九年级数学上册反比例函数知识点总结及反比例函数练习题

合集下载

(完整版)初中数学反比例函数知识点及经典例

(完整版)初中数学反比例函数知识点及经典例
似。
04
利用相似三角形求解线段长度或角度大小
通过相似三角形的性质,我们可以建立 比例关系,从而求解未知线段长度或角 度大小。
解方程求解未知量。
具体步骤
根据相似比建立等式关系。
确定相似三角形,找出对应边或对应角 。
经典例题讲解和思路拓展
例题1
解题思路
例题2
解题思路
已知直角三角形ABC中, ∠C=90°,AC=3,BC=4,将 △ABC沿CB方向平移2个单位 得到△DEF,若AG⊥DE于点G ,则AG的长为____反比例函数$y = frac{m}{x}$的图像经过点$A(2,3)$,且与直线$y = -x + b$相 交于点$P(4,n)$,求$m,n,b$的
值。
XXX
PART 03
反比例函数与不等式关系 探讨
REPORTING
一元一次不等式解法回顾
一元一次不等式的定义
01
在材料力学中,胡克定律指出弹簧的 伸长量与作用力成反比。这种关系同 样可以用反比例函数来描述。
牛顿第二定律
在物理学中,牛顿第二定律表明物体 的加速度与作用力成正比,与物体质 量成反比。这种关系也可以用反比例 函数来表示。
经济学和金融学领域应用案例分享
供需关系
在经济学中,供需关系是决定商品价 格的重要因素。当供应量增加时,商 品价格下降;反之,供应量减少时, 商品价格上升。这种供需关系可以用 反比例函数来表示。
XXX
PART 02
反比例函数与直线交点问 题
REPORTING
求解交点坐标方法
方程组法
将反比例函数和直线的方程联立 ,解方程组得到交点坐标。
图像法
在同一坐标系中分别作出反比例 函数和直线的图像,找出交点并 确定其坐标。

专题 反比例函数(10个考点)-九年级数学上学期期中期末考点大串讲(人教版)(原卷版)

专题 反比例函数(10个考点)-九年级数学上学期期中期末考点大串讲(人教版)(原卷版)

专题06反比例函数(10个考点)【知识梳理+解题方法】一.反比例函数的定义(1)反比例函数的概念形如y=(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.(2)反比例函数的判断判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).二.反比例函数的图象用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线.(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值.(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确.(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴.三.反比例函数图象的对称性反比例函数图象的对称性:反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线Y=﹣X;②一、三象限的角平分线Y=X;对称中心是:坐标原点.四.反比例函数的性质反比例函数的性质(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.五.反比例函数系数k的几何意义比例系数k的几何意义在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.六.反比例函数图象上点的坐标特征反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.七.待定系数法求反比例函数解析式用待定系数法求反比例函数的解析式要注意:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.八.反比例函数与一次函数的交点问题反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y=k1x和反比例函数y=在同一直角坐标系中的交点个数可总结为:①当k1与k2同号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有2个交点;②当k1与k2异号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有0个交点.九.根据实际问题列反比例函数关系式根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.十.反比例函数的应用(1)利用反比例函数解决实际问题①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.【专题过关】一.反比例函数的定义(共3小题)1.(2021秋•遵化市期末)下列函数关系式中属于反比例函数的是()A.y=4x B.2x+y=4C.y=x2+3D.2.(2022•东营模拟)函数y=(m﹣2)是反比例函数,则m=.3.(2022•西宁一模)函数的自变量x的取值范围是.二.反比例函数的图象(共4小题)4.(2021秋•大城县期末)反比例函数的图象如图所示,则k的值可以是()A.﹣2B.C.1D.35.(2021秋•大城县期末)二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数在同一平面直角坐标系内的大致图象是()A.B.C.D.6.(2021秋•襄州区期末)问题呈现:我们知道反比例函数的图象是双曲线,那么函数(k、m、n为常数且k≠0)的图象还是双曲线吗?它与反比例函数的图象有怎样的关系呢?让我们一起开启探索之旅……探索思考:我我们可以借鉴以前研究函数的方法,首先探索函数的图象.(1)画出函数图象.①列表:x…﹣6﹣5﹣4﹣3﹣201234…y…﹣1﹣2﹣4421…②描点并连线.(2)观察图象,写出该函数图象的两条不同类型的特征:①,②;(3)理解运用:函数的图象是由函数的图象向平移个单位,其对称中心的坐标为.(4)灵活应用:根据上述画函数图象的经验,想一想函数的图象大致位置,并根据图象指出,当x满足时,y≥3.7.(2022•市南区校级二模)二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=,点A的坐标为(1,0),AB垂直于x轴,连接CB,则下列说法一定正确的是()A.如图①,四边形ABCO是矩形B.在同一平面直角坐标系中,二次函数y=ax2+bx,一次函数y=ax+b和反比例函数y=的图象大致如图②所示C.在同一平面直角坐标系中,二次函数y=﹣x(ax+b)+c与反比例函数y=的图象大致如图③所示D.在同一平面直角坐标系中,一次函数y=bx﹣ac与反比例函数y=在的图象大致如图④所示三.反比例函数图象的对称性(共3小题)8.(2022•高要区一模)若正比例函数y=﹣2x与反比例函数y=图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为()A.(2,﹣1)B.(1,﹣2)C.(﹣2,﹣1)D.(﹣2,1)9.(2022春•洪泽区月考)如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是.10.(2022•自贡模拟)如图,半径为2的两圆⊙O1和⊙O2均与x轴相切于点O,反比例函数(k>0)的图象与两圆分别交于点A,B,C,D,则图中阴影部分的面积是.(结果保留π)四.反比例函数的性质(共6小题)11.(2021秋•政和县期末)反比例函数中,反比例常数k的值为.12.(2022秋•青浦区期中)已知正比例函数y=中,y的值随x的值的增大而增大,那么它和反比例函数y=在同一平面直角坐标系内的大致图象可能是()A.B.C.D.13.(2021秋•丰宁县期末)已知反比例函数,则下列描述不正确的是()A.图象位于第一、第三象限B.图象必经过点C.图象不可能与坐标轴相交D.y随x的增大而减小14.(2022•威县校级模拟)如图,矩形ABCO在平面直角坐标系中,点A(﹣5,0),点C(0,6),双曲线L1:y=﹣(x<0)和双曲线L2:y=(x<0).[把矩形ABCO内部(不含边界)横、纵坐标均为整数的点称为“优点”](1)若k=﹣12,则L2和L1之间(不含边界)有个“优点”;(2)如果L2和L1之间(不含边界)有4个“优点”,那么k的取值范围为.15.(2022•杞县模拟)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质,探究过程如下,请补充完整.(1)列表:x…﹣3﹣2﹣10123…y…m12101n…其中,m=,n=.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点,在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值时y=1,求自变量x的值.16.(2022•沙市区模拟)探究分段函数y=的图象与性质.列表:x…﹣1﹣012…y…210121…描点:描出相应的点,并连线,如图所示结合图象研究函数性质,回答下列问题:(1)点A(3,y1),B(5,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1 x2;(填“>”、“=”或“<”)(2)当函数值y=2时,自变量x的值为;(3)在直角坐标系中作出y=x的图象;(4)当方程x+b=有三个不同的解时,则b的取值范围为.五.反比例函数系数k的几何意义(共5小题)17.(2022•茂南区二模)如图,两个反比例函数和在第一象限内的图象分别是l1和l2,设点P 在l1上,PC⊥x轴于点C,交l2于点A,PD⊥y轴于点D,交l2于点B,则四边形P AOB的面积为()A.k1+k2B.k1﹣k2C.k1k2D.k2﹣k118.(2022•河池)如图,点P(x,y)在双曲线y=的图象上,P A⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为.19.(2022•开远市二模)若图中反比例函数的表达式均为,则阴影面积为2的是()A.B.C.D.20.(2022•靖江市二模)反比例函数,(n<0)的图象如图所示,点P为x轴上不与原点重合的一动点,过点P作AB∥y轴,分别与y1、y2交于A、B两点.(1)当n=﹣10时,求S△OAB;(2)延长BA到点D,使得DA=AB,求在点P整个运动过程中,点D所形成的函数图象的表达式.(用含有n的代数式表示).21.(2022•德城区模拟)如图,A、B两点在反比例函数y=(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1(1)若k=2,则AO的长为,△BOD的面积为;(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.六.反比例函数图象上点的坐标特征(共9小题)22.(2022秋•合浦县期中)如图,点A是反比例函数图象上一点,则下列各点在该函数图象上的是()A.(﹣1,﹣1)B.(1,﹣1)C.D.(﹣2,1)23.(2021秋•碧江区期末)如图,△OAB、△BA1B1、△B1A2B2、…、△B n﹣1A n B n都是等边三角形,顶点A、A1、A2、…、A n在反比例函数(x>0)的图象上,则B2020的坐标是.24.(2022秋•杜集区校级月考)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于直线x=n(n为常数)对称,则把该函数称之为“X(n)函数“.(1)在下列关于x的函数中,是“X(n)函数”的是(填序号);①;②y=|4x|;③y=x2﹣2x﹣5.(2)若关于x的函数y=|x﹣h|(h为常数)是“X(3)函数”,与(m为常数,m>0)相交于A (x A,y A)、B(x B,y B)两点,A在B的左边,x B﹣x A=5,则m=.25.(2022•思明区校级二模)阅读理解:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三数组”.(1)若A(m,y1),B(m+1,y2),C(m+3,y3)三点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值;(2)若实数a,b,c是“和谐三数组”,且满足a>b>c>0,求点与原点O的距离OP的取值范围.26.(2022•牧野区校级三模)如图,矩形ABCD的边BC在x轴上,E为对角线AC,BD的交点,点A,C 的坐标分别为A(﹣3,3),C(﹣1,0).(1)反比例函数y1=在第三象限的图象经过D点,求这个函数的解析式;(2)点E是否在函数y1=的图象上?说明理由;(3)一次函数y2=k2+b的图象经过点B,点D,根据图象直接写出不等式k2x+b<的解集.27.(2022•荷塘区校级二模)如图,点A(a,a),B(b,b)是直线y=x上在第一象限的两点,过A,B两点分别作y轴的平行线交双曲线y=(x>0)于C,D两点.(1)当b=2,BD=1时,求k的值;(2)当k=1时:①若AC=BD,求a与b的数量关系;②若AC=2BD,求4OD2﹣OC2的值.28.(2021秋•梧州期末)在函数y=(其中a≠0,a为常数)经过点A(x1,y1),B(x2,y2),C(x3,y3),且x3<0<x1<x2,则把y1、y2、y3按从小到大排列为.29.(2022•营口)如图,在平面直角坐标系中,△OAC的边OC在y轴上,反比例函数y=(x>0)的图象经过点A和点B(2,6),且点B为AC的中点.(1)求k的值和点C的坐标;(2)求△OAC的周长.30.(2022秋•东湖区期中)如图,在平面直角坐标系中,正方形OABC的顶点O在坐标原点,顶点A在y 轴上,顶点C在x轴上,反比例函数y=k的图象过AB边上一点E,与BC边交于点D,BE=2,OE=10.(1)求k的值;(2)直线y=ax+b过点D及线段AB的中点F,点P是直线OF上一动点,当PD+PC的值最小时,直接写出这个最小值.七.待定系数法求反比例函数解析式(共4小题)31.(2021秋•平泉市期末)如图,矩形ABCD的两边AD,AB的长分别为3,8,E是DC的中点,反比例函数的图象经过点E,与AB交于点F.(1)若点B的坐标为(﹣6,0),求m的值.(2)若AF﹣AE=2,求反比例函数的解析式.32.(2022•蓬江区一模)如图,在平面直角坐标系中,正方形ABCD的顶点A、B分别在x轴、y轴的正半轴上,反比例函数的图象经过点C,OA=2,OB=4.(1)求反比例函数的解析式;(2)若将正方形ABCD沿x轴向右平移得到正方形A'B'C'D',当点D'在反比例函数的图象上时,请求出点B'的坐标,并判断点B'是否在该反比例函数的图象上,说明理由.33.(2022•睢阳区二模)如图,平行四边形ABCD的面积为12,AB∥y轴,AB,CD与x轴分别交于点M,N,对角线AC,BD的交点为坐标原点,点A的坐标为(﹣2,1),反比例函数的图象经过点B,D.(1)求反比例函数的解析式;(2)点P为y轴上的点,连接AP,若△AOP为等腰三角形,求满足条件的点P的坐标.34.(2021秋•孟村县期末)已知y与x成反比例,当x=﹣1时,y=﹣6.(1)y与x的函数解析式为;(2)若点A(a,﹣4),B(b,﹣8)都在该反比例函数的图象上,则a,b的大小关系是.八.反比例函数与一次函数的交点问题(共5小题)35.(2022•市南区校级一模)如图,直线y=kx+3与x轴、y轴分别交于点B、C,与反比例函数y=交于点A、D,过D作DE⊥x轴于E,连接OA,OD,若A(﹣2,n),S△OAB:S△ODE=1:2.(1)求反比例函数的表达式;(2)求点C的坐标;(3)直接写出关于x不等式:>kx﹣3的解为.36.(2022•宝安区校级模拟)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m ≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx>﹣b的解集是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>237.(2022•仁怀市模拟)如图,直线y=x﹣4分别与x轴,y轴交于点A,B,与反比例函数y=的图象交于点D,过点A作AC⊥x轴与反比例函数的图象相交于点C,若AC=AD,则k的值为()A.3B.4C.D.38.(2022•市南区校级二模)如图,在平面直角坐标系中,点A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的表达式为y2=k2x+b,回答下列问题:(1)求双曲线y1=和直线AB的y2=k2x+b表达式;(2)当y1>y2时,求x的取值范围;(3)求△AOB的面积.39.(2022•吉阳区模拟)如图,函数y=与函数y=kx(k>0)的图象相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于()A.24B.18C.12D.6九.根据实际问题列反比例函数关系式(共3小题)40.(2022秋•滁州期中)某电子产品的售价为8000元,购买该产品时可分期付款:前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.41.(2021•东胜区一模)A、B两地相距400千米,某人开车从A地匀速到B地,设小汽车的行驶时间为t 小时,行驶速度为v千米/小时,且全程限速,速度不超过100千米/小时.(1)写出v关于t的函数表达式;(2)若某人开车的速度不超过每小时80千米,那么他从A地匀速行驶到B地至少要多长时间?(3)若某人上午7点开车从A地出发,他能否在10点40分之前到达B地?请说明理由.42.(2021•杭州二模)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)一十.反比例函数的应用(共4小题)43.(2022秋•涟源市期中)如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流I(A)与电阻R(Ω)成反比例函数的图象,该图象经过点P(880,0.25).根据图象可知,下列说法正确的是()A.当I<0.25时,R<880B.I与R的函数关系式是I=(R>0)C.当R>1000时,I>0.22D.当880<R<1000时,I的取值范围是0.22<I<0.2544.(2022•南阳二模)在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点P(4,3)在其图象上,则当力达到10N时,物体在力的方向上移动的距离是()A.2.4m B.1.2m C.1m D.0.5m45.(2022•邓州市二模)给定一个函数:y=x++1(x>0),为了研究它的图象与性质,并运用它的图象与性质解决实际问题,进行如下探索:(1)图象初探①列表如下x…1234…y…m3n…请直接写出m,n的值;②请在如下的平面直角坐标系中描出剩余两点,并用平滑的曲线画出该函数的图象.(2)性质再探请结合函数的图象,写出当x=,y有最小值为;(3)学以致用某农户要建造一个如图①所示的长方体无盖水池,其底面积为1平方米,深为1米.已知底面造价为3千元/平方米,侧面造价为0.5千元/平方米.设水池底面一边长为x米,水池总造价为y千元,可得到y与x的函数关系式为:y=x++3.根据以上信息,请回答以下问题:①水池总造价的最低费用为千元;②若该农户预算不超过5.5千元,请直接写出x的值应控制在什么范围?.46.(2021秋•丰南区期末)在工程实施过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成工程量x米的函数关系图象如图所示,是双曲线的一部分.(1)请根据题意,求y与x之间的函数表达式;(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠30米,问该工程队需要用多少天才能完成此项任务?(3)工程队在(2)的条件下工作5天后接到防汛紧急通知,最多再给5天时间完成全部任务,则最少还需调配几台挖掘机?。

