小结,总结规律

七年级数学上册《有理数加减法的混合运算》教案、教学设计

七年级数学上册《有理数加减法的混合运算》教案、教学设计
3.拓展延伸题:
-研究课本第47页拓展题,探究有理数加减混合运算在几何图形中的应用。
-结合实际生活,举例说明有理数加减混合运算在生活中的应用,并简要说明其运算过程。
4.思考题:
-总结有理数加减混合运算的运算律,思考如何运用这些运算律简化计算过程。
-探讨在解决有理数加减混合运算问题时,如何避免常见的错误,提高运算准确性。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握有理数的概念及其分类。
2.掌握有理数加减混合运算的法则和运算顺序。
3.能够运用运算律简化计算过程,提高计算速度和准确性。
4.解决实际问题,将有理数加减混合运算应用于生活情境。
(二)教学设想
1.创设情境,导入新课
在课堂导入环节,通过设计生活情境,如购物找零、温度变化等,引导学生感受有理数加减混合运算在实际生活中的应用,激发学生的学习兴趣。
在教学过程中,教师应关注学生的个体差异,因材施教,使学生在知识与技能、过程与方法、情感态度与价值观等方面得到全面发展。同时,注重激发学生的学习兴趣,营造轻松、愉快的课堂氛围,使学生在愉快的氛围中学习数学,提高教学质量。
二、学情分析
七年级的学生正处于从小学到初中的过渡阶段,他们在小学阶段已经学习了简单的加减法运算,具备了一定的运算基础。但在有理数的概念及其加减混合运算方面,大部分学生仍存在一定的困难。此时,他们需要教师在教学方法上进行适当的引导和过渡,帮助学生顺利掌握有理数加减混合运算。
在教学过程中,关注每个学生的学习情况,针对不同学生的需求进行个性化指导,使每个学生都能在原有基础上得到提高。
7.创设轻松愉快的学习氛围
注重与学生之间的情感沟通,鼓励学生积极参与课堂活动,尊重学生的个性,营造一个轻松、愉快的学习氛围,使学生在愉悦的情感中学习数学。

初中数学_有理数的加减法教学设计学情分析教材分析课后反思

初中数学_有理数的加减法教学设计学情分析教材分析课后反思

《有理数加减法》教学设计一、教材分析有理数的加减法是整个初中代数的一个基础,它直接关系到有理数运算、实数运算、代数式运算、解方程、研究函数等内容的学习。

初中阶段要培养学生的运算能力、逻辑思维能力和空间想象能力以及让学生根据一些现实模型,把它转化成数学问题,从而培养学生的数学意识,增强学生对数学的理解和解决实际问题的能力。

就本章而言,有理数的加减法是本章的一个重点。

在有理数范围内进行的各种运算:加、减法可以统一成为加法,乘法、除法和乘方可以统一成乘法,因此加法和乘法的运算是本章的关键,而加法又是学生接触的第一种有理数运算,学生能否接受和形成在有理数范围内进行的各种运算的思考方式(确定结果的符号和绝对值),关键就在于本节课的学习。

二、教学重难点重点:有理数的加法运算律。

难点:灵活运用加法运算律使运算简便。

三、教学目标(知识与技能、过程与方法、情感态度与价值观)教学目标:1、能运用加法运算律简化加法运算。

2、理解加法运算律在加法运算中的作用,培养学生的观察力和思维能力。

教学重点与难点:四、学习者特征分析七年级学生是智力发展的关键年龄,逻辑思维从经验型逐步向理论型发展。

观察能力,记忆能力和想象能力也随着迅猛发展。

他们生性好动,注意力易分散,爱发表见解,希望得到老师的表扬。

所以在教学中应该抓住学生的这一生理特点,一方面应用直观生动的形象幻灯图象,引发学生的兴趣,使他们的注意力始终集中在课堂上。

另一方面通过小组竞赛和互举例子创造条件和机会,让学生发表见解,发挥学生学习的主动性。

五、教学策略选择与设计本节课是在前面学习了有理数的意义的基础上进行的,学生已经很牢固地掌握了正数、负数、数轴、相反数、绝对值等概念,因此我没有把时间过多地放在复习这些旧知识上,而是利用学生的好奇心,采用生动形象的事例,让学生充当主角,亲身参加探索发现,从而获取知识。

