西安高新一中初中校区七年级上册数学期末试题及答案解答
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
西安高新一中初中校区七年级上册数学期末试题及答案解答
一、选择题
1.已知max
{
}
2,,x x x 表示取三个数中最大的那个数,例如:当x =9时,
max {}{
}2
2,,max 9,9,9x x x ==81.当max {
}
21
,,2
x x x =时,则x 的值为( ) A .14
-
B .116
C .
14
D .
12
2.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0
B .1-
C . 2.5-
D .3
3.下列调查中,适宜采用全面调查的是() A .对现代大学生零用钱使用情况的调查 B .对某班学生制作校服前身高的调查 C .对温州市市民去年阅读量的调查 D .对某品牌灯管寿命的调查 4.已知2a ﹣b =3,则代数式3b ﹣6a+5的值为( )
A .﹣4
B .﹣5
C .﹣6
D .﹣7
5.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )
A .132°
B .134°
C .136°
D .138°
6.在下边图形中,不是如图立体图形的视图是( )
A .
B .
C .
D .
7.如图是由下列哪个立体图形展开得到的?( )
A.圆柱B.三棱锥C.三棱柱D.四棱柱
8.如果a﹣3b=2,那么2a﹣6b的值是()
A.4 B.﹣4 C.1 D.﹣1
9.若OC是∠AOB内部的一条射线,则下列式子中,不能表示“OC是∠AOB的平分线”的是( )
A.∠AOC=∠BOC B.∠AOB=2∠BOC
C.∠AOC=1
2
∠AOB D.∠AOC+∠BOC=∠AOB
10.如图,小明将自己用的一副三角板摆成如图形状,如果∠AOB=155°,那么∠COD等于()
A.15°B.25°C.35°D.45°
11.如果一个有理数的绝对值是6,那么这个数一定是()
A.6B.6-C.6-或6D.无法确定
12.下列计算正确的是()
A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=1
二、填空题
13.将一根木条固定在墙上只用了两个钉子,这样做的依据是_______________.
14.在灯塔O处观测到轮船A位于北偏西54︒的方向,同时轮船B在南偏东15︒的方向,那么AOB
∠的大小为______.
15.定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n+1;②当n为偶数时,
结果为
2k n (其中k 是使2k
n
为奇数的正整数)并且运算重复进行,例如,n =66时,其“C
运算”如下:
若n =26,则第2019次“C 运算”的结果是_____. 16.化简:2xy xy +=__________.
17.如图,这是一种数值转换机的运算程序,若第一次输入的数为7,则第2018次输出的数是_____;若第一次输入的数为x ,使第2次输出的数也是x ,则x =_____.
18.小马在解关于x 的一元一次方程
3232
a x
x -=时,误将- 2x 看成了+2x ,得到的解为x =6,请你帮小马算一算,方程正确的解为x =_____.
19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________; 20.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x 辆车,则可列方程_____.
21.如图,点O 在直线AB 上,射线OD 平分∠AOC ,若∠AOD=20°,则∠COB 的度数为_____度.
22.如果,,a b c 是整数,且c a b =,那么我们规定一种记号(,)a b c =,例如239=,那么记作(3,9)=2,根据以上规定,求(−2,16)=______.
23.如图,已知线段16AB cm =,点M 在AB 上:1:3AM BM =,P Q 、分别为
AM AB 、的中点,则PQ 的长为____________.
24.设一列数中相邻的三个数依次为m ,n ,p ,且满足p=m 2﹣n ,若这列数为﹣1,3,﹣2,a ,b ,128…,则b=________.
三、压轴题
25.小刚运用本学期的知识,设计了一个数学探究活动.如图1,数轴上的点M ,N 所表
示的数分别为0,12.将一枚棋子放置在点M 处,让这枚棋子沿数轴在线段MN 上往复运动(即棋子从点M 出发沿数轴向右运动,当运动到点N 处,随即沿数轴向左运动,当运动到点M 处,随即沿数轴向右运动,如此反复⋯).并且规定棋子按照如下的步骤运动:第1步,从点M 开始运动t 个单位长度至点1Q 处;第2步,从点1Q 继续运动2t 单位长度至点2Q 处;第3步,从点2Q 继续运动3t 个单位长度至点3Q 处…例如:当3t =时,点1Q 、
2Q 、3Q 的位置如图2所示.