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题

反比例函数知识点归纳和典型例题反比例函数是数学中的一个重要概念,它在实际问题的建模和解决中起着重要作用。

本文将对反比例函数的知识点进行归纳,并给出一些典型例题进行解析。

一、定义和性质反比例函数又称为倒数函数,其定义如下:设x和y是实数,且y ≠ 0,若存在一个实数k,使得y = k/x,那么称y是x的反比例函数。

反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。

其一般形式为y = k/x,其中k为常数。

反比例函数具有以下重要性质:1. 定义域:定义除数x不能为0,所以反比例函数的定义域为x ≠ 0。

2. 值域:值域取决于常数k的正负,当k > 0时,值域为(0, +∞),当k < 0时,值域为(-∞, 0)。

3. 对称性:反比例函数关于两个坐标轴都具有对称性。

二、图象和特殊情况反比例函数的图象通常是一个拋物线的两支或一支,不包括原点。

当常数k > 0时,反比例函数的图象在第一象限和第三象限,当常数k< 0时,反比例函数的图象在第二象限和第四象限。

对于一些特殊情况,我们有以下例子:1. 当k > 0时,反比例函数的图象经过点(1, k),且在x轴和y轴上有渐进线。

2. 当k < 0时,反比例函数的图象经过点(-1, k),且在x轴和y轴上有渐进线。

三、典型例题解析下面通过几个典型例题来进一步理解反比例函数的应用。

例题1:已知y和x成反比例关系,且当x = 2时,y = 5,求当x =4时,y的值。

解析:根据反比例函数的定义,有y = k/x。

代入已知条件x = 2时,y = 5,得到5 = k/2,解得k = 10。

因此,当x = 4时,y = 10/4 = 2.5。

例题2:如果一根细木杆以每分钟1.5cm的速度缩短,那么多少分钟后长度为60cm?解析:设时间为t分钟,根据题意可以列出反比例函数y = k/x。

已知当t = 0时,y = 100,即杆子的初始长度是100cm。

反比例函数专题复习及中考真题

反比例函数专题复习及中考真题

★★★(I)考点突破★★★考点1:反从例函数的意义及其图象和性质一、考点讲解:1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y=xk(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 备注:反比例函数的另外两种形式,k xy kx y ==-,1(k ≠0).2.注意:(1)k 为常数,必须强调k ≠0;例如y= kx就不是反比例函数;(2)xk中分母x 的指数为1; (3)自变量x 的取值范围是x ≠0;(4)因变量y 的取值范围是y ≠0. 3.反比例函数的图象和性质.利用画函数图象的方法,可以画出反比例函数的图象,它的图象是双曲线,反比例函数y=kx具有如下的性质(见下表)①当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左到右下降,也就是在每个象限内,y 随x 的增加而减小;②当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y 随x 的增加而增大.注意:分析反比例函数增减性时,必须强调“在每一个象限内或者X ﹥0,X ﹤0”。

4.反比例函数y=xk(k ≠0)中k 的几何意义 过反比例函数y=xk图象上任一点P 作x 轴、y 轴的垂线PM 、PN ,垂足为M 、 N (如图),则矩形PMON 的面积S=PM ·PN=|y |·|x |=|xy |=|k |。

所以,对双曲线上任意一点作x 轴、y 轴的垂线,它们与x 轴、y 轴所围成的矩形面积为常数k。

从而有注意:所围矩形的面积为k,而不是k 。

若其面积为6,则k=±6。

二、经典考题剖析:【考题1、】(2009、宁安)函数y= kx与y=kx+k 在同一坐标系的图象大致是图 1-5-l 中的( )解:B 点拨:A 中,y= kx 的图象过第一、三象限,则k >0.而y=kx+b 过第一、二、四象限,则k <0,矛盾;C 中,由y= kx 的图象知,在k <0.但一次函数y=kx +k 与y 轴交于正半轴,和k <0矛盾;D 中,由y= kx的图象知,k <0.Y=kx +k 中,k >0,矛盾.故选B .【考题2】(2009、潍坊)若M (-12 ,y 1),N (-14 ,y 2),P (12 ,y 3)三点都在函数y= kx (k <0)中的图象上,则y 1,y 2,y 3,的大小关系为( ) A .y 2 >y 3>y 1 B 、y 2>y 1>y 3 C .y 3 >y 1>y 2 D 、y 3>y 2>y 1解:如上图数形结合得B ;还可以由y= kx 中k <0,故y 的值在每个象限内随x 的增大而增大.而-14 >-12 ,故 y 2>y 1>0.由于 P 点在第四象限,故y 3 <0 .【考题3】(2009、湟中)点P 既在反比例函 数y=- 3x(x >0)的图象上,又在一次函数y =-x -2的图象上,则P 点的坐标是( , )解:点P 是两函数的交点,则同时满足两个解析式,联立解析式得 ⎪⎩⎪⎨⎧--=-=,2,3x y xy 得到- 3x =-x —2,化简得0322=-+x x ,解得3,121-==x x (舍去)。

(完整版)反比例函数知识点总结典型例题大全

(完整版)反比例函数知识点总结典型例题大全

考点5.面积计算
(1)如图,在函数
的图象上有三个点 A、B、C,过这三个点分别向 x 轴、y 轴作垂线,过每一点
(2,m),则
所作的两条垂线段与 x 轴、y 轴围成的矩形的面积分别为 、 、 ,则( ).
A.
B.
C.
D.
g are (3)已知反比例函数 in 值.
C.第一、三、四象限 D.第二、三、四象限
(6)已知函数

(k≠0),它们在同一坐标系内的图象大致是( ).
A. B. C. D.
考点3.函数的增减性
bein A.
B.
C.
D.
their 考点2.图象和性质
a 当
时,图象的两支分别位于一、三象限;在每个象限内,y 随 x 的增大而减小;
at 当
时,图象的两支分别位于二、四象限;在每个象限内,y 随 x 的增大而增大.
thing (3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则( , )在双曲线的另一支
分支分别讨论,不能一概而论.
x 1 时, y 的值. 2
5.
如图, P1 是反在第一象限图像上的一点,点
A1 的坐标为(2,0).
(1)当点 P1 的横坐标逐渐增大时, △P1OA1 的面积将如何变化?
(2)若 △P1OA1 与 △P2 A1A2 均为等边三角形,求此反比例函数的解析式及 A2 点的坐标.
in (1)已知函数
是反比例函数,
gs ①若它的图象在第二、四象限内,那么 k=___________.
thin ②若 y 随 x 的增大而减小,那么 k=___________.
All (2)已知一次函数 y=ax+b 的图象经过第一、二、四象限,则函数

初中数学反比例函数知识点总复习含解析

初中数学反比例函数知识点总复习含解析

初中数学反比例函数知识点总复习含解析一、选择题1.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx (x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为()A.13B.1 C.2 D.3【答案】D 【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=12S△OAB=32,再根据反比例函数系数k的几何意义得到12|k|=32,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,∴S△AOC=12S△OAB=32,而S△AOC=12|k|,∴12|k|=32,而k>0,∴k=3.故选:D.此题考查反比例函数系数k的几何意义,解题关键在于掌握在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.2.如图,菱形OABC的顶点C的坐标为(3,4),顶点A在x轴的正半轴上.反比例函数kyx=(x>0)的图象经过顶点B,则k的值为A.12 B.20 C.24 D.32【答案】D【解析】【分析】【详解】如图,过点C作CD⊥x轴于点D,∵点C的坐标为(3,4),∴OD=3,CD=4.∴根据勾股定理,得:OC=5.∵四边形OABC是菱形,∴点B的坐标为(8,4).∵点B在反比例函数(x>0)的图象上,∴.故选D.3.下列函数中,当x>0时,函数值y随自变量x的增大而减小的是()A.y=x2B.y=x C.y=x+1 D.1 yx =【解析】【分析】需根据函数的性质得出函数的增减性,即可求出当x >0时,y 随x 的增大而减小的函数.【详解】解:A 、y =x 2是二次函数,开口向上,对称轴是y 轴,当x >0时,y 随x 的增大而增大,错误;B 、y =x 是一次函数k =1>0,y 随x 的增大而增大,错误;C 、y =x+1是一次函数k =1>0,y 随x 的增大而减小,错误;D 、1y x=是反比例函数,图象无语一三象限,在每个象限y 随x 的增大而减小,正确; 故选D .【点睛】本题综合考查了二次函数、一次函数、反比例函数的性质,熟练掌握函数的性质是解题的关键.4.如图,点P 是反比例函数(0)k y k x=≠的图象上任意一点,过点P 作PM x ⊥轴,垂足为M . 连接OP . 若POM ∆的面积等于2. 5,则k 的值等于 ( )A .5-B .5C . 2.5-D .2. 5【答案】A【解析】【分析】 利用反比例函数k 的几何意义得到12|k|=2,然后根据反比例函数的性质和绝对值的意义确定k 的值.【详解】解:∵△POM 的面积等于2.5,∴12|k|=2.5, 而k <0,∴k=-5,故选:A .【点睛】本题考查了反比例函数系数k 的几何意义:在反比例函数y=k x 图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.也考查了反比例函数的性质.5.如图,反比例函数11k y x=的图象与正比例函数22y k x =的图象交于点(2,1),则使y 1>y 2的x 的取值范围是( )A .0<x <2B .x >2C .x >2或-2<x <0D .x <-2或0<x <2【答案】D【解析】【分析】 先根据反比例函数与正比例函数的性质求出B 点坐标,由函数图象即可得出结论.【详解】∵反比例函数与正比例函数的图象均关于原点对称,∴A 、B 两点关于原点对称.∵A (2,1),∴B (-2,-1).∵由函数图象可知,当0<x <2或x <-2时函数y 1的图象在y 2的上方,∴使y 1>y 2的x 的取值范围是x <-2或0<x <2.故选D.6.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则△OAB 的面积是( )A .4B .3C .2D .1【答案】B【解析】【分析】先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3,从而得出S △AOB =3.【详解】∵A ,B 是反比例函数y=4x在第一象限内的图象上的两点, 且A ,B 两点的横坐标分别是2和4,∴当x=2时,y=2,即A (2,2),当x=4时,y=1,即B (4,1),如图,过A ,B 两点分别作AC ⊥x 轴于C ,BD ⊥x 轴于D , 则S △AOC =S △BOD =12×4=2, ∵S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,∴S △AOB =S 梯形ABDC ,∵S 梯形ABDC =12(BD+AC )•CD=12×(1+2)×2=3, ∴S △AOB =3,故选B .【点睛】本题考查了反比例函数()0k y k x=≠中k 的几何意义,反比例函数图象上点的坐标特征,梯形的面积,熟知反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 与k 的关系为S=12|k|是解题的关键.7.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B .【点睛】 此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 8.若一个圆锥侧面展开图的圆心角是270°,圆锥母线l 与底面半径r 之间的函数关系图象大致是( )A .B .C .D .【答案】A【解析】【分析】根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长得到2πr=270180l π⋅⋅,整理得l=43r (r >0),然后根据正比例函数图象求解.【详解】 解:根据题意得2πr=270180l π⋅⋅,所以l=43r (r >0), 即l 与r 为正比例函数关系,其图象在第一象限.故选A .【点睛】本题考查圆锥的计算;函数的图象.9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC =CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴==设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m++, Q 四边形ACDE 的面积是ABE ∆面积的3倍, 11()322BD BE DE CA h h BE ∴+=⨯⨯,,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知:110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a ,b 同号,∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限,反比例函数y=b x图象分布在第二、四象限, 故选D .【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.11.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .22C 2D .2【答案】A【解析】【分析】根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的 值,本题得以解决.【详解】Q 等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=, 2OA OB ∴==,2AC =, ∴点C 的坐标为2,22⎛⎫ ⎪ ⎪⎝,Q 点C 在函数()0k y x x=>的图象上, 2212k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.12.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D【解析】【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可.【详解】当12x=时,2y=,当2x=时,12y=,∴11(,2),(2,)22A B.连接AB并延长AB交x轴于点P',当P在P'位置时,PA PB AB-=,即此时AP BP-的值最大.设直线AB的解析式为y kx b=+,将11(,2),(2,)22A B代入解析式中得122122k bk b⎧+=⎪⎪⎨⎪+=⎪⎩解得152kb=-⎧⎪⎨=⎪⎩,∴直线AB解析式为52y x=-+.当0y=时,52x=,即5(,0)2P',115522222AOP AS OP y'∴=⋅=⨯⨯=V.故选:D.【点睛】本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP-何时取最大值是解题的关键.13.如图,若直线2y x n=-+与y轴交于点B,与双曲线()2y xx=-<交于点(),1A m,则AOBV的面积为()A .6B .5C .3D .1.5【答案】C【解析】【分析】 先根据题意求出A 点坐标,再求出一次函数解析式,从而求出B 点坐标,则问题可解.【详解】解:由已知直线2y x n =-+与y 轴交于点B ,与双曲线()20y x x =-<交于点(),1A m ∴21m=-则m=-2 把A (-2,1)代入到2y x n =-+,得()122n =-⨯-+∴n=-3∴23y x =--则点B (0,-3)∴AOB V 的面积为132=32⨯⨯ 故应选:C【点睛】本题考查的是反比例函数与一次函数的综合问题,解题关键是根据题意应用数形结合思想.14.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A 在反比例函数y=6x(x >0)的图象上,则经过点B 的反比例函数解析式为( )A .y=﹣6xB .y=﹣4xC .y=﹣2xD .y=2x【解析】【分析】直接利用相似三角形的判定与性质得出13 BCOAODSS= VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°=3,∴13BCOAODSS=VV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.15.若反比例函数()2221my m x-=-的图象在第二、四象限,则m的值是()A.-1或1 B.小于12的任意实数 C.-1 D.不能确定【解析】【分析】根据反比例函数的定义列出方程221m -=-且210m -<求解即可.【详解】解:22(21)m y m x -=-Q 是反比例函数,∴221m -=-,210m -≠,解之得1m =±.又因为图象在第二,四象限,所以210m -<, 解得12m <,即m 的值是1-. 故选:C .【点睛】 对于反比例函数()0k y k x=≠.(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.16.当0x <时,反比例函数2y x=-的图象( ) A .在第一象限,y 随x 的增大而减小 B .在第二象限,y 随x 的增大而增大C .在第三象限,y 随x 的增大而减小D .在第四象限,y 随x 的增大而减小 【答案】B【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】 本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.17.已知反比例函数2y x =-,下列结论不正确的是 A .图象必经过点(-1,2)B .y 随x 的增大而增大C .图象在第二、四象限内D .若x >1,则y >-2 【答案】B【解析】【分析】此题可根据反比例函数的性质,即函数所在的象限和增减性对各选项作出判断.【详解】解: A 、把(-1,2)代入函数解析式得:2=-21-成立,故点(-1,2)在函数图象上,故选项正确;B 、由k=-2<0,因此在每一个象限内,y 随x 的增大而增大,故选项不正确;C 、由k=-2<0,因此函数图象在二、四象限内,故选项正确;D 、当x=1,则y=-2,又因为k=-2<0,所以y 随x 的增大而增大,因此x >1时,-2<y <0,故选项正确;故选B .【点睛】本题考查反比例函数的图像与性质.18.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C【解析】【分析】 根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12k|.【详解】由题意得:S1=S2=12|k|=12.故选:C.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.19.如图,直线y=k和双曲线y=kx相交于点P,过点P作PA0垂直于x轴,垂足为A0,x 轴上的点A0,A1,A2,…A n的横坐标是连续整数,过点A1,A2,…A n:分别作x轴的垂线,与双曲线y=kx(k>0)及直线y=k分别交于点B1,B2,…B n和点C1,C2,…C n,则n nn nA BC B 的值为()A.11n+B.11n-C.1nD.11n-【答案】C【解析】【分析】由x轴上的点A0,A1,A2,…,A n的横坐标是连续整数,则得到点An(n+1,0),再分别表示出∁n(n+1,k),B n(n+1,kn1+),根据坐标与图形性质计算出A n B n=kn1+,B n∁n =k﹣kn1+,然后计算n nn nA BB C.【详解】∵x轴上的点A0,A1,A2,…,A n的横坐标是连续整数,∴An(n+1,0),∵∁n A n⊥x轴,∴∁n (n +1,k ),B n (n +1,k n 1+), ∴A nB n =k n 1+,B n ∁n =k ﹣k n 1+, ∴n n n n A B B C =11k n k k n +-+=1n . 故选:C .【点睛】考查了反比例函数与一次函数的交点问题,解题关键是抓住了反比例函数与一次函数图象的交点坐标满足两函数解析式.20.如图,,A B 是双曲线k y x=上两点,且,A B 两点的横坐标分别是1-和5,ABO -∆的面积为12,则k 的值为( )A .3-B .4-C .5-D .6-【答案】C【解析】【分析】 分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,根据S △AOB =S 梯形ABED +S △AOD - S △BOE =12,故可得出k 的值.【详解】分别过点A 、B 作AD ⊥x 轴于点D ,BE ⊥x 轴于点E ,∵双曲线k y x=的图象的一支在第二象限 ∴k<0,∵A ,B 两点在双曲线k y x=的图象上,且A ,B 两点横坐标分别为:-1,-5, ∴A (-1,-k ),B (-5, 5k -) ∴S △AOB =S 梯形ABED +S △AOD - S △BOE =1||11||(||)(51)1||525225k k k k ⨯+⨯-+⨯⨯-⨯⨯=12||5k =12, 解得,k=-5故选:C .【点睛】 本题考查反比例函数系数k 的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.。