本节是新课内容的学习,教学过程中尽力引导学生成为知识的发现者,把教师的点拨和学生解决问题结合起来,为学生创设情境,从而不断激发学生的求知欲望和学习兴趣。

七年级数学上期《有理数加减混合运算》教案

七年级数学上期《有理数加减混合运算》教案

七年级数学上期《有理数加减混合运算》教案一、教学目标:1. 知识与技能:使学生掌握有理数的加减混合运算的运算方法,能够正确进行计算。

2. 过程与方法:通过实例分析,让学生理解有理数加减混合运算的运算顺序,学会运用运算律简化运算过程。

3. 情感态度与价值观:培养学生的逻辑思维能力,提高学生对数学学科的兴趣。

二、教学重点与难点:1. 教学重点:掌握有理数的加减混合运算的运算方法。

2. 教学难点:理解有理数加减混合运算的运算顺序,运用运算律简化运算过程。

三、教学方法与手段:1. 采用情境教学法,通过生活实例引入有理数加减混合运算。

2. 采用小组合作学习法,让学生在讨论中掌握运算方法。

3. 利用多媒体教学手段,展示运算过程,提高学生的学习兴趣。

四、教学过程:1. 导入新课:通过生活实例,引导学生认识有理数的加减混合运算。

2. 新课讲解:讲解有理数加减混合运算的运算方法,强调运算顺序。

3. 实例分析:分析具体例题,让学生理解并掌握运算方法。

4. 课堂练习:布置练习题,让学生巩固所学知识。

5. 总结提升:对本节课内容进行总结,强调重点知识点。

五、课后作业:1. 请学生完成课后练习题,巩固有理数加减混合运算的知识。

2. 鼓励学生进行拓展学习,了解有理数加减混合运算在实际生活中的应用。

3. 家长签字确认,加强对学生学习情况的了解。

六、教学评估:1. 课堂表现评估:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。

2. 练习题完成情况评估:检查学生课后练习题的完成质量,了解学生对课堂所学知识的掌握程度。

3. 家长反馈:通过与家长沟通,了解学生在家的学习情况,家长对有理数加减混合运算的认可度。

七、教学反思:1. 反思教学方法:根据学生的学习情况,调整教学方法,提高教学效果。

2. 反思教学内容:检查教学内容是否符合学生的认知水平,适当调整教学难度。

3. 反思教学进度:根据学生的掌握情况,调整教学进度,确保学生能够扎实掌握每一个知识点。

第二章 有理数的运算(教案)人教版(2024)数学七年级上册

第二章 有理数的运算(教案)人教版(2024)数学七年级上册

第二章有理数的运算2.1有理数的加法与减法2.1.1有理数的加法(2课时)第1课时有理数的加法1.了解有理数加法的意义,理解有理数加法法则的合理性.2.能运用该法则准确进行有理数的加法运算.3.经历探索有理数加法法则的过程,理解并掌握有理数加法的法则.重点了解有理数加法的意义,会根据有理数加法法则进行有理数的加法运算.难点有理数加法中的异号两数如何进行加法运算.一、导入新课师:我们已学过正数的加法,但是在实际问题中还会遇到超出正数范围的加法情况,此时应该怎样进行计算呢?二、探究新知一个小球作左右方向的运动,我们规定向左为负,向右为正.师:根据题意列出对应的式子:(1)如果小球先向右运动3米,再向右运动5米,那么两次运动后总的运动结果是什么?(2)如果小球先向左运动5米,再向左运动3米,那么两次运动后总的结果是什么?加数加数和(+3)+(+5)=+8,(-5)+(-3)=-8)师:你从上面的两个算式中发现了什么?归纳:同号两数相加,取相同的符号,并把绝对值相加.(3)如果小球先向右运动5米,再向左运动3米,那么两次运动后总的结果是什么?(4)如果小球先向右运动3米,又向左运动5米,两次运动后小球从起点向__左__运动了__2__米.加数加数和(+5)+(-3)=+2,(+3)+(-5)=-2)师:你从上面的两个算式中发现了什么?归纳:异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.(5)小球先向右运动5米,再向左运动5米,小球从起点向__左(右)__运动了__0__米.师:观察,你又有什么发现?归纳:互为相反数的两个数相加得0.总结归纳:有理数加法的法则是:1.同号两数相加,取相同的符号,并把绝对值相加;2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数与0相加,仍得这个数.三、课堂练习试一试身手:口答下列算式的结果:(1)(+4)+(+3);(2)(-6)+(-5);(3)(+3)+(-7);(4)(+9)+(-4);(5)(+8)+(-8);(6)(-3)+0;(7)0+(+2);(8)0+0.【答案】(1)7(2)-11(3)-4(4)5(5)0(6)-3(7)2(8)0学生逐题口答后,师生共同得出.方法总结:1.先判断类型(同号、异号等);2.再确定和的符号;3.最后进行绝对值的加减运算.教师:出示教材例1,师生共同完成,教师规范写出解答,注意解答过程中讲解对法则的应用.解:(1)(-3)+(-9)(两个加数同号,用加法法则的第1条计算)=-(3+9)(和取负号,把绝对值相加)=-12.(2)(-4.7)+3.9(两个加数异号,用加法法则的第2条计算)=-(4.7-3.9)(和取负号,用大的绝对值减去小的绝对值)=-0.8.教师点评法则运用过程中的注意点:先定符号,再算绝对值.下面请同学们计算下列各题以及教材第28页练习.(1)(-0.9)+(+1.5);(2)(+2.7)+(-3);(3)(-1.1)+(-2.9).学生练习,四位学生板演,教师巡视指导,学生交流,师生评价.本节课教师可根据时间的情况,多安排一些练习,以求通过练习达到巩固掌握知识的目的.四、课堂小结五、课后作业教材P28练习第1,2,3,4题.本节课主要是让学生感知研究数学问题的一般方法(分类、辩析、归纳、化归等).如在探究加法法则时,有意识地把各种情况先分为三类(同号、异号、一个数同0相加);在运用法则时,当和的符号确定以后,有理数的加法就转化为算术的加减法.第2课时有理数加法的运算律及运用1.正确理解加法交换律,结合律,能用字母表示运算律的内容.2.能运用运算律较熟悉地进行加法运算.重点有理数加法运算律的运用.难点能运用有理数加法运算律来简化加法运算.一、导入新课问题1:在小学中我们学过哪些加法的运算律?加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c).问题2:加法的运算律是不是也可以扩充到有理数范围?二、探究新知探究活动(一)1.计算(口算):(1)39+15=__54__,15+39=__54__;(2)(-98)+(-12)=__-110__,(-12)+(-98)=__-110__;(3)(-24)+(+24)=__0__,(+24)+(-24)=__0__;(4)(-23)+(+17)=__-6__,(+17)+(-23)=__-6__.问题3:通过以上的运算结果,你发现了什么?归纳加法交换律:有理数的加法中,两个数相加,交换加数的位置,和不变,加法交换律:a+b=b+a.探究活动(二)2.