解决如下问题:
(1)如果4t =,那么线段13Q Q =______;
(2)如果4t <,且点3Q 表示的数为3,那么t =______; (3)如果2t ≤,且线段242Q Q =,那么请你求出t 的值.
26.东东在研究数学问题时遇到一个定义:将三个已经排好顺序数:x 1,x 2,x 3,称为数列x 1,x 2,x 3.计算|x 1|,
122
x x +,
123
3
x x x ++,将这三个数的最小值称为数列x 1,x 2,x 3的
最佳值.例如,对于数列2,-1,3,因为|2|=2,
()212
+-=
1
2,
()2133
+-+=43,所以数列2,-1,3的最佳值为
1
2
. 东东进一步发现:当改变这三个数的顺序时,所得到的数列都可以按照上述方法计算其相应的最佳值.如数列-1,2,3的最佳值为
1
2
;数列3,-1,2的最佳值为1;….经过研究,东东发现,对于“2,-1,3”这三个数,按照不同的排列顺序得到的不同数列中,最佳
值的最小值为
1
2
.根据以上材料,回答下列问题: (1)数列-4,-3,1的最佳值为
(2)将“-4,-3,2”这三个数按照不同的顺序排列,可得到若干个数列,这些数列的最佳值的最小值为 ,取得最佳值最小值的数列为 (写出一个即可);
(3)将2,-9,a (a >1)这三个数按照不同的顺序排列,可得到若干个数列.若这些数列的最佳值为1,求a 的值. 27.已知线段30AB cm =
(1)如图1,点P 沿线段AB 自点A 向点B 以2/cm s 的速度运动,同时点Q 沿线段点B 向点A 以3/cm s 的速度运动,几秒钟后,P Q 、两点相遇? (2)如图1,几秒后,点P Q 、两点相距10cm ?
(3)如图2,4AO cm =,2PO cm =,当点P 在AB 的上方,且060=∠POB 时,点P 绕着点O 以30度/秒的速度在圆周上逆时针旋转一周停止,同时点Q 沿直线BA 自B 点向
A 点运动,假若点P Q 、两点能相遇,求点Q 的运动速度.
28.射线OA 、OB 、OC 、OD 、OE 有公共端点O .
(1)若OA 与OE 在同一直线上(如图1),试写出图中小于平角的角;
(2)若∠AOC=108°,∠COE=n°(0<n <72),OB 平分∠AOE,OD 平分∠COE(如图2),求∠BOD 的度数;
(3)如图3,若∠AOE=88°,∠BOD=30°,射OC 绕点O 在∠AOD 内部旋转(不与OA 、OD 重合).探求:射线OC 从OA 转到OD 的过程中,图中所有锐角的和的情况,并说明理由.
29.如图,P 是定长线段AB 上一点,C 、D 两点分别从P 、B 出发以1cm /s 、2cm /s 的速度沿直线AB 向左运动(C 在线段AP 上,D 在线段BP 上)
(1)若C 、D 运动到任一时刻时,总有PD =2AC ,请说明P 点在线段AB 上的位置:
(2)在(1)的条件下,Q 是直线AB 上一点,且AQ ﹣BQ =PQ ,求
PQ
AB
的值.
(3)在(1)的条件下,若C 、D 运动5秒后,恰好有1
CD AB 2
=
,此时C 点停止运动,D 点继续运动(D 点在线段PB 上),M 、N 分别是CD 、PD 的中点,下列结论:①PM ﹣PN 的值不变;②MN
AB
的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.
30.如图,数轴上有A 、B 两点,且AB=12,点P 从B 点出发沿数轴以3个单位长度/s 的速度向左运动,到达A 点后立即按原速折返,回到B 点后点P 停止运动,点M 始终为线段BP 的中点
(1)若AP=2时,PM=____;
(2)若点A 表示的数是-5,点P 运动3秒时,在数轴上有一点F 满足FM=2PM ,请求出点F 表示的数;
(3)若点P 从B 点出发时,点Q 同时从A 点出发沿数轴以2.5个单位长度/s 的速度一直..向右运动,当点Q 的运动时间为多少时,满足QM=2PM.
31.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是
0,3,10,且2CD AB =.
(1)点D 表示的数是 ;(直接写出结果)
(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时. ①求t 的值;
②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.