初三反比例函数知识点

初三反比例函数知识点

初三反比例函数知识点反比例函数知识点概述一、反比例函数的定义反比例函数是形如y = k/x (k ≠ 0,x ≠ 0) 的函数,其中 k 为常数,称为比例常数,x 为自变量,y 为因变量。

二、反比例函数的图象1. 形状:反比例函数的图象是一组双曲线。

2. 位置:当 k > 0 时,图象位于第一和第三象限;当 k < 0 0 时,图象位于第二和第四象限。

3. 对称性:反比例函数的图象关于原点对称。

三、反比例函数的性质1. 单调性:在每一象限内,随着 x 的增大,y 也增大;随着 x 的减小,y 也减小。

2. 无界性:当 x 趋向于 0 时,y 趋向于无穷大;当 x 趋向于无穷大时,y 趋向于 0。

3. 交点:反比例函数的图象不与 x 轴和 y 轴相交。

四、反比例函数的应用反比例函数常用于描述两个变量间的反比关系,如物理中的压力与体积的关系(波义耳定律),化学中的浓度与体积的关系等。

五、反比例函数的运算1. 复合函数:若有两个反比例函数 y = k1/x 和 w = k2/z,它们的复合函数为 v = (k1/x) / (k2/z) = (k1/k2) * z/x。

2. 反函数:反比例函数的反函数仍然是一个反比例函数,形式为 x =k/y。

六、反比例函数的图像变换1. 平移:若原函数为 y = k/x,将其向右平移 a 个单位,向上平移b 个单位,新函数为 y = k/(x-a) + b。

2. 伸缩:若原函数为 y = k/x,将其横向伸缩 m 倍,纵向伸缩 n 倍,新函数为 y = k/(m*x)。

七、反比例函数的极值问题反比例函数没有最大值和最小值,但可以通过求导数来分析函数的增减性。

八、反比例函数的积分与微分1. 微分:对于函数 y = k/x,其导数为 dy/dx = -k/x^2。

2. 积分:对于函数 y = k/x,其不定积分为∫(k/x)dx = k*ln|x| + C。

九、反比例函数的方程求解1. 解析解:通过交叉相乘法等代数方法求解。

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)

中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。

②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。

这个三角形的面积等于2k 。

2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。

3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。

反比例函数与一次函数的交点把自变量分成三部分。

练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。

中考考点梳理:反比例函数12个必考点全梳理(练习版)

中考考点梳理:反比例函数12个必考点全梳理(练习版)