填空:(1)(-15)+(+26)+(+9)=[__(-15)__+__(+26)__]+(+9)=(-15)+[__(+26)__+__(+9)__]=__20__.(2)(-2)+(-12)+(+12)=[__(-2)__+__(-12)__]+(+12)=(-2)+[__(-12)__+__(+12)__]问题4:请你们猜想一下结合律在有理数加法中仍然成立么?使用这些运算律有什么好处呢?请小组开始讨论.归纳加法结合律:有理数的加法中,三个数相加,先把前两个数相加,或先把后两个数相加,和不变.加法的结合律:(a +b )+c =a +(b +c ).师生共同分析运用加法交换律和结合律进行计算,教师要给出规范完整的过程,让学生看清楚听明白,从中体会认识运算律的作用.例1 计算:16+(-25)+24+(-35). 【答案】-20 例2 灵活运用运用加法交换律和结合律做简便运算 (1)(-25)+(+56)+(-39)+(+28); (2)(-1.9)+3.6+(-10.1)+1.4;(3)13 +(-34 )+(-13 )+(-14 )+1819 ; (4)(-337 )+12.5+(-1647 )+(-2.5).【答案】(1)20 (2)-7 (3)-119(4)-10问题:回顾以上各题的解答,思考:将怎样的加数结合在一起,可使运算简便? 总结归纳:1.一般地,总是先把正数或负数分别结合在一起相加; 2.有相反数的可先把相反数相加,能凑整的可先凑整; 3.有分母相同的,可先把分母相同的数结合相加. 师投影展示教材例3.学生独立解决.(一般来说学生会直接进行计算,不会想到第二种解法,在学生完成以后教师再提出以下问题)如果每袋小麦以90千克为标准,超过部分记为正,不足部分记为负数,那么10袋小麦对应的数分别为多少?它们的和是不是最终结果呢?学生讨论后解决.教师在这一过程中应当关注学生能否理解这种解法,学生在计算中能否自觉运用运算律解决问题.根据情况可对这一题和这种解法进行板书或讲解.三、课堂练习 1.计算:(1)23+(-17)+6+(-22);(2)(-2)+3+1+(-3)+2+(-4).2.上周五股民新买进某公司股票1 000股,每股35元,下表为本周内每日股票的涨跌情况(单位:元)【答案】1.(1)-10 (2)-3 2.34元 四、课堂小结1.谈谈你本节课的收获.2.在生活中你有没有遇到过类似例3中解法2解决问题的数学现象,你能举出一两个例子吗?五、课后作业教材P30练习第1,2,3题.本节课在开始时先复习小学时学的加法运算律,然后提出问题:“我们如何知道加法的运算律在有理数范围内是否适用?”接着让学生通过一些实际例子来验证.尤其是鼓励学生多举一些数来验证,其意义首先是为了避免学生产生片面认识,以为从几个例子就可以得出普遍结论;其次也让学生了解结论的重要性.2.1.2有理数的减法(2课时)第1课时有理数的减法1.掌握有理数的减法法则;2.能运用有理数的减法法则进行运算;3.渗透转化思想,培养运算能力.重点有理数的减法法则.难点有理数减法法则的推导.一、导入新课师:出示温度计,提出问题:1.你能从温度计上看出5℃比-5℃高多少度吗?2.你能列式求这个结果吗?学生观察后先回答问题1得出结果,然后再列出算式5-(-5)=10.二、探究新知1.探究有理数的减法法则师:这里的计算用到了有理数的减法,通过观察我们知道了5-(-5)=10,而我们还知道5+(+5)=10.即5-(-5)=5+(+5).观察这个式子,你有什么发现?学生进行讨论,教师不必急于归纳.然后教师进一步提出问题.计算:9-8,9+(-8).15-7,15+(-7).观察比较计算的结果,你有什么发现?师生共同归纳有理数的减法法则:减去一个数,等于加上这个数的相反数用符号表示:a-b=a+(-b).注意:减法在运算时有2个要素要发生变化: ①减号变加号;②减数变成它的相反数. 三、课堂练习师:出示教材P32例4. (1)(-3)-(-5); (2)0-7;(3)7.2-(-4.8); (4)(-312 )-514.【答案】(1)2 (2)-7 (3)12 (4)-834计算(口答): (1)6-9;(2)(+4)-(-7); (3)(-5)-(-8); (4)(-2.5)-5.9; (5)1.9-(-0.6); (6)-25 -(45 );(7)0-(-5); (8)0-5.【答案】(1)-3 (2)11 (3)3 (4)-8.4 (5)2.5 (6)-65(7)5 (8)-5师生共同完成.在完成过程中教师示范前两题,给学生一个规范的过程,同时结合法则讲解法则的运用,剩下两题学生尝试完成,体验法则的运用.练习:教材32页练习. 四、课堂小结小结:谈谈本节课的收获. 思考:以前我们只能做被减数大于减数的减法运算,现在你能做被减数小于减数的减法运算吗?这时的差是一个什么数?五、课后作业教材P32练习第1,2题.本节在引入有理数减法时花了较多的时间,目的是让学生有充分的思考空间与时间进行探索.法则的得出,是在经历从实际例子(温度计上的温差)到抽象的过程中形成,减法法则的归纳得出是本节课的难点,在这个过程中,教师适时、适度的引导,也体现教师是学生学习的引导者和伙伴的新型师生关系.第2课时 有理数的加减混合运算1.熟练掌握有理数的加法和减法运算法则;2.能进行有理数的加减混合运算,培养学生的计算能力.重点1.有理数的加减混合运算;2.将加减法统一成加法的省略括号的形式并读出来.难点1.有理数的加减混合运算;2.将加减法改写成省略括号和加号的形式并读出来.一、导入新课一口深3.5米的深井,一只青蛙从井底沿井壁往上爬,第一次爬了0.7米又下滑了0.1米,第二次往上爬了0.42米又下滑了0.15米,第三次往上爬了1.25米又下滑了0.2米,第四次往上爬了0.75米又下滑了0.1米,第五次往上爬了0.65米.问题:小青蛙爬出井了吗?学生回答.二、探究新知师:投影展示教材例5.计算(-20)+(+3)-(-5)-(+7).学生完成.说明:学生可以按照从左到右的运算顺序去进行计算.在这一过程中本身也需要将减法统一成加法,可以先让学生感受这一方法.师:提出新的问题,可否将其先统一成加法,然后再进行运算?学生讨论后回答.师:让学生尝试新的思路,然后与刚才的方法相比较.师:进一步提出,在刚才的过程中你是否注意到了加法运算律的应用.让学生再重新尝试做一做.之后师生共同归纳方法:有理数加减法的混合运算可以统一成加法运算.探索统一成加法以后的省略括号的书写形式及读法.师:出示例子(-20)+(+3)+(+5)+(-7)并指出,这个式子是否可看作-20,3,5,-7这四个数的和,为书写简便,可以写成省略括号和加号的形式:-20+3+5-7.可以读作(1)负20,正3,正5,负7的和.(2)负20加3加5减7.注意让学生理解这两种读法,尤其是第一种,学生可能不习惯,但在后面讲到多项式时还会涉及类似的问题.例6计算:14-25+12-17.解:14-25+12-17=14+12-25-17=26-42=-16.探究:在数轴上,点A,B分别表示数a,b.对于下列各组数a=2,b=6;a=0,b=6;a=2:b=-6;a=-2,b=-6.(1)观察点A,B在数轴上的位置,你能得出它们之间的距离吗?(2)利用有理数的运算,你能用含有a,b的算式表示上述各组点A,B之间的距离吗?