32.问题一:如图1,已知A ,C 两点之间的距离为16 cm ,甲,乙两点分别从相距3cm 的A ,B 两点同时出发到C 点,若甲的速度为8 cm/s ,乙的速度为6 cm/s ,设乙运动时间为x (s ), 甲乙两点之间距离为y (cm ). (1)当甲追上乙时,x = . (2)请用含x 的代数式表示y . 当甲追上乙前,y = ;
当甲追上乙后,甲到达C 之前,y = ; 当甲到达C 之后,乙到达C 之前,y = .
问题二:如图2,若将上述线段AC 弯曲后视作钟表外围的一部分,线段AB 正好对应钟表上的弧AB (1小时的间隔),易知∠AOB=30°.
(1)分针OD 指向圆周上的点的速度为每分钟转动 cm ;时针OE 指向圆周上的点的速度为每分钟转动 cm .
(2)若从4:00起计时,求几分钟后分针与时针第一次重合.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C 【解析】 【分析】 利用max
{
}
2,,x x x 的定义分情况讨论即可求解.
【详解】 解:当max {
}
21
,,2
x x x =
时,x ≥0 x 1
2,解得:x =14
x >x >x 2,符合题意; ②x 2=12,解得:x =22
x x >x 2,不合题意; ③x =
1
2
x x >x 2,不合题意; 故只有x =
1
4
时,max {
}
21,,2
x x x =
. 故选:C . 【点睛】
此题主要考查了新定义,正确理解题意分类讨论是解题关键.
2.C
解析:C 【解析】 【分析】
由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】
-<1-<0<3,
解:∵ 2.5
-,
∴最小的数是 2.5
故选:C.
【点睛】
本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.
3.B
解析:B
【解析】
【分析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.
【详解】
解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;
B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;
C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;
D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.
故选:B.
【点睛】
本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.
4.A
解析:A
【解析】
【分析】
由已知可得3b﹣6a+5=-3(2a﹣b)+5,把2a﹣b=3代入即可.
【详解】
3b﹣6a+5=-3(2a﹣b)+5=-9+5=-4.
故选:A
【点睛】
利用乘法分配律,将代数式变形.
5.B
解析:B
【解析】
过E作EF∥AB,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC,∠BAE=∠FEA,求出∠BAE,即可求出答案.
解:
过E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠C=∠FEC,∠BAE=∠FEA,
∵∠C=44°,∠AEC为直角,
∴∠FEC=44°,∠BAE=∠AEF=90°﹣44°=46°,
∴∠1=180°﹣∠BAE=180°﹣46°=134°,
故选B.
“点睛”本题考查了平行线的性质的应用,能正确作出辅助线是解此题的关键.
6.C
解析:C
【解析】
【分析】
直接利用简单组合体的三视图进而判断得出答案.
【详解】
解:A选项为该立体图形的俯视图,不合题意;
B选项为该立体图形的主视图,不合题意;
C选项不是如图立体图形的视图,符合题意;
D选项为该立体图形的左视图,不合题意.
故选:C.
【点睛】
此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.
7.C
解析:C
【解析】
【分析】
三棱柱的侧面展开图是长方形,底面是三角形.
【详解】
解:由图可得,该展开图是由三棱柱得到的,
故选:C.
【点睛】
此题主要考查了几何体展开图,熟记常见几何体的平面展开图的特征,是解决此类问题的关键.
8.A
解析:A
【解析】
【分析】
将a﹣3b=2整体代入即可求出所求的结果.
【详解】
解:当a﹣3b=2时,
∴2a﹣6b
=2(a﹣3b)
=4,
故选:A.
【点睛】
本题考查了代数式的求值,正确对代数式变形,利用添括号法则是关键.9.D
解析:D
【解析】
A. ∵∠AOC=∠BOC,
∴OC平分∠AOB,
即OC是∠AOB的角平分线,正确,故本选项错误;
B. ∵∠AOB=2∠BOC=∠AOC+∠BOC,
∴∠AOC=∠BOC,
∴OC平分∠AOB,
即OC是∠AOB的角平分线,正确,故本选项错误;
C. ∵∠AOC=1
2
∠AOB,
∴∠AOB=2∠AOC=∠AOC+∠BOC,
∴∠AOC=∠BOC,
∴OC平分∠AOB,
即OC是∠AOB的角平分线,正确,故本选项错误;
D. ∵∠AOC+∠BOC=∠AOB,
∴假如∠AOC=30°,∠BOC=40°,∠AOB=70°,符合上式,但是OC不是∠AOB的角平分线,故本选项正确.