考点梳理:初中反比例函数章节必考点全梳理(精编Word)必考点1:反比例函数的概念掌握一般地,形如y=kx(k≠0)的函数称为反比例函数,反比例函数的等价形式①y=kx(k≠0)②y=kx﹣1(k≠0)③xy=k(k≠0)例题1下列函数:①y=x﹣2,②y=3x,③y=x﹣1,④y=2x+1,y是x的反比例函数的个数有()A.0个B.1个C.2个D.3个变式1若函数y=(m2﹣3m+2)x|m|﹣3是反比例函数,则m的值是()A.1B.﹣2C.±2D.2变式2已知函数y=(m+1)x m2−2是反比例函数,则m的值为.变式3下列函数中,y是x的反比例函数有()(1)y=3x;(2)y=−2x;(3)y=x3;(4)﹣xy=3;(5)y=2x+1;(6)y=1x2;(7)y=2x﹣2;(8)y=kx.A.(2)(4)B.(2)(3)(5)(8)C.(2)(7)(8)D.(1)(3)(4)(6)必考点2:反比例函数的图象(结合一次、二次函数)对于一次函数的图象、反比例函数的图象以及二次函数的图象,掌握一次函数、反比例函数、二次函数图象与系数的关系是解题的关键.例题2若函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b和y=cx在同一平面直角坐标系中的图象大致是()A.B.C.D.变式4一次函数y=ax+b与反比例函数y=cx的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A.B.C.D.变式5函数y=kx与y=ax2+bx+c的图象如图所示,则函数y=kx﹣b的大致图象为()A.B.C.D.变式6抛物线y=ax2+bx+c的图象如图所示,那么一次函数y=bx+b2﹣4ac与反比例函数y= (a+b+c)(a−b+c)x在同一坐标系内的图象大致是()A.B.C.D.必考点3:反比例函数图象上点的坐标特征(比较大小)反比例函数图象上点的坐标特征:当k>0时,图象分别位于第一、三象限,横纵坐标同号;当k<0时,图象分别位于第二、四象限,横纵坐标异号.例题3若(﹣1,y1),(2,y2),(3,y3)三点均在反比例函数y=m2+1x的图象上,则下列结论中正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y1变式7函数y=−k2−1x(k为常数)的图象经过点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<x2<0<x3,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y3<y2<y1C.y3<y1<y2D.y2<y1<y3变式8已知点A(x1,2),B(x2,4),C(x3,﹣1)都在反比例函数y=kx(k<0)的图象上,则x1,x2,x3的大小关系是()A.x3<x1<x2B.x2<x1<x3C.x1<x3<x2D.x1<x2<x3变式9若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=kx(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>1必考点4: 反比例函数图象上点的坐标特征(与四边形结合)反比例函数图象上点的坐标特征:当k >0时,图象分别位于第一、三象限,横纵坐标同号;当k <0时,图象分别位于第二、四象限,横纵坐标异号.例题4 在平面直角坐标系中,矩形ABCD 的顶点A (1,0),D (0,2),点B 在第一象限,BD ∥x 轴,若函数y =kx(k >0,x >0)的图象经过矩形ABCD 的对角线的交点,则k 的值为( )A .4B .5C .8D .10变式10 如图,在平面直角坐标系中,A 是反比例函数y =kx (k >0,x >0)图象上一点,B 是y 轴正半轴上一点,以OA 、AB 为邻边作▱ABCO .若点C 及BC 中点D 都在反比例函数y =−4x(x <0)图象上,则k 的值为( )A .6B .8C .10D .12变式11 如图,在平面直角坐标系中,四边形ABCD 是菱形,AB ∥x 轴,CD 与y 轴交于点E ,反比例函数y =k x(x >0)图象经过顶点B 、C ,已知点B 的横坐标为5,AE =2CE ,则点C 的坐标为( )A .(2,203) B .(2,83)C .(3,203) D .(3,83)变式12如图,在平面直角坐标系中,一次函数y=43x+4的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=kx(x<0)的图象上,则k的值为()A.﹣12B.﹣42C.42D.﹣21必考点5: 反比例函数系数k 的几何意义(面积)反比例函数y =kx (k ≠0)系数k 的几何意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.例题5 如图,两个反比例函数y =4x 和y =2x 在第一象限内的图象分别是C 1和C 2,设点P 在C 1上,P A ⊥x 轴于点A ,交C 2于点B ,则△POB 的面积为( )A .1B .2C .4D .无法计算变式13 如图直线y =mx 与双曲线y =k x 交于点A 、B ,过A 作AM ⊥x 轴于M 点,连接BM ,若S △AMB =2,则k 的值是( )A .1B .2C .3D .4变式14 如图,点A 与点B 分别在函数y =k1x (k 1>0)与y =k2x (k 2<0)的图象上,线段AB 的中点M 在y 轴上.若△AOB 的面积为2,则k 1﹣k 2的值是( )A .2B .3C .4D .5变式15如图,是反比例函数y=k1x和y=k2x(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为.必考点6: 反比例函数系数k 的几何意义(规律题)反比例函数y =kx (k ≠0)系数k 的几何意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.例题6 如图,已知A 1,A 2,A 3,…A n ,…是x 轴上的点,且OA 1=A 1A 2=A 2A 3=…=A n ﹣1A n …=1,分别过点A 1,A 2,A 3,…A n ,…作x 轴的垂线交反比例函数y =1x (x >0)的图象于点B 1,B 2,B 3,…,B n ,…,过点B 2作B 2P 1⊥A 1B 1于点P 1,过点B 3作B 3P 2⊥A 2B 2于点P 2…,记△B 1P 1B 2的面积为S 1,△B 2P 2B 3的面积为S 2…,△B n P n B n +1的面积为S n .则S 1+S 2+S 3+…+S 20= .变式16 【变式6-1】(2019•蜀山区一模)如图,点B 在反比例函数y =2X(x >0)的图象上,过点B 分别与x 轴和y 轴的垂线,垂足分别是C 0和A ,点C 0的坐标为(1,0),取x 轴上一点C 1(32,0),过点C 1作x 轴的垂线交反比例函数图象于点B 1,过点B 1作线段B 1A 1⊥BC 0交于点A 1,得到矩形A 1B 1C 1C 0,依次在x 轴上取点C 2 (2,0),C 3(52,0)…,按此规律作矩形,则矩形A n B n ∁n C n ﹣1(n 为正整数)的面积为 .变式17如图,在反比例函数的图象y=4x(x>0)上,有点P1,P2,P3,P4,…,点P1横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1,P2,P3,P4,…分别作x轴,y轴的垂线,图中所构成的阴影部分的面积从左到右依次为S1,S2,S3,…则S1+S2+S3+…+S n=.变式18如图,已知反比例函数y=1x的图象,当x取1,2,3,…n时,对应在反比例图象上的点分别为M1、M2、M3…M n,则S△P1M1M2+S△P2M2M3+…S△Pn﹣1Mn﹣1Mn=.必考点7: 待定系数法求反比例函数解析式反比例函数y =kx (k ≠0)系数k 的几何意义:从反比例函数y =kx (k ≠0)图象上任意一点向x 轴和y 轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.例题7 已知反比例函数y =kx(k ≠0),当x =﹣3时,y =43. (1)求y 关于x 的函数表达式. (2)当y =﹣4时,求自变量x 的值.变式19 已知y 与x ﹣1成反比例,且当x =4时,y =1. (1)求y 与x 的函数关系式;(2)判断点(﹣2,﹣1)是否在该函数图象上.变式20已知y=y1﹣y2,y1与x成反比例,y2与x﹣2成正比例,当x=3时,y=5;当x=1时,y=﹣1.(1)y与x的函数表达式;(2)当x=﹣1时,求y的值.变式21已知y=y1+y2,y1与x2成正比例,y2与x+1成反比例,当x=0时,y=2;当x=1时,y=2.求y 与x的函数关系式,并写出自变量的取值范围.必考点8:反比例函数与一次函数交点问题例题8如图,等腰直角△ABC位于第二象限,BC=AC=2,直角顶点C在直线y=﹣x上,且点C的横坐标为﹣3,边BC,AC分别平行于x轴、y轴.若双曲线y=kx与△ABC的边AB有2个公共点,则k的取值范围为.变式22如图,直线y=1与反比例函数y=kx(x<0),y=2x(x>0)的图象分别交于点A和点B,线段AB的长是8,若直线y=n(x+2)(n≠0)与y=2x(x>0)的图象有交点,与y=kx(x<0)无交点,则n的取值范围为()A.﹣6<n<0B.0<n<6 C.﹣6<n<0或0<n<6D.0<n<2变式23在平面直角坐标系xOy中,过点A(﹣5,0)作垂直于x轴的直线AB,直线y=x+b与双曲线y=−4 x相交于点P(x1,y1)、Q(x2,y2),与直线AB相交于点R(x3,y3).若y1>y2>y3时,则b的取值范围是()A.b>4B.b>4或b<﹣4C.−295<b<﹣4或b>4D.4<b<295或b<﹣4变式24平面直角坐标系中,函数y=4x(x>0)的图象G经过点A(4,1),与直线y=14x+b的图象交于点B,与y轴交于点C.其中横、纵坐标都是整数的点叫做整点.记图象G在点A、B之间的部分与线段OA、OC、BC围成的区域(不含边界)为W.若W内恰有4个整点,结合函数图象,b的取值范围是()A.−54≤b<1或74<b≤114B.−54≤b<1或−74<b≤114C.−54≤b<﹣1或−74<b≤114D.−54≤b<﹣1或74<b≤114必考点9:反比例与一次函数综合例题9如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(1,4)、B(4,n).(1)求这两个函数的表达式;(2)请结合图象直接写出不等式kx+b≤mx的解集;(3)若点P为x轴上一点,△ABP的面积为6,求点P的坐标.变式25如图,一次函数y=kx+b与反比例函数y=mx的图象交于点A(1,6),B(3,n)两点.与x轴交于点C.(1)求一次函数的表达式;(2)若点M在x轴上,且△AMC的面积为6,求点M的坐标.(3)在y轴上找一点P,使P A+PB的值最小,直接写出满足条件的点P的坐标是.变式26如图,在平面直角坐标系中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=mx(m≠0)的图象相交于第一、三象限内的A(3,5),B(a,﹣3)两点,与x轴交于点C.(1)求该反比例函数和一次函数的解析式;(2)在y轴上找一点P使PB﹣PC最大,求PB﹣PC的最大值及点P的坐标;(3)直接写出不等式kx+b>mx的解集.变式27 如图,一次函数y =kx +b 的图象与反比例函数y =mx(x >0)的图象在第一象限交于点A ,B ,且该一次函数的图象与y 轴正半轴交于点C ,过A ,B 分别作y 轴的垂线,垂足分别为E ,D .已知A (4,1),CE =4CD .(1)求反比例函数的解析式. (2)求一次函数的解析式. (3)根据图象直接写出m x<kx +b 时x 的取值范围.(4)若点M 为一次函数图象上的动点,过点M 作MN ∥y 轴,交反比例函数y =m x(x >0)的图象于点N ,连结ME ,NE ,当△MNE 的面积为98时,直接写出点M 的横坐标.必考点10:反比例函数的应用例题10为了做好校园疫情防控工作,校医每天早上对全校办公室和教室进行药物喷洒消毒,她完成3间办公室和2间教室的药物喷洒要19min;完成2间办公室和1间教室的药物喷洒要11min.(1)校医完成一间办公室和一间教室的药物喷洒各要多少时间?(2)消毒药物在一间教室内空气中的浓度y(单位:mg/m3)与时间x(单位:min)的函数关系如图所示:校医进行药物喷洒时y与x的函数关系式为y=2x,药物喷洒完成后y与x成反比例函数关系,两个函数图象的交点为A(m,n).当教室空气中的药物浓度不高于1mg/m3时,对人体健康无危害,校医依次对一班至十一班教室(共11间)进行药物喷洒消毒,当她把最后一间教室药物喷洒完成后,一班学生能否进入教室?请通过计算说明.变式28学校的学生专用智能饮水机里水的温度y(℃)与时间x(分)之间的函数关系如图所示,当水的温度为20℃时,饮水机自动开始加热,当加热到100℃时自动停止加热(线段AB),随后水温开始下降,当水温降至20℃时(BC为双曲线的一部分),饮水机又自动开始加热……根据图中提供的信息,解答下列问题:(1)分别求出饮水机里水的温度上升和下降阶段y与x之间的函数表达式.(2)下课时,同学们纷纷用水杯去盛水喝.此时,饮水机里水的温度刚好达到100℃.据了解,饮水机1分钟可以满足12位同学的盛水要求,学生喝水的最佳温度在30℃~45℃,请问在大课间30分钟时间里有多少位同学可以盛到最佳温度的水?变式29实验数据显示,一般成人喝50毫升某品牌白酒后,血液中酒精含量y(毫克/百亳升)与时间x(时)变化的图象,如图(图象由线段OA与部分双曲线AB组成).国家规定,车辆驾驶人员血液中的酒精含量大于或等于20(毫克/百毫升)时属于“酒后驾驶”,不能驾车上路.(1)求部分双曲线AB的函数解析式;(2)参照上述数学模型,假设某驾驶员晚上22:30在家喝完50毫升该品牌白酒,第二天早上7:00能否驾车去上班?请说明理由.变式30饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热,此过程中水温y(℃)与开机时间x(分)满足一次函数关系,当加热到100℃时自动停止加热,随后水温开始下降,此过程中水温y (℃)与开机时间x(分)成反比例关系,当水温降至20℃时,饮水机又自动开始加热……,重复上述程序(如图所示),根据图中提供的信息,解答问题:(1)当0≤x<8时,求水温y(℃)与开机时间x(分)的函数关系式.(2)求图中t的值;(3)若在通电开机后即外出散步,请你预测散步42分钟回到家时,饮水机内水的温度约为多少℃?必考点11:反比例函数存在性问题(三角形)例题11如图,反比例函数y1=kx和一次函数y2=mx+n相交于点A(1,3),B(﹣3,a),(1)求一次函数和反比例函数解析式;(2)连接OA,试问在x轴上是否存在点P,使得△OAP为以OA为腰的等腰三角形,若存在,直接写出满足题意的点P的坐标;若不存在,说明理由.变式31如图,一次函数y=﹣x+3的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)若点P在y轴上,是否存在点P,使△ABP是以AB为一直角边的直角三角形?若存在,求出所有符合条件的P点坐标;若不存在,请说明理由.变式32如图,关于x的一次函数y=k1x+b的图象与反比例函数y=k2x的图象相交于A(﹣2,8),B(4,m)两点.(1)求一次函数与反比例函数的解析式.(2)设一次函数y=k1x+b的图象与x轴,y轴的交点分别为M,N,P是x轴上一动点,当以P,M,N三点为顶点的三角形是等腰三角形时,求点P的坐标.变式33如图,函数y=kx(x>0)的图象过点A(n,2)和B(85,2n﹣3)两点.(1)求n和k的值;(2)将直线OA沿x轴向左移动得直线DE,交x轴于点D,交y轴于点E,交y=kx(x>0)于点C,若S△ACO=6,求直线DE解析式;(3)在(2)的条件下,第二象限内是否存在点F,使得△DEF为等腰直角三角形,若存在,请直接写出点F的坐标;若不存在,请说明理由.必考点12: 反比例函数存在性问题(四边形)例题12 已知,矩形OCBA 在平面直角坐标系中的位置如图所示,点C 在x 轴的正半轴上,点A 在y 轴的正半轴上,已知点B 的坐标为(2,4),反比例函数y =m x (x >0)的图象经过AB 的中点D ,且与BC 交于点E ,顺次连接O ,D ,E .(1)求线段DE 的长;(2)在线段OD 上存在一点M ,当△MOE 的面积等于34时,求点M 的坐标; (3)平面直角坐标系中是否存在一点N ,使得O 、D 、E 、N 四点构成平行四边形?若存在,请直接写出N 的坐标;若不存在,请说明理由.变式34如图1,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=kx(k>0)的第一象限内的图象上,OA=4,OC=3,动点P在y轴的右侧,且满足S△PCO=38S矩形OABC.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、PC,求PO+PC的最小值;(3)若点Q是平面内一点,使得以B、C、P、Q为顶点的四边形是菱形,请你直接写出满足条件的所有点Q的坐标.变式35如图,四边形OBAC是矩形,OC=2,OB=6,反比例函数y=kx的图象过点A.(1)求k的值.(2)点P为反比例图象上的一点,作PD⊥直线AC,PE⊥x轴,当四边形PDCE是正方形时,求点P的坐标.(3)点G为坐标平面上的一点,在反比例函数的图象上是否存在一点Q,使得以A、B、Q、G为顶点组成的平行四边形面积为14?若存在,请求出点G的坐标;若不存在,请说明理由.变式36如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(0,﹣6)、D(﹣3,﹣7),点B、C在第三象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿y轴向上平移t秒,若存在某一时刻t,使在第二象限内点B、D两点的对应点B'、D'正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问:是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B'、D'四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点Q的坐标;若不存在,请说明理由.。

初中数学反比例函数知识点及经典例题

初中数学反比例函数知识点及经典例题

反比例函数一、基础知识1. 定义:一般地,形如(为常数,)的函数称为反比例函数。

还可以写成2. 反比例函数解析式的特征:⑴等号左边是函数,等号右边是一个分式。

分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1.⑵比例系数⑶自变量的取值为一切非零实数。

⑷函数的取值是一切非零实数。

3. 反比例函数的图像⑴图像的画法:描点法1 列表(应以O为中心,沿O的两边分别取三对或以上互为相反的数)2 描点(有小到大的顺序)3 连线(从左到右光滑的曲线)⑵反比例函数的图像是双曲线,(为常数,)中自变量,函数值,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是或)。

⑷反比例函数()中比例系数的几何意义是:过双曲线()上任意引轴轴的垂线,所得矩形面积为。

4.反比例函数性质如下表:的取值图像所在象限函数的增减性一、三象限在每个象限内,值随的增大而减小二、四象限在每个象限内,值随的增大而增大5. 反比例函数解析式的确定:利用待定系数法(只需一对对应值或图像上一个点的坐标即可求出)6.“反比例关系”与“反比例函数”:成反比例的关系式不一定是反比例函数,但是反比例函数中的两个变量必成反比例关系。

7. 反比例函数的应用二、例题【例1】如果函数的图像是双曲线,且在第二,四象限内,那么的值是多少?【解析】有函数图像为双曲线则此函数为反比例函数,()即()又在第二,四象限内,则可以求出的值【答案】由反比例函数的定义,得:解得时函数为【例2】在反比例函数的图像上有三点,,,,,。

若则下列各式正确的是()A. B. C. D.【解析】可直接以数的角度比较大小,也可用图像法,还可取特殊值法。

解法一:由题意得,,,所以选A解法二:用图像法,在直角坐标系中作出的图像描出三个点,满足观察图像直接得到选A解法三:用特殊值法【例3】如果一次函数相交于点(),那么该直线与双曲线的另一个交点为()【解析】【例4】如图,在中,点是直线与双曲线在第一象限的交点,且,则的值是_____.图解:因为直线与双曲线过点,设点的坐标为.则有.所以.又点在第一象限,所以.所以.而已知.所以.。