一般地,你能发现点A,B之间的距离与数a,b之间的关系吗?三、课堂小结小结:谈谈你这节课的收获.四、课后作业教材P34练习第1,2题.在学生的合作交流、探求新知过程中,首先让学生考虑运算顺序的问题,这是所有混合运算必需首先解决好的问题,然后再从引例的角度遵循减法法则,让学生尝试将加减混合运算统一为加法运算;通过运算的比较,让学生感受到其中的必要性,而在整个探索活动中都充满着学生与学生之间的交流合作,给学生以充分发表意见的机会;让学生在自己与同伴的合作中去发现与探究.同时也注意引导学生的思维方向,渗透了转化的思想.2.2有理数的乘法与除法2.2.1有理数的乘法(2课时)第1课时有理数的乘法1.掌握有理数的乘法法则;2.能利用乘法法则正确进行有理数乘法运算.重点运用有理数的乘法法则正确进行计算.难点有理数乘法法则的探索过程及对法则的理解.一、导入新课师:由于长期干旱,水库放水抗旱,每天水位下降2米,已经放了3天,现在水位20米,问放水抗旱前水库水位多少米?生:26米师:能写出算式吗?生:……师:这涉及有理数乘法运算法则,正是我们今天需要讨论的问题.二、探究新知1.(1)教师出示以下问题,学生以组为单位探索.a.观察下面的乘法算式,你能发现什么规律吗?3×3=9,3×2=6,3×1=3,3×0=0.规律:随着后一乘数逐次递减1,__积逐次递减3__.b.要使这个规律在引入负数后仍然成立,那么应有:3×(-1)=-3,3×(-2)=__-6__,3×(-3)=__-9__.c.观察下面的算式,你又能发现什么规律?3×3=9,2×3=6,1×3=3,0×3=0.规律:__左右两个因数相乘,其中一个因数为3,若另一个因数逐次减少1,乘积也相应减少3__.d.要使c中的规律在引入负数后仍成立,那么应有:(-1)×3=__-3__,(-2)×3=__-6__,(-3)×3=__-9__.(2)以小组为单位对以上问题从符号和绝对值两个角度进行观察总结归纳,得出正数乘正数,正数乘负数,负数乘正数的规律.(3)利用(2)中的结论计算下面的算式,你又发现了什么规律?(-3)×3=__-9__,(-3)×2=__-6__,(-3)×1=__-3__,(-3)×0=__0__.规律:__随着后一乘数逐次减1,积逐次加3__.(4)按照(3)中的规律,填空,并总结归纳.(-3)×(-1)=__3__,(-3)×(-2)=__6__,(-3)×(-3)=__9__.结论:__负数乘负数,积为正数,乘积的绝对值等于各乘数绝对值的积__.2.师生共同归纳总结有理数的乘法法则,并用文字叙述.(1)两数相乘,同号得正,异号得负,并把绝对值相乘.(2)任何数同0相乘,都得0.讨论:(1)若a<0,b>0,则ab<0;(2)若a<0,b<0,则ab>0;(3)若ab>0,则a,b应满足什么条件?(4)若ab<0,则a,b应满足什么条件?3.运用法则计算,巩固法则.教师出示教材例1,师生共同完成,学生口述,教师板书,要求学生能说出每一步依据.教师出示例2,引导学生完成.4.倒数计算并观察结果有何特点?(1)12×2; (2)(-0.25)×(-4). 【答案】(1)1 (2)1要点:有理数中,乘积是1的两个数互为倒数. 思考:数a (a ≠0)的倒数是什么?(a ≠0时,a 的倒数是1a)巩固:口答,说出下列各数的倒数:1,-1,13 ,-13 ,5,-5,0.75,-213 .例2 用正负数表示气温的变化量,上升为正,下降为负.登山队攀登一座山峰,每登高1 km ,气温的变化量为-6℃,攀登3 km 后,气温有什么变化?解:(-6)×3=-18. 答:气温下降18℃. 三、课堂练习 计算: (1)4×(-9); (2)-11×5; (3)(-0.3)×(-0.6);(4)(-12 )×23 ;(5)-98×0; (6)(-0.2)×(-13).【答案】(1)-36 (2)-55 (3)0.18 (4)-13 (5)0 (6)115四、课堂小结1.有理数乘法法则;2.有理数乘法的求解步骤; 3.乘积是1的两个数互为倒数. 五、课后作业教材P40练习第1,2,3题.本节课在引入时采用形象生动的多媒体课件,先激起学生的兴趣,使学生能在兴趣的指引下逐步开展探究.在引例中把表示具有相反意义量的正负数在实际问题中求积的问题,与小学算术乘法相结合,通过直观演示与多媒体结合,采用小组讨论合作学习的方式得出法则.第2课时 有理数乘法的运算律及多个有理数相乘1.正确理解乘法交换律、结合律和分配律,能用字母表示运算律; 2.能运用运算律较熟练地进行乘法运算; 3.掌握多个有理数相乘的运算方法.重点1.掌握多个有理数相乘的计算方法以及乘法运算律,能运用乘法运算律进行简便运算.2.运用有理数的乘法解决问题.难点逆用乘法分配律进行简便运算.一、导入新课1.有理数的乘法法则是什么?2.小学时候大家学过乘法的哪些运算律?二、探究新知1.提出问题,激发学生探索的欲望和学习积极性.计算(-5)×89.2×(-2)的过程能否使用简便方法,这样做有没有依据?小学里数的运算律在有理数中是否适用?2.导入运算律:(1)通过计算①5×(-6),②(-6)×5,比较结果得出5×(-6)=(-6)×5.(2)用文字语言归纳乘法交换律:两个数相乘,交换因数的位置,积相等.(3)用公式的形式表示为:ab=ba.这里的a,b表示有理数,讲解“a×b→a·b→ab”的过程.(4)分组计算,比较[3×(-4)]×(-5)与3×[(-4)×(-5)]的结果,讨论,归纳出乘法结合律.用文字语言归纳:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积相等.用公式的形式表示为:(ab)c=a(bc).(5)全班交流,规范结合律的两种表达形式:文字语言、公式形式.(6)分组计算、比较,5×[3+(-7)])与5×3+5×(-7)的结果,讨论归纳出分配律.用文字语言归纳:一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加.用公式的形式表示为:a(b+c)=ab+ac.(7)一个数同几个数的和相乘,等于把这个数分别同这几个数相乘,再把积相加.a(b+c+d)=ab+ac+ad.3.几个不为0的数相乘:确定下列积的符号,试分析积的符号与各因数的符号之间有什么规律?2×3×(-0.5)×(-7),2×(-2)×(-0.5)×(-7),(-2)×(-3)×(-0.5)×(-7).当负因数个数为奇数时,积为__负__;当负因数个数为偶数时,积为__正__.结论1:几个不等于0的数相乘,积的符号由__负因数的个数__决定;结论2:有一个乘数为0,则积为__0__;三、课堂练习下列各式中用了哪条运算律?如何用字母表示?1.(-4)×8=8×(-4).乘法交换律:a×b=b×a.2.[(-8)+5]+(-4)=(-8)+[5+(-4)]. 加法结合律:(a +b )+c =a +(b +c ). 例3 用两种方法计算 (14 +16 -12)×12. 比较上面两种解法,它们在运算顺序上有什么区别?解法2用了什么运算律?哪种解法运算量小?计算:-47 ×3.59-47 ×2.41+47×(-3).师:这道题直接进行计算显然比较麻烦,同学们想一想,有没有简便方法呢?