故选D.
点睛:本题考查了角平分线的定义,注意:角平分线的表示方法,①OC是∠AOB的角平分线,②∠AOC=∠BOC,③∠AOB=2∠BOC(或2∠AOC),④∠AOC(或
∠BOC)=1
2
∠AOB.
10.B 解析:B 【解析】
【分析】
利用直角和角的组成即角的和差关系计算.
【详解】
解:∵三角板的两个直角都等于90°,所以∠BOD+∠AOC=180°,
∵∠BOD+∠AOC=∠AOB+∠COD,
∵∠AOB=155°,
∴∠COD等于25°.
故选B.
【点睛】
本题考查角的计算,数形结合掌握角之间的数量关系是本题的解题关键.
11.C
解析:C
【解析】
【分析】
由题意直接根据根据绝对值的性质,即可求出这个数.
【详解】
或6.
解:如果一个有理数的绝对值是6,那么这个数一定是6
故选:C.
【点睛】
本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.
12.A
解析:A
【解析】
解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;
C,底数为-1,一个负数的偶次方应为正数(-1)2=1;
D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.
二、填空题
13.两点确定一条直线.
【解析】
将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.
故答案为两点确定一条直线.
解析:两点确定一条直线.
【解析】
将一根木条固定在墙上只用了两个钉子,他这样做的依据是:两点确定一条直线.
故答案为两点确定一条直线.
14.【解析】
【分析】
根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解. 【详解】
根据题意可得:∠AOB=(90
解析:141
【解析】
【分析】
根据线与角的相关知识:具有公共点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的两条边,明确方位角,即可得解.
【详解】
根据题意可得:∠AOB=(90-54)+90+15=141°.
故答案为141°.
【点睛】
此题主要考查角度的计算与方位,熟练掌握,即可解题.
15.【解析】
【分析】
根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.
【详解】
解:由题意可得,
当n=26时,
第一次输出的结果为:13
解析:【解析】
【分析】
根据题意,可以写出前几次输出的结果,从而可以发现结果的变化规律,从而可以得到第2019次“C运算”的结果.
【详解】
解:由题意可得,
当n=26时,
第一次输出的结果为:13,
第二次输出的结果为:40,
第三次输出的结果为:5,
第四次输出的结果为:16,
第五次输出的结果为:1,
第六次输出的结果为:4,
第七次输出的结果为:1
第八次输出的结果为:4
…,
∵(2019﹣4)÷2=2015÷2=1007…1,
∴第2019次“C 运算”的结果是1,
故答案为:1.
【点睛】
本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
16..
【解析】
【分析】
由题意根据合并同类项法则对题干整式进行化简即可.
【详解】
解:
故填.
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键. 解析:3xy .
【解析】
【分析】
由题意根据合并同类项法则对题干整式进行化简即可.
【详解】
解:23.xy xy xy +=
故填3xy .
【点睛】
本题考查整式的加减,熟练掌握合并同类项法则对式子进行化简是解题关键.
17.2; 0或3或6
【解析】
【分析】
先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.
【详解】
解析:2; 0或3或6
【解析】
【分析】
先计算出前6次输出结果,据此得出循环规律,从而得出答案;根据数值转换机的运算程序,求出所有x 的值,使得输入的数和第2次输出的数相等即可.
解:∵第1次输出的结果为7+3=10,
第2次输出的结果为1
2
×10=5,
第3次输出结果为5+3=8,
第4次输出结果为1
2
×8=4,
第5次输出结果为1
2
×4=2,
第6次输出结果为1
2
×2=1,
第7次输出结果为1+3=4,
第8次输出结果为1
2
×4=2,
……
∴输出结果除去前3个数后,每3个数为一个周期循环,∵(2018﹣3)÷3=671…2,
∴第2018次输出的数是2,
如图,
若x=1
4
x,则x=0;
若x=1
2
x+3,则x=6;
若x=1
2
(x+3),则x=3;
故答案为:2、0或3或6.
【点睛】
此题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.