反比例函数考点归纳与训练

反比例函数考点归纳与训练

反比例考点归纳与训练命题点1 反比例函数的图像与性质1.(2022•云南)反比例函数y=的图象分别位于()A.第一、第三象限B.第一、第四象限C.第二、第三象限D.第二、第四象限2.(2022•海南)若反比例函数y=(k≠0)的图象经过点(2,﹣3),则它的图象也一定经过的点是()A.(﹣2,﹣3)B.(﹣3,﹣2)C.(1,﹣6)D.(6,1)3.(2022•上海)已知反比例函数y=(k≠0),且在各自象限内,y随x的增大而增大,则下列点可能在这个函数图象上的为()A.(2,3)B.(﹣2,3)C.(3,0)D.(﹣3,0)4.(2022•广东)点(1,y1),(2,y2),(3,y3),(4,y4)在反比例函数y=图象上,则y1,y2,y3,y4中最小的是()A.y1B.y2C.y3D.y4 5.(2022•阜新)已知反比例函数y=(k≠0)的图象经过点(﹣2,4),那么该反比例函数图象也一定经过点()A.(4,2)B.(1,8)C.(﹣1,8)D.(﹣1,﹣8)6.(2022•益阳)反比例函数y=的图象分布情况如图所示,则k的值可以是(写出一个符合条件的k值即可).7.(2022•成都)在平面直角坐标系xOy中,若反比例函数y=的图象位于第二、四象限,则k的取值范围是.命题点2 反比例函数解析式的确定类型一直接带点型8.(2022•盐城)已知反比例函数的图象经过点(2,3),则该函数表达式为.9.(2022•湖北)在反比例函数y=的图象的每一支上,y都随x的增大而减小,且整式x2﹣kx+4是一个完全平方式,则该反比例函数的解析式为.10.(2022•陕西)已知点A(﹣2,m)在一个反比例函数的图象上,点A'与点A关于y轴对称.若点A'在正比例函数y=x的图象上,则这个反比例函数的表达式为.11.(2022•温州)已知反比例函数y=(k≠0)的图象的一支如图所示,它经过点(3,﹣2).(1)求这个反比例函数的表达式,并补画该函数图象的另一支.(2)求当y≤5,且y≠0时自变量x的取值范围.类型二利用几何图形性质求点型12.(2018•遵义)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=类型三利用k得到几何意义求解析式13.(2017•铜仁市)如图,已知点A在反比例函数y=上,AC⊥x轴,垂足为点C,且△AOC的面积为4,则此反比例函数的表达式为()A.y=B.y=C.y=D.y=﹣14.(2016•铁岭)如图,▱ABCD的顶点A在反比例函数图象上,边CD落在x轴上,点B 在y轴上,AD交y轴于点E,OE:EB=1:2,四边形BCDE的面积为6,则这个反比例函数的解析式是()A.y=﹣B.y=﹣C.y=﹣D.y=﹣A,连接OP.若图中阴影部分的面积是1,则此反比例函数的解析式为.16.(2022•河池)如图,点P(x,y)在双曲线y=的图象上,P A⊥x轴,垂足为A,若S=2,则该反比例函数的解析式为.△AOP故答案为:y=.17.(2022•东营)如图,△OAB是等腰直角三角形,直角顶点与坐标原点重合,若点B在反比例函数y=(x>0)的图象上,则经过点A的函数图象表达式为.命题点3 反比例函数与一次函数结合类型一同一坐标系中函数图像的判断18.(2022•菏泽)根据如图所示的二次函数y=ax2+bx+c的图象,判断反比例函数y=与一次函数y=bx+c的图象大致是()A.B.C.D.19.(2022•西藏)在同一平面直角坐标系中,函数y=ax+b与y=(其中a,b是常数,ab≠0)的大致图象是()A.B.C.D.20.(2022•张家界)在同一平面直角坐标系中,函数y=kx+1(k≠0)和y=(k≠0)的图象大致是()A.B.C.D.21.(2022•南陵县自主招生)在同一平面直角坐标系中,函数y=kx﹣k与y=(k≠0)的大致图象是()A.①②B.②③C.②④D.③④22.(2022•贺州)已知一次函数y=kx+b的图象如图所示,则y=﹣kx+b与y=的图象为()A.B.C.D.23.(2022•黔西南州)在平面直角坐标系中,反比例函数y=(k≠0)的图象如图所示,则一次函数y=kx+2的图象经过的象限是()A.一、二、三B.一、二、四C.一、三、四D.二、三、四类型二反比例函数与一次函数综合题24.(2022•攀枝花)如图,正比例函数y=k1x与反比例函数y=的图象交于A(1,m)、B两点,当k1x≤时,x的取值范围是()A.﹣1≤x<0或x≥1 B.x≤﹣1或0<x≤1C.x≤﹣1或x≥1 D.﹣1≤x<0或0<x≤1 25.(2022•东营)如图,一次函数y1=k1x+b与反比例函数y2=的图象相交于A,B两点,点A的横坐标为2,点B的横坐标为﹣1,则不等式k1x+b<的解集是()A.﹣1<x<0或x>2 B.x<﹣1或0<x<2C.x<﹣1或x>2 D.﹣1<x<2命题点4 反比例函数与几何图形结合25.(2022•枣庄)如图,正方形ABCD的边长为5,点A的坐标为(4,0),点B在y轴上,若反比例函数y=(k≠0)的图象过点C,则k的值为()A.4 B.﹣4 C.﹣3 D.3 26.(2022•内江)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数y=和y=的图象交于P、Q两点.若S△POQ=15,则k的值为()A.38 B.22 C.﹣7 D.﹣22 27.(2022•日照)如图,矩形OABC与反比例函数y1=(k1是非零常数,x>0)的图象交于点M,N,与反比例函数y2=(k2是非零常数,x>0)的图象交于点B,连接OM,ON.若四边形OMBN的面积为3,则k1﹣k2=()A.3 B.﹣3 C.D.28.(2022•牡丹江)如图,等边三角形OAB,点B在x轴正半轴上,S△OAB=4,若反比例函数y=(k≠0)图象的一支经过点A,则k的值是()A.B.C.D.28.(2022•郴州)如图,在函数y=(x>0)的图象上任取一点A,过点A作y轴的垂线交函数y=﹣(x<0)的图象于点B,连接OA,OB,则△AOB的面积是()A.3 B.5 C.6 D.10 30.(2022•黑龙江)如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数y=的图象上,顶点A在反比例函数y=的图象上,顶点D在x 轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2 B.1 C.﹣1 D.﹣2 21.(2022•邵阳)如图是反比例函数y=的图象,点A(x,y)是反比例函数图象上任意一点,过点A作AB⊥x轴于点B,连接OA,则△AOB的面积是()A.1 B.C.2 D.32.(2022•内蒙古)如图,在平面直角坐标系中,Rt△OAB的直角顶点B在x轴的正半轴上,点O与原点重合,点A在第一象限,反比例函数y=(x>0)的图象经过OA的中点C,交AB于点D,连接CD.若△ACD的面积是1,则k的值是.33.(2022•黄石)如图,反比例函数y=的图象经过矩形ABCD对角线的交点E和点A,点B、C在x轴上,△OCE的面积为6,则k=.34.(2022•衢州)如图,在△ABC中,边AB在x轴上,边AC交y轴于点E.反比例函数y=(x>0)的图象恰好经过点C,与边BC交于点D.若AE=CE,CD=2BD,S△ABC =6,则k=.35.(2022•威海)正方形ABCD在平面直角坐标系中的位置如图所示,点A的坐标为(2,0),点B的坐标为(0,4).若反比例函数y=(k≠0)的图象经过点C,则k的值为.命题点5 反比例函数与一次函数及几何图形结合36.(2022•无锡)一次函数y=mx+n的图象与反比例函数y=的图象交于点A、B,其中点A、B的坐标为A(﹣,﹣2m)、B(m,1),则△OAB的面积是()A.3 B.C.D.37.(2022•随州)如图,在平面直角坐标系中,直线y=x+1与x轴,y轴分别交于点A,B,与反比例函数y=的图象在第一象限交于点C,若AB=BC,则k的值为.38.(2022•淄博)如图,直线y=kx+b与双曲线y=相交于A(1,2),B两点,与x轴相交于点C(4,0).(1)分别求直线AC和双曲线对应的函数表达式;(2)连接OA,OB,求△AOB的面积;(3)直接写出当x>0时,关于x的不等式kx+b>的解集.39.(2022•镇江)如图,一次函数y=2x+b与反比例函数y=(k≠0)的图象交于点A(1,4),与y轴交于点B.(1)k=,b=;(2)连接并延长AO,与反比例函数y=(k≠0)的图象交于点C,点D在y轴上,若以O、C、D为顶点的三角形与△AOB相似,求点D的坐标.40.(2022•大庆)已知反比例函数y=和一次函数y=x﹣1,其中一次函数图象过(3a,b),(3a+1,b+)两点.(1)求反比例函数的关系式;(2)如图,函数y=x,y=3x的图象分别与函数y=(x>0)图象交于A,B两点,在y轴上是否存在点P,使得△ABP周长最小?若存在,求出周长的最小值;若不存在,请说明理由.41.(2022•苏州)如图,一次函数y=kx+2(k≠0)的图象与反比例函数y=(m≠0,x >0)的图象交于点A(2,n),与y轴交于点B,与x轴交于点C(﹣4,0).(1)求k与m的值;(2)P(a,0)为x轴上的一动点,当△APB的面积为时,求a的值.42.(2022•西宁)如图,正比例函数y=4x与反比例函数y=(x>0)的图象交于点A(a,4),点B在反比例函数图象上,连接AB,过点B作BC⊥x轴于点C(2,0).(1)求反比例函数解析式;(2)点D在第一象限,且以A,B,C,D为顶点的四边形是平行四边形,请直接写出点D的坐标.43.(2022•成都)如图,在平面直角坐标系xOy中,一次函数y=﹣2x+6的图象与反比例函数y=的图象相交于A(a,4),B两点.(1)求反比例函数的表达式及点B的坐标;(2)过点A作直线AC,交反比例函数图象于另一点C,连接BC,当线段AC被y轴分成长度比为1:2的两部分时,求BC的长;(3)我们把有两个内角是直角,且一条对角线垂直平分另一条对角线的四边形称为“完美筝形”.设P是第三象限内的反比例函数图象上一点,Q是平面内一点,当四边形ABPQ 是完美筝形时,求P,Q两点的坐标.44.(2022•徐州)如图,一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,与x轴交于点B,与y轴交于点C,AD⊥x轴于点D,CB=CD,点C关于直线AD的对称点为点E.(1)点E是否在这个反比例函数的图象上?请说明理由;(2)连接AE、DE,若四边形ACDE为正方形.①求k、b的值;②若点P在y轴上,当|PE﹣PB|最大时,求点P的坐标.45.(2022•湘潭)已知A(3,0)、B(0,4)是平面直角坐标系中两点,连接AB.(1)如图①,点P在线段AB上,以点P为圆心的圆与两条坐标轴都相切,求过点P的反比例函数表达式;(2)如图②,点N是线段OB上一点,连接AN,将△AON沿AN翻折,使得点O与线段AB上的点M重合,求经过A、N两点的一次函数表达式.46.(2022•达州)如图,一次函数y=x+1与反比例函数y=的图象相交于A(m,2),B 两点,分别连接OA,OB.(1)求这个反比例函数的表达式;(2)求△AOB的面积;(3)在平面内是否存在一点P,使以点O,B,A,P为顶点的四边形为平行四边形?若存在,请直接写出点P的坐标;若不存在,请说明理由.命题点6 反比例函数的实际应用47.(2022•青海)如图,一块砖的A,B,C三个面的面积之比是5:3:1.如果A,B,C 三个面分别向下在地上,地面所受压强分别为P1,P2,P3,压强的计算公式为P=,其中P是压强,F是压力,S是受力面积,则P1,P2,P3的大小关系为(用小于号连接).48.(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=,测得数据如下:R(Ω)100200220400I(A) 2.2 1.110.55那么,当电阻R=55Ω时,电流I=A.49.(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.50.(2022•广州)某燃气公司计划在地下修建一个容积为V(V为定值,单位:m3)的圆柱形天然气储存室,储存室的底面积S(单位:m2)与其深度d(单位:m)是反比例函数关系,它的图象如图所示.(1)求储存室的容积V的值;(2)受地形条件限制,储存室的深度d需要满足16≤d≤25,求储存室的底面积S的取值范围.。

北师版九年级反比例函数知识点及经典例题

北师版九年级反比例函数知识点及经典例题

反比例函数知识梳理知识点l. 反比例函数的概念重点:掌握反比例函数的概念 难点:理解反比例函数的概念 一般地,如果两个变量x 、y 之间的关系可以表示成xk y =或y=kx -1(k 为常数,0k ≠)的形式,那么称y 是x 的反比例函数。

反比例函数的概念需注意以下几点: (1)k 是常数,且k 不为零;(2)x k中分母x 的指数为1,如22y x=不是反比例函数。

(3)自变量x 的取值范围是0x ≠一切实数.(4)自变量y 的取值范围是0y ≠一切实数。

知识点2. 反比例函数的图象及性质重点:掌握反比例函数的图象及性质 难点:反比例函数的图象及性质的运用反比例函数xky =的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限。

它们关于原点对称、反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交。

画反比例函数的图象时要注意的问题: (1)画反比例函数图象的方法是描点法;(2)画反比例函数图象要注意自变量的取值范围是0x ≠,因此不能把两个分支连接起来。

(3)由于在反比例函数中,x 和y 的值都不能为0,所以画出的双曲线的两个分支要分别体现出无限的接近坐标轴,但永远不能达到x 轴和y 轴的变化趋势。

反比例函数的性质xky =)0k (≠的变形形式为k xy =(常数)所以: (1)其图象的位置是:当0k >时,x 、y 同号,图象在第一、三象限; 当0k <时,x 、y 异号,图象在第二、四象限。

(2)若点(m,n)在反比例函数xky =的图象上,则点(-m,-n )也在此图象上,故反比例函数的图象关于原点对称。

(3)当0k >时,在每个象限内,y 随x 的增大而减小; 当0k <时,在每个象限内,y 随x 的增大而增大; 知识点3. 反比例函数解析式的确定。

重点:掌握反比例函数解析式的确定 难点:由条件来确定反比例函数解析式(1)反比例函数关系式的确定方法:待定系数法,由于在反比例函数关系式xky =中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入xky =中即可求出k 的值,从而确定反比例函数的关系式。