生:同学相互讨论完成. 四、课堂小结小结:这节课你有什么收获? 1.乘法的运算律;2.多个有理数相乘积的符号规律. 五、课后作业教材P43练习第1,2题.新课引入设计,期望使学生始终处于积极的思维状态,学生利用已有的知识与经验引出当前要学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题环境中.在探求新知的过程中,给学生充分的思考,讨论和发挥的机会,让他们始终处于主动愉悦的学习状态,对探究新知具有新鲜感和满腔热情,借助于多媒体手段,生动直观地分析问题.2.2.2 有理数的除法(2课时)第1课时 有理数的除法1.了解有理数除法的定义;2.经历有理数除法法则的探索过程,会进行有理数的除法运算; 3.会化简分数.重点正确运用除法法则进行有理数的除法运算. 难点怎样根据不同的情况来选取适当的方法求商.一、导入新课1.有理数的乘法法则;2.有理数乘法的运算律:乘法交换律,乘法结合律,乘法分配律; 3.倒数的意义. 学生回答以上问题. 二、探究新知(一)有理数除法法则的推导师提出问题:根据“除法是乘法的逆运算”填空: (-4)×(-2)=8 → 8÷(-4)=____; 6×(-6)=-36 → -36÷6=____; (-35 )×(45 )=-1225 → -1225 ÷(-35)=____; -8×9=-72 → -72÷9=____.问题:上面各组数计算结果有什么关系?由此你能得到有理数的除法法则吗? 与小学学过的除法法则一样,对于有理数除法,得到有理数除法法则(一): 除以一个不等于0的数,等于乘这个数的倒数. 用字母表示为a ÷b =a ·1b(b ≠0).师指出,有理数除法法则(二):两数相除,同号得正,异号得负,并把绝对值相除,零除以任何一个不等于0的数,都得0.教师点评:法则(1)所揭示的内容告诉我们,有理数除法与小学时学的除法一样,它是乘法的逆运算,是借助“倒数”为媒介,将除法运算转化为乘法运算进行(强调,因为0没有倒数,所以除数不能为0);法则(2)揭示有理数除法的运算步骤:第一步,确定商的符号;第二步,求出商的绝对值.(二)有理数除法法则的运用 教师出示教材例4. 计算: (1)(-36)÷9;(2)(-1225 )÷(-35). 师生共同完成,教师注意强调法则:两数相除,先确定商的符号,再确定商的绝对值. 教师出示教材例5. 化简下列分数: (1)-123 ;(2)-45-12. 教师点拨:(1)符号法则;(2)一般来说,在能整除的情况下,往往采用法则的后一种形式,在确定符号后,直接除.在不能整除的情况下,则往往将除数换成倒数,转化为乘法.三、课堂练习 计算: (1)24÷(-6);(2)(-4)÷12 ;(3)0÷34 ;(4)(-78 )÷(-47).【答案】(1)-4 (2)-8 (3)0 (4)4932教师分析,学生口述完成. 四、课堂小结小结:谈谈本节课的收获.(有理数的除法法则) 五、课后作业教材P45练习第1,2题,P48习题第6,8题.学生深刻理解除法是乘法的逆运算,对学好本节内容有比较好的作用.让学生自己探索并总结除法法则,同时也让学生对比乘法法则和除法法则,加深印象,并应该讲清楚除法的两种运算方法:1.在除式的项和数字不复杂的情况下直接运用除法法则(二)计算;2.在多个有理数进行除法运算,或者是乘、除混合运算时应该把除法转化为乘法.然后统一用乘法的运算律解决问题.第2课时 有理数的加减乘除混合运算1.掌握有理数加、减、乘、除运算的法则,运算顺序,能够熟练运算; 2.能运用法则解决实际问题.重点有理数四则混合运算的方法与技巧 难点如何按有理数的运算顺序,正确而合理地进行计算.一、导入新课问题1:小学的四则混合运算的顺序是怎样的? 问题2:我们目前都学习了哪些运算? 二、探究新知教师投影出示教材P45页例6 (1)(-12557 )÷(-5);(2)-2.5÷58 ×(-14).你能尝试解决这两个问题吗?学生尝试解决,然后交流,师生再共同分析.教师提出问题,进行有理数的乘除混合运算,运算顺序是怎样的?学生讨论后回答:乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果(乘除混合运算按从左到右的顺序进行计算)问题1:下列式子含有哪几种运算?先算什么,后算什么?归纳:有理数混合运算的顺序:先算乘除,再算加减,同级运算从左往右依次计算,如有括号,先算括号内的运算.三、课堂练习教师投影展示教材P46例7.教师先示范(1),然后学生口述,教师板书师生共同完成(2).过程中注意联系讲解法则的运用.教师出示例8.例8某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月亏损2.3万元,这个公司去年总的盈亏情况如何?提示,可记盈利为正数,亏损为负数.本例题教师可让学生上黑板板演,以便发现学生的问题,及时讲解和纠正.教师布置学生练习:教材47页练习题.学生独立完成,然后同学交流,教师安排学生板演.布置自学任务,使用计算器进行计算,教师布置学生互相交流,然后完成教材47页练习3.四、课堂小结小结:说说你本节课的收获.五、课后作业教材P47习题2.2第4,9,10题.在练习过程中,学生所表现出来的问题比较多,一是运算顺序出现问题;二是符号出现问题,尤其是两个负数相加经常和乘法中的负负得正混淆,异号两数相加也往往弄错符号.究其原因还是因为没有完全熟练掌握,形成能力.因此,在教给学生解题方法的同时,还要着重强调易错点,不断加强训练,才能确保计算准确无误.2.3有理数的乘方2.3.1乘方(2课时)第1课时有理数的乘方1.理解有理数乘方的意义;2.能正确进行有理数乘方运算;3.让学生经历探索乘方的有关规律的过程.重点理解有理数乘方的意义.难点理解有理数乘方的意义,熟练进行有理数的乘方运算.一、导入新课师:我们知道,边长为2 cm的正方形的面积为2×2=4(cm2);棱长为2 cm的正方体的体积为2×2×2=8(cm3).2×2,2×2×2都是相同因数的乘法.生思考回答,为了简便,我们可以将它们记作什么,读作什么?同样:(-2)×(-2)×(-2)×(-2)记作什么?读作什么?(-25)×(-25)×(-25)×(-25)×(-25)记作什么?读作什么?a·a·a·a·a·a可以记作什么?读作什么?学生讨论交流后教师进一步提出:师:怎么表示a·a·…·a,\s\do4(几个a)) (n为正整数)呢?生归纳总结:可以记作a n,读作a的n次方.师:对于a n中的a,不仅可以取正数,还可以取0和负数,也就是说,a可以取任意有理数,这就是我们今天研究的课题:有理数的乘方(板书).二、探索新知师:求n个相同因数的积的运算,叫作乘方.乘方的结果叫作幂,相同的因数叫作底数,相同的因数的个数叫作指数.一般地,在a n中,a取任意有理数,n取正整数.注意:乘方是一种运算,幂是乘方运算的结果.a n看做是a的n次方的结果时,也可读作a的n次幂,一个数可以看做是它本身的1次方.师:出示教材例1.提出问题:怎样进行乘方的运算,你能根据乘方的意义进行上面这个例题的运算吗?学生进行交流讨论,尝试解决.然后师生共同完成例1.师:进一步提出问题:观察以上运算的结果,你发现负数的幂的正负有什么规律?。