18.3
【分析】
先根据题意得出a的值,再代入原方程求出x的值即可.【详解】
∵方程的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x,解得x=3.
故答案为3
解析:3
【解析】
【分析】
先根据题意得出a的值,再代入原方程求出x的值即可.
【详解】
∵方程32
3
2
a x
x
+
=的解为x=6,
∴3a+12=36,解得a=8,
∴原方程可化为24-2x=6x,解得x=3.
故答案为3
【点睛】
本题考查的是一元一次方程的解,熟知解一元一次方程的基本步骤是解答此题的关键.19.两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直
解析:两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.
故答案为:两点确定一条直线.
【点睛】
考核知识点:两点确定一条直线.理解课本基本公理即可.
20.3(x﹣2)=2x+9
【解析】
【分析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.
【详解】
设有x辆车,则可列方程:
3(x﹣2)
解析:3(x﹣2)=2x+9
【解析】
【分析】
根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.
【详解】
设有x辆车,则可列方程:
3(x﹣2)=2x+9.
故答案是:3(x﹣2)=2x+9.
【点睛】
本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.
21.140
【解析】
【分析】
【详解】
解:∵OD平分∠AOC,
∴∠AOC=2∠AOD=40°,
∴∠COB=180°﹣∠COA=140°
故答案为:140
解析:140
【解析】
【分析】
【详解】
解:∵OD平分∠AOC,
∴∠AOC=2∠AOD=40°,
∴∠COB=180°﹣∠COA=140°
故答案为:140
22.4
【解析】
【分析】
根据题中所给的定义进行计算即可
【详解】
∵32=9,记作(3,9)=2,(−2)4=16,
∴(−2,16)=4.
【点睛】
本题考查的知识点是零指数幂,解题的关键是熟练的
解析:4
【解析】
【分析】
根据题中所给的定义进行计算即可
【详解】
∵32=9,记作(3,9)=2,(−2)4=16,
∴(−2,16)=4.
【点睛】
本题考查的知识点是零指数幂,解题的关键是熟练的掌握零指数幂.
23.6cm
【解析】
【分析】
根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=AM=2cm ,AQ=AB=8cm,从而得到答案.
【详解】
解:∵AB=16cm,AM:BM=1
解析:6cm
【解析】
【分析】
根据已知条件得到AM=4cm.BM=12cm,根据线段中点的定义得到AP=1
2
AM=2cm,
AQ=1
2
AB=8cm,从而得到答案.
【详解】
解:∵AB=16cm,AM:BM=1:3,∴AM=4cm.BM=12cm,
∵P,Q分别为AM,AB的中点,
∴AP=1
2
AM=2cm,AQ=
1
2
AB=8cm,
∴PQ=AQ-AP=6cm ;
故答案为:6cm .
【点睛】
本题考查了线段的长度计算问题,把握中点的定义,灵活运用线段的和、差、倍、分进行计算是解决本题的关键.
24.-7
【解析】
【分析】
先根据题意求出a 的值,再依此求出b 的值.
【详解】
解:根据题意得:a=32-(-2)=11,
则b=(-2)2-11=-7.
故答案为:-7.
【点睛】
本题考查探索与表
解析:-7
【解析】
【分析】
先根据题意求出a 的值,再依此求出b 的值.
【详解】
解:根据题意得:a=32-(-2)=11,
则b=(-2)2-11=-7.
故答案为:-7.
【点睛】
本题考查探索与表达规律——数字类规律探究. 熟练掌握变化规律,根据题意求出a 和b 是解决问题的关键.
三、压轴题
25.(1)4;(2)
12或72;(3)27或2213
或2 【解析】
【分析】
(1)根据题目得出棋子一共运动了t+2t+3t=6t 个单位长度,当t=4时,6t=24,为MN 长度的整的偶数倍,即棋子回到起点M 处,点3Q 与M 点重合,从而得出13Q Q 的长度.
(2)根据棋子的运动规律可得,到3Q 点时,棋子运动运动的总的单位长度为6t,,因为t<4,由
(1)知道,棋子运动的总长度为3或12+9=21,从而得出t 的值.