反比例函数知识点与题型归纳非常全面

反比例函数知识点与题型归纳非常全面

反比例函数讲义第1节 反比例函数■例1下列函数中是反比例关系的有___________________填序号; ①3x y -= ②131+=x y ③x y 2-= ④2211x y -= ⑤xy 23-= ⑥21=xy ⑦28xy = ⑧1-=x y ⑨2=x y ⑩x ky =k (为常数,)0≠k■ 例2由欧姆定律可知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R=欧姆,电流强度I=安培;(1) 求I 与R 的函数关系式; (2) 当R=5欧姆时,求电流强度;本节作业:1、小明家离学校,小明步行上学需x min,那么小明的步行速度min)/(m y 可以表示为xy 1500=;水名地面上重1500N 的物体,与地面的接触面积为x 2m ,那么该物体对地面的压强)/(2m N y 可以表示为x y 1500=;函数表达式xy 1500=还可以表示许多不同情境中变量之间的函数关系,请你再列举一例; 2、某工人打算利用一块不锈钢条加工一个面积为2m 的矩形模具,假设模具的长与宽分别为y 与x ;1你能写出y 与x 之间的函数表达式吗 变量y 与x 之间是什么函数2若想使模具的长比宽多,已知每米这种不锈钢条6元钱,求加工这个模具共花多少钱3、若函数满足023=+xy,则y 与x 的函数关系式为______________,你认为y 是x 的______________函数;4、已知y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x = —1时,y =5,求出y 与x 的函数关系式;5、已知y 是x 的函数,且其对应数据如下表所示,你认为y 是x 的正比例函数还是反比例函数你能写出函数的表达式,并填上表格中的空缺吗6、函数xky =的图象经过点A1,—2,则k 的值为 ; A .21 B. 21- C. 2 D. —27、若函数132)1(+++=m mx m y 是反比例函数,则m 的值为 ;A .m = —2 B. m = 1 C. m = 2或m = 1 D. m = —2,或m = —1 8、若甲、乙两城市间的路程为1000千米,车速为每小时x 千米,从甲市到乙市所需的时间为y 小时,那么y 与x 的函数表达式是_______________________不必写出x 的取值范围,y 是x 的__________函数;9、已知y 是x 的反比例函数,当x =5时,y = —1,那么,当y =3时,x =_________;当x =3时,y =________;第2节 反比例函数的图象与性质1、 反比例函数的图象及其画法 反比例函数图象的画法——描点法:(1) 列表——自变量取值应以0但)0(≠x 为中心,向两边取三对或三对以上互为相反数的数,再求出对应的y 的值;(2) 描点——先描出一侧,另一侧可根据中心对称点的性质去找;(3) 连线——按照从左到右的顺序连接各点并延伸,注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交;反比例函数xky =的图象是由两支曲线组成的;当0>k 时,两支曲线分别位于第一、三象限内,当0<k 时,两支曲线分别位于第二、四象限内;小注:1这两支曲线通常称为双曲线;2这两支曲线关于原点对称; 3反比例函数的图象与x 轴、y 轴没有公共点; 例1:画出反比例函数x y 6=与xy 6-=的图象; 解:1列表:2描点:(3) 连线;1 反比例函数的性质反比例函数 xky =)0(≠k k 的符号k >0k<0图象 双曲线x 、y 取值范围 x 的取值范围x ≠0 y 的取值范围y ≠0 x 的取值范围x ≠0 y 的取值范围y ≠0 位置第一,三象限内第二,四象限内增减性 每一象限内,y 随x 的增大而减小 每一象限内,y 随x 的增大而增大渐近性 反比例函数的图象无限接近于x,y 轴,但永远达不到x,y 轴,画图象时,要体现出这个特点.对称性 反比例函数的图象是关于原点成中心对称的图形.反比例函数的图象也是轴对称图形.例2 已知 2(1)m y m x -=+是反比例函数,则函数的图象在A 、一、三象限B 、二、四象限C 、一、四象限D 、三、四象限例3 函数2y kx =-与ky x=k ≠0在同一坐标系内的图象可能是例4 已知反比例函数xky =的图象经过点P 一l,2,则这个函数的图象位于 A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限3反比例函数xky =)0(≠k 中的比例系数k 的几何意义难点k 的几何含义:反比例函数y =k x k ≠0中比例系数k 的几何意义,即过双曲线y =kxk ≠0上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B,则所得矩形OAPB 的面积为 .例5 A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则A . 2S =B . 4S =C .24S <<D .4S >例6如图A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =4反比例函数与正比例函数图象的交点凡是交点问题就联立方程例7如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.1试确定上述反比例函数和一次函数的表达式; 2求AOB △的面积.O BxyC A 图1OyxBA本节练习一、选择题每小题6分,共36分1. 已知2(1)my m x-=+是反比例函数,则函数的图象在A、一、三象限B、二、四象限C、一、四象限D、三、四象限2.若反比例函数kyx=的图象经过点(12)-,,则这个函数的图象一定经过点A、(21)--,B、122⎛⎫-⎪⎝⎭,C、(21)-,D、122⎛⎫⎪⎝⎭,3.反比例函数5nyx+=的图象经过点2,3,则n的值是A、-2B、-1C、0D、14.反比例函数1kyx-=的图象在每个象限内,y随x的增大而减小,则k的值可为A、1- B、0 C、1 D、25.如果两点1P1,1y和2P2,2y都在反比例函数1yx=的图象上,那么A.2y<1y<0B.1y<2y<0C.2y>1y>0 D.1y>2y>06.函数(0)ky kx=≠的图象如图所示,那么函数y kx k=-的图象大致是A B C D二、填空题每小题6分,共24分7.如果反比例函数kyx=0k≠的图象经过点1,-2,则这个函数的表达式是_________.当0x<时,y随x的增大而______ 填“增大”或“减小8.如图7,双曲线xky=与直线mxy=相交于A、B两点,B点坐标为-2,-3,则A点坐标为_________.9. 如图8,点A 在反比例函数xky =的图象上,AB 垂直于x 轴,若4=∆AOB S ,那么这个反比例函数的解析式为__________.图810.老师给出一个函数,甲、乙各指出了这个函数的一个性质:甲:第一、三象限有它的图象; 乙:在每个象限内,y 随x 的增大而减小. 请你写一个满足上述性质的函数______________________三、解答题每小题,共40分11. 20分如图,一次函数b kx y +=的图象与反比例函数xmy =图象交于A -2,1、B1,n 两点.1求反比例函数和一次函数的解析式;2根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.12. 20分如图,已知反比例函数1(0)my m x=≠的图象经过点(21)A -,,一次函数2(0)y kx b k =+≠的图象经过点(03)C ,与点A ,且与反比例函数的图象相交于另一点B .1分别求出反比例函数与一次函数的解析式;2求点B 的坐标.第3节 反比例函数的应用 本节内容:运用函数的图象和性质解答实际问题例题1 .面积一定的梯形,其上底长是下底长的21,设下底长x =10 cm 时,高y =6 cm 1求y 与x 的函数关系式; 2求当y =5 cm 时,下底长多少16.一定质量的二氧化碳,当它的体积V=6 m 3时,它的密度ρ= kg/m 3. 1求ρ与V 的函数关系式.2当气体体积是1 m 3时,密度是多少3当密度为 kg/m 3时,气体的体积是多少例题2如图,Rt △AOB 的顶点A 是一次函数y =-x +m +3的图象与反比例函数y =xm的图象在第二象限的交点,且S △AOB =1,求点A 的坐标.例题3某厂要制造能装250mL1mL=1 cm 3饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是 cm,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm 的易拉罐用铝量是y cm 3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y 与x 间的函数关系式.综合检测题一、填空题:1、u 与t 成反比,且当u =6时,81=t ,这个函数解析式为 ; 2、函数2x y -=和函数xy 2=的图像有 个交点; 3、反比例函数x k y =的图像经过-23,5点、a ,-3及10,b 点,则k = ,a = ,b = ;4、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象限;5、若反比列函数1232)12(---=k kx k y 的图像经过二、四象限,则k = _______6、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;7、已知正比例函数kx y =与反比例函数3y x=的图象都过A m ,1,则m = ,正比例函数与反比例函数的解析式分别是 、 ; 8、 设有反比例函数y k x=+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________9、右图3是反比例函数xk y =的图象,则k 与0的大小关系是k 0.10、函数xy 2-=的图像,在每一个象限内,y 随x 的增大而 ; 11、反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P,如果△MOP 的面积为1,那么k 的值是 ; 12、()7225---=m mx m y 是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为 ;二、选择题: 分数3分×14=42分,并把答案填在第12题后的方框内 1、下列函数中,反比例函数是 A 、 1)1(=-y x B 、 11+=x y C 、 21xy = D 、 x y 31=2、已知反比例函数的图像经过点a ,b ,则它的图像一定也经过yO PMA 、 -a ,-bB 、 a ,-bC 、 -a ,bD 、 0,0 3、如果反比例函数xky =的图像经过点-3,-4,那么函数的图像应在 A 、 第一、三象限B 、 第一、二象限C 、 第二、四象限D 、 第三、四象限 4、若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的 A 、 正比例函数B 、 反比例函数C 、 一次函数 D 、 不能确定 5、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是A 、 -1或1B 、小于21的任意实数 C 、 -1 D、 不能确定 6、函数x k y =的图象经过点-4,6,则下列各点中不在xky =图象上的是A 、 3,8B 、 3,-8C 、 -8,-3D 、 -4,-67、正比例函数kx y =和反比例函数ky =在同一坐标系内的图象为8、如上右图,A 为反比例函数xky =图象上一点,AB垂直x 轴于B 点,若S △AOB =3,则k的值为 A 、6B 、3C 、23 D 、不能确定9、如果矩形的面积为6cm 2,那么它的长y cm 与宽x cm 之间的函数关系用图象表示大致A10、在同一直角坐标平面内,如果直线x k y 1=与双曲线xk y 2=没有交点,那么1k 和2k 的关系一定是 A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号11、已知变量y 与x 成反比例,当x =3时,y =―6;那么当y =3时,x 的值是 A 6 B ―6 C 9 D ―912、当路程s 一定时,速度v 与时间t 之间的函数关系是A 正比例函数B 反比例函数C 一次函数D 二次函数 13、2001北京西城在同一坐标系中,函数x ky =和3+=kx y 的图像大致是14、已知反比例函数)0(<=k xky 的图像上有两点A 1x ,1y ,B 2x ,2y ,且21x x <,则21y y -的值是A 、 正数B 、 负数C 、 非正数D 、 不能确定 三、解答题:第1、2小题各7分、第3小题8分,共22分1、在某一电路中,保持电压不变,电流I 安培与电阻R 欧姆成反比例,当电阻R=5欧姆时,电流I=2安培;1求I 与R 之间的函数关系式 2当电流I=安培时,求电阻R 的值;2、如图,Rt △ABO 的顶点A 是双曲线xky =与直线)1(+--=k x y 在第二象限的交点, AB ⊥x 轴于B 且S △ABO =23 1求这两个函数的解析式2求直线与双曲线的两个交点A,C 的坐标和△AOC 的面积;3、如图,一次函数b kx y +=的图像与反比例函数xmy =的图像相交于A 、B 两点, 1利用图中条件,求反比例函数和一次函数的解析式2根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围2001江苏苏州。

九年级数学反比例函数知识点归纳总结

九年级数学反比例函数知识点归纳总结

一、反比例函数的定义:
反比例函数是指其表达式可以表示为y=k/x(k≠0),其中k为常数,x≠0。

二、反比例函数的一般式:
1.y=k/x
2.k为比例系数,表示常数项。

三、反比例函数的图像特点:
1.垂直于y轴;
2.不过原点,但会经过x轴的正半轴和y轴的正半轴;
3.上升(k>0)或下降(k<0)。

四、反比例函数的性质:
1.定义域:x≠0,值域:y≠0
2.渐近线:x轴和y轴是反比例函数的渐近线。

3.对称性:关于y轴对称。

4.单调性:k>0时,单调递减;k<0时,单调递增。

五、反比例函数图像的平移:
1.y=k/(x-h):左右平移h个单位;
2.y=k/(x)+v:上下平移v个单位。

六、反比例函数与直线的关系:
1. 反比例函数与直线y=kx的图像在一起;
2. 直线y=kx可以看做反比例函数的简化形式,即k=1
七、反比例函数的应用:
1.反比例函数在实际中常用于描述两个变量之间的比例关系,如一方
的量增大,另一方的量就会减小的规律。

2.可以用反比例函数解决实际问题,如物品的价格与销量之间的关系、速度与时间之间的关系等。

初三中考一轮复习(11)反比例函数 题型分类 含答案(全面 非常好)

初三中考一轮复习(11)反比例函数  题型分类 含答案(全面 非常好)

教学主题 一轮复习反比例函数教学目标掌握反比例函数题型重 要 知识点 1.反比例函数 2. 3. 易错点教学过程反比例函数考点1:反比例函数的图象和性质 1、一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数,其图象是叫双曲线。

2、当k >0时,图象的两个分支分别在第一、三象限。

在每个象限内,y 随x 的增大而减小。

当k <0时,图象的两个分支分别在第二、四象限。

在每个象限内,y 随x 的增大而增大。

3、对于双曲线上的点A 、B ,有两种三角形的面积(S △AOB)要会求(会表示),如图所示.考点1、反比例函数图像与性质1、函数2y x =与函数1y x-=在同一坐标系中的大致图像是 ( )【答案】B2、如图是我们学过的反比例函数图象,它的函数解析式可能是 ( )【答案】 BA .2y x =B .4y x=C .3y x=-D .12y x =3、若点12(1,),(2,)A y B y 是双曲线3y x=上的点,则1y 2y (填“>”,“<”“=”). 【答案】> 4、如图,反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <2【答案】D6.如图,已知直线12y x =-经过点P (2-,a ),点P 关于y 轴的对称点P ′在反比例函数2ky x=(0≠k )的图象上. (1)求点P ′的坐标;(2)求反比例函数的解析式,并直接写出当y 2<2时自变量x 的取值范围.【答案】(1)∴P ′(2,4).(2) k =8,自变量x 的取值范围x <0或x >4. 考点3:反比例函数解析式中k 的几何意义 相关知识:设()P x y ,是反比例函数ky x=图象上任一点,过点P 作x 轴、y 轴的垂线,垂足为A ,则(1)△OPA 的面积111222OA PA xy k ===g .(2)矩形OAPB 的面积OA PA xy k ===g 。

专题20反比例函数(3个知识点4种题型1种中考考法)(原卷版)-初中数学北师大版9年级上册

专题20反比例函数(3个知识点4种题型1种中考考法)(原卷版)-初中数学北师大版9年级上册

专题20反比例函数(3个知识点4种题型1种中考考法)【目录】倍速学习四种方法【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)知识点2.反比例函数表达式的确定(重点)知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值题型2.反比例关系的应用题型3.反比例函数关系的判断及应用题型4.应用几何图形中的数量关系建立反比例函数关系【方法三】仿真实战法考法.反比例函数的概念【方法四】成果评定法【学习目标】1.理解反比例函数的概念,会判断一个函数是不是反比例函数。

2.能结合具体问题确定反比例函数的表达式,并会确定实际问题中自变量的取值范围,求出函数值。

【知识导图】【倍速学习四种方法】【方法一】脉络梳理法知识点1.反比例函数的概念及表达式(重点)如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例.即xy k=,或表示为kyx=,其中k是不等于零的常数.一般地,形如kyx=(k为常数,0k≠)的函数称为反比例函数,其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.注意:(1)在kyx=中,自变量x是分式kx的分母,当0x=时,分式kx无意义,所以自变量x的取值范围是,函数y的取值范围是0y≠.故函数图象与x轴、y轴无交点.(2)kyx=()可以写成()的形式,自变量x的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件.(3)kyx=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k,从而得到反比例函数的解析式.【例1】(2023春•邗江区期末)下列式子中,表示y是x的反比例函数的是()A.xy=1B.y=C.y=D.y=【变式】(2022秋•怀化期末)下列函数不是反比例函数的是()A.y=3x﹣1B.y=﹣C.xy=5D.y=知识点2.反比例函数表达式的确定(重点)待定系数法求反比例函数解析式一般步骤:【例2】(2022秋·九年级单元测试)已知y=y1-y2,y1与x成反比例,y=5;当x=1时,y=-1;求当x=-1时,y的值.知识点3.根据实际问题列反比例函数的表达式(重点)【方法二】实例探索法题型1.根据反比例函数的概念求未知字母的值一、单选题2.(2022秋•岳阳县期末)若函数y=(m+4)x|m|﹣5是反比例函数,则m的值为()A.4B.﹣4C.4或﹣4D.03.(2022秋•惠来县期末)函数y=x k﹣1是反比例函数,则k=()A.3B.2C.1D.0题型2.反比例关系的应用k15.(2023春·上海浦东新·九年级校考阶段练习)在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,16.(2022秋·河北保定·九年级校联考阶段练习)写出下列函数关系式,指出其中的正比例函数和反比例函题型4.应用几何图形中的数量关系建立反比例函数关系19.(2022春·九年级课时练习)如图,某养鸡场利用一面长为11m 的墙,其他三面用栅栏围成矩形,面积为260m ,设与墙垂直的边长为x m ,与墙平行的边长为y m .(1)直接写出y 与x 的函数关系式为______;(2)现有两种方案5x =或6x =,试选择合理的设计方案,并求此栅栏总长.20.如图,在矩形ABCD 中,点P 是BC 边上一动点,连接AP ,过点D 作DE AP ⊥于点E.设AP x =,DE y =,若6AB =,8BC =,试求y 与x 之间的函数关系式.【方法三】仿真实战法考法.反比例函数的概念1.(2023•临沂)正在建设中的临滕高速是我省“十四五”重点建设项目.一段工程施工需要运送土石方总量为105m3,设土石方日平均运送量为V(单位:m3/天),完成运送任务所需要的时间为t(单位:天),则V与t满足()A.反比例函数关系B.正比例函数关系C.一次函数关系D.二次函数关系2.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2【方法四】成果评定法一、单选题A.①②B.9.(2022春·九年级课时练习)下列选项中,能写成反比例函数的是(A.人的体重和身高B.正三角形的边长和面积二、填空题18.(2021春·全国·九年级专题练习)已知反比例函数的解析式为三、解答题19.(2023秋·九年级课时练习)下列例系数.。