人教版七年级数学上册1.3《有理数的加减法》教学设计

人教版七年级数学上册1.3《有理数的加减法》教学设计

人教版七年级数学上册1.3《有理数的加减法》教学设计一. 教材分析《有理数的加减法》是人教版七年级数学上册第一章第三节的内容,本节内容是在学生已经掌握了有理数的概念和简单的性质的基础上进行讲授的。

有理数的加减法是数学中基本的运算,也是日常生活中经常使用的运算。

本节内容的学习,有助于学生进一步理解和掌握有理数的运算规则,培养学生解决实际问题的能力。

二. 学情分析学生在进入七年级之前,已经初步接触过有理数的概念和性质,对有理数有了一定的认识。

但学生的数学基础参差不齐,部分学生对有理数的理解还不够深入,对有理数的加减运算规则还不够熟悉。

因此,在教学过程中,需要关注所有学生的学习情况,针对不同学生进行有针对性的教学。

三. 教学目标1.理解有理数的加减法运算规则,能够熟练地进行有理数的加减运算。

2.培养学生解决实际问题的能力,使学生能够运用有理数的加减法规则解决生活中的问题。

3.培养学生的逻辑思维能力,使学生能够理解和分析数学问题。

四. 教学重难点1.教学重点:有理数的加减法运算规则,有理数的加减运算。

2.教学难点:理解并掌握有理数的加减法运算规则,能够灵活运用规则解决实际问题。

五. 教学方法采用问题驱动的教学方法,通过引导学生思考和解决问题,让学生主动探索和理解有理数的加减法运算规则。

同时,运用实例讲解和练习,使学生能够熟练地进行有理数的加减运算。

六. 教学准备1.准备相关的教学材料,如PPT、教案、练习题等。

2.准备一些实际问题,用于引导学生运用有理数的加减法规则解决实际问题。

七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和性质,为新课的学习做好铺垫。

2.呈现(10分钟)通过PPT展示有理数的加减法运算规则,让学生初步了解并感知加减法运算的规则。

3.操练(10分钟)让学生进行有理数的加减运算练习,教师引导学生注意运算的顺序和规则,并及时给予反馈和纠正。

4.巩固(10分钟)通过一些实际问题,让学生运用有理数的加减法规则进行解决,巩固所学知识。

人教版七年级数学上册教案:第1章 有理数 有理数的加减法(4课时)

人教版七年级数学上册教案:第1章 有理数  有理数的加减法(4课时)