(3)若t 2,≤则棋子运动的总长度10t 20≤,可知棋子或从M 点未运动到N 点或从N 点返回
运动到2Q 的左边或从N 点返回运动到2Q 的右边三种情况可使242Q Q =
【详解】
解:(1)∵t+2t+3t=6t,
∴当t=4时,6t=24,
∵24122=⨯,
∴点3Q 与M 点重合,
∴134Q Q =
(2)由已知条件得出:6t=3或6t=21, 解得:1t 2=或7t 2
= (3)情况一:3t+4t=2, 解得:2t 7
= 情况二:点4Q 在点2Q 右边时:3t+4t+2=2(12-3t) 解得:22t 13=
情况三:点4Q 在点2Q 左边时:3t+4t-2=2(12-3t)
解得:t=2.
综上所述:t 的值为,2或
27或2213. 【点睛】
本题是一道探索动点的运动规律的题目,考查了学生数形结合的能力,探索规律的能力,用一元一次方程解决问题的能力.最后要注意分多种情况讨论.
26.(1)3;(2)
12;-3,2,-4或2,-3,-4.(3)a=11或4或10. 【解析】
【分析】
(1)根据上述材料给出的方法计算其相应的最佳值为即可;
(2)按照三个数不同的顺序排列算出最佳值,由计算可以看出,要求得这些数列的最佳值的最小值;只有当前两个数的和的绝对值最小,最小只能为|−3+2|=1,由此得出答案即可;
(3)分情况算出对应的数值,建立方程求得a 的数值即可.
【详解】
(1)因为|−4|=4,-4-3
2=3.5,-4-31
2+=3,
所以数列−4,−3,1的最佳值为3.
故答案为:3;
(2)对于数列−4,−3,2,因为|−4|=4,
432--=72,432||2--+=52, 所以数列−4,−3,2的最佳值为52
; 对于数列−4,2,−3,因为|−4|=4,
||422-+=1,432||2--+=52, 所以数列−4,2,−3的最佳值为1;
对于数列2,−4,−3,因为|2|=2,224
-=1,432||2--+=52
, 所以数列2,−4,−3的最佳值为1;
对于数列2,−3,−4,因为|2|=2,
223-=12,432||2--+=52, 所以数列2,−3,−4的最佳值为
12 ∴数列的最佳值的最小值为223
-=12
, 数列可以为:−3,2,−4或2,−3,−4. 故答案为:
12,−3,2,−4或2,−3,−4. (3)当22
a
+=1,则a =0或−4,不合题意; 当92a
-+=1,则a =11或7;
当a =7时,数列为−9,7,2,因为|−9|=9,97
2-+=1,972
2-++=0,
所以数列2,−3,−4的最佳值为0,不符合题意; 当972a
-++=1,则a =4或10.
∴a =11或4或10.
【点睛】
此题考查数字的变化规律,理解新定义运算的方法是解决问题的关键.
27.(1)6秒钟;(2)4秒钟或8秒钟;(3)点Q 的速度为7/cm s 或2.4/cm s .
【解析】
【分析】
(1)设经过ts 后,点P Q 、相遇,根据题意可得方程2330t t +=,解方程即可求得t 值;(2)设经过xs ,P Q 、两点相距10cm ,分相遇前相距10cm 和相遇后相距10cm 两种情况求解即可;(3)由题意可知点P Q 、只能在直线AB 上相遇,由此求得点Q 的速度即可.
【详解】
解:(1)设经过ts 后,点P Q 、相遇.
依题意,有2330t t +=,
解得:6t =.
答:经过6秒钟后,点P Q 、相遇;
(2)设经过xs ,P Q 、两点相距10cm ,由题意得
231030x x ++=或231030x x +-=,
解得:4x =或8x =.
答:经过4秒钟或8秒钟后,P Q 、两点相距10cm ;
(3)点P Q 、只能在直线AB 上相遇,
则点P 旋转到直线AB 上的时间为:()120430s =或()1201801030
s +=, 设点Q 的速度为/ycm s ,则有4302y =-, 解得:7y =;
或10306y =-,
解得 2.4y =,
答:点Q 的速度为7/cm s 或2.4/cm s .
【点睛】
本题考查了一元一次方程的综合应用解决第(2)(3)问都要分两种情况进行讨论,注意不要漏解.
28.(1)图1中小于平角的角∠AOD,∠AOC,∠AOB,∠BOE,∠BOD,∠BOC,∠COE,∠COD,∠DOE;(2)∠BOD=54°;(3)
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE=412°.理由见解析.