反比例函数讲义(知识点+典型例题)

反比例函数讲义(知识点+典型例题)

变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。

(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。

(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。

(完整版)反比例函数知识点归纳总结与典型例题

(完整版)反比例函数知识点归纳总结与典型例题

反比例函数知识点归纳总结与典型例题(一)反比例函数的概念:知识要点:1、一般地,形如y = — ( k是常数,k = 0 )的函数叫做反比例函数。

x注意:(1)常数k称为比例系数,k是非零常数;(2)解析式有三种常见的表达形式:(A) y = k (k w 0) , (B) xy = k (k 丰 0) (C) y=kx-1 (kw0)x例题讲解:有关反比例函数的解析式1 1 1 x 1 (1)下列函数,① x(y 2) 1②.y ——③y /④.y ——⑤y —⑥y —;其中是y关x 1 x 2x 2 3x 于x的反比例函数的有:。

a2 2 ....... …(2)函数y (a 2)x 是反比例函数,则a的值是( )A.—1B. — 2C. 2D.2 或—21 .................(3)若函数y 七彳勤是常数)是反比例函数,则m=,解析式为 .xk(4)反比例函数y — (k 0)的图象经过(一2, 5)和(J2 , n),x求1) n的值;2)判断点B ( 4J2 , 短)是否在这个函数图象上,并说明理由(二)反比例函数的图象和性质:知识要点:1、形状:图象是双曲线。

2、位置:(1)当k>0时双曲线分另位于第象限内;(2)当k<0时,双曲线分另位于第象限I 3、增减性:(1)当k>0 时,,y 随x的增大而 ;(2)当k<0时,,y随x的增大而。

4、变化趋势:双曲线无限接近于x、y轴,但永远不会与坐标轴相交5、对称性:(1)对于双曲线本身来说,它的两个分支关于直角坐标系原点; (2)对于k取互为相反数的两个反比例函数(如:y = 6和丫= ―)来说,它们是关于x轴,y轴。

x x例题讲解:反比例函数的图象和性质:(1)写出一个反比例函数,使它的图象经过第二、四象限m2 2⑵若反比例函数v (2m 1)x的图象在第二、四象限,则m的值是( )A—1或1; B、小于-的任意实数;C、一1; D、不能确定2(3)下列函数中,当x 0时,y随x的增大而增大的是( )1 一一4 _ 1A y 3x 4B y - x 2 C. y - D. y ——.3 x 2x2 ____ ,. 一 . 一(4)已知反比例函数y ——的图象上有两点A ( x1,y1),B ( x2, y2),且x1 x2,则y i y 的值是()A.正数B.负数C.非正数D.不能确定2 .(5)右点(x i, y 1)、(X 2, y 2)和(X 3,y 3)分别在反比例函数 y —的图象上,且X iX 2 0 X 3,x则下列判断中正确的是()A . y i y y 3B . y 3 y i y 2C . y 2 y 3 y iD . y 3 y y ik 1 ................... 一 ...(6)在反比例函数 y --- 的图象上有两点(x1,y 1)和(x 2, y 2),右x 10 x 2时,y i y 2 ,则k 的x取值范围是.(7)老师给出一个函数,甲、乙、丙三位同学分别指出了这个函数的一个性质:甲:函数的图象经过第二象限;乙:函数的图象经过第四象限;丙:在每个象限内,y 随x 的增大而增大.请你根据他们的叙述构造满足上述性质的一个函数 :.(三)反比例函数与面积结合题型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十三讲 反比例函数第一部分 知识梳理一、反比例函数的解析式1.反比例函数的概念一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

2.反比例函数解析式的确定 由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

二、反比例函数的图像及性质1.反比例函数的图象反比例函数的图象是双曲线,有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x≠0,函数y≠0,所以,它的图象与x轴、y轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2.反比例函数的性质3.反比例函数中反比例系数的几何意义①过双曲线x ky =(k ≠0) 上任意一点作x 轴、y 轴的垂线段,所得矩形(如图)面积为k 。

②过双曲线xky =(k ≠0) 上任意一点作任一坐标轴的垂线段,连接该点和原点,所得三角形(如图)的面积为2k .③双曲线xky =(k ≠0) 同一支上任意两点1P 、2P 与原点组成的 三角形(如图)的面积=直角梯形1221P P Q Q 的面积.第二部分 例题与解题思路方法归纳【例题1】 已知函数()521-+=m x m y 是反比例函数,且图象在第二、四象限内,则m 的值是( )A .2B .﹣2C .±2D .21-〖难度分级〗A 类〖试题来源〗2010年凉山州中考数学试题 〖选题意图〗对于反比例函数)0(≠=k xk y 。

由于11-=x x ,所以反比例函数也可以写成1-=x y (k 是常数,k ≠0)的形式,有时也以xy=k (k 是常数,k ≠0)的形式出现。

(1)k>0,反比例函数图象在一、三象限;(2)k <0,反比例函数图象在第二、四象限内.本题需要理解好反比例函数定义中的系数和指数,同时需要掌握反比例函数的性质,这样才能防止漏解或多解。

〖解题思路〗根据反比例函数的定义m 2﹣5=﹣1,又图象在第二、四象限,所以m+1<0,两式联立方程组求解即可.〖参考答案〗解:∵函数()521-+=m xm y 是反比例函数,且图象在第二、四象限内,yxOQC B AP∴⎩⎨⎧+-=-01152<m m ,解得m =±2且m <﹣1,∴m =﹣2.故选B .【课堂训练题】1.(2000•甘肃)已知y=y 1+y 2,y 1与x 成正比例,y 2与x ﹣2成反比例,且当x =1时,y =﹣1;当x=3时,y=5.求y 与x 的函数关系式. 〖难度分级〗A 类〖参考答案〗解:设y 1=k 1x (k 1≠0),y 2=∴y=k 1x+∵当x=1时,y=﹣1;当x=3时,y=5,∴⎩⎨⎧=+-=-5312121k k k k ,∴⎩⎨⎧==2121k k 。

∴22-+=x x y 。

2.定义:已知反比例函数x k y 1=与xky 2=,如果存在函数x k k y 21=(k 1k 2>0)则称函数xk k y 21=为这两个函数的中和函数。

(1)试写出一对函数,使得它的中和函数为xy 2=,并且其中一个函数满足:当x <0时,y 随x 的增大而增大。

(2)函数x y 3-=和xy 12-=的中和函数x k y =的图象和函数y =2x 的图象相交于两点,试求当xky =的函数值大于y=2x 的函数值时x 的取值范围。

〖难度分级〗B 类〖参考答案〗解:(1)∵试写出一对函数,使得它的中和函数为,并且其中一个函数满足:当x <0时,y 随x 的增大而增大. ∴答案不唯一,如y=x 1-与y=x4-等; y=x 3-(2)∵y=x3-和y=x 12-的中和函数 y=x 6,联立方程组⎪⎩⎪⎨⎧==xy x y 26,解之得两个函数图象的交点坐标为(3,32)(3-,32-),结合图象得到当xky =的函数值大于y=2x 的函数值时x 的取值范围是3-<x 或30<<x . 【例题2】如图所示是反比例函数xn y 42-=的图象的一支,根据图象回答下列问题: (1)图象的另一支在哪个象限?常数n 的取值范围是什么? (2)若函数图象经过点(3,1),求n 的值;(3)在这个函数图象的某一支上任取点A (a 1,b 1)和点B (a 2,b 2),如果a 1<a 2,试比较b 1和b 2的大小.〖难度分级〗B 类〖试题来源〗2010年肇庆市中考数学试题〖选题意图〗本题主要考查反比例函数图象的性质和待定系数法求函数解析式的方法,需要熟练掌握.〖解题思路〗(1)根据反比例函数图象的性质,这一支位于第一象限,另一支一定位于第三象限;(2)把点的坐标代入反比例函数求出n 值,即可求出函数解析式;(3)根据反比例函数图象的性质,当k >0时,在每个象限内,函数值y 随x 增大而减小。

〖参考答案〗解:(1)图象的另一支在第三象限.由图象可知,2n ﹣4>0,解得:n >2 (2)将点(3,1)代入x n y 42-=得:3421-=n ,解得:n=; (3)∵2n ﹣4>0,∴在这个函数图象的任一支上,y 随x 增大而减小,∴当a 1<a 2时,b 1>b 2. 【课堂训练题】 1.如图是反比例函数xm y 5-=的图象的一支. (1)求m 的取值范围,并在图中画出另一支的图象;(2)若m=﹣1,P (a ,3)是双曲线上点,PH ⊥y 轴于H ,将线段OP 向右平移3PH 的长度至O′P′,此时P 的对应点P′恰好在另一条双曲线xky =的图象上,则平移中线段OP 扫过的面积为 ,k= .(直接填写答案)〖难度分级〗B 类〖参考答案〗解:(1)由反比例函数的图象可知m ﹣5<0,即m <5. (2)∵m=﹣1,∴反比例函数x m y 5-=的解析式为xy 6-=, 把P (a ,3)代入上式得a=﹣2.向右平移3PH ,可得P′坐标为(4,3),第一象限内抛物线解析式为xy 12=. S ▱oo'p ′p =S ▭A′PP′A =2×3+4×3=18.则平移中线段OP 扫过的面积为18,k=12.2.(2006•临沂)我们学过二次函数的图象的平移,如:将二次函数23y x =的图象向左平移2个单位,再向下平移4个单位,所图象的函数表达式是23(2)4y x =+-。