1.3有理数的加减法1.3.1有理数的加法第1课时有理数的加法法则一、基本目标【知识与技能】理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算.【过程与方法】经历探究有理数加法法则的过程,学会与他人交流合作.【情感态度与价值观】在有理数加法法则的教学过程中,注意培养学生的观察、比较、归纳及运算能力.二、重难点目标【教学重点】有理数加法运算.【教学难点】异号两数的加法运算.环节1自学提纲,生成问题【5 min阅读】阅读教材P16~P18的内容,完成下面练习.【3 min反馈】1.同号两数相加,取相同的符号,并把绝对值相加.2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得0.3.一个数同0相加,仍得这个数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)(-25)+(-35);(2)(-12)+(+3);(3)(+8)+(-7);(4)0+(-7).【互动探索】(引发学生思考)同号两数相加怎样计算?异号两数相加呢?【解答】(1)(-25)+(-35)=-(25+35)=-60.(2)(-12)+(+3)=-(12-3)=-9.(3)(+8)+(-7)=+(8-7)=1.(4)0+(-7)=-7.【互动总结】(学生总结,老师点评)有理数加法法则是进行有理数加法运算的依据.进行加法运算时,首先判断两个加数的符号,是同号、异号还是有一个加数是0,然后确定用哪一条法则.活动2 巩固练习(学生独学)1.下列各数中,与-13的和为0的是( D ) A .3B .-3C .-13D.132.计算(-6)+5的结果是( C )A .-11B .11C .-1D .1 3.李志家冰箱冷冻室的温度为-6 ℃,调高4 ℃后的温度为( C )A .4 ℃B .10 ℃C .-2 ℃D .-10 ℃4.计算:8+(-5)的结果为3.5.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则a +b +c =0.6.计算:(1)45+(-20);(2)(-8)+(-1);(3)|-10|+|+8|.解:(1)45+(-20)=45-20=25.(2)(-8)+(-1)=-(8+1)=-9.(3)|-10|+|+8|=10+8=18.活动3 拓展延伸(学生对学)【例2】已知|a |=4,|b |=6,求a +b 的值.【互动探索】先依据绝对值的性质求得a 、b 的值,最后依据加法法则进行计算即可.【解答】因为|a |=4,所以a =4或a =-4.因为|b |=6,所以b =-6或b =6.当a =4,b =6时,a +b =4+6=10;当a =4,b =-6时,a +b =4+(-6)=-2;当a =-4,b =6时,a +b =-4+6=2.当a =-4,b =-6时,a +b =-4++(-6)=-10.综上所述,a +b 的值为10或-2或2或-10.【互动总结】(学生总结,老师点评)本题考查有理数的加法运算以及绝对值的性质,由于未告知a 、b 的正负,所以要分类讨论.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的加法⎩⎪⎨⎪⎧ 法则⎩⎪⎨⎪⎧ 同号异号0运算步骤请完成本课时对应练习!第2课时 有理数的加法运算律一、基本目标【知识与技能】1.掌握有理数的加法运算律,理解小学中的加法运算律在有理数中仍然成立.2.能用有理数的运算律对有理数加法进行简便运算.【过程与方法】经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力.【情感态度与价值观】体会有理数加法运算律的应用价值.二、重难点目标【教学重点】有理数加法运算律.【教学难点】灵活运用加法运算律进行简便运算.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P19~P20的内容,完成下面练习.【3 min 反馈】1.有理数加法的交换律:两个数相加,交换加数的位置,和不变,用字母表示为a +b =b +a .2.有理数加法的结合律:三个数相加,先把前两个数相加或先把后两个数相加,和不变,用字母表示为(a +b )+c =a +(b +c ).3.计算:30+(-20);(-20)+30;[8+(-5)]+(-4);8+[(-5)]+(-4)].解:10. 10. -1. -1.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】用简便方法计算下列各题:(1)12+⎝⎛⎭⎫-23+45+⎝⎛⎭⎫-12+⎝⎛⎭⎫-13; (2)(-0.5)+314+2.75+⎝⎛⎭⎫-512; (3)7+(-6.9)+(-3.1)+(-8.7).【互动探索】(引发学生思考)观察式子特点,灵活选择运算律进行计算.【解答】(1)原式=12+⎝⎛⎭⎫-12+⎝⎛⎭⎫-23+⎝⎛⎭⎫-13+45=⎣⎡⎦⎤12+⎝⎛⎭⎫-12+⎣⎡⎦⎤⎝⎛⎭⎫-23+⎝⎛⎭⎫-13+45=0-1+45=-1+45=-15. (2)原式=⎝⎛⎭⎫-12+⎝⎛⎭⎫-512+314+234=⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-512+⎝⎛⎭⎫314+234 =-6+6=0.(3)原式=(-6.9)+(-3.1)+(-8.7)+7=[(-6.9)+(-3.1)]+[(-8.7)+7]=-10+(-1.7)=-11.7.【互动总结】(学生总结,老师点评)在运用运算律时,通常有下列规律:①互为相反数的两个数先相加;②符号相同的数先相加;③分母相同的数先相加;④几个数相加得到整数的先相加;⑤整数与整数,小数与小数相加.活动2 巩固练习(学生独学)1.运用加法的运算律计算(+6)+(-18)+(+4)+(-6.8)+18+(-3.2)最适当的是( D )A .[(+6)+(+4)+18]+[(-18)+(-6.8)+(-3.2)]B .[(+6)+(-6.8)+(+4)]+[(-18)+18+(-3.2)]C .[(+6)+(-18)]+[(+4)+(-6.8)]+[18+(-3.2)]D .[(+6)+(+4)]+[(-3.2)+(-6.8)]+[(-18)+18)]2.计算43+(-77)+27+(-43)的结果是-50.3.用适当的方法计算:(1)23+(-17)+6+(-22);(2)1+⎝⎛⎭⎫-12+13+⎝⎛⎭⎫-16; (3)1.125+⎝⎛⎭⎫-325+⎝⎛⎭⎫-18+(-0.6); (4)(-2.48)+(+4.33)+(-7.52)+(-4.33).解:(1)原式=(23+6)+[(-17)+(-22)]=29-39=-10.(2)原式=1+13+⎣⎡⎦⎤⎝⎛⎭⎫-12+⎝⎛⎭⎫-16 =43-23=23. (3)原式=118+⎝⎛⎭⎫-18+⎝⎛⎭⎫-325+⎝⎛⎭⎫-35 =1-4=-3.(4)原式=[(-2.48)+(-7.52)]+[(+4.33)+(-4.33)]=-10+0=-10.活动3 拓展延伸(学生对学)【例2】10月6日上午,出租车司机小李在南北走向的商业大道上运营,如果规定向北为正,向南为负,出租车的行车里程如下(单位:km):-17,-4,+13,-10,-12,+3,-13,+15,+20.(1)将最后一名乘客送到目的地时,小李离出车地点的距离是多少千米?(2)若每千米耗油0.2升,这天上午汽车共耗油多少升?【互动探索】(1)根据加法法则,将正数与正数相加,负数与负数相加,进而得出计算结果.(2)要求耗油量,只需求出出租车上午一共走的路程,即将各数的绝对值相加求出即可.【解答】(1)(-17)+(-4)+(+13)+(-10)+(-12)+(+3)+(-13)+(+15)+(+20)=[-17+(-4)+(-10)+(-12)+(-13)]+(13+3+15+20)=-56+51=-5.即将最后一名乘客送到目的地时,小王离出车地点的距离是南边5千米处.(2)总行程为|-17|+|-4|+|+13|+|-10|+|-12|+|+3|+|-13|+|+15|+|+20|=17+4+13+10+12+3+13+15+20=107(千米).由于每千米耗油0.2升,所以这天上午汽车共耗油107×0.2=21.4(升).【互动总结】(学生总结,老师点评)本题考查有理数的加法运算以及绝对值的性质,关键是熟练利用加法的运算法则进行运算.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的加法运算律⎩⎪⎨⎪⎧交换律结合律请完成本课时对应练习!1.3.2 有理数的减法第3课时 有理数的减法法则一、基本目标【知识与技能】理解有理数减法法则,并能准确地进行有理数的减法运算.【过程与方法】通过把减法运算转化为加法运算,向学生渗透转化思想.【情感态度与价值观】通过揭示有理数的减法法则,注意培养学生的观察、比较、归纳及运算能力.二、重难点目标【教学重点】掌握有理数减法法则和运算.【教学难点】有理数减法法则的推导.环节1 自学提纲,生成问题【5 min 阅读】阅读教材P21~P22的内容,完成下面练习.【3 min 反馈】通过教材第21页实际例子,一方面,利用加法与减法互为逆运算可知:计算3-(-3),就是要求出一个数x ,使x +(-3)=3,易知x =6,所以3-(-3)=6.①另一方面,3+(+3)=6.②由①②有3-(-3)=3+(+3).再试,把减数-3换成正数,任意列出一些算式进行计算,如:计算9-8与9+(-8);15-7与15+(-7).得出减法法则:减去一个数,等于加这个数的相反数.用字母表示为a -b =a +(-b ).【教师点拨】减法法则渗透了一种重要的数学思想方法——转化,有了相反数,减法就可以转化为加法,加减就可以统一为加法.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)-7-3;(2)5.8-(-3.6);(3)(+4.09)-⎝⎛⎭⎫+614; (4)(-30)-(-6)-(+6)-(-15).【互动探索】(引发学生思考)利用有理数的减法法则进行计算。

最新七年级有理数的加减法教案优秀6篇

最新七年级有理数的加减法教案优秀6篇

最新七年级有理数的加减法教案优秀6篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!最新七年级有理数的加减法教案优秀6篇作为一位杰出的老师,时常需要用到教案,教案是教学活动的依据,有着重要的地位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