【解析】
【分析】
(1)根据角的定义即可解决;
(2)利用角平分线的性质即可得出∠BOD=12∠AOC+12
∠COE ,进而求出即可; (3)将图中所有锐角求和即可求得所有锐角的和与∠AOE 、∠BOD 和∠BOD 的关系,即可解题.
【详解】
(1)如图1中小于平角的角
∠AOD ,∠AOC ,∠AOB ,∠BOE ,∠BOD ,∠BOC ,∠COE ,∠COD ,∠DOE .
(2)如图2,
∵OB平分∠AOE,OD平分∠COE,∠AOC=108°,∠COE=n°(0<n<72),
∴∠BOD=1
2
∠AOD﹣
1
2
∠COE+
1
2
∠COE=
1
2
×108°=54°;
(3)如图3,
∠AOE=88°,∠BOD=30°,
图中所有锐角和为
∠AOE+∠AOB+∠AOC+∠AOD+∠BOC+∠BOD+∠BOE+∠COD+∠COE+∠DOE
=4∠AOB+4∠DOE=6∠BOC+6∠COD
=4(∠AOE﹣∠BOD)+6∠BOD
=412°.
【点睛】
本题考查了角的平分线的定义和角的有关计算,本题中将所有锐角的和转化成与∠AOE、∠BOD和∠BOD的关系是解题的关键,
29.(1)点P在线段AB上的1
3
处;(2)
1
3
;(3)②MN
AB
的值不变.
【解析】
【分析】
(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在
线段AB上的1
3
处;
(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;
(3)当点C停止运动时,有CD=1
2
AB,从而求得CM与AB的数量关系;然后求得以AB
表示的PM与PN的值,所以MN=PN−PM=
1
12
AB.
【详解】
解:(1)由题意:BD=2PC
∵PD=2AC,
∴BD+PD=2(PC+AC),即PB=2AP.
∴点P在线段AB 上的1
3
处;
(2)如图:
∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,
∴PQ=1
3 AB,
∴
1
3 PQ AB
=
(3)②MN
AB
的值不变.理由:如图,
当点C停止运动时,有CD=1
2 AB,
∴CM=1
4 AB,
∴PM=CM-CP=1
4
AB-5,
∵PD=2
3
AB-10,
∴PN=12
23
(AB-10)=
1
3
AB-5,
∴MN=PN-PM=
1
12
AB,
当点C停止运动,D点继续运动时,MN的值不变,
所以
1
1
12
12
AB
MN
AB AB
==.
【点睛】
本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.
30.(1)5 ;(2)点F 表示的数是11.5或者-6.5;(3)127t =或6t =. 【解析】
【分析】 (1)由AP=2可知PB=12-2=10,再由点M 是PB 中点可知PM 长度;
(2)点P 运动3秒是9个单位长度,M 为PB 的中点,则可求解出点M 表示的数是2.5,再由FM=2PM 可求解出FM=9,此时点F 可能在M 点左侧,也可能在其右侧;
(3)设Q 运动的时间为t 秒,由题可知t=4秒时,点P 到达点A ,再经过4秒点P 停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.
【详解】
(1)5 ;
(2)∵点A 表示的数是5-
∴点B 表示的数是7
∵点P 运动3秒是9个单位长度,M 为PB 的中点
∴PM=
12
PB=4.5,即点M 表示的数是2.5 ∵FM=2PM
∴FM=9
∴点F 表示的数是11.5或者-6.5
(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,
则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=
12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127
; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,
则PB=2QB ,
则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.
【点睛】
本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.
31.(1)16;(2)①t 的值为3或
143秒;②存在,P 表示的数为314
. 【解析】
【分析】
(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,
(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=
143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.
【详解】
(1)16
(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.
当BC =2,点B 在点C 的右边时,
由题意得:32-10-2BC t t =+=(),
解得:t =3,
当AD=2,点A 在点D 的左边时,
由题意得:16--22AD t t ==,
解得:t =143
. 综上,t 的值为3或
143秒 ②存在,理由如下:
当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,
-3BD PA PC =,
()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤
314
x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163
,D 点表示的数为343
. 则37343816-1-|-|3333
BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛
⎫= ⎪⎝
⎭,。