类比二次函数的图象的平移,我们对反比例函数的图象作类似的变换:(1)将y=的图象向右平移1个单位,所得图象的函数表达式为,再向上平移1个单位,所得图象的函数表达式为;(2)函数y=的图象可由y=的图象向平移个单位得到;y=的图象可由哪个反比例函数的图象经过怎样的变换得到;(3)一般地,函数y=(ab≠0,且a≠b)的图象可由哪个反比例函数的图象经过怎样的变换得到?〖难度分级〗B类〖参考答案〗解:(1)可设新反比例函数的解析式为y=,可从原反比例函数找一点(1,1),向右平移1个单位得(2,1),代入解析式可得:a=﹣1.故所得图象的函数表达式为;再向上平移1个单位,所得图象的函数表达式为.(2)先把函数化为标准反比例的形式y=+1,然后即可根据反比例函数图象平移的性质解答:y=可转化为.故函数y=的图象可由y=的图象向上移1个单位得到;y=的图象可由反比例函数的图象先向右平移2个单位,再向上平移1个单位得到.(3)函数(ab≠0,且a≠b)可转化为.当a>0时,的图象可由反比例函数的图象向左平移a个单位,再向上平移1个单位得到;当a<0时,的图象可由反比例函数的图象向右平移﹣a个单位,再向上平移1个单位得到.【例题3】在反比例函数xky =的图象的每一条曲线上,y 都随x 的增大而减小. (1)求k 的取值范围;(2)在曲线上取一点A ,分别向x 轴、y 轴作垂线段,垂足分别为B 、C ,坐标原点为O ,若四边形ABOC 面积为6,求k 的值. 〖难度分级〗B 类〖试题来源〗2009年湖南省湘西自治州中考数学试题 〖选题意图〗 主要考查了反比例函数xky =中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=|k|.〖解题思路〗(1)直接根据反比例函数的性质求解即可,k >0;(2)直接根据k 的几何意义可知:过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k|,所以|k|=6,而k >0,则k=6.〖参考答案〗解:(1)∵y 的值随x 的增大而减小,∴k >0. (2)由于点A 在双曲线上,则S=|k|=6,而k >0,所以k=6. 【课堂训练题】1.(2009•莆田)如图,在x 轴的正半轴上依次截取OA 1=A 1A 2 =A 2A 3=A 3A 4=A 4A 5,过点A 1、A 2、A 3、A 4、A 5分别作x 轴的垂 线与反比例函数y=(x≠0)的图象相交于点P 1、P 2、P 3、P 4、P 5, 得直角三角形OP 1A 1、A 1P 2A 2、A 2P 3A 3、A 3P 4A 4、A 4P 5A 5,并设 其面积分别为S 1、S 2、S 3、S 4、S 5,则S 5的值为 . 〖难度分级〗B 类〖参考答案〗解:因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 是个定值,S=|k|.所以S1=1,S2=S1=,S3=S1=,S4=S1=,S5=S1=.2.如图,已知A、C两点在双曲线上,点C的横坐标比点A的横坐标多2,AB⊥x轴,CD⊥x 轴,CE⊥AB,垂足分别是B、D、E.(1)当A的横坐标是1时,求△AEC的面积S1;(2)当A的横坐标是n时,求△AEC的面积S n;(3)当A的横坐标分别是1,2,…,10时,△AEC的面积相应的是S1,S2,…,S10,求S1+S2+…+S10的值.〖难度分级〗B类〖参考答案〗解:(1)∵点A的坐标为(1,1),∴反比例函数的比例系数k为1×1=1;∵A的横坐标是1,点C的横坐标比点A的横坐标多2,∴点A的纵坐标为1,点C的横坐标为3,纵坐标为,∴△AEC的面积S1=×AE×EC=×2×(1﹣)=;(2)由(1)可得当A的横坐标是n时,△AEC的面积S n=×2×(﹣)=;(3)解法一:S1+S2+…+S10=(1﹣)+(﹣)+(﹣)+(﹣)+(﹣)+…+(﹣)=1+﹣﹣=.【例题4】已知反比例函数xk y 1-=,k 为常数,k≠1. (1)若点A (1,2)在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一支上,y 随x 的增大而减小,求k 的取值范围;(3)若k=13,试判断点B (3,4),C (2,5)是否在这个函数的图象上,并说明理由. 〖难度分级〗A 类〖试题来源〗2010年天津市中考数学试题〖选题意图〗此题是一道基础题,考查了三方面的内容:①用待定系数法求函数解析式; ②反比例函数的性质;③反比例函数图象上点的坐标特点. 〖解题思路〗(1)将点A (1,2)代入解析式即可求出k 的值;(2)根据反比例函数的性质,判断出图象所在的象限,进而可求出k 的取值范围;(3)将k=13代入y=,得到反比例函数解析式,再将B (3,4),C (2,5)代入解析式解答即可.〖参考答案〗解:(1)∵点A (1,2)在这个函数的图象上,∴2=k ﹣1,解得k=3.(2)∵在函数图象的每一支上,y 随x 的增大而减小,∴k ﹣1>0,解得k >1.(3)∵k=13,有k ﹣1=12,∴反比例函数的解析式为,将点B 的坐标代入,可知点B 的坐标满足函数关系式,∴点B 在函数的图象上,将点C 的坐标代入,由,可知点C 的坐标不满足函数关系式,∴点C 不在函数的图象上.【课堂训练题】1.(2008•肇庆)已知点A (2,6)、B (3,4)在某个反比例函数的图象上. (1)求此反比例函数的解析式;(2)若直线y=mx与线段AB相交,求m的取值范围.〖难度分级〗A类〖参考答案〗解:(1)设所求的反比例函数为y=,依题意得:6=;∴k=12.∴反比例函数为y=.(2)设P(x,y)是线段AB上任一点,则有2≤x≤3,4≤y≤6;∵m=,∴≤m≤.所以m的取值范围是≤m≤3.2.(2009•长春)如图,点P的坐标为(2,),过点P作x轴的平行线交y轴于点A,交双曲线y=(x>0)于点N;作PM⊥AN交双曲线y=(x>0)于点M,连接AM.已知PN=4.(1)求k的值.(2)求△APM的面积.〖难度分级〗A类〖参考答案〗解:(1)∵点P的坐标为(2,),∴AP=2,OA=.∵PN=4,∴AN=6,∴点N的坐标为(6,).把N(6,)代入y=中,得k=9.(2)∵k=9,∴y=.当x=2时,y=.∴MP=﹣=3.∴S △APM =×2×3=3.【例题5】如图,A 、B 两点在函数y=(x >0)的图象上. (1)求m 的值及直线AB 的解析式;(2)如果一个点的横、纵坐标均为整数,那么我们称这个点是格点.请直接写出图中阴影部分(不包括边界)所含格点的个数.〖难度分级〗B 类〖试题来源〗2009年北京市高等中学招生考试〖选题意图〗 本题考查了一次函数和反比例函数的图象性质,综合性较强,体现了数形结合的思想.〖解题思路〗(1)将A 点或B 点的坐标代入y=求出m ,再将这两点的坐标代入y=kx+b 求出k 、b 的值即可得到这个函数的解析式; (2)画出网格图帮助解答.〖参考答案〗解:(1)由图象可知,函数(x >0)的图象经过点A (1,6),可得m=6.设直线AB 的解析式为y=kx+b .∵A (1,6),B (6,1)两点在函数y=kx+b 的图象上,∴⎩⎨⎧=+=+166b k b k ,解得⎩⎨⎧=-=71b k .∴直线AB 的解析式为y=﹣x+7;(2)图中阴影部分(不包括边界)所含格点的个数是3.【课堂训练题】1.如图,在平面直角坐标系中,直线y=﹣x﹣5交x轴于A,交y轴于B,点P(0,﹣1),D是线段AB上一动点,DC⊥y轴于点C,反比例函数的图象经过点D.(1)若C为BP的中点,求k的值.(2)DH⊥DC交OA于H,若D点的横坐标为x,四边形DHOC的面积为y,求y与x之间的函数关系式.〖难度分级〗B类〖参考答案〗解:(1)∵B点是直线y=﹣x﹣5与y轴的交点,∴x=0,y=﹣5,即B点坐标为(0,5),∵点P(0,﹣1),C为BP的中点,∴C点的坐标为(0,﹣3),∴D点纵坐标为﹣3,即﹣3=﹣x﹣5,x=﹣2,∴D点坐标为(﹣2,﹣3),∵D在反比例函数y=的图象上,∴k=(﹣2)×(﹣3)=6.(2)∵D点的横坐标为x,∴其纵坐标为﹣x﹣5,∵D点在第三象限,∴x<0,﹣x﹣5<0,∴y=|x|•|﹣x﹣5|=﹣x•(x+5)=﹣x2﹣5x.2.(2006•北京)在平面直角坐标系xOy中,直线y=﹣x绕点O顺时针旋转90°得到直线l,直线l 与反比例函数的图象的一个交点为A (a ,3),试确定反比例函数的解析式.〖难度分级〗A 类〖参考答案〗解:依题意得,直线l 的解析式为y=x . 因为A (a ,3)在直线y=x 上,则a=3. 即A (3,3).又因为A (3,3)在y=的图象上,可求得k=9,所以反比例函数的解析式为y=.3.(2009•兰州)如图,已知A (﹣4,n ),B (2,﹣4)是一次函数y=kx+b 的图象和反比例函数y=的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积; (3)求方程kx+b ﹣=0的解(请直接写出答案);(4)求不等式kx+b ﹣<0的解集(请直接写出答案). 〖难度分级〗B 类〖参考答案〗解:(1)∵B (2,﹣4)在函数y=的图象上,∴m=﹣8.∴反比例函数的解析式为:y=﹣.∵点A (﹣4,n )在函数y=﹣的图象上, ∴n=2,∴A (﹣4,2),∵y=kx+b 经过A (﹣4,2),B (2,﹣4),∴⎩⎨⎧-=+=+-4224b k b k ,解之得:⎩⎨⎧-=-=21b k .∴一次函数的解析式为:y=﹣x﹣2.(2)∵C是直线AB与x轴的交点,∴当y=0时,x=﹣2.∴点C(﹣2,0),∴OC=2.∴S△AOB=S△ACO+S△BCO=×2×2+×2×4=6.(3)x1=﹣4,x2=2.(4)﹣4<x<0或x>2.【例题6】水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现可以用反比例函数刻画这种海产品的每天销售量y(千克)与销售价格x(元/千克)之间的关系.现假定在这批海产品的销售中,每天的销售量y(千克)与销售价格x(元/千克)之间都满足这一关系.(1)写出这个反比例函数的解析式,并补全表格;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?〖难度分级〗C类〖试题来源〗2009年衢州市中考数学试题〖选题意图〗现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式.〖解题思路〗(1)根据图中数据求出反比例函数,再分别将y=40和x=240代入求出相对应的x和y;(2)先求出8天销售的总量和剩下的数量m,将x=150代入反比例函数中得到一天的销售量y,即为所需要的天数;(3)求出销售15天后剩余的数量除2得到后两天每天的销售量y,将y的值代入反比例函数中即可求出x.〖参考答案〗解:(1)∵xy=12000,函数解析式为,将y=40和x=240代入上式中求出相对应的x=300和y=50,故填表如下:;(2)销售8天后剩下的数量m=2104﹣(30+40+48+50+60+80+96+100)=1600,当x=150时,=80.∴=1600÷80=20,所以余下的这些海产品预计再用20天可以全部售出.(3)1600﹣80×15=400,400÷2=200,即如果正好用2天售完,那么每天需要售出200千克.当y=200时,=60.所以新确定的价格最高不超过60元/千克才能完成销售任务.【课堂训练题】1.(2008 四川省巴中市) 为预防“手足口病”,某校对教室进行“药熏消毒”.已知药物燃烧阶段,室内每立方米空气中的含药量y(mg)与燃烧时间x(分钟)成正比例;燃烧后,y与x成反比例.现测得药物10分钟燃完,此时教室内每立方米空气含药量为8mg.据以上信息解答下列问题:(1)求药物燃烧时y与x的函数关系式.(2)求药物燃烧后y与x的函数关系式.(3)当每立方米空气中含药量低于1.6mg时,对人体方能无毒害作用,那么从消毒开始,经多长时间学生才可以回教室? 〖难度分级〗C 类〖参考答案〗解:(1)设药物燃烧阶段函数解析式为11(0)y k x k =≠,由题意得:1810k =,145k =.∴此阶段函数解析式为45y x =(2)设药物燃烧结束后的函数解析式为22(0)ky k x=≠,由题意得:2810k =,280k =.∴此阶段函数解析式为80y x=(3)当 1.6y <时,得801.6x< 0x >Q , 1.680x >Q ,50x >∴从消毒开始经过50分钟后学生才可回教室.2.(2009 辽宁省大连市) 甲、乙两车间生产同一种零件,乙车间比甲车间平均每小时多生产30个,甲车间生产600个零件与乙车间生产900个零件所用的时间相等,设甲车间平均每小时生产x 个零件,请按要求解决下列问题: (1)根据题意,填写下表:车间 零件总个数平均每小时生产零件个数所用时间甲车间 600 x x600乙车间900________________(2)甲、乙两车间平均每小时各生产多少个零件? 〖难度分级〗C 类〖参考答案〗解:(1) 30+x ,3900+x ; (2)根据题意,得30900600+=x x ,解得 60=x . 9030=+x .经检验60=x 是原方程的解,且都符合题意.答:甲车间每小时生产60个零件,乙车间每小时生产90个零件.【例题7】问题情境:已知矩形的面积为a (a 为常数,a >0),当该矩形的长为多少时,它的周长最小?最小值是多少? 数学模型:设该矩形的长为x ,周长为y ,则y 与x 的函数关系式 为y=2(x+)(x >0).探索研究:(1)我们可以借鉴以前研究函数的经验,先 探索函数y=x+(x >0)的图象和性质.①填写下表, 画出函数的图象;x …1 2 3 4 …y ……②观察图象,写出该函数两条不同类型的性质;③求函数y=ax 2+bx+c (a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.请你通过配方求函数y=x+(x >0)的最小值.解决问题:(2)用上述方法解决“问题情境”中的问题,直接写出答案. 〖难度分级〗C 类〖试题来源〗2011年南京市中考数学试题(有改动)〖选题意图〗本题主要考查对完全平方公式,反比例函数的性质,二次函数的最值,配方法的应用,一次函数的性质等知识点的理解和掌握,能熟练地运用学过的性质进行计算是解此题的关键.〖解题思路〗(1)①把x 的值代入解析式计算即可;②根据图象所反映的特点写出即可;③根据完全平方公式(a+b )2=a 2+2ab+b 2,进行配方即可得到最小值;(2)根据完全平方公式(a+b )2=a 2+2ab+b 2,进行配方得到]2[22a x a x y +⎪⎪⎭⎫⎝⎛-=,即可求出答案.〖参考答案〗解:(1)①故答案为:,,,2,,,.函数y=x+的图象如图:②答:函数两条不同类型的性质是:当0<x <1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大;当x=1时,函数y=x+(x >0)的最小值是2.③解:()x x x x x x xx y 12121122⋅⋅+⋅⋅-⎪⎪⎭⎫ ⎝⎛+=+=212+⎪⎪⎭⎫⎝⎛-=x x , 当01=-xx ,即x=1时,函数y=x+(x >0)的最小值是2, 答:函数y=x+(x >0)的最小值是2. (2)答:矩形的面积为a (a 为常数,a >0),当该矩形的长为a 时,它的周长最小,最小值是a 4. 【课堂训练题】1.已知:A (a ,y 1).B (2a ,y 2)是反比例函数xky =(k >0)图象上的两点. (1)比较y 1与y 2的大小关系; (2)若A 、B 两点在一次函数b x y +-=34第一象限 的图象上(如图所示),分别过A 、B 两点作x 轴的垂 线,垂足分别为C 、D ,连接OA 、OB ,且S △OAB =8, 求a 的值;(3)在(2)的条件下,如果3m=﹣4x+24, xn 323=,求使得m >n 的x 的取值范围. 〖难度分级〗C 类〖参考答案〗解:(1)∵A 、B 是反比例函数y=(k >0)图象上的两点,∴a≠0, 当a >0时,A 、B 在第一象限,由a <2a 可知,y 1>y 2, 同理,a <0时,y 1<y 2;(2)∵A (a ,y 1)、B (2a ,y 2)在反比例函数y=(k >0)的图象上,∴AC=y 1=,BD=y 2=,∴y 1=2y 2.又∵点A(a,y1)、B(2a,y2)在一次函数y=﹣a+b的图象上,∴y1=﹣a+b,y2=﹣a+b,∴﹣a+b=2(﹣a+b),∴b=4a,∵S△AOC+S梯形ACBD=S△AOB+S△BOD,又∵S△AOC=S△BOD,∴S梯形ACBD=S△AOB,∴[(﹣a+b)+(﹣a+b)]•a=8,∴a2=4,∵a>0,∴a=2.(3)由(2)得,一次函数的解析式为y=﹣x+8,反比例函数的解析式为:y=,A、B两点的横坐标分别为2、4,且m=﹣x+8,n=,因此使得m>n的x的取值范围就是反比例函数的图象在一次函数图象下方的点中横坐标的取值范围,从图象可以看出x<0或2<x<4.2.如图,点P是反比例函数(k1>0,x>0)图象上一动点,过点P作x轴、y轴的垂线,分别交x轴、y轴于A、B两点,交反比例函数(k2<0且|k2|<k1,)的图象于E、F两点.(1)图1中,四边形PEOF的面积S1=(用含k1、k2的式子表示);(2)图2中,设P点坐标为(2,3).①点E的坐标是(,),点F的坐标是(,)(用含k2的式子表示);②若△OEF的面积为,求反比例函数的解析式.〖难度分级〗C 类〖参考答案〗解:(1)∵P 是点P 是反比例函数xk y 1=(k 1>0,x >0)图象上一动点, ∴S 矩形PBOA =k 1,∵E 、F 分别是反比例函数xk y 2=(k 2<0且|k 2|<k 1,)的图象上两点, ∴S △OBF =S △AOE =|k 2|,∴四边形PEOF 的面积S 1=S 矩形PBOA +S △OBF +S △AOE =k 1+|k 2|, ∵k 2<0,∴四边形PEOF 的面积S 1=S 矩形PBOA +S △OBF +S △AOE =k 1+|k 2|=k 1﹣k 2.(2)①∵PE ⊥x 轴,PF ⊥y 轴可知,P 、E 两点的横坐标相同,P 、F 两点的纵坐标相同,∴E 、F 两点的坐标分别为E (2,),F (,3);②∵P (2,3)在函数y=的图象上,∴k 1=6,∵E 、F 两点的坐标分别为E (2,),F (,3);∴PE=3﹣,PF=2﹣,∴S △PEF =(3﹣)(2﹣)=,∴S △OEF =(k 1﹣k 2)﹣=(6﹣k 2)﹣==,∵k 2<0, ∴k 2=﹣2.∴反比例函数的解析式为y=﹣.第三部分课后自我检测试卷A类试题:1.(2010•丽江)反比例函数y=和一次函数y=kx﹣k在同一直角坐标系中的图象大致是()A.B.C.D.2.已知点M(﹣3,y1),N(1,y2),P(3,y3)均在反比例函数y=﹣的图象上,试比较y1,y2,y3的大小关系是。

相关文档
最新文档