有理数的加减法(一) [本节课内容]
1.有理数的加法
2.有理数的加法的运算律
[本节课学习目标]
1、理解有理数的加法法则.
2、能够应用有理数的加法法则,将有理数的加法转化为非负数的加减运算.
3、掌握异号两数的加法运算的规律.
4、理解有理数的加法的运算律.
5、能够应用有理数的加法的运算律进行计算.
[知识讲解]
一、有理数加法:
正有理数及0的加法运算,小学已经学过,然而实际问题中做加法运算的数有可能超出正数范围.例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数.如果,红队进4个球,失2个球;蓝队进1个球,失1个球.
于是红队的净胜球数为4+(-2),蓝队的净胜球数为1+(-1).
这里用到正数和负数的加法.
下面借助数轴来讨论有理数的加法.
看下面的问题:
一个物体作左右方向的运动;我们规定向左为负,向右为正,向右运动5m记作5m,向左运动5m记作? 5m;如果物体先向右移动5m,再向右移动3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向右移动了8m,写成算式就是:5+3 = 8
如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向左运动了8m,写成算式就是(?5)+(?3) = ?8
如果物体先向右运动5m,再向左运动3m,那么两次运动后总的结果是什么?
两次运动后物体从起点向右运动了2m,写成算式就是5+(?3) = 2
探究
这三种情况运动结果的算式如下:
3+(—5)=—2;
5+(—5)= 0;
(—5)+5= 0.
如果物体第1秒向可(或向左)走5m,第二秒原地不动,两秒后物体从起点向右(或向左)运动了5m.写成算式就是5+0=5 或(—5)+0=—5.
你能从以上7个算式中发现有理数加法的运算法则吗?
有理数加法法则:
①同号的两数相加,取相同的符号,并把绝对值相加.
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.
③一个数同0相加,仍得这个数.
例题
例1、计算
(-3)+(-9);(2)(-+.
分析:解此题要利用有理数的加法法则.
解:(1) (-3)+(-9)=-(3+9)=-12
(2) (-+3·9=--=-.
例2 足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数.
解:每个队的进球总数记为正数,失球总数记为负数,这两数的和为这队的净胜球数.
三场比赛中,红队共进4球,失2球,净胜球数为(+4)+(—2) = +(4—2)=2;
黄队共进2球,失4球,净胜球数为(+2)+(—4)=—(4—2)= ( );
蓝队共进( )球,失( )球,净胜球数为( )=( ).
二、有理数加法的运算律
通过这两个题计算,可以看出它们的结果都为10,说明有理数的加法满足交换律,即:两个数相加,交换加数的位置,和不变.用式子表示为:
再请你计算一下,[ 8 +(-5)] +(-4),8 + [(-5)]+(-4)].
通过这两个题计算,可以仍然可以看出它们的结果都为-1,说明有理数的加法满足结合律,即:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.用式子表示为:
上述加法的运算律说明,多个有理数相加,可以任意改变加数的位置,也可以先把其中的几个数相加,使计算简化.
例题
例1 计算:16 +(-25)+ 24 +(-35).
若使此题计算简便,可以先利用加法的结合律,将正数与负数分别结合在一起进行计算.
解:16 +(-25)+ 24 +(-35)
= (16 + 24)+ [(-25)+(-35)]
= 40 +(-60)
=-20.
例2 每袋小麦的标准重量为90千克,10袋小麦称重记录如下:
91 91 89
10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少千克?
解:91+91++89++++++ = .
再计算总计超过多少千克
-90×10 = .
答:总计超过5千克,10袋水泥的总质量是505千克.
三、小结:
有理数加法法则:
①同号的两数相加,取相同的符号,并把绝对值相加.
②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.互为相反数的两个数相加得零.
③一个数同0相加,仍得这个数.
有理数加法运算律:
①加法交换律:a+ b = b + a
②加法结合律:(a+ b)+ c = a+( b +c)
有理数的加减法(二)
学习目标
1、会将有理数的减法运算转化为有理数的加法运算.
2、会将有理数的加减混合运算转化为有理数的加法运算.
重点、难点
会进行有理数的减法运算,会进行有理数的加减混合运算.
教学过程
一、有理数的减法法则
实际生活中有很多时候要涉及到有理数的减法.例如:长春某天的气温是―3~4oC,这一天的温差是多少呢?(温差是最高气温减最地气温,单位:oC).显然,这天的温差是4―(―3).这里就用到了有理数的减法.
我们知道,减法是与加法相反的运算,计算4―(―3),就是要求一个数,使之与(―3)的和得4,因为与―3相加得4,所以这个数应该是7,即
4―(―3) = 7.(1)
另一方面,我们知道
4+(+3) = 7 (2)
由(1),(2)有
4―(―3) = 4+(+3) (3)
从(3)式能看出减―3相当于加哪个数吗?
用上面的方法考虑:
0―(―3) =___,0+(+3) =___;
1―(―3) =___,1+(+3) =____;
―5―(―3) =___,―5+(+3) =___.
这些数减?3的结果与它们加+3的结果相同吗?
计算:9-8=___,9+(-8)=____;
15-7=___,15+(-7)=____.
上述式子表明:减去一个数,等于加上这个数的相反数.
于是,得到有理数减法法则:减去一个数,等于加这个数的相反数.
用式子可以表示成a?b = a+(?b)
例题
计算:
(1) (-3)―(―5);(2)0-7;
(3) ―(―;(4)-3.
解:(1) (-3)―(―5)= (-3)+5=2;
(2) )0-7 = 0+(-7) =-7;
(3) ―(― = + = 12;
(4)-3=-3+(-5)=-8.
二、有理数加减混合运算
有理数的加减混合运算,可以按照运算顺序,从左到右逐一加以计算,通常也会利用有理数的减法法则,把它写成只有加法运算的和的形式.
例如:(+2)-(-3)-(+4)+(-5)可以写成(+2)+(+3)+(-4)+(-5)
将上面这个式子写成省略加号和括号的形式即为:(+2)+(+3)+(-4)+(-5) = 2+3-4-5
对于这个式子,有两种读法:①读作“2加3减4减5”;②读作“2、3、-4、-5的和”
例1.计算(-20)+(+3)-(-5)-(+7)
解:(-20)+(+3)-(-5)-(+7)
= (-20)+(+3)+(+5)+(-7)
=-20+3+5-7
=-20-7+3+5
=-27+8
=-19
说明:计算时,可以按照运算顺序,从左到右逐一加以计算
三、加法运算律在加减混合运算中的作用与方法
加法运算律在加减混合运算中的运用,可以使一些计算简便,例如利用加法运算律使符号相同的加数在一起,或使和为整数的加数在一起,或使分母相同或便于通分的加数在一起等等
例2.用两种方法计算:--(-4)-(+2)+(-2)+
解法1:--(-4)-(+2)+(-2)+
=-+4+(-2)+(-2)+
=(-++4+[(-2)+(-2)]
= 8+[4+(-5)]
= 8+(-1)= 7
此解法是将和为整数、便于通分的加数在一起
解法2:--(-4)-(+2)+(-2)+
=-+4-2-2+
=(8+4-2-2)+(--)
= 8+(-1) = 7
此种方法是将整数部分与小数部分分别相加使计算简化
四、小结:
①有理数减法法则:减去一个数,等于加这个数的相反数.用式子可以表示成a?b = a+(?b)
②有理数加减混合运算可以统一为加法运算,即:a+b?c = a+b+(?c)。

相关文档
最新文档